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Introduction 

New ways have to be explored if the miniaturization of the electronic devices 
is to continue at the same pace as in the last decades. Besides incurring in 
exponentially increasing fabrication costs, the down-scaling of (optical) lithographic 
processes in the “top-down” approach for silicon chip manufacturing will soon lead to 
fundamental physical limits [IO00]. An alternative possibility is to explore the so-
called “bottom-up” approach, which is based on the formation of functional devices 
out of prefabricated molecular building blocks with intrinsic electronic properties - an 
area generally referred to as molecular electronics and nanodevices. Molecules 
can be viewed as the ultimate limit of electronic devices, since their size is about 1nm. 
By using appropriately designed organic molecules, the density of transistors per chip 
might potentially be increased by up to a factor of 105 compared to present standards 
[IGA00, RT00].  

The possibility of tailoring organic molecules with particular properties, the 
tunability of their characteristics, and the efficiency and flexibility of deposition 
methods, are reasons for a strong effort to show their applicability as competitive 
materials with respect to inorganic semiconductors. The idea of being able to control 
and explore ways to incorporate organic functions into existing technologies and to 
build molecule-based nanoscale electronic circuits with rectifying, logic and 
switching functions has stimulated experimental attempts to build such molecular 
electronics, and theoretical efforts to describe and predict their properties.  
 Organic functionalisation of the metallic surfaces has important applications, 
e.g. in catalysis, sensors, adhesion, corrosion inhibition, molecular recognition, 
optoelectronics and lithography [Rav03]. Electronic transport involving molecules is 
attracting increasing interest because single molecules might be able to control 
electron transport. The inclusion of biological active molecules and the concept of 
bioelectronic devices add further weight to this idea. Within such a technological 
complex, it is clear that the development of future organic/inorganic interfaces is 
critically dependent on establishing a fundamental understanding of the various 
bonding and lateral interactions that govern the ultimate orientation, conformation and 
two dimensional organization of these molecules at the surface.  
 As a consequence, in all cases, molecule-surface interaction plays a vital role, 
since the binding and ordering of molecules on surfaces is in general controlled by a 
delicate balance between competing molecule-substrate and intermolecular 
interactions. Another consequence of the complex interactions involved, certain 
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molecular behavior, although valid for molecules in the gas phase, cannot be 
transferred a priori to a situation, in which the molecules are adsorbed on the 
substrate. For example, the exact adsorption conformation may play an important role 
when measuring the conductance through a single molecule. 
 During recent years a whole range of highly sophisticated experimental 
techniques have been developed for testing the properties of the molecules on surfaces 
[IFF03]: AES (Auger electron spectroscopy), AFM (atomic force spectroscopy), 
EELS or HREELS (high resolution electron energy loss spectroscopy), LEED (low 
energy electron diffraction), STM (scanning tunneling microscopy), STS (scanning 
tunneling spectroscopy), XPD (X-ray photoelectron diffraction), XPS (X-ray 
photoelectron spectroscopy). All these techniques offer valuable insights into the 
ordering of molecules on the surfaces and into molecule-surface interactions. In 
general, the information obtained with some of the experimental techniques (as AES, 
LEED, HREELS, XPD, XPS) is averaged over large areas of the sample substrate 
compared to the characteristic molecular distances on the surface. Although high-
resolution STM/STS can manipulate matter with atomic scale precision the 
information obtained in most of the molecule-substrate cases is not free of 
ambiguities. This clearly limits the ability to yield information on local properties, 
which is essential in the present context.  
 A fundamental new insight into the very detailed binding geometries and 
ordering of the molecules on surfaces and specificity of the interaction that occur 
between anchored molecules can be obtained by performing ab initio calculations. 
Among many fascinating questions connected with the problem of adsorption, two 
basic ones can be answered using ab initio methods: the first refers to the structure 
and energies of the adsorbed molecules and the second, perhaps more subtle question, 
is concerned with the way in which the electronic properties of the substrate material 
and the molecules are modified by the adsorption.  
 The basis of ab initio calculations is the density functional theory (DFT), 
which states that the ground state properties of a many-electron system are 
exclusively determined by the electron density. It has been shown that the quantum 
mechanical many-particle problem can be mapped onto a system of non-interacting 
electrons moving in an effective potential. Using the generalized gradient 
approximation (GGA) for the exchange-correlation functional, the pseudopotential 
method in a supercell approach, i.e. reciprocal space formulation [IZC79], and 
iterative numerical methods for solving the single-particle equations [Fle87], the ab 
initio method can be applied to large and complex molecular-surface systems.  
 For this purpose we have developed in our group the program package 
EStCoMPP, an “Electronic Structure Code for Materials Properties and Processes”, 
which has been used throughout this thesis. It is an ab initio molecular dynamics 
program in the spirit of Car and Parrinello based on a plane-wave basis set. The 
physical system is represented as a periodical supercell. The EStCoMPP program 
contains the projector-augmented-wave method (PAW) in a formulation similar to the 
one proposed by Blöchl [Blö94], but also includes elements of a pseudocharge 
method proposed by M. Weinert [Wei81] for the full potential linearized augmented 
plane wave method. It is optimally suited for calculating forces exerted on the atoms 
and to determine the equilibrium structures of complex systems of surfaces and 
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molecule-surface systems. The program package contains the EStCoMPP-
Visualization Tool (EStCoMPP-VT) [AA02] that is used to visualize the position 
of the atoms in the unit cell and electron densities calculated with EStCoMPP-
program.  
 We shortly describe the basics of the DFT in Chapter 1 including the 
generalized gradient approximation to the exchange-correlation functional, which is 
used to describe molecules and molecule-surface systems accurately. Chapter 2 
contains the description of the plane-wave representation of the density functional 
theory, and Chapter 3 is devoted to the pseudopotential concept and generation of the 
pseudopotentials in the Kleinman-Bylander and the PAW formalism. As the final 
chapter of the theoretical background Chapter 4 contains the flow diagram of the 
EStCoMPP-code and the implementation of all theoretical ideas. 
 In order to verify the accuracy of the results obtained with our program we 
have calculated the geometrical structure of Cd impurities with vacancies and 
interstitials in Si/Ge bulk. Our results, which are presented in Chapter 5, have been 
used by a collaborating group (using a KKR all-electron method) and the specific 
geometry has been properly assigned to the measured electric field gradient (EFG) in 
Si/Ge.  
 In order to understand the interface organic molecules-metallic substrate it is 
important to study model systems in detail. In this thesis the structure (bonding 
geometry and electronic structure) and local order of several molecular layers on 
Cu(110) surface have been investigated. Formate, 3-thiophene carboxylate or 
glycinate molecules form such molecular layers. All these molecules contain the 
carboxylate group but their geometrical structures differ: while formate and 3-
thiophene carboxylate are planar molecules the glycinate has a 3-dimensional 
geometry. All investigated molecules chemically bind to Cu(110) via the carboxylate 
group. A lot of very complex organic and biological molecules, which are interesting 
from the surface science point of view, use the carboxyl group as an anchoring group 
to bind to metal surfaces. For recent reviews on molecular adsorption see [Rav03], 
[BR03]. 
 Formic acid is the simplest molecule that contains a carboxyl group. The 
adsorption of formic acid on copper single crystal surfaces, in particular Cu(110), has 
attracted considerable attention due to the identification of formate as a key stable 
intermediate in methanol synthesis which is carried out commercially using copper-
based catalysts. Formic acid adsorbs at the Cu(110) surface the result being a 
perpendicular formate-molecular layer on the metallic surface. Chapter 6 of the thesis 
is concerned with the bonding geometry and electronic structure of formate molecules 
for different coverages on clean and oxygen-precovered Cu(110) surfaces.  
 The family of five-membered heterocycles, which includes 3-thiophene 
carboxylic acid, is the main constituent of the polymeric organic conductors. There is 
an increasing interest in the adhesion and growth of oriented polymeric materials on 
surfaces. Many investigations are performed in order to understand the properties of 
the polymer-precursor-substrate interfaces. With such information it should be 
possible to fabricate a specific polymer-surface structure, of which chemistry and 
physics can be controlled and optimized to achieve specifically desired properties. 
The chemical adsorption of 3-thiophene carboxylic on theCu(110) surface produces 
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an ordered 3-thiophene carboxylate molecular layer in which the molecules are 
perpendicular on the surface. Chapter 7 of this thesis investigates the bonding to the 
surface, the lateral interactions, the orientation and alignment of adsorbed 3-thiophene 
carboxylate molecules on Cu(110) surface. 
 The study of bonding geometries of model species such as simple aminoacids 
can assist the interpretation of more complex systems including aspects of 
biochemically and chirally active films. For example, the structures, conformations 
and local ordering in the self-assembled monolayers determine the possible 
interaction with other incoming species in the process of molecular recognition. The 
functional groups involved in the bonding of the molecule to the surface will not be 
available for coupling to other species from the surrounding medium. Glycine is the 
simplest aminoacid, it has an important function in the neurotransmitter system. 
Glycine adsorption on the Cu(110) surface produces a flat layer of glycinate 
molecules, binding to the surface via both functional groups (carboxylate and amino). 
Some experiments suggested the formation of heterochiral domains (two molecules 
where both enantiomers are present in the unit cell) as well as homochiral domains 
(two molecules of one enantiomer type are in the unit cell), other experiments report 
the existence of only heterochiral domains. Chapter 8 of this thesis is concerned with 
the study of the bonding properties of the glycinate molecules and the stability of 
possible different domains that can be formed at the Cu(110) surface. The results 
obtained allow a unique assignment of the registry of glycinate molecules at the 
Cu(110) surface. 
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Chapter 1 

1.1. Density Functional Theory 

 First principles or ‘ab initio’  methods are based on the quantum mechanical 
equations governing the behavior of the system studied. The aim of these methods is not 
to solve the many-body Schrödinger equation exactly, but to select a method to find 
adequate approximations to the full solution, in order to predict the properties one wants 
to study. Ab initio calculations can be considered a bridge between classical theory and 
experiment, which is why they are sometimes referred to as “computer experiments”. 
They provide insight into phenomena that are too complex to be treated analytically, and 
allow the determination of material properties if experiments are not feasible. Thus first 
principles calculations are valuable tools that can aid the explanation and deepen the 
understanding of conventional experiments. 
 The ground-state properties of any non-relativistic time-independent quantum 
system can in principle be determined by solving the stationary Schrödinger equation: 

( ) ( )MNMN RRRRrrrrERRRRrrrrH
rrrrrrrrrrrrrrrr

,...,,,,,...,,,,...,,,,,...,,,ˆ
321321321321 Ψ=Ψ      (1.1-1) 

where ( ) E,R,...,R,R,R,r,...,r,r,r,H MN

rrrrrrrrr

321321Ψ  are the Hamiltonian, the many body 

wave function and the total energy of the system. Here we distinguish between the 
coordinates of the nuclei iR  and of the electrons ir  constituting the system considered. 

They interact via the Coulomb law, and the total Hamiltonian for such a system is given 
by: 
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where M  and N are the total number of nuclei and electrons, respectively; { }iiZ R,Z,m
i

r
 

are the mass, charge and position of nuclei, { }e,r,m ie

r
 represent the mass, position and 

charge of the electrons. 
 The first two terms of equation (1.1-2) represent the kinetic energies of nuclei and 
electrons; the following terms are the Coulomb energies due to ion-ion repulsion, ion-
electron attraction, and electron-electron repulsion. The Schrödinger equation above can 
only be solved exactly for the hydrogen atom. Only a few other model systems also yield 
differential equations with exact solutions, depending on the functional form of potential 
energy and number of particles, like particles in a box, rigid rotors, and harmonic 
oscillators. In practice, for a real solid, a number of physically reasonable approximations 
are required which will be discussed in the following: 
 In most instances the “adiabatic” or Born-Oppenheimer approximation [BH54] 
can be made, separating the degrees of freedom of electrons and nuclei. Due to the large 
difference in mass, 1<<

iZe m/m , the electrons will respond instantaneously to the 

movement of the much heavier nuclei, (sic) the nuclear coordinates can be considered as 
external parameters for the electronic part of the system. In this approximation the 
electronic ground state energy, which depends on the nuclear coordinates, enters the 
separated nuclear problem as part of the potential energy. In this thesis the nuclear 
motion will be treated classically by Newtonian dynamics.  
 Using this Born-Oppenheimer approximation, the electrons move in a fixed 
external potential due to the nuclei, and the electronic part of the Hamiltonian can be 
written as: 
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 However, solving the electronic Schrödinger equation with its many degrees of 
freedom is still impossible for most realistic systems.  
 Hartee ([Har28]) suggested the “independent electron approximation”, in which 
the many-electron wave function ( )Nrrrr

rrrr
,...,,, 321Ψ  is a product of single particle 

functions ( )1ri

r
Ψ . Electrons are spin-1/2 particles and have to obey the Pauli principle, 

which states that the many-electron wave function has to be anti-symmetric with respect 
to the permutation of any two-electron coordinates. Including the spin degrees of freedom 

is
r

 for the electrons this condition leads to: 

( ) ( ),...,......,,...,......, ijjijjii srsrsrsr
rrrrrrrr

Ψ−=Ψ     (1.1-4) 

 The Hartree Ansatz has been expanded to include this symmetry restriction by 
Hartree and Fock ([SO82], [HRS86]). The N-electron wave function is approximated by 
a Slater determinant, i.e. an anti-symmetrised product of N-orthonormal single electron 
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wave functions ( )iii s,r
rΨ , each consisting of a spatial orbital ( )ri

r
ϕ  and a spin function 

( )isσ 1: 

( )
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 The single particle orbitals fulfill the orthonormality conditions: 

( ) ( ) ( ) ( ) ( ) ( ) ij
s

jijiji
s

ji

zz

ssrrrdrdsrsr δσσϕϕ ==ΨΨ=ΨΨ ∑∫∑∫
∗∗ rrrrrrrr

 (1.1-6) 

 Generalizations of this approach in order to take into account correlations 
between electrons beyond the anti-symmetrization use linear combinations of Slater 
determinants. This method is known as “configuration interaction” ([SO82], [Ful95]). 
 Most numerical approaches to treat the interacting many-electron problem are 
based on the electron density-functional formalism. Hohenberg and Kohn have 
established two remarkable theorems applying to any system consisting of electrons 
moving under the influence of an external potential ( )rextν  (e.g. Ions)2. 

 Theorem 1: The external potential and the total energy of an interacting many-
electron system are unique functionals of the electron density ( )rn

r
. 

 Following Hohenberg and Kohn, the ground state energy can be written as: 

( )[ ] ( ) ( ) ( )[ ]rnFrdrvrnrnE ext

rrrrr

∫ +=     (1.1-7) 

where ( )[ ]rnF
r

 is an unknown but universal (i.e. not explicitly depended on the external 

potential) functional of the electron density ( )rn
r

.  

 The proof of Theorem 1 proceeds by reductio ad absurdum: First, one observes 
that the Hamiltonian Ĥ  for the system, and thus the ground-state energy E, are uniquely 
determined by the external potential. They are related by: 

extVFH ˆˆˆ +=  ,  ( )[ ] ΨΨ= ĤrnE
r

   (1.1-8) 

                                                 
1 ( ) ( ) βσασ =−==+= 21;21 zz ss  represent spin-up and spin-down functions 

2 The following formulae refer to a system where 074.274
2

,2,
2

1
,1 2 =====

α
cemeh  as used in the 

Electronic Structure Code for Material Properties and Processes (EStCoMPP). The energy is 
expressed in Rydberg and the length scale is the Bohr radius: eVRy 6058.131 ≅ , 529177.0=Ba Å. These 

units are called “atomic units”. 
 



DENSITY FUNCTIONAL THEORY 

 14

 Comparing to Eq.(1-3), where the external potential is the Coulomb potential of 
the nuclei, one sees that the operator F̂ 3 consists of a kinetic energy operator T̂  and the 

electron-electron interaction operator eeV̂ : 

eeVTF ˆˆˆ +=       (1.1-9) 

and the functional ( )[ ]rnF
r

 is its ground-state expectation value of this operator. 

 Hohenberg and Kohn have shown that it is not possible to obtain the same 
ground-state electron density by two different potentials, and in turn that two different 
electron densities have to derive from two different potentials. In other words, the 
electron density uniquely determines the external potential, and thus all ground state 
properties, in particular the ground-state energy, its derivatives, and the positions of the 
nuclei. 
 The second Hohenberg-Kohn theorem represents in essence a minimum principle 
for the density: 

 Theorem 2: The exact ground-state density ( )rn
r

0  for a given external potential 

minimizes the energy functional ( )[ ]rnE
r

, and the minimum value is the exact ground 

state density. 

( )[ ] 00 ErnE =
r

     (1.1-10) 

 While Hohenberg and Kohn proved their theorems indirectly with the assumption 
that the density ( )rn

r
 is uniquely determined by the external potential (V-representation 

of the density), Levy ([Lev79]) derived the minimum properties of the energy functional 
directly via the Ritz variational principle. 
 He defined the energy-functional as: 

( )[ ] ΨΨ= HrnE min:
r

   (1.1-11) 

 The expectation value of the Hamiltonian operator has to be minimized with 
respect to the norm conserving, anti-symmetric many-particle wave function Ψ , which 
reproduces a given electron-density ( )rn

r
 (Ψ  representation of ( )rn

r
). The ground-state 

density ( )rn
r

0  and the ground-state energy ( )[ ]rnE
r

0  are determined by minimizing the 

energy-functional: 

( )[ ] 0=rnE
rδ      (1.1-12) 

 The subsidiary condition of particle conservation  

( ) Nrnrd =∫
rr3     (1.1-13) 

is taken into account using a Lagrangian-parameter µ . This leads to the minimization of 

a modified energy-functional 

                                                 
3 The electron operator F̂  is the same for all N-electron systems. 
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( )[ ] ( )[ ] 03 =−− ∫ NrdrnE
rr µδ     (1.1-14) 

which yields the following Euler-Lagrange equation: 

( )[ ]
( ) ( )

µ
δ

δ =
rn

rn
rnE

r

r

r

0

     (1.1-15) 

 An explicit form of the energy-functional could not be derived from the approach 
of Hohenberg and Kohn, or from Levy’s formulation. Thus additional approximations 
have to be made.  
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1.2. The Kohn-Sham Formulation 

 Density Functional Theory provides the theoretical ground for reformulating the 
ground-state many-electron system as a variational problem on the charge density. The 
constrained minimization on the density functional, with the subsidiary condition of particle 
conservation, can be written as: 

( )[ ] ( ) ( ) ( )( )[ ] 0=−−+ ∫ ∫ NrdrnrdrnrvrnF ext

rrrrrr µδ   (1.2-1) 

where µ  is a Lagrange multiplier. This leads to the Euler-Lagrange equation for the charge 

density: 

( )[ ]
( ) ( )rv
rn
rnF

ext

r
r

r

+=
δ

δµ     (1.2-2) 

 To be able to treat an inhomogeneous system of interacting electrons, Hohenberg and 
Kohn have formally divided the universal unknown functional ( )[ ]rnF

r
 into three terms:  

( )[ ] ( )[ ] ( )[ ] ( )[ ]rnErnErnTrnF XCH

rrrr
++= 0    (1.2-3) 

( )[ ]rnT
r

0  is the kinetic energy functional of N non-interacting electrons of density ( )rn
r

, and 

( )[ ]rnEH

r
 represent the classical electrostatic (Hartree repulsion) energy of the electrons: 

( )[ ] ( ) ( )
'

'

'

2

1
rdrd

rr
rnrn

rnEH

rr
rr

rr
r

∫∫ −
=     (1.2-4) 

 All unknown many-electron effects are shifted into the third functional. The 
decomposition above entails an implicit definition for this exchange-correlation functional 

( )[ ]rnE XC

r
, which consists of non-classical contributions to the electron-electron interaction, 

and the difference between the true kinetic energy and the non-interacting one. 
 The fact that ( )[ ]rnE XC

r
 is only a small fraction of the total energy, and that it can be 

approximated surprisingly well for most systems, is mostly responsible for the success of the 
Kohn-Sham formulation. The approximations for the exchange-correlation energy will be 
discussed later. 
 The Euler-Lagrange equation can now be rewritten as: 

( )[ ]
( ) ( )rv
rn
rnT

KS

r
r

r

+=
δ

δµ 0     (1.2-5) 

where the ( )rvKS

r
 is given by  

( ) ( ) ( ) ( )rvrvrvrv XCHextKS

rrrr
++=     (1.2-6) 



THE KOHN-SHAM FORMULATION 

 17

with the Hartree potential ( )rvH

r
 

( ) ( )[ ]
( )

( )
∫ −

== '
'

'
rd

rr
rn

rn
rnE

rv H
H

r
rr

r

r

r
r

δ
δ

    (1.2-7) 

and the exchange-correlation potential: 

( ) ( )[ ]
( )rn

rnE
rv XC

XC r

r
r

δ
δ=      (1.2-8) 

 Equation (1.2-5) shows that the many-body electron problem with N interacting 
electrons has now been reformulated as a problem of N non-interacting electrons which move 
in an effective potential ( )rvKS

r
. 

 The effective potential is a functional of the charge density itself, and the problem has 
to be solved self-consistently. 
 The solution for the N-electron, non-interacting reference system can be written as a 
Slater determinant introduced earlier (1.1-5): 

( ) ( ) ( ) ( )NNKS rrrr
N

rrrr ΨΨΨΨ=Ψ ...det
!

1
332211    (1.2-9) 

The kinetic energy functional ( )[ ]rnT
r

0  can be expressed in terms of N orthonormal 

orbitals ( )ri

r
Ψ : 

( )[ ] ( ) ( )∑∫
=

∗ Ψ∇Ψ−=
N

i
ii rdrrrnT

1

2

2

1 rrrr
    (1.2-10) 

and the electron density can also be parameterized in terms of these one-electron wave 
functions: 

( ) ( )∑
=

Ψ=
N

i
i rrn

1

2rr
     (1.2-11) 

where the sum is over the occupied orbitals (belonging to the N lowest eigenvalues).  
 We now can formulate the variation principle for the ground state by varying the 
density through the variation of a single electron wave function. 

( ) ( )
( ) ( ) ( )

( ) ( )∑ 
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Ψ

Ψ
+Ψ

Ψ
=

i
i

i
i

i

r
r

rn
r

r
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r

r
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r
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ddd *
* δ

δ
δ
δ

   (1.2-12) 

 The variation can be done independently for each *
iΨ  and iΨ . Taking into account 

the orthonormalization condition of the single particle wave functions by Lagrange 
parameters, the variational principle reads: 

( )[ ] ( )[ ] ( ) ( )[ ] ( )[ ] ( ) ( )( ) 01
1

*
0*

=








−ΨΨ−+++
Ψ ∑ ∫∫

=

N

j
jjjXCHext

i

rrrdrnErnErdrnrnvrnT
rrrrrrrrr ε

δ
δ

  (1.2-13) 

with Ni −=1 ; this yields the Kohn-Sham equations for the wave functions: 

( ) ( ) ( )rrrv iiiKS

rrr
Ψ=Ψ







 +∇− ε2

2

1
    (1.2-14) 
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 They have to be solved self-consistently using equations (1.2-11), (1.2-6) to (1.2-8).  
 This Kohn-Sham approach represents a mapping of the interacting many-electron 
system onto a system of non-interacting electrons moving in an effective potential due to all 
the other electrons. The self-consistent solution of the Kohn-Sham equation gives the set of 
the wave function iΨ  that minimizes the Kohn-Sham energy-functional. If the exchange-

correlation energy functional were known exactly, the functional derivative with respect to the 
density would produce an exchange correlation potential that includes the effects of exchange 
and correlation exactly. The eigenvalues of the Kohn-Sham equations are formally one-
particle energies. However, since they are only Lagrangian parameters in the density 
functional theory they have strictly speaking no physical meaning. The same argument holds 
for the one-particle wave functions, which have no physical meaning as well. Nevertheless, 
following Koopmans-theorem, an interpretation of the iε  and ( )ri

r
Ψ  as eigenvalues and one-

particle wave functions is generally possible ([JG89]). For delocalized states, where the 
correlation can be neglected compared to exchange, the spectroscopically measured ionization 
energies and the energies calculated with the density functional theory are indeed in good 
agreement. This is not necessarily true for the strongly localized states (e.g. atomic states). 
However, the surface states and molecular states, which are calculated in this thesis, are 
sufficiently delocalized and can be approximately interpreted as physical states.  
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1.3. Exchange-Correlation Terms in 
Density Functional Theory 

 The exchange-correlation energy is the only part of the total electronic energy that 
cannot be calculated numerically exactly. It contains the correlations between the electrons 
due to the quantum mechanical symmetry requirements (Pauli principle), which yield 
exchange energy. Beyond that it contains the electron-electron interaction that yields the 
correlation energy.  
 An exact expression can be written for the exchange-correlation energy in terms of the 
exchange-correlation-pair density ( )',rrnXC

rr
 [JG89]. 

( )[ ] ( ) ( )
'

'

',

2

1
rd

rr
rrn

rdrnrnE XC
XC

r
rr

rr
rrr

∫ ∫ −
=    (1.3-1) 

( )',rrnXC

rr
 describes the deviation of the conditional density to find an electron at ( )', rdr

rr
 

when it is known that there is an electron at ( )', rdr
rr

 . For 'rr
rr

→ , ( )',rrnXC

rr
 is reduced from 

its value of non-interacting electrons due to the electron-electron correlation described above, 
i.e. it describes an exchange-correlation hole. 
 The exchange correlation energy can be viewed as the energy resulting from the 
interaction between an electron and its exchange-correlation hole.  
 Using the normalization of the pair correlation function a sum rule can be formulated 
for the exchange-correlation hole: 

( )∫ −= 1'', rdrrnXC

rrr
     (1.3-2) 

 With the substitution 'rrR
rrr

−=  one can write the exchange-correlation hole as 

r
XC

R
rnrdRrnd

R
RRdrnrdE

r

r
rrrr

r
rrr 1

)(
2

1
),(

1
)(

2

1

0

2
∫∫∫∫ −=Ω=

∞

  (1.3-3) 

 The minus sign guarantees that with (1.3-2) the average 
rR r

r
1

 is a positive number. 

This expression shows that, when the provided sum rule (1.3-2) is satisfied, the exchange-

correlation energy enters only via the average 
rR r

r
1

, i.e. via the first moment of the function 

( )',rrnXC

rr
. In particular, the angular dependency is averaged out.  
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 Since the exchange correlation function ( )',rrnXC

rr
 is not known exactly, 

approximations have to be constructed which fulfill the sum rule (1.3-2) and approximate the 

average 
rR r

r
1

 for each r
r

 as good as possible.  

Exchange-Correlation Approximations in Density 
Functional Theory 

 The exchange-correlation functionals have the general form 

( )[ ] ( ) ( )[ ]∫= rdrnrnrnE XCXC

rrrr ε     (1.3-4) 

 In order to model the exchange-correlation hole via exchange-correlation functionals 
we need to find a way in which the density surrounding each electron is approximated in a 
form of exchange-correlation energy per particle ( )[ ]rnXC

rε . 

1.3.1. Local density approximation 
(LDA)  

 LDA  is a reasonable and simple approximation of the exchange-correlation that makes 
the Kohn-Sham DFT method a very practical one. In this approach it is assumed that the true 
exchange-correlation energy of a many-electron system can locally be approximated by the 
exchange-correlation energy associated with a homogeneous electron gas of the same density 
([Wig34], [MJW80], [VWN80]). For the homogeneous electron gas the form of exchange 
correlation energy can be calculated exactly [CA80]. It is the only system where the exchange 
correlation energy density is precisely known.  
 In LDA, the exchange-correlation electron density ( )[ ]rnXC

rε  at the point r
r

 is equal to 

the exchange-correlation electron density, ( )[ ]rnXC

rhomε , of the homogeneous electron gas of 

density ( )rn
r

. This is a function ( )( )rnXC

rhomε  and not anymore a functional of electron density 

( )rn
r

. The total exchange-correlation energy, dependent on the local density, can be obtained 

by a spatial integration 

( )[ ] ( ) ( )( )∫= rdrnrnrnE XC
LDA
XC

rrrr homε     (1.3-5) 

 The total exchange-correlation energy can be decomposed in exchange ( )[ ]rnE LDA
X

r
 

and correlation ( )[ ]rnE LDA
C

r
 contributions4. 

                                                 
4 Correspondingly, the electron density will be decomposed in exchange ( )( )rnX

rhomε  and correlation ( )( )rnC

rhomε  

parts. 
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 In LDA, the exchange-correlation potential is written as: 

( )[ ] ( )[ ]
( )

( ) ( )( )[ ]
( ) ( )( ) ( ) ( )( )

( ) 







+=∂==

rnd

rnd
rnrn

rn

rnrn

rn

rnE
rnV XC

XC
XC

LDA
XCLDA

XC r

r
rr

r

rr

r

r
r

hom
hom

hom εε
δ
ε

δ
δ

 (1.3-6) 

 The exchange energy density ( )( )rnX

rhomε  can be calculated exactly solving the Hartree-

Fock equations for a homogeneous electron gas, and the correlation ( )( )rnC

rhomε  electron 

density is obtained using Quantum Monte-Carlo simulation for both low and high density 
limits to fix the coefficients in an interpolation formula [CA80]. Earlier approximations due to 
the Wigner [Wig34] or generalization to the relativistic case [VWN80] are also implemented 
in our code. 
 The DFT can be generalized for spin-polarized electron systems by taking into 

account the spin-electron densities ( )rn
r↑  and ( )rn

r↓  for the spin-up and spin-down electrons, 

respectively, as independent functions. The electron density and the magnetization density are 
defined by: 

( ) ( ) ( )
( ) ( )rnrnrm

rnrnrn
rrr

rrr

↓↑

↓↑

−=
+=

)(
     (1.3-7) 

 Then the total energy functional has to be considered a functional of two densities: 

( )[ ] ( ) ( )[ ]rnrnErnE
rrr ↓↑⇒ ,     (1.3-8) 

which is minimized with respect to both spin-up ( )rn
r↑

0  and spin-down ( )rn
r↓

0  ground-state 

densities. 
 Also the LDA  can be generalized to the local-spin density approximation (LSDA) 
where the exchange-correlation electron density of the homogeneous spin-polarized electron 

gas ( ) ( )( )rnrnXC

rr ↓↑ ,homε  is dependent on spin-up and spin-down densities. 

 Despite its simplicity, the local density approximation works well and is very 
successful in solid systems with extended slowly varying wave functions [JG89]. However, 
because the LDA  ignores the correction to the exchange correlation energy at a point r

r
 due 

to the surrounding inhomogeneities of the electron density, its success is not guaranteed in 
systems with strong spatial variations of the charge density as e.g. in a molecule. Thus, for 
chemistry applications more general exchange-correlation functionals have been invented 
([Bec93], [PW92], [PBE96-98]). 
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1.3.2. Generalized gradient 
approximation (GGA) 

 A better approximation of the exchange-correlation functional is known as the 
generalized gradient approximation (GGA) in which the exchange-correlation energy is not 
only a function of the electron density but also depends on the electron density gradients. 
 The total exchange-correlation energy in the GGA can be conveniently written in 
terms of an analytic function ( ) ( )[ ]rnrnFXC

rr
∇,  known as the enhancement factor that directly 

modifies the LDA  exchange-correlation energy density: 

( )[ ] ( ) ( )( ) ( ) ( )[ ]∫ ∇= rdrnrnFrnrnrnE XCXC
GGA
XC

rrrrrr
,homε    (1.3-9) 

The enhancement factor ( ) ( )[ ]rnrnFXC

rr
∇,  has two separate parts due to the exchange and 

correlation contributions. It is conveniently written in terms of the Seitz radius sr , which 

characterizes the electron density (see equation 1.3-12), and the dimensionless reduced 
density gradient ( )rs

r
: 

( ) ( )
( ) ( )rnrk

rn
rs

F

rr

r
r

2

∇
= , with the Fermi-wave-vector ( ){ }3

1
23 rnkF

rπ=   (1.3-10) 

 The generalized gradient approximation implemented in the code is the one proposed 
by Perdew, Burke and Ernzerhof (PBE) [PW92, PBE96-98] in which all parameters other 
than those due to the correlation contributions are fundamental constants. 
 For GGA the expansion of DFT for the spin-polarized electron systems is done by 
generalization of the non-polarized electron systems considering the two spin-electron 

densities ( )rn
r↑  and ( )rn

r↓  for the spin-up and spin-down electrons, respectively. 

 The PBE correlation-energy functional is given by: 

( ) ( )[ ] ( ) ( ) ( ){ }∫ +=↓↑ rdtrHrernrnrnE ssc
PBE
C

rrrr 3,,,, ζζ   (1.3-11) 

where sr  , the density parameter, characterizes the electron density 

( ) ( ) ( ) ( )34

3

Bs ar
rnrnrn

π
=+= ↓↑ rrr

 with the Bohr radius 
2

2

em
aB

h=  (1.3-12) 

ζ  is the relative spin polarization of the electrons, and t is a measure of the density gradient: 
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( ) ( )rnrn
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= ππ
   (1.3-13) 



EXCHANGE-CORRELATION IN DENSITY FUNCTIONAL THEORY 
 

 23

 The parametrized electron correlation energy, ( )ζ,sc re , is given by the spin-

interpolation formula ([PW92], [VWN80], [BH72]): 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )[ ] ( ) 44 0,1,1
0

0,, ζζζζαζ frere
f
f

rrere scscsCscsc −+−
′′

+=  (1.3-14) 

with ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]0,1,0,709921.10,11,10 scscsC rerefrfff −′′==′′== α  (1.3-15) 

 The function ( )trH s ,,ζ  is written as [PBE96-98]  
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where     ( ) ( ) ( )

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



 −++=Φ 3

2

3

2

11
2

1 ζζζ    (1.3-17) 

and     ( )
1

,
exp
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


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


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
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β
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A    (1.3-18) 

 The constants are 066725.0=β  and 031091.0=γ , each in Hartree units. The 

expressions have formal validity conditions: 1<<s  and 1<<t . Then, important sum rules on 
the exchange-correlation hole will be preserved. 
 The PBE exchange-energy functional for the non-spin polarized system has the form: 

( )[ ] ( ) ( )∫= rdsFrnrnE X
PBE
X

rrr 3    (1.3-19) 

with 

( )

κ
µ
κκ

2

1

1
s

sFX

+
−+= ; 804.0=κ  and 21951.0=µ  (1.3-20) 

 The corresponding spin density functional for the exchange energy is given by: 

( ) ( )[ ] ( )[ ] ( )[ ]rnErnErnrnE PBE
X

PBE
X

PBE
X

rrrr ↓↑↓↑ += 2
2

1
2

2

1
,   (1.3-21) 

 An important property of PBE-GGA is that it reduces to LSDA for uniform electron 
densities (density gradient 0→s ). 

 For the details about formulas and implementation of GGA in the EStCoMPP-
program see the appendixes A.1.-A.5. 
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Chapter 2 

Density Functional Theory in a  
Plane Wave implementation 

 This section will briefly describe the plane-wave pseudopotential implementation of 
the Kohn-Sham formulation that is used throughout this thesis. The method is suited to 
describe systems with periodic boundary conditions, as is natural for infinite bulk crystals, or 
systems which are sufficiently localized and can be embedded in a large enough supercell 
which is periodically repeated. 

2.1. Supercell approach 

 In a perfect crystal the elementary unit cell is defined as the smallest structure whose 
periodical continuation describes the entire crystal. The unit cell can be completely 
characterized by three basis-vectors: 1a

r
, 2a
r

, 3a
r

. Using these, one can construct lattice-vector 
nR

r
, which points to positions of different elementary unit cells. The periodicity condition is 

by definition imposed on all properties ( )rf
r

 of the lattice.  

( ) ( )rfRrfanananR nn rrrrrrr
=+++= ,332211    (2.1-1) 

with 1n , 2n , 3n  integers. E.g. the potential ( )rV
r

and the charge density ( )rn
r

 will also be 

periodic. Thus one has to calculate only the properties of a single unit cell (with few degrees 
of freedom) to describe the properties of the entire periodic crystal.  
 The volume of the unit cell is defined by the basis vectors as:  

( )321 aaa
rrr

×⋅=Ω      (2.1-2) 

 Using the conventional definition of reciprocal space basis-vectors: 

Ω
×

= kj
i

aa
b

rr
r

π2 ,     (2.1-3) 

we can write the reciprocal lattice-vector as: 

332211 bgbgbgGm
rrrr

++= .    (2.1-4) 
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The real-space lattice-vectors nR
r

, and their reciprocal space counterparts mG
r

 are 
related by 

1=⋅⋅ RGie
rr

     (2.1-5) 

Inhomogeneities like point defects or surfaces destroy the periodicity of the solid. But 
the advantages of periodicity can be kept by introducing a “supercell”. In this “supercell” 
approach a unit cell larger than the elementary unit cell of the bulk is constructed, which 
contains the non-periodic defect. Due to the periodic repetition of the supercell one calculates 
the properties of a crystal with a periodic arrangement of the defects rather than those of an 
extended crystal with a single defect. This supercell has to be chosen sufficiently large, so that 
the defect-defect interactions in neighboring supercells are negligible. Extending this method 
to interfaces is done straightforward by treating the interface itself as a two-dimensional 
defect, and extending the supercell in the direction perpendicular to the interface. Special care 
has to be taken when the supercell method is applied to surfaces. The vacuum region has to be 
chosen large enough to avoid overlap of charge densities of opposing surfaces due to surface 
states that decay only slowly in vacuum.  

2.2. Bloch’s theorem and the  
plane-wave basis set 

The induced periodicity in the external potential implies that the Hamiltonian 
commutes with the translational operator defined by the periodic boundary conditions. Bloch's 
theorem states that the set of eigenstates ( )r

k,

r
r

νΨ  for these operators can be conveniently 

expressed as the product of a plane-wave part rkie
rr⋅⋅  and a lattice periodic part ( )ru

k,

r
r

ν  

( ) ( )ruer
k,

rki
k,

rr
r

rr

r
ν

⋅⋅
ν =Ψ      (2.2-6) 

where the ν  indicates the band index, and k
r

 is a continuous wave-vector. 
The periodicity of ( )ru

k,

r
r

ν  is exploited when representing the wave function in terms 

of a discrete basis of orthogonal plane-waves: 

( ) ( )∑ ⋅⋅=
G

rGi
kk

eGcru
r

rr

rr

rr

,, νν      (2.2-7) 

with the plane-wave coefficients ( )Gc
k,

r
r

ν . 

Thus the electron wave functions can be expanded in terms of linear combinations of 
plane-waves as well:  

( ) ( ) ( )∑ ⋅+⋅
νν =Ψ

G

rGki
k,k,

eGcr
r

rrr

rr

rr
     (2.2-8) 

Using the fact that the wave function does not change if an arbitrary reciprocal lattice 

vector G
r

is added to the wave-vector k
r

, the wave-vector k
r

 can be confined within a 
minimum region bounded by the planes bisecting perpendicularly the lines from the origin to 
the neighboring reciprocal lattice points. This region is called the first Brillouin zone (1st BZ). 
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While in principle an infinite basis set is needed to represent the electron wave functions, only 
a finite set of plane waves is sufficient to describe the rather smooth valence electron wave 
functions which are mostly responsible for the bonding of the solid, and thus the chemical 
behaviour of the system, e.g. ionization, electrical and thermal conduction etc. Expanding 
only the valence electrons in plane waves, the basis set can thus be truncated to include only 
plane-waves with a kinetic energy smaller than a particular cutoff energy:  

2

cutcut GE
r

=      (2.2-9) 

While an advantage of using plane-wave basis sets for the valence electrons is that the 
accuracy of the calculation can be systematically improved by increasing the energy cutoff 

cutE , i.e. increasing the number of plane waves in the basis set, one should mention that the 

main disadvantage of plane-waves is that they are not efficient for describing wave functions 
with large curvature as is found in the core regions of atoms. This means that treating such 
regions of space would require an immense number of plane waves in order to be sufficiently 
accurate. A convenient way to avoid this disadvantage is using pseudopotentials, which will 
be described in the next chapters.  

2.3. Kohn-Sham Equations  
in Plane-Wave Form 

Using a plane-wave basis set to represent the electronic wave functions in periodic 
systems leads to a rather simple form of the Kohn-Sham equations. In reciprocal space the 
Kohn-Sham potential can be written as: 

( ) ( )∑ ⋅⋅⋅=
G

rGi
KSKS eGvrv

r

rrr
    (2.2-10) 

in which ( )GvKS

r
 represents the Fourier transform of the corresponding real-space quantity. 

Substituting ( )rvKS , and the plane-wave representation for ( )r
k

r
r

,νΨ  in Eq. (1.2-14) 

leads to a reciprocal-space representation of the Kohn-Sham equation: 

( ) ( ) ( ) ( ) ( ) ( )GckGcGGvGGvGGvGk
k

G
kXCHextGG

rrrrrrrrrrr
r

r

rrr
,

'
,',

2
'''

2

1
ννν εδ∑ =




 −+−+−++     (2.2-11) 

It can easily be seen that the kinetic energy is diagonal in reciprocal space, and that the 
remaining three terms on the left-hand-side are the Fourier components of the external, 
Hartree and exchange-correlation potentials, respectively. Since there are efficient algorithms 
available (Fast Fourier Transform), for switching back and forth from real-space to reciprocal-
space representation, it is computationally most efficient to calculate the expectation values in 
the representation (reciprocal space or real space) for which the operator is diagonal or for 

which there is a simple expression. While the 0=G
r

 component of the Hartree and external 
potentials diverge due to the long-range nature of the Coulomb interaction, they cancel each 
other to give a constant value that can be set arbitrarily, and does not affect the physical 
properties of the system.  
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2.4 k
r

-point sampling 

Imposing periodic boundary conditions on the wave functions, one can show that the 

electronic eigenstates are only allowed for a discrete set of real wave vectors k
r

, where the 

number of k
r

's in the set is equal to the number of cells in the crystal. 
Applying Blochs theorem, one can show that any real-space integral over an infinite, 

periodic system can be replaced by an integral in reciprocal-space over the first Brillouin 
zone. The reciprocal-space integral can be numerically evaluated as a sum over an infinite 

number of k
r

-points. In practice one can exploit the fact that electronic wave functions do not 

change appreciably over small distances in k
r

-space, so that all the integrations can be 

performed as summations over a finite, but sufficiently dense mesh of k
r

-points. Thus, any 
integrated real-space function ( )rf

r
 with the corresponding Fourier transform ( )kF

r
, e.g. the 

density, or the total energy, can be computed as a discrete sum: 

( ) ( )∑∫ Ω
=

i
ii

BZ

kFkdkF
rrr

ω1
    (2.2-12) 

where Ω  is the volume of the unit cell and iω  are weighting factors of the sampling points 

ik . 

The accuracy of the calculation with respect to the k
r

-point density can be easily 

verified by calculating the total energy of the system as a function of the density of the k
r

-

point mesh. Not only the density, but also the positions of the k
r

-points within the Brillouin 
zone must be chosen carefully. The calculations performed in this thesis employ the 

Monkhorst-Pack ([PM77]) method where k
r

-points are distributed homogeneously in the 
Brillouin zone: 

j
j

jiiiii n,...,i,
n
i

x,bxbxbxk 1
2332211 ==++=

rrrr
  (2.2-11) 

where 1b
r

, 2b
r

, 3b
r

 are the reciprocal lattice vectors, and the jn  ( )3,2,1=j  characterize the 

number of special points in the set along the direction jb
r

. Additional shifting of the grid may 

also improve the convergence with respect to k
r

-point density ([CC73], [JC73], [PM77]).  

The symmetry of the system is used to produce a smaller “special k
r

-point” subset of 
the full mesh, which contains only points located in the irreducible part of the first Brillouin 

zone. The number of k
r

-points that is represented by one of the special k
r

-points then defines 
the weighting factors iω . All Brillouin zone integrals can thus be transformed into a sum over 

special k
r

-points, thereby reducing the computational cost significantly.  

In summary, the cutoff energy of the plane-wave basis set and the choice of the k
r

-
point set determine the accuracy of the electronic wave function representation, and thus the 
accuracy of the charge density, the electronic potential and the total energy. The 

computational cost scales linearly with the number of k
r

-points and with the cube of the 

plane-wave cutoff: 
3

cutG . 
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Chapter 3 

3.1. Pseudopotentials 

 In solids we can distinguish two types of electrons with different properties: core-
electrons, which occupy the strongly localized orbitals of the closed inner atomic shells, and 
valence-electrons occupying the outer shell wave functions which extend much farther in 
space. It is well known that the electronic structure of the core-electrons remains almost 
unchanged in different chemical environments and that the binding energies in condensed 
matter are almost exclusively determined by the overlapping of valence electrons of the 
atoms. A plane wave basis set is not suitable for describing the exact core and valence 
electron wave functions since an immense number of plane waves would be required to 
accurately describe the wave functions oscillations in the core regions in order to maintain 
orthogonality between valence and core electrons. As a result, all-electron plane wave 
calculations will require a huge computational effort that is simply not practical. 
 The first approximation that we can make is to assume that the core charge densities of 
neighboring atoms do not overlap, and that these densities are not affected by the slight 
redistribution of the valence electrons due to the binding effect.  
 In the pseudopotential approximation the strong ionic potential ( )rvion

r
 in the core 

region is replaced by a weaker pseudopotential ( )rvPS
ion

r
 for the valence electrons that should 

remove the rapid oscillations of valence wave functions in the core region. Outside of the core 
region defined by a cutoff radius cutr , the true all-electron potential and the pseudopotential 

are identical. Correspondingly the set of pseudo-wave functions ( )rPS rΨ  and the all-electron 

wave functions ( )rAE rΨ  for the valence electrons are identical outside the chosen cutoff 

radius cutr . The construction of the pseudopotential should guarantee that ( )rPS rΨ  does not 

possess the nodal structure that causes the oscillations inside cutr , which means that the 

pseudo-wave functions can be described with a reasonable number of plane waves.  
 Two basic, but conflicting, criteria determine the usefulness of a pseudopotential: 

(1)  It is preferable to use a “soft” pseudopotential. This means that a small number of 
plane waves would be necessary to describe the electronic pseudo-wave function, which 
translates into a small computational effort. 
(2)  The pseudopotential should be “transferable” in different chemical environments. 
This means that the pseudopotential should give the correct ground-state energy of 
valence electrons for many different systems.  
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 Condition (1) can easily be met by using a large cutoff radius while condition (2) 
requires a small cutoff radius. In the actual construction a compromise has to be found in each 
case, and the number of plane wave necessary to obtain good results is very atom specific.  
 Density functional theory requires a good representation of the electron density of the 
system in order to accurately calculate the total energy. This requires that the density 
described by the pseudo-wave function must be close to the true electron density in most 
space and in particular, that the norm of the wave functions should be equal.  
 If one uses a one to one correspondence between all-electron wave functions, i.e. for 
each true valence wave function of the atom one pseudo-wave function is constructed (which 
is an eigenfunction of the pseudopotential) , this leads to the concept of “norm-conserving” 
pseudopotentials. Such a scheme works well for atoms where the outer shell valence electrons 
occupy states that are orthogonal to inner shell states of the same angular momentum and are 
thus pushed outside of the core (e.g. Al, Si, P(3s3p), Ga, Ge, As(4s4p), In, Sn, Sb(5s5p)). 
These valence functions have a large maximum rather far outside the core region. If, however, 
the valence wave functions to be described are the first of the respective l -channel {e.g. 
B,C,N,O (2p) or transition metals (3d)} the functions are rather localized and have a 
maximum close to the core region. In this case in general more than one function per l -
channel is necessary to describe the pseudovalence functions properly. The l -dependent 
pseudopotentials are constructed to have more than one eigenfunction which are not 
necessarily orthogonal to each other. For these “projector-augmented pseudopotentials” the 
norm-conservation condition cannot be guaranteed for each eigenfunction separately in the 
construction of the pseudopotentials, but has to be introduced during the application.  
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KB: norm-conserving pseudopotentials 
� one projector per each l -channel 
� the norm of the pseudo-wave function is equal to the norm of the 

all electron wave function 

PAW: non norm-conserving pseudopotentials 
� two projectors per each l -channel 
� the norm of each pseudo-wave function is NOT equal to the 

norm of the all electron wave function 
Figure Pseudopotential 1: An illustration of the pseudopotential concept: the all-electron wave function is identical with the pseudo-wave function 
beyond a cutoff radius cutr . The pseudopotential and the all electron potential have the same scattering behavior outside of a sphere of radius cutr . 
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3.2. Generation of Norm-conserving 
Pseudopotentials 

 The pseudopotentials used in DFT calculations are generated from all-electron atomic 
calculations by self-consistently solving the radial Schrödinger equation1 for an isolated atom 
for the ground-state and a few excited-states ([BHS82], [Y82], [Eng92b], [Eng95a]): 
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where ( )rvH

r
 and ( )rvXC

r
 are the Hartree and exchange-correlation potentials; ( )rAE

ln

r
,Ψ  and 

l,nε  are the all-electron (AE) atomic wave function and eigenvalue for each angular 

momentum component l . Then one chooses a cutoff radius lcutr ,  for each l -chanel of the 

valence electrons and constructs the pseudo atomic wave function ( )rPS rΨ  and a 

pseudopotential ( )rV lPS

r
, , which deviate from the all-electron corresponding terms only inside 

of the cutoff radius. 
 The pseudopotentials and the pseudo (PS) wave functions ( )rPS

l

rΨ  have to satisfy 

three important criteria: 
 the valence pseudo-wave functions have to be nodeless, be continuously 

differentiable, and identical to the all-electron wave functions outside of the given cutoff 
radius lcutr , ; 

 the pseudo-eigenvalues of the valence electrons must be equal to the corresponding 
all-electron eigenvalues AE

l
PS
l ε=ε ; 

 the logarithmic derivatives of the all-electron wave functions and the corresponding 
pseudo wave functions have to be identical at any radius outside lcutr ,  so that the 

scattering properties are very accurately described [GKS90] 
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 The pseudopotential construction is not unique; indeed the above conditions allow a 
considerable amount of freedom for generating pseudo-wave functions. Many different ways 
have been developed for constructing pseudopotentials ([BHS82], [Van85, Van90], [TM90-
91], [Blö94]). Once a particular pseudo-wave function is created, the ionic pseudopotential is 
then obtained by inverting the radial Schrödinger equation: 
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1 Exactly speaking, we solve Kohn-Sham equations, since we use the density functional description also for the 
atoms. 
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where ( )rvPS
H

r
 and ( )rvPS

XC

r
 are calculated from the pseudo-wave functions. In this way a 

specific pseudopotential is generated for each angular momentum component l . 

3.3. Semi-local Pseudopotential and 
Kleinman-Bylander Form of the 

Pseudopotential 

 The l -dependent pseudopotentials are obtained in a “semi-local form” (projectors in 
angular-momentum space but functions of r ) and, since all l -dependent potentials have the 

same long-range Coulomb-behavior it is easy to separate a l -independent common local 
potential and l -dependent semi-local parts that are limited only to the core region: 
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 The matrix elements of such semi-local pseudopotential in a plane wave basis set have 
the form: 
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where Ω  is the volume of the unit cell, lj  a spherical Bessel-function, lP  a Legendre-

polynomial and 
', GkGk

rrrr
++γ  the angle between ( )Gk

rr
+  and ( )'Gk

rr
+ . Thus one can see that the 

pseudopotential contribution to the Hamiltonian is a matrix with the dimension ( )NN × , N  

being the number of plane waves. The computational effort for diagonalization of such a 
matrix scales with 3N . Since N scales with the number of the atoms in the system, it 
becomes clear that the sizes of the systems that can be handled are limited. 
 As a further generalization of the pseudopotential approach, Kleinman and Bylander 
(KB) [KB82] observed that greater efficiency could be attained if the non-locality will be not 
restricted to the angular momentum part, but if the radial component will also be converted 
into a separable non-local form. Therefore in the KB-approach, the semi-local form is 
converted into the fully non-local form: 
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where lmΨ  are the pseudo-wave functions which were used for the construction of the semi-

local pseudopotential ( )rv l∆ . 

 Using the ml -representation of the wave functions: 
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 the plane wave matrix –element of ( )rvl∆  can be rewritten as: 
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where ( )
'GklmY rr

+Ω  are spherical harmonics and  
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 The Kleinman-Bylander form drastically reduces the computational requirements in a 
pseudopotential calculation, the computation of non-local part scales like ( )NN log⋅  when 

the iterative diagonalization schemes are used. However, one has to consider that, in the 
construction of the pseudopotential, unphysical low energy eigenstates (so called “ghost-
states”) have to be avoided ([GKS90], [GSS91]).  

3.4. The PAW Pseudopotential 

 The projector augmented wave method combines in an original way the concept of the 
pseudopotential (PS) and linear augmented plane wave method (LAPW) in a manner that one 
can reconstruct all-electron valence wave functions. Here we follow the idea put forward by 
Blöchl [Blö94] and implemented by W. Kromen [Kro01].  
 The basic idea in the PAW method is that one can access the all-electron wave 

function (AE) Ψ  from the smooth pseudo wave function (PS) Ψ~ , not necessary norm-

conserving, via a linear transformation T . So the expectation value of any operator Ĥ  can be 
calculated accordingly to the formula: 

ΨΨ=ΨΨ=ΨΨ= + ~~̂~~ˆ~ˆˆ HTHTHH    (3.4-1) 

with Ψ=Ψ ~
T  and THTH ˆ~̂ += . 

 The linear transformation is designed to smooth the all electron wave function in the 
vicinity of the nuclei and one constructs the linear transformation from a sum of local-atom-
centered transformations: 

∑+=
atom

atomTT 1      (3.4-2) 

where each local contribution atomT  acts only within the so called augmentation region 

defined by atomΩ  around each atom. Outside of the augmentation region the AE wave 

functions and PS wave functions are identical because the all-electron potential and the 
pseudopotential have the same scattering properties. 
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 The form of the local-atom-centered transformation can be obtained via the AE partial 
wave function iϕ  and the smoothed PS partial wave function iϕ~  of the isolated atom as 

defined by the relation2: 

( ) iatomi T ϕϕ ~1+=      (3.4-3) 

 The AE wave function and PS wave function are assumed to be linear combinations of 
the partial waves inside of the augmentation spheres atomΩ  : 
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with the ic  being so called expansion coefficients defined as the product of the projector 

wave function and PS wave function: 

Ψ= ~~
ii pc       (3.4-5) 

under the orthogonality and completeness condition within atomΩ 3: 
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 Finally the AE wave function is written as a sum of PS wave function and a partial-
wave dependent part: 

( )∑ Ψ−+Ψ=Ψ
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iii p
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( ) i
i

ii pT ~~1 ∑ −+= ϕϕ     (3.4-8) 

where the AE partial wave function iϕ  and the PS partial wave function iϕ~  are canceling 

each other outside of the augmentation region atomΩ , the projector ip~  being zero outside of 

atomΩ .  

 Due to equation (3.4-7) in the PAW formalism, the true valence charge )(rn
r

 is 

decomposed into three contributions:  

( ) ( ) ( ) ( )rnrnrnrn
rrrr ΩΩ −+= ~~ ,     (3.4-9) 

where )(~ rn
r

 represents the charge over the entire space due to the extended pseudo wave 

functions (it is the charge due to the plane wave expansion of the smooth pseudo wave 
functions), )(~ rn

rΩ  is the “smooth” charge due to the pseudo wave functions inside of the 

augmentation sphere atomΩ  and )(rn
rΩ  represents the “true” charge within the augmentation 

sphere (it is the charge due to the all electron wave functions inside of atomΩ ). An important 

observation here is that the subtraction of the “smooth” charge and addition of the “true” 
charge inside of the augmentation region is allowed only because both charges can be 

                                                 
2 Normally, the AE-partial wave functions are solutions of the radial Schrödinger equations for the isolated atom, 
which are orthogonalized on the core states. 
3 The one center expansion ∑ Ψ

i
i p

~~~ϕ  of a PS wave function is identical to the PS wave function Ψ~  itself. 
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constructed so that they have the same multipole expansion and thus yield the same 
electrostatic potential outside atomΩ . 

3.5. Partial Core-Correction 

 In the pseudopotential formalism it is assumed that the charge densities are divided 
into core and valence contribution. The part of the energy due to the core contribution is 
assumed constant and subtracted. More often this contribution is completely neglected, 
because the total electronic energy is evaluated only from valence charge densities and their 
interaction with the local and non-local parts of the pseudopotentials. All these 
approximations assume that the interaction between the core and valence electrons are 
contained in the pseudopotential. This means that the exchange-correlation energy can be 
linearized into two separated contributions ([LFC82], [Eng92b], [Eng95a]). 

( ) ( )[ ] ( )[ ] ( )[ ]rnvrnvrnrnv ps
XC

AE
coreXC

psAE
coreXC

rrrr +≈+    (3.5-1) 

 The experience shows that if the core and valence charge densities are spatially well 
separated the linearization does not introduce big errors, but if there exists a significant 
overlap between the two densities the linearization will introduce errors in the calculation of 
total energies and forces.  
 

 

Figure Partial core-correction: The 
constructed pseudo core charge (green line) 
coincides with the all electron core charge 
beyond a cutoff radius PCCr . In the figure the 

radius is fitted at the intersection point of 
valence pseudo charge (red line) with the all 
electron core charge (blue line).  

  
 In order to eliminate the errors due to this linearization in the non-linear exchange-
correlation functional, the core charge and the valence charge need to be added whenever the 
exchange-correlation potential and energy are calculated. 
 The core charge has a significant effect only where the core charge and the valence 
charge have similar magnitudes and it is without importance close to the nucleus. So one can 
replace the true core charge density with a partial core charge density, which is equal to the 
true core charge outside of some radius PCCr  and arbitrary inside. The relations used in the 

construction of the partial core charge are: 
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where the parameters BA,  are determined by fitting the value and the gradient of the core 

charge density and its radial gradient at PCCr .  
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 Finally the exchange and correlation potential are calculated using the sum of the two 
charges ( ) ( )rnrn ps

PCC

rr + : 
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 In the case of a pseudopotential in which a “soft” or “small” core is taken into account 
(corresponding to a large radius), a very easy way to include the partial core correction 
charges is via Fourier transform. To our experience it turns out that it is very important to take 
into account the tail of the core charge in the region where it is comparable to the valence 
charge. This means that a small radius of the partial core correction needs to be used and a 
“hard” partial core correction is constructed. The problem that arises now is that the Fourier 
components necessary to describe the valence charge are not sufficient to describe the partial 
core charge and the back Fourier transform to the real space with a finite number of plane 
waves, will introduce oscillations (negative values of the real space charge) when the true 
core charge density approaches zero. 
 Since the exchange-correlation energy and potential are calculated in real space, it is 
better to include the partial core-correction directly in real space. This was implemented into 
the EStCoMPP-code. 
 By Fourier transformation to real space, the valence charge is calculated on the points 
of a regular three-dimensional real space grid defined in the unit cell. Since the positions of 
all atoms are known, in the new scheme for each atom one calculates the partial core charge 
density at the points of this three-dimensional real space grid, which are inside of a sphere of 
radius spherer . Details on the implementation can be found in the Appendix Partial Core-

Correction.  

3.6. General Scheme for Pseudopotential 
Generation 

 This section will briefly describe the steps required to generate a pseudopotential.  
A. Kleinman-Bylander (KB) pseudopotential: This type of pseudopotential uses one 
projector for each l -channel and the norm-conservation is enforced. This means that the 
spatial integral of the square of each pseudo-wave function is equal with the integral of the 
square of the corresponding all-electron valence wave function. (for details see [Eng92]). One 
more atom with different occupancy of the l -channels can be used in the generation of the 
KB-pseudopotential. For the KB-pseudopotential following parameters have to be chosen: 

- a specific form of the exchange-correlation functional, that is the same for all 
configurations (and is used in the application of the generated 
pseudopotential); 

- atomic configuration: one needs to specify the occupancy of the l -channels. 
For each l -channel of each atom a projector will be constructed. The final 
pseudopotential can be built from different l -channels of different atoms; 
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- if the partial core-correction (PCC) is taken into account, one has to specify 
the radius at which the PCC is fitted; 

- cutoff radii for each l -channel of each atom; 
- cutoff function for extrapolating the pseudowave function to zero (see 

[BHS82] , [Van85], [Van90], [RRKJ90], [Eng92]); 
- the l -channel that is used as local potential.  

 Although different radii for each l -channel can be used in the construction of the 
pseudopotential, the pseudopotential sphere is defined as the largest cutoff radius of all l -
channels. In any application of the pseudopotential the bond length of the neighboring atoms 
should be larger than the sum of radii of the pseudopotential spheres of the respective atoms.  
B. PAW-pseudopotential: This type of pseudopotential uses two projectors for each l -
channel. The norm-conservation for the valence wave functions is not enforced anymore. In 
principle the KB- pseudopotential can be constructed from a single configuration. The PAW-
pseudopotential requires at least two configurations because one constructs two projectors per 
l -channel. One configuration usually is the ground-state with a given occupancy of the l -
channels. For this the characteristic ground state eigenvalues yield the bound states projectors. 
The second configuration has the same occupancy of the l -channels as the first configuration, 
but in addition it contains the 1+l -channel with zero occupancy. For the second configuration 
one has the freedom to choose different reference energies. Usually, but not necessarily, they 
are positioned in the range of valence eigenvalues of a given compound. In general, these 
energies are not eigenvalues and yield as solutions non-bound states. For a PAW-
pseudopotential following parameters have to be chosen: 

- an exchange-correlation functional that is the same for all configurations; 
- atomic configuration: one has the freedom to specify the occupancies of the 

l -channels. These are not necessarily corresponding to the ground states of the 
atom. For each l -channel of each atom a projector will be constructed. The 
final pseudopotential is built from the two projectors of each l -channel (the 
projectors correspond to a bound and unbound state); 

- if the partial core-correction (PCC) is taken into account, one has to specify 
the radius at which the PCC is fitted. Normally, for the PAW- pseudopotentials 
of transitional metals a large PCC needs to be taken into account; 

- cutoff radii for each l -channel of each atom. Although the occupancy of the 
l -channels with the same l  is equal, the cutoff radii can be different. The 
augmentation radius of the pseudopotential is defined as the largest cutoff 
radius of the l -channels; 

- cutoff function for extrapolating the pseudo-wave function to zero (see 
[BHS82], [Van85], [Van90], [RRKJ90], [Eng92], [Kro01]); 

- the local potential is always the 1+l -channel of the second configuration with 
zero occupancy; 

- the energy-cutoff ( maxG -plane wave energy-cutoff given in Ry1/2) used in the 

multipole expansion of the “true” and “smooth” charges inside of the 
pseudopotential sphere (see [Kro01] page 58, [Wei81]). 

 In order to clarify if the constructed pseudopotentials are good approximations, i.e. if 
they can reproduce the scattering properties of the atoms in the energy range of the valence 
electrons, for both types of pseudopotentials KB- and PAW-, a series of tests needs to be done 
in the atomic program. First, all-electron and pseudo calculations are performed for some test 
atomic configurations: excited and/or ionic states. The corresponding valence all-electron and 
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pseudo eigenstates and exited energies should be practically identical. The second test is the 
calculation of the logarithmic derivatives of the valence all-electron and pseudo wave 
functions ([GKS90], [GSS91]). The pseudo-wave functions are by definition node-less. The 
analyses of the logarithmic derivatives help us to identify if unphysical lower energies states 
(“ghost states” that are introducing nodes in the pseudo wave functions) appear or not. If this 
is the case, different parameters (atomic configurations, cutoff radii, reference energies) have 
to be chosen until the “ghost states” disappear. This may be a very cumbersome procedure 
(see below). The “Rappe-criterion” is the third test done in the generation program 
([RRKJ90]). With this one can estimate the plane wave basis set (cutoff energy) necessary to 
obtain convergent results for the total energy.  
 The final tests are done by calculations of the properties of the real electronic systems 
with the generated pseudopotentials (the lattice constants of solids, bond lengths and angles of 
molecules).  
 The Appendix „Parameters and tests of the PAW-pseudopotentials“ describes 
applicable PAW-pseudopotentials for different elements. The generation parameters as well 
as tests and results for the LDA ([VWN80]) and GGA-PBE ([PBE96-98]) with and without 
partial core-correction are given. 

3.7. Comments on the Generation of the 
Pseudopotentials 

 Since there are no strict rules how one can choose the correct parameters for 
generating a good transferable pseudopotential, it remains still an art to find the proper cutoff 
radii and reference energies for each l -channel rather than a simple application of a 
mathematical algorithm. A good transferable pseudopotential is obtained when it can be used 
in different chemical environments and can describe the physical properties well. This means 
that the pseudopotential should have a small cutoff radius, smaller than half the nearest-
neighboring distance of the given compound.  
 For someone trying to generate pseudopotentials one of the biggest “problem” is the 
appearance of a so-called “ghost-state”: an unphysical lower energy state that introduces 
nodes in the pseudo-wave function. In the case of the norm-conserving pseudopotentials 
(Kleinman-Bylander type), which are using just one projector and one reference eigenvalue 
(corresponding to the valence bound state) per l -channel, the only solution to avoid the 
“ghost-state” is to increase the cutoff radius for the specific channel for which the “ghost-
state” appears. In some instances one needs to change the radius as well or even the l -channel 
considered as local potential. 
 In the case of the PAW-scheme of generating the pseudopotentials one has more 
freedom because this method is using two projectors for each l -channel at two different 
reference energies: one is eigenvalue for each l -channel in the ground state configuration and 
the other one is arbitrarily chosen, but in general it should be in the range of the valence 
energies in the solid. The “ghost-state” problem appears in this case also, but one has more 
parameters that can be changed in order to avoid their appearance. When the unphysical lower 
energy “ghost-state” appears first one should try to change the reference energy for the second 
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projector to higher or lower values. Experience shows that there are specific energy intervals 
for which no “ghost-states” appear. The next step is that for different energies in this interval 
a series of calculations of a single atom in a big box and different compounds need to be 
performed to see what energy is the proper one for the given pseudopotential. In the case that 
any change in energy cannot eliminate the “ghost-state” one should change the cutoff radius 
of the specific l -channel for one of the two projectors or for both. There is no direct 
connection between the radii of the two projectors of the same l -channel so that one has the 
freedom to choose different radii. If the “ghost-states” still persist, the next change could be 
using different reference energies of the local potential, and then different radii. To my 
experience one has to generate 15-20 pseudopotentials before getting one that can be tested in 
different chemical environments (bulks or/and molecules). Again up to 20 pseudopotentials 
which apparently give reliable results for the atom have to be tested till one arrives at the 
conclusion that a specific pseudopotential with specific parameters (cutoff radii and reference 
energies) gives good results in solid state calculations. 
 To increase variability, the atomic generation program has been modified in such a 
way that one can generate a pseudopotential using the ionic states as reference configuration. 
In this case three atoms are required to generate the pseudopotential: the first is the ionic 
configuration with the eigenvalues as bound states, the second atom has the same ionic 
configuration but has one more l -channel used as local potential and the third atom has to be 
the atomic neutral ground-state configuration. In the PAW-code, which uses the 
pseudopotentials as input to perform calculation for real systems, one needs to provide the 
pseudo-charge of the neutral atoms as input charge. If an ionic configuration is used for 
generating the pseudopotential, the charge has to be taken from the neutral atom 
configuration, e.g. from the third atom configuration. 
 Also, the atomic generation program was generalized for the use of different l -
channels as local potential (and not only the highest l ). But all efforts to use other than the 
highest l -channel as local potential have failed to produce applicable, reliable 
pseudopotentials.  
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Chapter 4 

The EStCoMPP-Program  

The Electronic Structure Code for Materials Properties and Processes , EStCoMPP, 
was created by S. Blügel and K. Schroeder and developed by B. Engels, P. Richard, R. Berger 
and W. Kromen in the framework of their PhD-Theses ([Eng25a], [Ric96], [Ber02], [Kro01]). 
The following chapter is a brief introduction into the methods and algorithms used in the 
EStCoMPP program for calculating total energy and forces. 

4.1. The Energy Minimization  

In order to calculate the physical properties of a system for a given atomic 
configuration, the electronic states that minimize the Kohn-Sham energy have to be 
determined. To achieve this, an iterative scheme is used, where starting from a trial electron-
density the eigenvalue equations are solved (also by iterative methods), and a new electron-
density is generated successively until self-consistency is reached. 

The energy-functional consists of several separable contributions: the kinetic energy of 
non-interacting electrons ( )[ ]rnEkin

r0 , the energy ( )[ ]rnE ext

r
 of the electrons with density 

( )rn
r

 in the external potential ( )rv , the Hartree energy ( )[ ]rnE H

r
 due to the electron-

electron Coulomb interactions, the exchange-correlation energy-functional ( )[ ]rnE XC

r
 where 

the remaining many-particle effects are included, and the Coulomb interactions of the ions, i.e 
the Ewald-energy ( )[ ]rnE Ew

r
. When we describe the electron-ion interaction by 

pseudopotentials (local and non-local contributions) the Hartree, the local pseudopotential, 
and the Ewald energies diverge separately. They can be combined to non-diverging 
expressions by adding and subtracting appropriate compensating charges. Fixing the energy 
scale by setting the average electronic potential to zero, an additional constant contribution 

( )[ ]rnE loc

r
 to the total energy has to be taken into account.  

( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ]rnErnErnErnErnErnErnE locEwXCHextkintot

rrrrrrr +++++= 0  

(4.1-1) 
The matrix-vectors products ΨH  are evaluated in real-space or in reciprocal-space, 

depending on the functional form of the operators in the Hamiltonian. To avoid bad 
convergency of the self-consistency iterations due to oscillations of states close to the Fermi-
level (i.e. states that are occupied in one iteration step and unoccupied in the next one) the 
sharp Fermi-distribution for 0=T  is smeared out at the Fermi-energy by introducing a finite 
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temperature T . The occupation numbers of the states with eigenenergies 
k
r

,νε  are then defined 

as: 

1

1
/,

, +
=







 −

e
f

Tkk
BFk εε ν

ν
r

r      (4.1-2) 

This leads to a smooth variation of the occupation numbers around the Fermi-energy, 
but at the same time introduces a temperature dependence of the total energy, which can be 
interpreted as the free-energy of the electron system: 

STEF −=      (4.1-3) 

The entropy of the independent electrons can be expressed by: 

( ) ( ) ( )( )∑ −⋅−+⋅⋅−=
k

kkkkkB ffffkS
r

rrrrr

,
,,,,

1ln1ln2
ν

ννννω   (4.1-4) 

The factor 2 arises from spin-degeneracy. Normally the free energy of the system 
converges faster than the total energy. For a small temperature 0≠T  the total energy and the 
free energy of the system can be written as small deviations from the true ground state energy 

0E : 

2
0

2
0

TEF

TEE

γ
γ

−=
+=

      (4.2-5) 

The ground state energy at 0=T  can thus be approximated as: 

( )FEE +=
2
1

0      (4.2-5) 

At the beginning of the iteration cycle, one can choose a larger temperature to assure 
that the density, and implicitly the free energy, converges smoothly. The temperature can then 
be decreased to assure that the extrapolation to the ground state energy is correct. The iteration 
cycle to reach the ground state electron density (and ground state energy) is demonstrated in 
the following flow chart.  
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Figure 1: Flowchart of the iterative procedure used in the calculation of the electronic ground-
state density. 
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4.2. Explicit Form of the Equations  
in the EStCoMPP-Program 

A brief presentation of the equations used in the EStCoMPP code is given on the next 
pages. The detailed description of the pseudopotential generation code and the program used 
for solid state calculations can be found in the PhD-Theses of B. Engels, P. Richard, R. Berger 
and W. Kromen ([Eng25a], [Ric96], [Ber02], [Kro01]).  

The Kinetic Energy 

The kinetic-energy functional is diagonal in k
r

-space, and thus evaluated there: 

( )[ ]

( )[ ] ( ) ( )∑∑

∑

+=

Ψ
∂
∂−Ψ=Ψ

∂
∂−Ψ=

Ω

k
kkk

G
kkin

k
kkkkkin

GuGuGkfrnE

r
f

r
rnE

r

rrr

r

r

r

rrrr

rrrrr

r

,
,

*
,

2

,

,
,2

2

,,2

2

ν
ννν

ν
ννν

ω

ω
 (4.2-1) 

The matrix-vector product can be written as: 

( ) ( )∑ ⋅+⋅−

Ω
+

Ω
=Ψ

G

rGki
kkkin eGuGkEr

r

rrr

rr

rrrr

,

2

,
0 1

νν   (4.2-2) 

with the matrix elements: 

( )GuGkEGk
kkkin

rrrrr
rr

,

2

,
0

νν +=Ψ+
Ω

   (4.2-3) 

',',

2
0 '

GGkkkin GkGkEGk rrrr

rrrrrr
δδ+=++

Ω
   (4.2-4) 

The Local Energy 

The local energy consists of three contributions: the exchange-correlation energy, the 
local part of the pseudopotential, and the Hartree energy. In order to avoid the calculation of 
the convolution-integrals in k

r
-space, the local potentials are always applied to the wave 

functions in real space. Therefore, the real-space representations have to be obtained from the 
simpler reciprocal-space form via fast-Fourier transformations (FFT’s). The Hartree-potential 
is determined by Poissons’ equation (4.2-5), for which the Fourier transformations yields (4.2-
6): 

( ) ( )rn
r

rvH r
⋅π⋅−=

∂
∂

8
2

2

    (4.2-5) 
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( ) ( ) ( )Gn
G

rdervGv rGi
HH

rrrr rr

2
3 811 π

Ω
=

Ω
= ∫

Ω

⋅⋅    (4.2-6): 

The Hartree-potential is calculated in reciprocal space since the Laplacian operator is 
diagonal there. The matrix-vector products (4.2-7), and the matrix-elements (4.2-8) have the 
form:  

( ) ( ) ( ) ( )∑ ∑ ⋅+⋅−







 −
Ω

=Ψ
G
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G
kHkH eGGuGvGvr
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rrr

r

rr

rrrrr
''

1
,, νν   (4.2-7) 

( ) ( )∑=++
'

'''
G

HH GvGkGvGk
r

rrrrrr
    (4.2-8) 

The calculation of the exchange-correlation energy in the local density approximation 
(LDA) is done in real-space, while for the generalized gradient approximation (GGA) the 
derivatives of the charge density are calculated analytically in reciprocal space, and then 
Fourier transformed to real space, where the gradients are calculated numerically from these 
derivatives (A detailed explanation of the GGA concept and implementation in the 
EStCoMPP code can be found in Appendixes A.1.-A.5. 
The local part of the pseudopotential consists of spherical-symmetric contributions of atoms at 

positions µτ+R
r

, (sic) the local pseudopotential is given by: 

( ) ( )
µ

µ

µα τr
rrr

−−=∑ Rrvrv locloc     (4.2-9) 

where ( )µα  indicates that chemically identical atoms µ  are contributing with the same 

pseudopotential located at different positions µτr  in the supercell. The corresponding Fourier-

transform: 

( ) ( ) ( ) ( )∑ ⋅⋅−=
G

rGi
locloc eGvGSrv

r

rrrrr

,µ

µα

τ µ
    (4.2-10) 

leads to the reciprocal-space representation: 

( ) ( ) ( ) ( )∑=
µ

µα

τ µ
GvGSGv locloc

rrr
     (4.2-11) 

where  

( ) ( ) ( ) ( )∫
∞

⋅⋅

Ω
= rdervGv rGi

locloc

rrr rr
31 µαµα     (4.2-12) 

with the structure-factors: 

( ) τ
τ

µ

µ

rr r
⋅⋅−

=
Gi

eGS     (4.2-13) 

Finally the expressions for matrix-vectors products are: 

( ) ( ) ( ) ( ) ( ) rGki
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The electron-ion Coulomb interaction leads to a long-range term 
r
Z2−≈  for each of 

the local pseudopotential. 

To allow the numerical integration of ( ) ( )Gvloc

r
µα  in k

r
-space, the long-range part has to 

be separated and solved analytically. 

The Non-local Part of the Energy 

The l -dependent contribution to the total energy of the atoms µ  of kind α  is 

contained in the non-local part of the pseudopotentials. The expressions used to evaluate this 
energy are different for the  norm- and non-norm-conserving (PAW) pseudopotentials. 

In the case of the norm-conserving Kleinman-Bylander pseudopotentials the non-

local part ( )( )∑∆
l

lloc Prv ˆrµα  is given by ([Eng95a], [Ric96]): 
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in which τµ
S  represents the translation-operator used to move the non-local part of the 

pseudopotential to the positions µτr  of the atoms. The matrix-vector products are given by: 
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where  

( ) ( ) ( ) ( ) ( )GktYGSGkT lGkGklmml

rrr
r

rr
rrrr +⋅⋅= ++ µαµ ϕθτ µ

,,, ,,    (4.2-18) 

and  

( ) ( ) ( )( ) ( )∫
∞

+
Ω

=+ rGkjrtrdGkt lll

rrrrrrr

µαµα ,,

4
   (4.2-19) 

For the norm-conserving pseudopotentials the non-local part is easily calculated in 
reciprocal space due to the dyadic structure of the KB -potentials. 

The non-local part of the non-norm-conserving pseudopotentials (PAW) is 

expressed in k
r

-space as ([Kro01]): 

∑ ++=++
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', '~~'
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µ
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for which the  µ
γpGk
rrr

+  and ν
µ
γ k

p r
r

Ψ~  are evaluated in reciprocal space: 
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with: 

( )( ) ( ) ( )( )rprY
r
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rr µαµα
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1~ =     (4.2-24) 
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( )GS
r

µ
 represents the structure factors, ( )µα  is the type of atom µ , µ

γp~ ; ( )il ,=γ  are the 

projector functions localized in the augmentation sphere of the type of atom µ ; LY  are the 

spherical harmonics, lj  the spherical Bessel-functions, L represent the ),( ml -channels and 

i  represent the index of the projectors belonging to the same atom and l -channel, but 
generated at different energies. 

The Ewald-Energy 

The Coulomb interaction between ions in the supercell is taken into account by the 
Ewald-energy: 
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which contains a divergent term for 0=G
r

. A practical way to evaluate the Ewald-energy is 

to split equation (4.2-27) into contributions that are calculated separately in real and reciprocal 

space. The divergent terms at 0=G
r

, for the Hartree energy and the local pseudopotential, 

can be written like:  
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All the divergent terms 0=G
r

 of the Hartree energy, local pseudopotential energy, 

and Ewald-energy compensate each other. The term Ω
vZα  is the remaining contribution to the 

total energy, when we set the sum of the average Hartree potential and local pseudopotentials 
equal to zero in the eigenvalue problem.  

The Hellman-Feynman Forces  

The total energy of a system in the Born-Oppenheimer approximation is the sum of the 

total electronic-energy of the supercell ( ) { }[ ]µτ,rnE tot

r
 (which depends parametrically on 

the coordinates of the ions), and the energy due to the Coulomb-interaction of the ions:  

( ) { }[ ] ( ) { }[ ] [ ]µµµ τττ Eweltot ErnErnE += ,,
rr

   (4.2-30) 

The forces exerted on the ions are derivatives of the total energy-functional 

( ) { }[ ]µτ,rnE tot

r
 with respect to the coordinates of the ions µτ  with µ  being the numbers of 

atoms:   

( )[ ] [ ]µ
µ

µ
µ

τ
τ

τ
τ Eweltot ErnEF

∂
∂−

∂
∂−= ,
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    (4.2-31) 

The forces on the ions due to the direct Coulomb-interaction EwE  are easily calculated 

by: 

( ) ∑ −∂
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µ µµ

µµ

µ
µ τττ
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ZZ

Fion     (4.2-32) 

while the forces due to the electronic energy are given by the relation: 

( ) ( ) ( )µµ
µ

µ ττ
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τ ΨΨ
∂

∂−= HFel
ˆ     (4.2-33) 

where Ĥ  is the Hamilton operator of the electronic system. The evaluation of equation (39) is 
difficult since the wave functions depend implicitly on the atom coordinates. In the Born-
Oppenheimer approximation this equation can be reduced to the Hellman-Feynman forces: 
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∂
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    (4.2-34) 

where we have exploited the fact that we use normalized N-particle wave functions for which 

Ψ=Ψ 0
ˆ EH  and 1=ΨΨ .  
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Taking into account that the charge is conserved and its energy-functional is minimal 
for the ground-state charge density ( )rn

r
0 , the functional derivative of the total electronic-

energy functional with respect to the charge density ( )rn
r

 is the chemical potential � : 

( )[ ]
( )rn

rnE�
r

r
µτ,∂

=      (4.2-35) 

The final expression for the electronic contribution to the forces is: 
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The last term is zero because the total charge does not vary with the positions of the 
atoms. In conclusion, the force on atom µ  due to the electronic-energy is just the partial 

derivative of the electronic-energy functional with respect to the coordinates µτ  of the atoms. 
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The Loop-Structure and the Algorithms 

In the previous pages the concepts of density functional theory, and of the pseudopotential 
method have been discussed. In order to determine the atomic and electronic structure of a 
system one needs to proceed with the following steps: 

  calculate the electronic structure 
  calculate the forces on the atoms 
  relaxe the atoms towards the equilibrium positions. 

In the EStCoMPP code all this steps are done using iterative procedures in nested loops:  

 

Figure 2: Loop-structure schemes in the EStCoMPP -program 

In the following we will discuss this loops, starting with the innermost one. 
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4.3. Iterative Eigenvalue Determination 

For a given ionic configuration, the electronic states that minimize the Kohn-Sham 
energy have to be determined. As a typical example we want to treat supercells containing 
about 200 atoms for which a high-energy cutoff may be required (about 150 plane waves per 
atom). Due to the large dimensions of the Hamiltonian matrix (30000 ×  30000), the preferred 
method is to iteratively improve upon initial trial functions. Then, to determine the electron 
density of the system, typically only the lowest 2-10% of the eigenvalues and eigenvectors 
have to be determined.  

Many different methods are available to carry out the iterative eigenvalue 
determination. The method implemented in the ESTCOMPP code is the Davidson-Kosugi 
algorithm ([Dav75], [Kos84]), which is an extended version of the Block-Davidson algorithm 
with a fixed dimension of the sub-space to avoid memory problems. In the original Davidson 
algorithm one correction vector is successively added in each iteration, and the matrix is then 
diagonalized in the subspace spanned by the starting- and correction-vectors. In the improved 
Block-Davidson algorithm ([Liu78]), correction-vectors for each of the starting-vectors are 
calculated in each iteration, and added to the subspace. In the Davidson-Kosugi scheme the 
subspace in each iteration is rotated by the choice of new starting-vectors. 

A scheme of the iterative procedure can be written as ([Ric96]): 

  guess the starting vectors 
( )0

iΨ  

  solve the matrix products 
( ) ( )j

i

j

i HH Ψ=Ψ  

  determine the correction-vectors 
( )icorr

iΨ  

   calculate the new starting vectors 
( )1+Ψ j

i  

  iterate until the norm of the correction-vectors  
  is smaller than a given quality criterion 

The Kohn-Sham Hamiltonian is not well conditioned because of the broad spectrum of 
eigenvalues that result from the wide range of energies associated with the basis states. Thus 
plane-waves with high kinetic energy always tend to dominate the search directions for the 
minimization algorithms, even though the corresponding wave-function coefficients are small. 
The solution is to use a preconditioning, which essentially divides the coefficients of the high 
kinetic energy waves by their kinetic energy while leaving the low kinetic energy waves 
untouched. Effectively this procedure compresses the range of eigenvalue energies, leading to 
a faster convergence.  
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4.4. The Electronic Self-consistency and 
Molecular Relaxation Loops 

Within the Born-Oppenheimer approximation the degrees of freedom of the system can be 
separated into electronic and ionic degree of freedoms, so that the energy functional can be 
divided into two parts: 

  electronic degrees of freedom ⇒ the charge density ( )rn
r

 and the effective 

potential ( )[ ]rnveff

r
. 

  the atomic-positions degrees of freedom: µτ . 

 In the electronic self-consistency we solve the Kohn-Sham equations iteratively. In the 
n-th step a trial function ( )( )rn n r

 for electron density is used, and from the solutions, we 

construct a new electron density ( )( )rn n r1+ . In general, this can be considered as a 

functional of the trial density: 

( )( ) ( )( )[ ]rnFrn nn rr
=+ 1     (4.4-1) 

 Self-consistency is reached, i.e. the fixed position of the functional is found, when 

( )( )[ ] ( )( ) ∞→=− + nrnrnF nn ,01 rr
  (4.4-2) 

 A similar fix point scheme can be formulated for the ionic degrees of freedom using 
the coordinates { }nτ  and forces { }nF τ

r
. Both fix point problems are solved in our 

EStCoMPP-code by Quasi-Newton schemes1 [Fle87].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
1 There are several possibilities to implement the iteration schemes. Those implemented in EStCoMPP-code are 
discussed in [Blü88]. 
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Chapter 5 

Cadmium Complexes in Si and Ge 

 As a first application of the PAW-program we calculated complexes of Cd in Si and 
Ge. Perturbed angular correlation (PAC) experiments are performed in order to measure the 
electrical field gradient (EFG) that provides useful information about the interaction of the Cd 
probe atom with other defects. The electric field gradient describes the interaction of the 
electrons with the electric quadrupol moment of the nuclei. It is given by the second 
derivative of the coulomb potential at the nuclear site. The EFG vanishes for cubic or 
tetrahedral symmetry; it is different from zero only when the local symmetry is lowered by 
other defects. This means that the EFG gives detailed information about the symmetry of the 
complexes that are formed ([AW93], [WS89], [WGK89]). 
 The PAC technique is based on a radioactive decay. The method requires a radioactive 
isotope in an excited nuclear state that decays via a γγ −  cascade. There is an angular 
correlation between the directions of emission of these two γ rays. For a nucleus isolated in 

vacuum the angle θ  between the two directions is 180°. When the nucleus is placed in an 
environment of lower symmetry (solid or protein) the angular correlation is perturbed. The 
probability of detecting 2γ  in the direction given by θ  is influenced by the electric field 

gradient (EFG) caused by the charges surrounding the nucleus.  

Figure Perturbed Angular Correlation : The emission of 2γ  is not random with respect to 

the emission of 1γ , on the contrary an Angular Correlation between the direction of emission 
of the two γ –rays exist. 
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 111In isotopes are implanted in Si and Ge host crystals. They decay by electron capture 
to an excited state of 111Cd, which by a γγ −  cascade decays to its ground-state. This makes 

the determination of the EFG possible via the Perturbed Angular Correlation (see Figure 
“Perturbed Angular Correlation”). From the experimental results the size and the symmetry of 
the electric field gradient felt by the decaying nucleus can be extracted. Details of the 
electronic and atomic structure of the defect causing the EFG cannot be determined directly.  
 This information can be obtained by ab initio calculations. We have used two 
complementary ab initio methods: the PAW-method is used to determine the correct local 
geometry and the all-electron Korriga-Kohn-Rostoker (KKR) Green-function method is used 
to calculate the electric field gradient (EFG) ([KR54], [HH03]). 
 The PAW-method is well suited for the calculation of the atomic and electronic 
structure of complexes in semiconductors. First, one can describe the localized d-levels of 
such a metal with a reasonable number of plane waves using the PAW method. Secondly, in 
the calculation a sufficiently large supercell can be constructed so that the interactions of the 
defects with those in the neighboring supercells are avoided so that isolated defects are 
simulated. The plane wave basis allows treating arbitrarily large displacements of the atoms 
from their ideal lattice positions. 

Cd-vacancy complexes 

 Two different configurations for possible Cd-vacancy complexes have been 
considered in the calculation: one is the Cd-substitutional-vacancy-complex and the other the 
Cd-split-vacancy-complex along to [111] direction. They have previously been suggested by 
the experimental groups ([HRS98], [FVP90], [FMW87], [DGR87], [Sie98], [ZSH97]). In our 
calculation to optimize the structure we use for the Si and Ge norm-conserving (KB-type) 
pseudopotentials and for Cd a PAW-pseudopotential. The detailed parameters of the 
pseudopotentials are presented in the Appendix „Parameters and Tests of the PAW-
pseudopotentials“. The cutoff energy used in the calculations is 20.25 Ry ( 5.4max =G Ry1/2). 

All the calculations are done using LDA for the exchange-correlation functional in a supercell 
containing 107 atoms with 13vC  symmetry (see Figure “Cd-vacancy complex 1”).  

 Decay of Cd-substitutional complex: A series of calculations have been 
performed where all the 7 atoms (Cd and its six nearest-neighbors) are allowed to relax. When 
the Cd atom is allowed to relax it moves towards the vacancy. The energy is continuously 
going down without any energy barrier until the final configuration is reached, where the Cd 
is sitting in the so-called “split”-vacancy configuration: the Cd is in a bond center position 
between two empty sites as shown in the Figure “Cd- vacancy complex 2”.  

To obtain the energy difference of the Cd-split-vacancy and substitutional Cd-vacancy 
complexes we have optimized two configurations: 

(a) Cd-split-vacancy complex: In this starting configuration the Cd atom is placed 
in the bond center between two half vacancies and all 7 atoms (Cd and its 6 
nearest-neighbors) are allowed to relax. The final configuration found is the same 
as obtained when starting from the Cd-substitutional complex and the Cd is 
relaxing to the bond center.  

(b) Substitutional-Cd-vacancy complex: In this configuration the Cd is fixed and 
only the 6 NN-atoms are allowed to relax.  
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 The split-vacancy configuration is more stable by approximatively 1.0eV for both 
hosts, Si and Ge. The instability of the substitutional-Cd-vacancy complex can be explained 
by the large size of the Cd atom. It is pushed by the three Si or Ge nearest-neighbors towards 
the vacancy (see Table “Cd-vacancy complex 1”). In the meantime we have found a similar 
behavior for the other oversized impurities (Sn, Sb, Bi) in Si and Ge [Ref. to be published].  

 

Figure Cd-vacancy complex 1: 
Schematic picture of the supercell 
containing substitutional-Cd vacancy 
complex. 

Table Cd-vacancy complex 1: The relaxations of Cd atom and nearest-neighbor atoms 
(the indices 1 or 2 represent the NN to the Cd and vacancy sites, respectively, and the 
relaxations are given in percentage of NN-distance of the host crystal). 

bulk Cd-vacancy 
7 atoms relaxed 

Cd-split vacancy 
7 atoms relaxed 

Cd-vacancy 
6 atoms relaxed 

Si Cd-atom 50.00% 
NN-atoms 3.12% 

Cd-atom 0.00% 
NN-atoms 3.12% 

1NN-atoms outwards 4.30% 
2NN-atoms inwards 5.73% 

Ge Cd-atom 50.00% 
NN-atoms 6.02% 

Cd-atom 0.00% 
NN-atoms 6.03% 

1NN-atoms outwards 4.89% 
2NN-atoms inwards 8.34% 

 Our calculated relaxations for the Cd-split vacancy configurations are in good 
agreement with those of KKR-method, which gives relaxations of the NN-atoms of 4.2% in Si 
and 6.6% in Ge. The small differences between pseudopotential calculations and all-electron 
are due to the different description of the electron-ion interaction. They are of the same order 
of magnitude as in other instances (see Appendix “Parameters and Tests of the PAW-
pseudopotentials”, Table “Cu(110) surface 1”). 
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Figure Cd-vacancy complex 2: two schemes to relax the Cd- vacancy complex: 
- upper panel the Cd is allowed to move (and the 6 NN-atoms).  
- lower panel Cd is fixed in the (unstable) substitutional position.  
The final stable configuration is the split-vacancy complex with the Cd in a bond center site. 

 

 In the Figure “Cd-vacancy complex 3” we present the partial local density of states 
(PLDOS) at the Cd site for the relaxed configurations: (a) Cd-split vacancy and (b) Cd-fixed 
at the substitutional site in Ge bulk. According to a symmetry-adapted analysis the electronic 
structure of the Cd-split-vacancy-complex can be considered to derive from the divacancy 
[HH03]. Due to the presence of the Cd-atom dangling bond electrons at the Si (Ge) neighbors 
feel an attractive potential, and thus their energy is reduced. On the Cd atom one can see three 
effects: 
(1) For the split-vacancy configuration the large peak around -9.5eV is shifted by ~ 0.2eV to 

higher energies compared to the substitutional-Cd complex. This shifting is due to the 
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higher hybridization of p and d electrons for substitutional-Cd with the s and p electrons 
of Si/Ge nearest-neighbor atoms.  

(2) Reduction of the splitting of higher lying p-state. 
(3) Splitting of the s-level with an overall shift of the occupied s-states to lower energies. 

Figure Cd-vacancy complex 3: The PLDOS at Cd site in Ge. 

 

 The split vacancy configuration has a higher symmetry dD3 . This explains also the 

small EFG measured for these Cd-vacancy complexes in Si and Ge. The calculated EFGs with 
the KKR formalism (27.99 MHz for Si and 55.69 MHz for Ge) is in very good agreement 
with the experiment allowing a unique assignment to the small measured EFG of 28 MHz in 
Si and 54 MHz in Ge. ([HH03], [HAS04])  
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Cd-interstitial complexes 

 The Cd-interstitial complex is a possible candidate for the large EFG of 415 MHz 
measured by two groups in Ge ([HSZ98], [FVP90]). We have first studied the substitutional-
Cd interstitial-complex: a self-interstitial on a tetrahedral site adjacent to a substitutional-Cd 
impurity.  
 In our calculation to optimize the structure we used the same pseudopotentials and 
basis set as before for the vacancy complexes. All the calculations are done using LDA for the 
exchange-correlation functional in the same supercell as for the vacancy complexes with 13vC  

symmetry but this time containing 109 atoms. 
 To our surprise we found that this configuration is very unstable exhibiting a large 
force on the Cd atom. By relaxing this configuration the three adjacent atoms in the [111] 
direction, i.e. the self-interstitial, the Cd atom and the NN host atom in the [111] direction 
move more or less uniformly, until the Cd atom settles in the bond-center position and the two 
host atoms about halfway between the interstitial and the substitutional positions. In the final 
configuration (see Figure “Cd-interstitial complex 1”) the relaxations of the first NN-atoms 
are of 4.7 %NN, and for the NN-atoms along to [111] direction 57%NN from the ideal 
substitutional site. (the KKR relaxations are of 3.4%NN and 56%NN). 

Figure Cd-interstitial complex complex 1: The Cd-interstitial complex with the Cd on the 
substitutional site (left side) leads after relaxation to the symmetrical complex with Cd on the 
bond center and two host atoms shifted halfway between the substitutional and interstitial 
positions (right side).  

 
 
 For Ge the calculated EFG of –415 MHz [HH03] for the symmetrical Cd-split-
interstitial-complex agrees well with the experimental value of ± 395 MHz assigned by 
Haesslein et. al. to a Cd-interstitial complex ([HSZ98]).  
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Chapter 6  
Formate on Cu(110) surface 

6.1 Introduction 

 Most of the important chemical reactions in nature and technology take place at 
surfaces and interfaces. There are a vast number of economically important processes, which 
rely on these reactions, such as catalysis in chemical production, corrosion, the fabrication of 
computer chips, magnetic storage on computer disks and the behavior of biomaterials. A large 
effort is made to obtain an atomic based picture of chemical interactions and reactions at the 
surface. The first question refers to the identification of the molecular species and the atomic 
positions. The next step is the understanding of the reasons why the atoms are located the way 
they are and why certain atom groups are more reactive than others. The answers are directly 
related to the electronic structure and how the bonds are formed.  
 The adsorption of formic acid on copper single crystal surfaces, in particular Cu(110), 
has attracted considerable attention due to the identification of formate as a key stable 
intermediate in methanol synthesis which is carried out commercially using copper based 
catalysts [Wau92].  
 Recent developments have enabled the field of surface science to progress from the 
study of simple adsorbates to the investigation of bigger and more complicated molecules, 
e.g. organic acids and aminoacids. The carboxyl group is known to be an anchoring group 
used by molecules to chemically bind on the surfaces [Rav03, BR03]. From the theoretical 
point of view, in a first step one should understand the binding to the surface of the simplest 
molecule that contains the carboxyl group, which is the formic acid, and then proceed to more 
complex molecular structures.  
 Experiments have studied formic acid adsorption on both clean and oxygen 
precovered surfaces of copper. At elevated temperatures (300-450°C) formate molecules are 
chemically adsorbed at the Cu surface by dehydrogenation (clean surface; see Figure 
“Formate on Cu(110) 1”) or release of water (oxygen precovered surface) [Lei94]. To 
determine the formate adsorption structures, several experimental methods have been used: 
near-edge X-ray-absorption fine spectroscopy (NEXAFS), surface extended X-ray-absorption 
fine structure (SEXAFS), low-energy electron diffraction (LEED), Auger electron 
spectroscopy, temperature programmed desorption (TPD), scanning tunneling microscopy 
(STM), reflection-absorption infrared spectroscopy (RAIRS) and in-situ infra-red reflection-
absorption spectroscopy (IRAS) ([PHC85], [LEI94], [PBJ97], [SPB98], [SPP99]). 
 With some of the experimental methods it was difficult to determine how the formate 
molecules are chemisorbed on the copper surface, in an upright or tilted geometry, or if they 
are bound in a bidentate or monodentate geometry (for the monodentate case the oxygen 
forms a single bond with a copper atom, for the bidentate geometry the oxygen atoms are 
bound to the copper atoms). Only NEXAFS and SEXAFS have suggested specific 
geometries: the molecules are adsorbed with their molecular plane perpendicular to the metal 
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surface. The molecules are arranged in rows with the plane formed by the carboxylic group 

along the [ ]011  direction [PHC85]. 

Figure Formate on Cu(110) 1: On the clean copper surfaces only dehydrogenation of formic 
acid is observed (Cu-green, O-red, C-gray, H-dark grey).  

 

 Experiments suggested that the formate molecules are forming a (2x2) structure on the 
Cu(110) surface. At low coverage there is just one molecule in the unit cell whereas at high 
coverage the unit cell contains two molecules. On the clean surface, at high coverage, the 
formate molecules are forming short domains and to some extent they are randomly 
distributed. It is assumed that there are repulsive intermolecular interactions between the 
molecules in the [ ]100  direction that increases their mobility at the surface. This prevents the 

observation of an ordered LEED pattern or clearly interpretable STM image [PBJ97].  
 Some experiments suggested that the single oxygen atoms are sitting on top of the 
copper surface atoms, but SEXAFS analysis suggested that the oxygen atoms are on bridge 
positions binding two Cu atoms [PHC85, PBJ97].  
 According to the experiments the clean surface formate structure has similarities to the 
(2x2) formate structure that has been reported for the formic acid adsorption on the 0.5ML 
oxygen precovered copper surface (this means that before formic acid adsorption there are 
two oxygen atoms in the (2x2) unit cell). In the last case the (2x2) formate structure can be 
imaged with STM with good resolution indicating that the formate molecules are much more 
localized than on the clean surface. It seems that the repulsive interaction between the 
molecules can be overcome in the case of the oxygen-precovered surface. The higher formate 
coverage is enforced through the energetically favorable reaction of formic acid deprotonation 
by the preadsorbed oxygen [PBJ97, PJB97]. In this case the carboxylic hydrogen leaves the 
surface not as H2 but rather as H2O (one additional O atom per (2x2) unit cell remains, i.e. 
0.25ML). 
 For the adsorption geometry of formate on Cu(110) a series of theoretical calculations 
using ab initio density functional theory as well as semiempirical methods have been reported 
in the literature. All of them are based on the cluster approach: a cluster of 8 up to 10 copper 
atoms is used to model the metal surface where the copper atoms are kept at their ideal bulk 
positions. These methods take into account just one formate molecule on the surface, and they 
describe well only the local structure of the molecule-metal surface system at very low 
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coverage. With these methods no information concerning the intermolecular interactions can 
be obtained. 
 In the present work several geometries, corresponding to different coverages, for the 
adsorption of the formate on Cu(110) are optimized using the supercell approach. The results 
obtained with this method can be compared with the cluster approach at low coverage. The 
supercell approach has the advantage of a better simulation of the real system because it can 
take into account a real infinite surface and also includes the steric interactions between the 
molecules when the coverage increases.  
 A series of additional calculations have been performed to check our method. First, we 
have optimized the structure of the formate (free radical) molecule and the structure of the 
(1x1) copper Cu(110) surface. The obtained results are comparable with the other theoretical 
data reported in the literature and with the experimental results [GG99, PLH04, RYB95]. 
Then we have used these relaxed coordinates of the molecule and copper surface as starting 
positions in the molecule-surface calculations. The obtained results are discussed on the next 
pages. 
 We first discuss the structure (bond length and bond angles) of the free formate 
radical, as well as its electronic structure. Then, we discuss the adsorption geometry of 
formate on Cu(110)-surface with low coverage (1 formate molecule per (2x2) unit cell), and 
with high coverage (2 formate molecules per (2x2) unit cell), with and without additional 
oxygen.  
 We found that in the most stable structures the formate is always sitting perpendicular 
to the Cu(110)-surface, and it is adsorbed in a bridge position (the O-C-O group forms a 
bridge between two Cu atoms). Other tested configurations are less stable by at least 0.9 eV 
per formate molecule.  
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6.2 Formate free radical 

 The electronic and geometrical structure of the formate radical has been optimized 
using the PBE-GGA functional for the exchange-correlation. The molecule has been placed in 
a cubic box with 5.8=a  Å. The exact parameters of the pseudopotentials (for C, O) used are 
given in the Appendix “Parameters and Tests of the PAW-pseudopotentials”. Several 
calculations have been done using gamma point and different k-point sets (up to 3x3x3) with 
or without C2v symmetry. Taking into account the symmetry, the results are the same for all 
the k-point sets. The bond lengths and O-C-O-angle are given in the Table “Formate 1”. They 
agree well with the other theoretical data for the formate radical that have been reported in the 
literature [GG99, PLH04].  

Table Formate 1: the bond length and O-C-O angle for free formate radical. 

bond length/angle this work  Ref-[GG99] Ref-[PLH04] 
CH 1.140 1.095 1.100 
CO 1.247 1.261 1.257 

OCO 110.870 111.60 111.20 

Electronic Structure 
 In order to understand the bindings in the formate molecule in a simple picture one can 
view the carbon atom as sp2 hybridized. It has three simple σ bonds with the hydrogen and the 
two oxygen atoms, and a pz orbital perpendicular on the O-C-O plane. Each of the oxygen 
atoms has a pz orbital perpendicular to the plane formed by the simple σ bond to the carbon 
and the two lone electron pairs. Each pz orbital of the carbon and oxygen atoms is occupied 
with one electron. The pz orbital of the C is formally forming two half π-type bonds with the 
oxygen atoms (each having a pz orbital occupied with one electron). Since the two half π-type 
bonds need two electrons (one will be taken from the carbon and the other from the oxygen 
atoms), the two oxygen atoms will share an extra pz electron. As a result each oxygen atom is 
rich in valence electrons. Formally, the redistribution of the oxygen valence electrons is as 
follows: one part of them are forming a simple σ bond and a half π-bond with the C, and 
another part represents the two lone electron pairs and one half of the shared pz electron. 
These last ones are involved in the bonding to the Cu(110) surface.  
 The Partial Local Density of States (PLDOS) (see Anhang D in [Kro01]) on a sphere 
(with the radius half of nearest-neighboring distance) around each atom has been calculated in 
order to understand and explain the electronic structure of isolated formate radical (see Figure 
“Formate 2”). Our calculated electronic levels reproduce those reported in the literature for 
the free formate radical ([FHB83], [RC87], [BD87], [BD88], [KFL65]). The electronic 
distribution and decomposition of the molecular orbitals as analyzed in the mentioned papers 
([FHB83], [RC87], [BD87], [BD88]) is shown in Figure “Formate 3”. The lower level at -
23.5 eV corresponds to the 3a1 level and the highest one to the 4b2 level (0.0 eV). There are 
two nearly degenerate levels: 3b2 and 1b1(

π ) (-5.0 eV). The PLDOS project the molecular 
wave function into s- and p-type contributions at the site of the each atom. We will start our 
discussion with the highest occupied levels.  
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 The weakly bounded p-type electrons with the characteristic energy levels at -1.0eV,    
-0.5eV, 0.0eV and corresponding to the 4b2, 6a1, 1a2 levels in molecular orbital picture are 
mostly located at the oxygen atoms. The electrons that correspond to these states will 
participate in the binding to the copper surface. The PLDOS of C, O atoms show 4 peaks, at -
5.0 (two nearly degenerate ones), -7.5 and -8.5 eV energy levels, with the corresponding 
molecular orbitals 3b2, 1b1(

π ), 5a1 and 4a1. The electrons corresponding to these peaks have 
intensities at all atoms. They represent the binding electrons between the molecules’ atoms.  

Figure Formate 2: Partial local density of states of the formate molecule (free radical) 
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 The oxygen atoms have characteristic localized s-type states at -23.5 and -21.0 eV 
corresponding in a molecular orbital picture to the 3a1 and 2b2 states. In our PLDOS for the C 
atom we find some intensity for the 3a1 level. Since we integrate over a sphere whose radius 
is half of the bond length around the C atom we cut trough electron distribution corresponding 
to the 3a1 level ( see Figure “Formate 3”).  

Figure Formate 3: Electron distribution 
and schematic representation of the 
valence molecular orbitals in the isolated 
formate radical. The 3a1 level is the 
lowest in energy and the 4b2 is the 
highest one. The 3b2 and 1b1(

π ) are 
degenerate.  

(i) Orbital contours enclose 90, 70, 50, 
30 and 10% of the probability density as 
shown in ref. [FHB83] (C-H define the z-
axis, the oxygen atoms the y-axis and 
perpendicular to this plane is the x-axis).  

(ii)  Rough picture of the atomic orbitals 
and their sign some at C and O site (only 
the p-orbitals are shown). With respect to 
the molecular (y-z) plane, the 1b1 and 
1a2 are the π -orbitals. They are formed 
by linear combinations of the 2px orbitals 
of carbon and oxygen. The 3b2, 4b2 and 
6a1 are the σ -orbitals. They are the 
product of linear combinations of the 1s 
orbital of the hydrogen (6a1) and the 2s, 
2py, and 2pz orbitals of carbon and 
oxygen (3b2, 4b2, 6a1) [RC87], [BD87], 
[BD88]. 
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6.3 Formate-Cu(110) surface systems 

 All GGA calculations of formate molecules adsorbed on Cu(110) surface have been 
performed using an inversion symmetric slab containing five copper layers. The unit cell has 

the dimensions 24 ⋅⋅ a  (perpendicular to the surface), and a⋅2 , 2⋅a  (parallel), with 
641.3=a Å being the bulk lattice constant of the copper-fcc. An energy cutoff of 25 Ry (Gmax 

= 5.0) and a 1x3x4 k-point set have been used.  
 In the case of low coverage, one molecule in (2x2) unit cell, two of the most probable 
configurations have been optimized. In one configuration the oxygen atoms are sitting on top 
of the copper surface atoms. This is the so-called bridge position (the C atom is a bridge 
between two Cu atoms) where each of the oxygen atoms is forming one single bond with a 
copper atom. In the second configuration the molecule is bound in a so-called top position (C 
on top of a Cu atom) where each of the oxygen atoms is sitting on the surface between two 
copper nearest-neighbor atoms (see Figure “Formate-Cu(110) system 1”).  
 For high coverage on the clean surface, where two molecules are present in a (2x2) 
unit cell, three different configurations can exist: one with both molecules in bridge position, 
another one with both molecules in top position, and a third configuration with one molecule 
in the bridge position and the other one in top position (see Figure “Formate-Cu(110) system 
2a and 2b”).  
 In the case of the oxygen precovered Cu(110) surface with two formate molecules in 
the (2x2) unit cell, the oxygen atom of the 0.25 monolayer (ML) has been placed in a hollow 
site (between four copper atoms of the first layer and on top of a copper atom of the second 
layer). In this case four configurations are possible at the metal surface. One contains both 
molecules in bridge position and another one has both molecules in top position. For these 
configurations all hollow sites of the copper surface in the unit cell are equivalent (see Figure 
“Formate-Cu(110) system 3a”). In the case when one molecule is in bridge position and the 
other one in top position there are two non-equivalent positions of the oxygen atom relative to 
the copper surface and formate molecules (see Figure “Formate-Cu(110) system 3a”) 
 In all calculated structures the molecules and the first two layers have been allowed to 
relax without any constraint. In the starting configurations the positions of the copper atoms 
are corresponding to those of the optimized (1x1) unit cell of the copper (110) surface. For the 
molecules the relaxed atom positions of the formate free radical have been used as starting 
positions.  
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Figure Formate-Cu(110) system 1: Adsorption geometry of one formate molecule in (2x2) 
unit cell on a clean Cu(110) surface: left-side the top position (C on top of Cu) and right-side 
the bridge position ( C on bridge) (Cu-green, O-red, C-gray, H-dark grey). 
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Figure Formate-Cu(110) system 2a: Adsorption geometry of two formate molecules in a 
(2x2) unit cell on the clean surface (both molecules are either in bridge or in top positions). 

 
top view 

 
top view 

 
side view along [ ]100  direction 

 
side view along [ ]100  direction 

 
side view along [ ]011  direction 

 
side view along [ ]011  direction 

 
side view along [ ]011  direction 

 
side view along [ ]011  direction 

bridge position top position 



FORMATE-Cu(110) SURFACE SYSTEMS 

 67 

Figure Formate-Cu(110) system 2b: Adsorption geometry of two formate molecules in a 
(2x2) unit cell on the clean Cu(110)surface, one molecule in bridge and the other one in top 
positions (Cu-green, O-red, C-gray, H-dark grey).  
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Figure Formate-Cu(110) system 3a: Adsorption geometry of two formate molecules and an 
oxygen atom in a (2x2) unit cell (0.25ML oxygen precovered surface). Both formate 
molecules are in equivalent positions (bridge or top) (Cu-green, O-red, C-gray, H-dark grey). 
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Figure Formate-Cu(110) system 3b: Adsorption geometry of two formate molecules and an 
oxygen atom in a (2x2) unit cell (0.25ML oxygen precovered surface). The two formate 
molecules are in non-equivalent positions (Cu-green, O-red, C-gray, H-dark grey). 
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oxygen on top of Cu7 oxygen on top of Cu11 
one molecule in bridge position and the other in top position 

 The relative energies of all configurations and the bond lengths in the calculated 
configurations are presented in the next tables. The Cu-O distances larger than 3Å are not 
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listed. A general observation is that in all calculated configurations (for different coverages of 
the formate molecules) the most stable ones contain the molecules only in bridge position 
with each oxygen binding to one Cu atom.  

6.4 “Low formate coverage” 

Atomic structure and energetics 
 At low coverage (one molecule per unit cell) the bridge position is with 0.92 eV more 
stable than the top position. This is explained by the stronger interaction of the oxygen and 
copper atoms since in the bridge position the distances O-Cu are much smaller. The oxygen 
atoms are bound to the surface in a monodentate geometry (each oxygen of the carboxylic 
group binds to a single copper atom). Due to the copper-oxygen interaction for both 
configurations the O-C-O angle is larger than for the single formate free radical (128.4° for 
bridge, 125.3° for top, 110.8° for free radical).  

Table Formate-Cu(110) system 1: Bond lengths and relative energies for one formate 
molecule in (2x2) unit cell (For the numbering of the atoms we refer to Figure “Formate-
Cu(110) system 1”). 

bond length 
(Å) 

bridge top 
Interlayer relaxations 

(% relative to the ideal) 
bridge top 

C21-H27 1.141 1.146 Cu13-Cu11 -10.06 -2.02 
C21-O23 1.321 1.324 Cu15-Cu11 -0.85 0.37 
C21-O25 1.321 1.324 Cu17-Cu11 -10.06 -1.95 
O23-Cu15 1.994 2.441 Cu19-Cu11 -0.84 0.32 

O23-Cu19 - 2.434 
O25-Cu19 1.994 2.320 

Clean Cu(110) surface -11.00 

O25-Cu15 - 2.314 
O23C21O25 

angle 
128.410 125.320 

Relative total energies 
(eV) 

0.00 0.92 

The relaxations of the copper atoms of the first layer are quite different depending if 
Cu-O interactions exist or not. For the bridge position of the molecule the copper atoms that 
are not binding directly to the oxygen atoms show similar inward relaxations as on the clean 
Cu(110) surface. In contrast, the relaxation of the copper atoms that are forming the bonds 
with the oxygen atoms is very small, the positions of these atoms are close to unrelaxed ideal 
surface positions. In the top position each oxygen atom of the molecule forms bonds with two 
nearest-neighbor copper atoms, the relaxations of the copper atoms are quite small, the 
positions of the copper surface atoms are close to the ideal unrelaxed (110) surface. 

Electronic structure 
 The electronic structure of the configuration with the molecule in bridge position is 
analyzed with the help of the Partial Local Density of States, PLDOS (see Figure “Formate-
Cu(110) system 4a and 4b”). The inner Cu-atoms (Cu1, Cu2, Cu3, Cu4) have the bulk 
characteristics with the d-band (and some p-states) in the energy interval of -5.0...-2.0 eV. 
Most s-type states appear at a lower energy interval -8.5..-4.5 eV. 
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Figure Formate-Cu(110) system 4a: The PLDOS of the Cu-slab atoms for the supercell 
containing one formate molecule in (2x2) unit cell on a clean Cu(110) surface 
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Figure Formate-Cu(110) system 4b: The PLDOS of the Cu outermost surface atoms and 
formate molecule atoms the system containing one formate molecule in (2x2) unit cell on a 
clean Cu(110) surface (for O and C atoms the s-type level below -23.5 eV is not shown). 
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 For the next surface layer, the atoms Cu5, Cu7, Cu9, Cu11, the d-band is narrowing 
(energy range from -4.5... -2.0 eV). This behavior is due to the smaller coordination number 
of these atoms. The Cu-surface atoms show distinct characteristics: copper atoms, Cu13 and 
Cu17, that are not forming direct bonds with the oxygen atoms of the formate molecule have 
the same characteristics as copper surface atoms on the clean surface: a high but narrow d-
band in the energy range of -4.0…-1.8 eV (see Appendix “PLDOS for clean Cu(110) 
surface”). The shape of the d-band of the Cu15 and Cu19 (that are binding the O23 and O25) is 
different. The analysis of the PLDOS for the molecule atoms show that the binding levels in 
the molecule are located in the energy range from -11.0 to -5.0 eV. The oxygen atoms show 
as in the isolated molecule the s-type localized states below -22.5 eV. The Cu-O bindings, via 
p-type states of oxygen atoms and the d-type states of the copper atoms, are in the energy 
range -4.0…-1.8 eV. In this interval the oxygen atom shows a specific high p-type peak at -
3.0 eV.  

Comparison to literature 
 The molecular geometries and the Cu-O bonds calculated in this work agree well with 
the theoretical results reported in the literature [GG99, PLH04, Bec93] and the experimental 
data [LCK98]. The theoretical results in the literature are for the bridge position of a simple 
formate molecule using the cluster approach and Density Functional Theory (DFT), 
Restricted Hartree-Fock (RHF) and semiempirical theoretical approaches [GG99, PLH04,]. In 
the reported DFT calculation a localized basis set has been used and B3LYP hybrid functional 
for the exchange correlation [Bec93].  
 In the literature, there are experimental data and theoretical calculations for other 
organo-metallic complexes of Cu+ with formic acid and diformate molecules. In these 
complexes the oxygen atoms bind in monodentate geometry to the copper atoms. It is shown 
that the Cu+-O attractive interaction is very strong with the Cu-O bond length being 1.910 Å 
for the diformate molecule and 1.958 Å for the formic acid [JD01, HO97].  The reported Cu-
O bond length is close to our calculated Cu-O bond length (1.994 Å) for the bridge position of 
formate molecules on the Cu(110) surface. It is generally accepted that Cu-O distances of 
1.91 up to 2.0 Å correspond to strong Cu-O interaction. In our system, the binding of the 
oxygen atoms to the Cu surface atoms leads to an outward relaxation of the copper atoms 
from their relaxed positions of the clean surface.  

6.5 “High formate coverage” 

 We present the details of the formate arrangements for high coverage in two tables.  

(a) intramolecular bond lengths and bond angles and atomic distances in the Cu surface 

(b) Cu-O bond lengths and relative energies. 
 For the numbering of the atoms we refer to Figures “Formate-Cu(110) system 2a and 
2b”.  

Atomic structure and energetics 
 The geometries of the formate molecules are quite similar in all configurations with 
two molecules per unit cell. The differences appear in the Cu-O bond lengths and the 
relaxations of the copper surface atoms. We have seen that for low coverage (with one 
molecule per unit cell) in the most stable configuration (bridge position) the oxygen-bound 
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copper atoms relax outward relative to the clean surface. Increasing the coverage, with two 
molecules per unit cell in bridge positions, the outward relaxations of the copper surface 
atoms are larger than for the low coverage (see Tables “Formate-Cu(110) system 2a and 1”). 

Table Formate-Cu(110) system 2a: Two formate molecules in (2x2) unit cell on the clean 
surface. (bond lengths of the molecule atoms are in angstroms and relaxations of the copper 
atoms of the first layer are expressed in percentage relative to the ideal interlayer distance 
where the copper atom have the bulk terminated positions). 

bond length (Å) bridge top bridge top 
C21-H33 
C23-H35 

1.142 
1.142 

1.143 
1.143 

1.141 
1.145 

C21-O25 
C21-O27 

1.320 
1.320 

1.323 
1.323 

1.322 
1.321 

C23-O29 
C23-O31 

1.320 
1.320 

1.323 
1.323 

1.323 
1.326 

angles 
O25C21O27 
O29C23O31 

129.100 
128.690 

126.35 
126.35 

128.510 
126.120 

Interlayer relaxations 
(% relative to the ideal) 

 

Cu13-Cu11 +1.17 -0.54 -0.04 
Cu15-Cu11 +1.17 -1.34 -0.72 
Cu17-Cu11 +1.17 -1.34 -1.56 
Cu19-Cu11 +1.17 -0.54 -0.70 

Clean Cu(110) surface -11.00 

Table Formate-Cu(110) system 2b: Cu-O bond lengths and relative energies for two formate 
molecules in (2x2) unit cell on the clean surface (oxygen-copper bond lengths are given in Å). 

Molecule 
positions 

 Cu13 Cu15 Cu17 Cu19 Energy (eV) 

O25 - 1.998 - - 
O27 - -  1.998 
O29 - - 1.998 - 

bridge 

O31 1.998 - - - 

0.0000 

O25 - 1.993 - - 
O27 - - - 1.989 
O29 2.334 - 2.461 - 

one bridge 
and one top 

O31 2.340  2.475 - 

1.0694 

O25 - 2.456 - 2.327 
O27 - 2.450 - 2.334 
O29 2.334 - 2.448 - 

top 

O31 2.326 - 2.456 - 

2.0520 

 The most stable configuration for high coverage (two formate molecules in (2x2) unit 
cell) is the one with both molecules in the bridge position. In the table above the difference in 
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the energies for the other configurations are given, the energy of the bridge configuration is 
taken as reference. A positive energy indicates that the specific structure is less stable. The 
small Cu-O bond length when both molecules are in bridge position is indicative of a strong 
attractive Cu-O interaction [JD01, HO97]. In the most stable structure the Cu-O bonds are all 
equal. Also the outward relaxations of all copper atoms of the first layer are the same. Due to 
the C-O bonds the inward relaxation of the clean Cu(110) surface is over-compensated. 
 When one of the molecules is placed in top position, (mixed configuration) the energy 
increases by 1.07 eV, a little more than the 0.92084 eV found for low coverage. The increase 
of the energy is mostly due to the different Cu-O bonds. A small contribution comes from 
different relaxations of the copper surface atoms. The same is true when both molecules are in 
top position. The increase of the energy (2.0520 eV) is larger than the 2x0.92084 eV. 
Observa t ion  1:  The contribution to the total energy due to repulsion or attraction 
between the formate molecules can be estimated by comparing a given area of the Cu-surface 
with two different arrangements of the formate molecules: (i) the formate is spread out on the 
copper surface with low coverage, i.e one molecule per (2x2) unit cell, and (ii) the formate 
molecules are present on only half of the surface with double (high) coverage, i.e. two 
molecules per (2x2) unit cell, and half of Cu-surface is free of formate. The two situations 
yield the following energy difference:  

( ){ } EEEE Formate
CuCu

Formate
Cu ∆=+−⋅ ⋅⋅ 2

)110()110(
1

)110(2
2

1
 

where Formate
CuE ⋅1

)110( , Formate
CuE ⋅2

)110(  are the energies of the (2x2) unit cell with one or two molecules, 

respectively, on Cu(110) (with the molecules in bridge positions), and )110(CuE  represents the 

energy of the clean surface. If 0>∆E  the interaction between the molecules is attractive and 
it is repulsive if 0<∆E .  
 Our results for the total energies of the different Cu-surfaces (with and without 
formate) yield a small positive energy difference, eV1294.0+=∆E  per molecule. This would 

mean an attractive interaction of the formate molecules, in contradiction with the earlier 
interpretation of the experimental observations [PBJ97], which postulate a repulsive 
interaction between formate molecules on Cu(110) surface from the fact that the high 
coverage configuration is not achievable by long exposure of the Cu(110) surface with formic 
acid in the gas phase.  
 However, while our calculations test the equilibrium configurations of formate 
molecules on the surface at 0=T , the experiments draw the conclusions from the kinetics of 
the adsorption reaction. The ultimate test will be to calculate the barrier for adsorption  of a 
second formate molecule in the c(2x2) unit cell. This is a very demanding calculation and has 
to be left to future calculations.  
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6.6 Oxygen precovered Cu(110), 
“High formate coverage” 

 We give the details of the arrangement of the formate molecules on oxygen 
precovered Cu(110) surface in three different tables.  

(a) the intramolecular bond lengths and bond angles and the interlayer relaxations of the 
Cu(110) surface, 

(b) the bond lengths of the oxygen atoms of the formate molecules with the copper surface 
atoms and the energies of the different formate adsorption geometries.  

(c) the bond lengths of the extra oxygen atoms to the Cu surface atoms.  
For the numbering of the atoms we refer to Figures “Formate-Cu(110) system 3a and 

3b”. 

Atomic structure and energetics 
 In the case of the oxygen precovered Cu(110) surface the most stable configuration 
also turns out to be the one with both molecules occupying bridge positions. It is 
characteristic for all configurations that due to the Cu-O bonds the first copper layer relaxes 
outward above the ideal bulk terminated positions and the first interlayer distance increases. 
Again the inward relaxation for the clean Cu(110) surface is over-compensated. 
 The extra oxygen atom (the remaining 0.25 ML after water release) is slightly 
displaced from its fourfold hollow site starting position. For all configurations the Cu-O33 
bond length (Cu7-O33, Cu11-O33) relative to the second layer atom are practically the same. 
The bond length of the lone oxygen atom to copper atoms of the second layer is shorter than 
the one formed by the oxygen of the molecules with the copper atoms of the first layer (see 
Table “Formate-Cu(110) system 3b and 3c”).  
 In the Table “Formate-Cu(110) system 3b” the energy of the most stable configuration 
(both formate molecules in bridge positions) is taken as reference. The positive energy 
indicates the reduced stability of the other configurations.  

 The calculated Cu7/11-O33 bond lengths are in good agreement with experimental 
results and theoretical calculations of the oxygen precovered Cu(110) surface [LKC98, HO97, 
DFS91, BPO86, FGJ90, ST93, UMU01]. The O33 position is slightly above the first layer of 
copper atoms (see Figure “Formate-Cu(110) system 3a and 3b”).  

 Liem et al. [LKC98] have reported that at low coverage of oxygen on the Cu(110) 
surface the most favorable adsorption site of the additional oxygen atom is not the hollow site 
(high symmetry fourfold coordination). The equilibrium position corresponds to a pseudo 
threefold coordinated adsorption site. The oxygen is in a midpoint between a hollow site and 
two copper nearest-neighbor atoms along to [ ]011  direction. This is explained by the closer 
coordination (shorter bond lengths) of the oxygen to the copper atoms for the pseudo 
threefold coordinated adsorption site. 
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Table Formate-Cu(110) system 3a: Intramolecular and Cu-surface bond lengths for two 
formate molecules in (2x2) unit cell on the oxygen precovered Cu(110) surface (bond lengths 
of the molecule atoms are in angstroms and relaxations of the copper atoms of the first layer 
are expressed in percentage relative to the ideal interlayer distance where the copper atom 
have the bulk terminated positions ). 

bond length (Å) 
bridge bridge top 

(O33-Cu7) 
bridge top 
(O33-Cu11) 

top 

C21-H35 
C23-H37 

1.139 
1.142 

1.153 
1.147 

1.150 
1.145 

1.142 
1.140 

C21-O25 
C21-O27 

1.321 
1.321 

1.332 
1.315 

1.313 
1.328 

1.314 
1.331 

C23-O29 
C23-O31 

1.318 
1.317 

1.323 
1.320 

1.319 
1.313 

1.331 
1.333 

angles 
O25C21O27 
O29C23O31 

129.750 
128.240 

125.300 
128.680 

125.580 
127.440 

126.38 
126.39 

Interlayer relaxations 
(% relative to the ideal) 

 

Cu13-Cu11 +8.28 +11.27 +5.66 +8.16 
Cu15-Cu11 +8.27 +11.69 +5.63 +7.22 
Cu17-Cu11 +8.28 +11.62 +5.81 +7.22 
Cu19-Cu11 +8.27 +13.81 +6.85 +8.13 

Clean Cu(110) surface -11.00 

Table Formate-Cu(110) system 3b: Cu-O bond lengths (Å) and relaxation energies (in eV) 
for two formate molecules in (2x2) unit cell on the oxygen precovered surface  

Molecules 
positions 

 Cu13 Cu15 Cu17 Cu19 Energy (eV) 

O25 - 1.993 - - 
O27 - - - 1.993 
O29 - - 1.989 - 

bridge 

O31 1.988 - - - 

0.0000 

O25 - 2.493 - 2.347 
O27 - 2.428 - 2.301 
O29 - - 1.987 - 

one bridge 
and one top 

Cu7-O33 
O31 1.986 - - - 

1.1576 

O25 - 2.449 - 2.281 
O27 - 2.566 - - 
O29 - - 2.003 - 

one bridge 
and one top 

Cu11-O33 
O31 1.998 - - - 

1.6247 

O25 - 2.494 - 2.377 
O27 - 2.381 - 2.235 
O29 2.235 - 2.382 - 

top 

O31 2.377 - 2.494 - 

1.8527 



FORMATE-Cu(110) SURFACE SYSTEMS 

 78 

Table Formate-Cu(110) system 3c: Bond lengths (Å) of the additional oxygen (O33) for two 
formate molecules in (2x2) unit cell on the oxygen precovered surface. 

O33-Cu Cu7 Cu11 Cu13 Cu15 Cu17 Cu19 
bridge 1.869 - 2.135 2.305 2.135 2.305 

one bridge 
and one top 

Cu7-O33 
1.865 - 2.211 2.243 2.280 2.294 

one bridge 
and one top 

Cu11-O33 
- 1.875 2.100 2.200 2.227 2.321 

top 1.879  1.239 2.239 2.239 2.238 

 We found that for the most stable configuration of the formate molecule adsorption on 
0.25 ML oxygen precovered Cu(110) surface (both molecules in the bridge position) the 
additional oxygen atom follows the same trend: it likes to coordinate closer to the three Cu-
surface atoms (see in Table “Formate-Cu(110) system 3b”). The O33 forms slightly shorter 
bonds to Cu13 and Cu17 and longer ones with Cu15 and Cu19. The direction of relaxation is the 
same as the one suggested in the Ref. [LKC98], towards to Cu nearest-neighbors on the [ ]011  

direction (see Figure “Formate-Cu(110) system 3a” and Figure “Formate-Cu(110) system 5”).  
 For the oxygen precovered Cu(110) surface the energy difference between the most 
stable configuration (both molecules in bridge position) and the less stable one (both 
molecules in top position) is 1.8527eV. This value is only 11.02 meV larger than 

0.920842×  eV (where 0.92084eV is the energy difference between top and bridge 
configurations with one molecule in a (2x2) unit cell). In the case of two formate molecules in 
a (2x2) unit cell on clean Cu(110) surface this energy difference is 210.32 meV. 

Figure Formate-Cu(110) system 5: Displacement of additional oxygen for two formate 
molecules in bridge positions and an oxygen atom in a (2x2) unit cell (0.25ML oxygen 
precovered surface) (Cu-green, O-red, C-gray, H-dark grey).  

 

The O33 is displaced by 0.1Å from the hollow 
site towards Cu13 and Cu17. The oxygen atoms 
O29 and O31 are on top of the mentioned 
copper atoms. H35 and H37 are slightly tilted 
towards the O33 atom 
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The presence of additional oxygen apparently influences the energy difference 
between different formate adsorptions geometries. This is not surprising since the Cu atoms 
participating in the formate binding are also involved in the binding of the extra oxygen.  
Observa t ion  2:  For a characterization of the effect of the preadsorbed oxygen on the 
formate-formate interaction we compare the adsorption energies of the formate-Cu(110) 
system “high coverage“ with and without additional oxygen (considering both molecules in 
bridge positions) in a similar manner as in “Observation 1” in the previous chapter. 
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where the term with the first curly brackets represents the negative binding energy per 
formate on precovered-oxygen Cu(110) and the second one is the negative binding energy per 
formate without oxygen. Formate

oxygen
CuE ⋅2

)110(  is the energy of the 2 formate-oxygen precovered Cu(110) 

system, Formate
CuE ⋅2

)110(  is the energy of the 2 formate-Cu(110) system, 
oxygen
CuE )110(  the energy of the 

oxygen precovered (0.25ML) Cu(110) system, )110(CuE  the energy of the clean Cu(110) 

surface and FormateE  the energy of a single gas phase formate molecule. If 0<∆E  then the 

additional oxygen aids the formate adsorption. Our results for the total energies of the 
different Cu-surfaces (with and without oxygen) yield the following bonding energies per 

molecule: 1035.3
)110(

−=formate
oxygenCu

bindingE  eV, 4955.3
)110(

−=formate
Cu

bindingE  eV, i.e. a small positive adsorption 

energy difference, eV3920.0+=∆E  per formate molecule. This means that the oxygen does 

not increase the attraction interaction between the adsorbed formate molecules. But, again we 
would like to point out, that we have tested the equilibrium configurations of adsorbed 
formate with and without preadsorbed oxygen at 0=T . The effect of the adsorbed oxygen 
might be more important for reducing the barrier for adsorption of the second formate 
molecule in the c(2x2) Cu(110) surface cell. In fact, due to the presence of oxygen a new 
reaction path for the adsorption of formate from gas phase formic acid is opening up: instead 
of release H2 when the molecules are adsorbed, with the additional oxygen, water can be 
formed. This is indeed experimentally observed [PBJ97]. A theoretical investigation of the 
kinetics has to be left to future investigations due to the very high computational demands.  

For all configurations we found that the molecule is sitting with its molecular plane 
perpendicular to the Cu(110)-surface. For low coverage (one formate molecule in the unit 
cell) we found that in the stable configuration the molecule is in a bridge position (each 
oxygen of the carboxylate group binds a single copper atom so that the carboxylate group 
forms a bridge between two nearest-neighbor copper atoms along to [ ]011  direction). The Cu 

surface atoms that are not binding directly to oxygen atoms show inward relaxations as on the 
clean Cu(110) surface. In contrast, nearly no relaxation relative to the ideal unrelaxed Cu(110) 
surface is found for the Cu atoms that are forming the bonds with O atoms. 
 At high coverage (two formate molecules in the unit cell) the most stable 
configuration is the one with both molecules in bridge positions. The Cu-surface atoms show 
outward relaxations larger than in the low coverage case. The geometries of both formate 
molecules are quite similar to that of the molecule at low coverage. We found that an 
attractive interaction between the formate molecules should occur at high coverage.  
 In the case of oxygen-precovered Cu-surface, at high coverage of formate molecules, 
we find again that the stable configuration is the one with both molecules in bridge positions. 
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A large outward relaxation of the Cu surface layer is found. The molecular geometry of the 
formate molecules does not change significantly and it is similar as in the previously 
discussed systems. The extra oxygen atom (the 0.25ML oxygen monolayer) is only slightly 
displaced from its fourfold hollow site starting position. This oxygen atom binds more 
strongly to the second layer Cu atom than to the first layer atoms.  
 The Cu-O bond length is practically the same in all configurations and does not 
depend on the coverage ratio. The oxygen adsorption does not influence the binding of the 
oxygen atoms of the carboxylate group with the first layer of the Cu-surface. The main 
changes due to oxygen coverage are in the first interlayer relaxations. With increasing 
coverage the first Cu-surface layer relaxes towards the positions corresponding to the 
unrelaxed (110) surface, and for the oxygen precovered surface the inward relaxation for the 
clean Cu(110) surface is over-compensated and turned into a large outward relaxation. 
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Chapter 7 

3-Thiophene carboxylate 
on Cu(110) surface 

7.1 Introduction 

 The family of five-membered heterocycles is of basic importance in chemistry and 
physics. This family includes thiophene and its derivates, which are the main constituents of 
the polymeric organic conductors [BRV72, SL01, SAK01]. The discovery of conducting 
polymers has proven to be of great scientific and practical interest. Conducting polymers are 
being used in the field of material science as electromagnetic shielding, antistatic coatings on 
photographic films, and for windows with changeable optical properties. New promising 
applications include micro- and molecular-electronics, as well as quantum computing. [SK00, 
SAK01, Phi00, SKB00, SDB01, JB01, CDL00].  
 There is an increasing interest in the adhesion and growth of oriented polymeric 
materials on surfaces. Much work is now undertaken in molecular self-assembly experiments 
which lead to oriented growth of organic films. These motivate investigations to understand 
the properties of the polymer-precursor-substrate interfaces. With such information it should 
be possible to fabricate a specific polymer-surface structure whose chemistry and physics can 
be controlled and optimized to achieve specific desired properties. 
 Polythiophene and its derivatives play an important role as a conducting polymer. The 
self-assembling of the thiophene derivatives is expected to produce organic films with novel 
and interesting properties. Experiments provide information on the bonding, lateral 
interactions, charge distribution, orientation and the alignment of molecular adsorbates on 
surfaces. Ab initio calculations are a powerful method to aid the interpretation of experiments, 
and to provide a basic understanding and forecasting of the intra- and inter-molecular 
interactions present in the observed structures.  
 In the present chapter we focus on the study of the (2x1) structure of 3-thiophene 
carboxylic acid on Cu(110) surface. The structure is shown in Figure “3-thiophene carboxilate 
1a”. 
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Figure 3-thiophene carboxylate (3TC) 1a: Schematic view of the 3-thiophene 
carboxylate molecule. The atoms are numbered as used in our structure 
optimization of the free radical discussion.  

 

 Experiments, like high-resolution electron energy loss spectroscopy (HREELS), 
scanning tunneling microscopy (STM) and low electron energy diffraction (LEED), have 
been performed on this system [FCB96].  
 The HREELS shows that at low coverage the 3-thiophene carboxylic acid lies flat on 
the surface with its π orbitals interacting with the surface atoms. It has been shown that at 
high coverage the hydrogen atom of the carboxylate group is lost and the molecule binds to 
the surface as 3-thiophene carboxylate (3TC). The hydrogen leaves the surface as H2 
molecule (see Figure “3-thiophene carboxylate 1b”).  
 Electron scattering (HREELS) results indicate that when the coverage increases the 
molecules reorient perpendicular to the surface with the carboxylate group oriented in the 
[ ]011  direction of the surface. The (2x1) super structure that is formed is confirmed also by 

the LEED experiments. In the gas phase the 3TC-molecules have a planar geometry. At high 
coverage the thiophene rings of the molecules feel a steric repulsion, which they can reduce 
by rotation, thus breaking the planar geometry. Experiments suggest that they rotate by 20-30° 
away from the [ ]011  direction [FCB96]. 

Figure 3-thiophene carboxylate (3TC) 1b: Schematic view of the high coverage adsorption 
of 3-thiophene carboxylic acid on Cu(110) surface. 

 
 In the following we first discuss our ab initio results for the free 3TC-molecule and 
then for the structure of the 3TC-molecules adsorbed on Cu(110) surface.  
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7.2 3-thiophene carboxylate free radical 

 The molecule (see Figure “3-thiophene carboxilate 1a”) contains a thiophene ring that 
is formed by four sp2-hybridized carbon atoms and a sulfur atom. Formally the ring structure 
can be assumed to derive from a benzene molecule by replacing two of the annular CH groups 
with sulfur. In this five-membered ring the sulfur atom acts as an electron donating 
heteroatom by contributing two electrons to the aromatic sextet, and thus the thiophene ring is 
considered to be an electron-rich heterocycle. The fact that the lone pair on sulfur contributes 
to the aromaticity is seen in the lower dipole moment of the thiophene compared to its 
saturated analogue tetrahidrothiophene.  
 The atomic and electronic structure of the 3-thiophene carboxylate (3TC) radical has 
been optimized using the PBE-GGA functional for the exchange-correlation. The calculation 
has been performed in a box of 12x11.5 x6.5 D3 using a 3x3x3 k-point set and a energy cutoff 
of 25 Ry. The corresponding pseudopotentials of the atoms have been generated using the 
same PBE-GGA scheme. Their characterization is given in the Apendix “Parameters and tests 
of the PAW pseudopotentials”. 

Atomic structure 
 To optimize the structure of 3TC we have started with a configuration where the 
angles and bond lengths are equal to experimental values for the acid form. The atoms of the 
3-thiophene carboxylate have been allowed to relax without constraint till the energy 
minimum is reached. In the final relaxed configuration the thiophene ring and carboxylate 
group of the molecule are in the same plane. The calculated bond lengths and angles and are 
given in the Table “3-thiophene carboxylate 1”. They can be compared with those measured 
for the crystalline structure of 3-thiophene carboxylic acid [HR62, VHW68] or those 
calculated for the molecule in the gas phase with ab initio molecular orbital calculations 
[TRL02]. One should mention that in the references two different C-O bond lengths are given 
because they correspond to the carboxylic group (COOH). The shorter one is corresponding 
to the double bond that is formed by one of the oxygen atoms with the carbon. The longer one 
corresponds to a single C-O bond. The 3-thiophene carboxylate radical does not contain the 
acidic hydrogen, so the two oxygen atoms are indistinguishable, and their bonds to the 
carboxylate carbon are equivalent. As one would expect the calculated C-O bond lengths for 
the radical are practically equal. Due to the differences of the C-O bonds in the carboxylic 
acid and in the carboxylate groups the O-C-O angles differ.  
 The calculated bond lengths and angles for the thiophene ring agree well with those 
calculated for the thiophene ring in the corresponding gas phase of the acid or with those 
measured for the crystalline structure formed by the acid in the solid phase (see Table “3-
thiophene carboxylate 1”). 
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Table 3-thiophene carboxylate 1: The bond lengths (Å) and bond angles 
(degrees) of 3-thiophene carboxylate radical.  

bond this work Ref. [TRJ02] Ref. [HR62] Ref. [VHW68] 
C2-O6 1.276 1.209 1.235 1.24 
C2-O7 1.277 1.347 1.332 1.32 
C2-C1 1.415 1.464 1.474 1.51 
C1-C3 1.353 1.380 1.406 1.38 
C1-C4 1.364 1.410 1.437 1.41 
C4-C5 1.348 1.371 1.508 1.44 
C5-S8 1.620 1.687 1.708 1.73 
C3-S8 1.630 1.697 1.699 1.70 
C3-H9 1.110 1.078   
C4-H10 1.107 1.079   
C5-H11 1.112 1.078   

angle  

C3-S8-C5 94.00 92.90 98.00 95.20 
S8-C5-C4 111.68 111.50 106.00 108.80 
S8-C3-C1 111.27 111.00 110.40 109.10 
C3-C1-C4 112.06 112.8 112.5 114.6 
C5-C4-C1 111.00 111.8 113.3 112.3 
O6-C2-O7 115.14 123.00 123.6 124.6 

Electronic structure 
 In order to understand the electronic structure of the 3-thiophene carboxylate radical 
the partial local density of states (PLDOS) has been calculated for each of the atoms of the 
molecule. The atoms are identified by numbers in Figure “3-thiophene carboxylate 2 and 3”, 
where also the PLDOS-spectra are shown.  
 The PLDOS-spectra for 3-thiophene carboxylate can be understood partially in 
analogy to the formate spectra (see Chapter 6 Formate on Cu(110) surface). The carboxylate 
group is the same, but the five-atom thiophene ring replaces the hydrogen atom of the 
formate. Indeed, for the atoms forming the carboxylate group (O6-C2-O7) we find the same 
gross feature as for the respective atoms in formate: (i) a set of levels close to the Fermi 
energy (-1.5…-0.0 eV) which correspond to combinations of pz orbitals (π -sytem 
perpendicular on the molecular plane) as well as anti-bonding combinations of px, py and s 
orbitals (in the molecular plane); (ii) a set of levels in the range (-10.0…-2.5 eV), which 
correspond to the σ-binding combinations of the p-orbitals; (iii) low lying levels below -12 eV 
which correspond to mostly s-type tightly bond electrons. However, due to the presence of the 
ring, there are also differences: (i) there are more levels close to the Fermi energy since there 
are more pz-electrons which contribute to the π -sytem; (ii) there are additional binding states 
both of s and p character which involve the C2 atom due to the binding with the C1 atom of 
the ring.  
 Thiophene ring: In general the interval corresponding to the bonding of the atoms of 
the five-membered ring lies between -18.0…-3.0 eV. For the C and Sulfur atoms the low-
lying states (<<-10.0 eV) have mostly s-type characteristics. The high lying states of these 
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atoms have p-type character. The PLDOS-spectra of the C atoms binding the S 
atom have similar characteristic, but different compared with PLDOS-spectra of 
the other C atoms.  

Figure 3-thiophene carboxylate 2: Structure and atom numbers of the 3-TC radical, a schematic 
view of the pz-orbitals, and the PLDOS of the atoms contained in the carboxylate group, O-C-
O. 
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Figure 3-thiophene carboxylate 3: The PLDOS of the atoms contained in the 
thiophene ring of the 3-thiophene carboxylate radical. 
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7.3 3-thiophene carboxylate-
Cu(110) system 

 In order to understand the structure and the nature of the bonding of 3-thiophene 
carboxylate molecule to the Cu(110)-substrate we have performed ab initio calculations for a 
(2x1) supercell using PBE-GGA functional for exchange-correlation. The pseudopotentials 
used are generated with the same PBE-GGA functional; the generation parameters are 
discussed in the Appendix “Parameters and Tests of the PAW-pseudopotentials”. 
 The HREELS experiments [FCB96] suggest that the thiophene ring is rotated with 
respect to the carboxylate group by about 300. The experiments give no indication of the 
possible reconstruction of the copper atoms in the surface under the molecular layer. In order 
to get good starting positions for a full structure optimization a series of survey calculations 
has been performed. 

Dense packing of 3-thiophene carboxylate on Cu(110): Ring rotation 
 First, a calculation of the structure of the Cu(110) surface using a (1x1) lateral unit cell 
and a slab containing 7-layers and a 10 D vacuum has been performed. The forces have been 
relaxed down to a level of 10-2 mRy/a.u. The relaxed positions of this slab have been used as 
starting positions for the copper atoms in the calculations of the geometrical optimization of 
3-thiophene carboxylate Cu(110) surface system. 
 Secondly, a series of calculations has been done in order to get a good estimation of 
the rotation angle of the thiophene ring with respect to the [ ]011  direction and of the bond 

distance of the carboxylate group to the Cu surface. A system containing the molecule and 
two copper atoms has been optimized in a big box. The copper atoms have been placed under 
the oxygen atoms of the carboxylate group, in a planar geometry. The copper atoms are kept 
fixed at the nearest neighbors distance along the [ ]011  direction of the Cu(110) surface 

during the calculation, and only the molecule is allowed to relax. The relaxed positions of the 
planar 3-thiophene carboxylate radical have been used as starting positions for this new 
molecule-2-copper atoms system. The calculation has been performed in a box of 
14.5x11.5x6.5 D3 using a 3x3x3 k-point set with an energy cutoff of 25 Ry and the PBE-GGA 
functional for exchange-correlation. The relaxation is performed till the energetic minimum is 
reached (atomic forces less than 0.1 mRy/a.u.). With these optimized positions the lateral 

dimensions of the box are reduced to 2⋅a , a  (with 641.3=a  D being the copper-fcc lattice 

constant). In this way the new box has the dimensions 14.5x( )2⋅a x ( )a  D3 and contains the 

copper atoms in the same arrangement and distances as in an ideal single layer of the Cu(110) 
surface. This new system can be viewed as a (2x1) structure of the 3-thiophene carboxylate on 
Cu(110) surface with the planar molecule aligned along to [ ]011  direction. With this 

arrangement a series of calculations have been performed to estimate the rotation angle of the 
thiophene ring. Without relaxing the atom distances the thiophene ring is rotated from 0° up 
to 90° (in steps of 5°) relative to carboxylate group. The energy of the unit cell versus rotation 
angle it is shown in Figure “3-thiophene-carboxylate-Cu(110)-single-layer 1”. 
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The minimum is located in the interval 20°-30°. For this interval another series of 
calculations has been done using smaller steps of 1°. We found that the 
minimum energy is corresponding to a rotation angle of 23° of the thiophene 
ring with respect to the [ ]011  direction.  

Figure 3-thiophene-carboxylate-Cu(110)-single-layer 1:  Energy versus rotation angle.  

 
 
3-thiophene carboxylate on Cu(110)-surface: Full relaxation 
 The minimum energy configuration of 3-thiophene on Cu(110) found by these 
calculations (bond lengths, bond angles and rotation angle) has been used as a starting point 
for the full calculations using a thicker slab.  
 In the calculations of the (2x1) structure of 3-thiophene carboxylate on Cu(110) 
surface a set of 1x3x4 k-points and an energy cutoff of 25 Ry has been used. The supercell 
contains 7 layers of copper (14 atoms) and a molecule (2×11 atoms) one each side of the 
copper slab. The inversion symmetry of the system has been included in the calculations. The 

dimension of the unit cell is 27 ⋅⋅ a  (vertical), 2⋅a , a  (lateral). 641.3=a  D is the 
copper-fcc lattice constant fitted for bulk calculations using 12x12x12 k-point set. The 
vacuum region above the molecules has a thickness of 7.0 D (vertical distance between two 
adjacent molecules). 
 Four of the most probable configurations of the molecules on top of Cu(110) surface 
have been optimized: the thiophene molecules are placed on so called ‘bridge’ or ‘top’ 
positions above the first or second Cu-layer with the thiophene ring rotated with 23° relative 
to the carboxylate group. ‘Bridge’ or ‘top’ positions refer to the position of the C-atom with 
respect to the Cu layer. For the ‘bridge’ position the oxygen atoms are on top of the two 
nearest-neighbor copper atoms so that the carboxylate group is forming a bridge between the 
copper atoms. In the ‘top’ position the carbon of the carboxylate group is on top of a copper-
surface atom and the oxygen atoms in the bridge position between two copper nearest-
neighbors.  



3-THIOPHENE CARBOXYLATE-Cu(110) SYSTEM 

 89 

The first two layers of the Cu surface and the molecule have been allowed to 
relax without constraint. The optimization has been done until the energetic 
minimum has been reached. The relaxed structures are shown in the Figure “3-

thiophene-carboxylate-Cu(110) system 1a-1c”. 
 In the following we present the results of our calculations, discussing the relative 
energies, the bond lengths of the Cu-O bonds, the bond lengths in the thiophene ring, the bond 
angles of the molecules, and the relaxation of the Cu-surface atoms. Then we will discuss the 
electronic structure of the attached molecule in the most stable configuration and compare it 
to the free radical at the clean Cu surface. 

Figure 3-thiophene-carboxylate-Cu(110) system 1a: The figure shows a top view of 
the (2x1) structure of 3-thiophene carboxylate ‘bridge’ and ‘top’ configurations above the 
first layer . By displacing the molecule along to [100] directions with a half of the lattice 
constant the other two configurations are obtained: ‘top’ and ‘bridge’ configurations above 
the second layer (Cu-green, O-red, C-gray, S-blue, H-dark grey).  

[ ]011  
  

    [ ]001  

Energetics and Structure 
 The energetically most stable configuration is the ‘bridge’ configuration in which the 
oxygen atoms are on top of two nearest-neighbor copper atoms of the first layer. In a simple 
picture, the oxygen atoms are binding the Cu atoms and the thiophene molecular structure is 
unaffected except for the rotation. The carboxylate group is in a plane parallel to the [ ]011  

direction, and the thiophene ring rotated with 23.72° away from the [ ]011 . In Table “3-

thiophene-carboxylate-Cu(110) system 1” the energy differences of the calculated structures 
are given. The most stable one is taken as reference (zero level), the positive energies show 
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the reduction of the stability of the other structures, causing a decrease of the 
probability to populate the respective configuration in experiments. 

Figure 3-thiophene-carboxylate-Cu(110) system 1-b: Side view of the 3-
thiophene carboxylate in bridge (upper panels) and top (lower panels) positions above the first 
layer (Cu-green, O-red, C-gray, S-blue, H-dark grey). 

[ ]011  direction [ ]100  direction 

  
Bridge position 
 

  
Top position 
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Figure 3-thiophene-carboxylate-Cu(110) system 1-c : Side view of the 3-
thiophene carboxylate in bridge (upper panels) and top (lower panels) positions 
above the second layer (Cu-green, O-red, C-gray, S-blue, H-dark grey). 

[ ]011  direction [ ]100  direction 

  
Bridge position 

 

 
 

Top position 
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Table 3-thiophene-carboxylate-Cu(110) system 1: (the energies are expressed 
in eV) 

configuration Above first layer Above second layer 
bridge 0.000 +1.992 

top +0.985 +1.080 

 The relative stability of the different configurations can be explained in terms of 
chemical interaction of the oxygen atoms with the copper surface atoms. In Table “3-
thiophene carboxylate 2” below the Cu-O bond lengths for the optimized configurations are 
given. When the 3-thiophene carboxylate is on the ‘bridge’ position above the first layer, the 
shortest Cu-O bonds are formed. In this configuration the oxygen atoms are sitting directly on 
top of the copper atoms, and a strong interaction between a copper atom and an oxygen atom 
can be achieved. 

Table 3-thiophene-carboxylate-Cu(110) system 2: Cu-O bond lengths (the bond lengths are 
given in D) 

configuration Bond (D) Above first layer Above second layer 

bridge 

Cu11-O25 
Cu13-O27 
Cu11-O27 
Cu13-O25 

1.925 
1.924 

- 
- 

2.959 
2.821 
2.900 
2.823 

top 

Cu11-O25 
Cu13-O27 
Cu11-O27 
Cu13-O25 

2.389 
2.224 
2.334 
2.264 

2.516 
2.516 
3.660 
3.516 

Table 3-thiophene carboxylate 3: The bond lengths (D) in the thiophene ring for the 
different optimized configurations.  

Above first layer Above second layer 
Bond (D) 

bridge top bridge top 

C17-O25 1.327 1.331 1.332 1.333 
C17-O27 1.327 1.329 1.335 1.337 
C15-C17 1.459 1.455 1.484 1.492 
C15-C19 1.390 1.388 1.394 1.397 
C15-C21 1.424 1.422 1.434 1.437 
C21-C23 1.384 1.382 1.386 1.387 
C19-S29 1.731 1.730 1.735 1.736 
C23-S29 1.752 1.752 1.750 1.750 
C19-H31 1.114 1.113 1.113 1.114 
C21-H33 1.116 1.118 1.115 1.115 
C23-H35 1.115 1.111 1.118 1.119 

 The conformational changes of the adsorbed molecule compared with a free 3-
thiophene carboxylate radical are:  
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  the planarity of the molecule is broken because the thiophene ring 
rotates relative to the plane formed by the carboxylate group. The angle of 
rotation remains practically the same for all the configurations. This angle is 

approximately 24° and does not depend on how the molecules are bound to the Cu-surface 
atoms. This rotation is due to the strong lateral interactions that appear between the hydrogen 
atoms of the neighboring thiophene rings. 

  the O-C-O angle of the carboxylate group is changed due to the bonding of 
the oxygen atoms to the Cu atoms. In the case of the most stable configuration the O-C-O 
angle is 127°, i.e. 12° larger that for the isolated radical. All the other configurations have the 
O-C-O angle around 124°. This is close to the experimental value for the crystal structure of 
3-thiophene carboxylic acid.   
 The C-O bond lengths and O-C-O angle are practically identical to those for the 
formate-Cu(110)-system. The Cu-O bond lengths in the case of thiophene carboxylate are 
smaller with approximatively 0.07 D than the corresponding ones of the formate molecule.  

Table 3-thiophene carboxylate (3TC) 4: The angles in the thiophene ring and of the 
carboxylate group for the different optimized configurations. The rotation angle of the 
thiophene ring relative to the [ ]011  is also given. 

Above first layer Above second layer 
angle 

bridge top bridge top 

S29-C19-C15 111.05 111.06 112.14 112.56 
C19-C15-C21 113.60 113.99 111.83 111.08 
C15-C21-C23 112.08 111.44 113.20 113.77 
C21-C23-S29 111.48 112.06 111.23 110.98 
C19-S29-C23 91.77 91.43 91.59 91.59 
O25-C17-O27 127.65 124.99 124.05 124.00 

Roration angle  
of the thiophene ring 

23.72° 23.80° 23.83 23.77 

 

 The bond lengths and angles in the thiophene ring are just slightly changed from one 
configuration to another. The only obvious changes appear at the interface carboxylate-
group/Cu-surface, more precisely for the Cu-O bond lengths and the first interlayer distances 
of the copper substrate. The Table “3-thiophene carboxylate 5” gives the contractions of these 
first interlayer distances.  

Table 3-thiophene carboxylate 5: The changes of the first interlayer distances of Cu(110)-
surface (in percent) are given in percentage for different configurations of adsorbed 3TC.  

Above first layer Above second layer 
Bond (D) 

bridge top bridge top 

Cu11-Cu9 -10.05 -11.20 -12.86 -5.56 
Cu11-Cu7 -10.05 -11.20 -12.86 -5.56 
Cu13-Cu7 -11.92 -11.47 -9.14 -4.95 
Cu13-Cu9 -11.92 -11.47 -9.14 -4.95 

Clean Cu(110) surface -11.00 
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For each configuration the carboxylate group binds only to Cu atoms of the first 
layer. For a given configuration each of the oxygen atoms will form one or two 
bonds with neighboring Cu atoms. In the relaxed configurations there are some 

small lateral displacement of the outermost copper surface atoms towards the oxygen atoms 
(from 0.07 up to 0.12 D). This has as an effect on the bonding of the first-layer copper surface 
atoms relative to the second-layer copper surface atoms. From the interlayer distances given 
in the table above, one can see that for the ‘top’-type configurations the displacements of the 
first-layer atoms relative to the second layer atoms are symmetrical. This is not the case in the 
‘bridge’-type configurations where the first interlayer relaxations of copper atoms that bound 
the oxygen atoms differ by almost 2%. In all configurations the C15-C17 bond (connecting the 
carboxyl group to the thiophene ring) remains perpendicular to the (110) surface.  

Electronic structure 
 The electronic structure is analyzed with the help of the Partial local density of states 
(PLDOS). The PLDOS has been calculated for all the atoms of the unit cell in all 
configurations. We discuss the results for the most stable 3-thiophene-carboxylate adsorption 
configuration. The corresponding plots are found in the following figures. We start at the 
inner Cu layer and end with the thiophene ring.  

Cu-atoms: The Cu1 and Cu2 bulk-type atoms have the bulk characteristics with p- and 
d-type states in the energy interval of -4.8 up to -2 eV (see also Appendix “PLDOS for clean 
Cu(110) surface”). For the Cu3, Cu5, Cu7 and Cu9 the s- and p-states keep their main 
characteristics as the Cu1 and Cu2, but the d-band is narrowing. The copper-surface atoms 
(Cu11, Cu13) have a characteristic d-band higher peak at -1.0eV. This peak does not appear at 
the other Cu-slab atoms. O23 and O27 have a large p-type band in the energy range of d-band 
of copper-surface atoms. These states are attributed to the Cu-O bonding.  

3-thiophene carboxylate molecule: Compared to the spectra of the free radical, we 
generally observe a shift of all picks to lower energy. The low-lying s-type peaks (<< -12 eV) 
are shifted almost rigidly due to the change of the average potential when the molecules are 
bound to the Cu-surface. In addition, the states close to the Fermi energy and in the range of 
the d-band to the copper are individually shifted due to hybridization when the respective 
orbitals are participating in the bonding to the Cu-atoms. This is particularly true for the 
highest levels that belong to a large extend to the oxygen atoms of carboxylate group. We 
expect that all p-electrons residing on the oxygen atoms to participate in the binding to the Cu 
surface. The most pronounce binding effect can be observed for the peak at -1.0 eV, which 
can be identified on the oxygen atoms and Cu-atoms of the first layer.  
 Thiophene ring: The PLDOS of the atoms forming the thiophene ring have quite 
similar characteristics for all the configurations. Moreover, from the analysis of the bond 
lengths and angles of the thiophene ring one concludes that the type of bonding of the 
carboxylate group to the Cu surface does not have a significant influence on the properties of 
the thiophene ring. In general the energy interval corresponding to the bonding of the atoms 
of the five-membered ring lies between -18.0…-4.5 eV. Also the low-lying s-type states at -
14.0 and/or -15.0 and -18.0eV are characteristic for the atoms of the thiophene ring but they 
are not present at the carboxylic carbon (C17). The atoms S29, C23, C21 and C19 have a 
characteristic p-type state at -2.0eV, but C15 and the carboxylic carbon (C17) do not have this 
p-type state. Since there is no direct interaction of the thiophene ring with the Cu-surface we 
can conclude that the p-type states at -2.0eV corresponds to part of the π-conjugated electron 
system of the thiophene ring localized at the S29, C23, C21 and C19 atoms. The rotation of the 
thiophene ring relative to the plane of the carboxylate group must have an influence on the 
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coherence of the π-electrons. We speculate that the existence of the peak at -2.0 
eV at all ring atoms which falls directly into the gap of the split p-band of the 
carboxylate-oxygen atoms could be a sign of decomposition of the π-conjugated 

electron system caused by the rotation of the thiophene ring. Apparently, the binding to the 
copper surface of the carboxylic group localizes the conjugated p-type states mostly to the 
ring region. They do not extend as much to the carboxylate group, as is the case for the free 
3TC radical. A detailed analysis of this point is planned. 

Figure 3-thiophene-carboxylate-Cu(110) system 2-a: The PLDOS of the Cu-bulk type atoms for 
the configuration when 3-thiophene carboxylate is in ‘bridge’ position above the first layer. 

Second Cu-layer (inner surface-layer) 

  

Third Cu-layer 

  

Fourth Cu-layer (inner layer- bulk-type) 
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Figure 3-thiophene-carboxylate-Cu(110) system 2-c: The PLDOS of the 
copper outermost surface atoms and carboxylate group for the configuration when 3-
thiophene carboxylate is in ‘bridge’ position above the first layer. The most pronounce 
binding effect can be observed for the peak at -1.0 eV, which can be identified on the oxygen 
atoms and Cu-atoms of the first layer. This peak is specific for the carboxylate group of the 3-
thiophene carboxylate molecule. It does not appear in the case of formate adsorption on 
Cu(110) surface (see Figure “Formate-Cu(110) system 4b”) (for O atoms the s-type level 
below -24 eV is not shown).  

Carboxylate group 

 

  

First Cu-layer (surface layer) 

  



3-THIOPHENE CARBOXYLATE-Cu(110) SYSTEM 

 97 

Figure 3-thiophene-carboxylate-Cu(110) system 2-b: The PLDOS of the 
thiophene ring atoms for the configuration when 3-thiophene carboxylate is in 
‘bridge’ position above the first layer 
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In the stable configuration the molecule sits perpendicular in bridge position 
above the first Cu-surface layer with the carboxylate group oriented along to the 
[ ]011  direction (see Figure “3-thiophene carboxylate-Cu(110) system”). The 

most important change due to adsorption is the geometry of the molecule. In the gas phase the 
single molecule has a planar geometry with an extended π -system over the thiophene ring and 
carboxylate group. The adsorption of the molecule breaks this planarity. There are strong 
lateral interactions that appear between the hydrogen atoms of neighboring thiophene rings. 
As a consequence, in the adsorbed molecules the thiophene rings are rotated by 24° relative to 
the carboxylate group.  

[ ]001

  
   

Figure 3-thiophene carboxylate-
Cu(110) system: A top view of the 
bridge configuration and a surface 
of constant electron charge (lower 
part). The thiophene rings are 
rotated by 24° relative to the 
carboxylate group due to the strong 
lateral interactions that appear 
between the hydrogen atoms of 
neighboring thiophene rings.  
(Cu-green, O-red, C-gray, S-blue, 
H-dark grey) 

           [ ]011   

This is nicely demonstrated in Figure “3-thiophene carboxylate-Cu(110) system” 
which shows the top view of the adsorbed molecules together with a surface of constant 
electron charge. The big cap on the right side of each molecule belongs to the S atom. As can 
be seen, the rotation of the thiophene ring increases the distance between the H atoms of the 
neighboring molecules in the row and decreases the distance of the S atom (negative charge) 
to the CH group (positive charge) of the next row of molecules.  
 The relaxations of the Cu-surface layer are almost the same as those of the clean 
Cu(110) surface. There are small lateral displacements of the Cu-atoms towards the oxygen 
atoms. We speculate that the π -system is affected by the rotation of the thiophene ring. This 
remains to be analyzed in detail. If it turns out to be an important effect, adsorption of 3TC on 
different fcc-metals (Pt, Ag, Au, Pd) should be considered. They have larger lattice constants 
and thus the ring rotation is expected to be less pronounced.  
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Chapter 8  

Glycinate on Cu(110)-surface 

8.1 Introduction 

 It is crucial to understand the interaction of biologically active molecules, such as 
proteins and peptides, with metal surfaces, because they are key elements of many advanced 
and emerging technologies ([CV02],[BR03], [RSY03], [Rav03]) such as: (i) preparation of 
biomaterials and ensuring the biocompatibility by coating inorganic surfaces; (ii) fabrication 
of biosensors; (iii) (bio)molecular electronics. 
 Important for all applications are the structures of adsorbed molecules: (i) the type of 
binding to the surface (which functional group is involved, e.g. S-bonding, N-bonding, O-
bonding or carboxylate(OCO)-bonding); (ii) the interaction between molecules and (iii) 
availability of the other specific functional groups of the molecular structure where specific 
biomolecules can be attached. 
 The study of model species such as the simple amino acids can be very helpful for the 
understanding of more complex systems. Especially the adsorption of glycine on surfaces 
represents a model system for chemisorption of biofunctional molecules and can be seen as a 
first step towards understanding the interaction of peptides and proteins with metallic 
surfaces. The interaction of amino acids and peptides with metal ions in the solution has been 
extensively studied and there is a large amount of data in the literature related to such 
organometallic complexes. However, the interactions of these molecules with metal surfaces 
are much less understood ([TKW03], [NON03], [NHP00]).  
 The α-amino acids represent the building blocks of many peptides and proteins. 
Hydrolysis of most proteins and peptides produces about twenty different amino acids of 
which glycine is the simplest one. Glycine (H2N-CH2-COOH) has an important function in 
the of neurotransmitter system. The two functional groups of glycine (amino group NH2 and 
carboxyl COOH) have a complex chemical behavior: in the gase phase glycine exists in a 
nonionic from, in the solid phase it exists in a “zwitterionic” form, where the acidic hydrogen 
is transferred to the basic aminogroup. In solution, the form of glycine is determined by the 
pH: in acidic solutions it exists in the cationic form, in neutral solutions it is in a 
“zwitterionic” form and in basic solutions it exists in an anionic form.  
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8.2 Chirality and the Biological 
Importance  

 The importance of understanding the structure of α-amino acids is connected to their 
biological significance. The α-C denoted with * represents an asymmetric center in all amino 
acids, H2NC*RHCO2H, when R (radical) is not a hydrogen atom. This induces the optical 
activity and chirality of the natural aminoacids and so the specificity and selectivity in all 
biological processes. The chirality expresses the fact that an object and its mirror image are 
not superimposable by any translation or rotation of the entire object, or by rotating part of the 
molecule around a simple sp3-bond. In essence, this means that a compound is chiral if the 
center carbon C* binds 4 different molecular groups. A chiral object can exists in two 
distinguishable mirror forms, which are referred to as enantiomeric forms of the molecule. 
Glycine is the only amino acid, which doesn’t have this asymmetric center. Thus it is not a 
chiral molecule, although it can be considered as a prochiral molecule, because the 
substitution of one hydrogen atom with another radical will establish the asymmetry at the α-
C in the molecule and induce the chirality. Also, when the glycine molecules are adsorbed at a 
surface, one can distinguish left and right enantiomers, and so the chiratily is induced in the 
molecule-substrate ensemble (see Figure Glycinate 1). 
 Since chirality has profound effects especially in biology – all forms of life on Earth 
use exclusively one mirror form of amino acids – much attention has been paid to this 
property for adsorbed molecules. Different forms of surface induced chirality have been 
defined. For recent reviews of experimental work on adsorption of complex organic 
molecules with special emphasis on chirality we refer to the work of Barlow and Raval 
[BR03]. We have chosen to study the adsorption of glycinate on Cu(110) by ab initio 
calculation because it offers the opportunity to study the aspects of bonding of different 
functional groups (carboxylate OCO and amino NH2) to the surface and the surface induced 
chirality with a relatively small molecule [CHR02]. 

8.3 Experimental Structure Determination 

 The adsorption of the glycine molecule on the non-chiral Cu(110)-surface induces an 
organization of the adsorbates in ordered arrays with both different types of enantiomers 
present. There is no geometric or energetic reason for the preferential adsorption of one 
enantiomer for isolated molecules. The question is whether an interaction between adsorbed 
molecules exists which leads to a preferential adsorption of only one form. 
 Experiments have been performed on the copper-surface-glycinate system using 
scanning energy-selective photoelectron spectroscopy. The technique exploits the interference 
between the directly emitted photoelectron wavefield from an adsorbate core level with the 
components of the same wavefield elastically scattered by the surrounding atoms thus 
providing information on the location of the near-neighbors to the emitter. The N 1s and O 1s 
photoelectron diffraction was used to determine the structure of glycine adsorbed on Cu(110). 
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LEED observations show that a (3x2) structure is formed. In Figure Glycinate 1 the 
adsorption structure is shown in top view for both, and two side views for one of the 

enantiomers. The molecule is bound to the surface across a pair of [ ]011  rows by the two 

oxygen atoms of the carboxylate group and the nitrogen of the amino group. The C-C axis lies 
approximately parallel to the surface in the [ ]001  direction. The N-atom is displaced by 

0.24± 0.1 C along the [ ]011  direction off an on-top Cu site, the Cu-N bond length being 

approx 2.04 C. The oxygen atoms are displaced from the on-top site by 0.8 C in the [ ]001  

direction towards to amino group, with the Cu-O bond of 2.03 C, the tilting of the bond with 
respect to the surface normal is 23± 2° [BWS98]. 

Figure Glycinate 1: Glycinate binds to the Cu(110) in a flat-lying configuration via both 
functional groups: carboxylate (-OCO-) and amino (-NH2). 

(a) upper panel: The two possible enatiomer configurations of glycinate adsorbed on the 
Cu(110) surface.  

(b) lower panel: Two sides views of one of the enantiomers bonded at the surface. 

 
Top view 

 

 

  
Side views 

 Reflection absorption infrared spectroscopy confirms the structure described above 
and suggests the existence of hydrogen bonds: CH…O and NH…O [BKH98]. 
 A detailed study of the ordered monolayer of glycinate adsorbed on Cu(110) is 
presented in [HKW98]. The experimentalists have analyzed the molecular orientation using 
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several techniques: XPS X-ray Photoelectron Spectroscopy, NEXFAS Near Edge X-
ray Adsorption Fine Structure, XPD X-ray Photoelectron Diffraction, and LEED 

Low Electron Energy Diffraction. 
 The first attempt to calculate the structure of the adsorbed glycinate was done using a 
cluster model with 15 Cu atoms and one glycinate molecule [NHP00]. This model is only a 
crude representation of the real system. 
 Using the STM, Chen [CFR02] suggested that the adsorption of glycinate on Cu110 
induces chirality on the surface. The high-resolution STM images show two different 
molecular arrangements in the unit cell: the homochiral with a pseudo-centered structure and 
the heterochiral with clear glide plane symmetry (see Figure Glycinate 2). 

Figure Glycinate 2: The experimental STM images propose two possible configurations: 
homochiral domain (left panel) and heterochiral domain (right panel) [CFR02]. 

 

 Other experiments [HKW98, TKW03] suggest that only the heterochiral domain exists 
and the two different STM images are obtained because an asymmetric object is scanned with 
an asymmetric tip. 

Atom N atom O atom 

bond length  
with Cu atom 

2.04± 0.02 2.02/2.00 

[ ]011 direction 0.24± 0.10 0.08/0.22 displacement 
from on-top site [ ]001  direction 0.00± 0.15 0.68/0.97 

 Based on the above experimental data one can imagine four possible adsorption 
configurations: a hetererochiral and a homochiral domain where the two molecules in the unit 
cell can be rotated relative to each other by 0° or 180°. We have performed ab initio 
calculations for all four configurations. In the following chapters we first present our results 
for the free glycinate radical, and then the atomic and electronic structure of these 
configurations will be discussed.  
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8.4 Glycinate Free Radical 

 The atomic and electronic structure of the glycinate radical molecule has been 
analyzed using LDA and PBE-GGA functionals for exchange-correlation. The calculation has 
been performed in a box of 17.5x13.5x11.5 Å using one k-point at (000) and a cutoff energy 
25 Ry. Using a larger k-point set does not change the results. The exact parameters of the 
pseudopotentials (for C, N, O) used are given in the Appendix “Parameters and Tests of the 
PAW-pseudopotentials” (the LDA pseudopotentials include the large partial core-correction, 
and for the GGA case pseudopotentials with small partial core-correction have been used). 

Molecular structure 
 The geometries obtained using both approximations for the exchange-correlation 
functional are quite similar. The structure of the glycine radical shown in Figure Glycinate 3 
(next page) and the angles and the bond lengths are given in Table Glycinate 1.  

Table Glycinate 1: The calculated bond length and angle for glycinate molecule. The 
experimental values are form ref. [McG99] and correspond to glycine molecule. 

Bond length (Å)   Angles (degree) 
 LDA GGA  Exp.  Atoms no. LDA GGA Exp. 

C1-C2 1.487 1.456 1.520  H 8-N5-H 9 109.24 111.63 112.5 
C1-N5 1.428 1.495 1.463  H 8-N5-C1 111.81 114.94 113.8 
C2-O3 1.315 1.256 1.223  N5-C1-H 7 110.93 111.50 111.7 
C2-O4 1.310 1.252 -  N5-C1-C2 109.65 111.13 110.6 
C1-H 6 1.148 1.139 1.098  H 6-C1-H 7 94.49 104.79 107.4 
C1-H 7 1.138 1.129 -  O3-C2-O4 117.48 118.26 - 
N5-H 8 1.067 1.067 1.000      
N5-H9 1.065 1.062 -      

 The calculated bond lengths are comparable with experimental data obtained for the 
glycine molecule from microwave spectroscopic results and with other literature data based 
on theoretical studies of different glycine conformers ([McG99], [HBS99]). 

Electronic structure 
 To understand the electronic bonds in the glycinate radical molecule in a simple 
approach, one can consider the C2 atom as sp2 hybridized, having three simple σσσσ bonds with 
the C1, O3, O4 and a pz orbital perpendicular on the O3-C2-O4 plane. Each of the oxygen atoms 
has a pz orbital perpendicular to a plane spanned by the simple σσσσ bond to the carbon C2, and 
two pairs of electrons. Each pz orbital is occupied with one electron; the pz orbital of the C2 is 
formally forming two half ππππ-bonds with the oxygen atoms, which are occupied by two 
electrons, and so one pz electron will be shared by the two oxygen atoms. As a result the 
oxygen atoms acquire additional electrons. The weakly bound electrons residing at the N and 
N atoms are available for the bonding to the Cu(110) surface. The C1 and N5 atoms can be 
viewed as having sp3 hybridization.  
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Figure Glycinate 3: Structure of the glycinate radical molecule (right panel) and 
a schematic view of valence electrons (left). 
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 In order to understand the bonds and the electron distribution in the glycinate molecule 
a calculation of the Partial Local Density of States (PLDOS) in a sphere around each atom has 
been performed Figure Glycinate 5.  
 The C1-H6 is simple σσσσ covalent bond. For the H6 the bonding states are lying in the 
interval -12.5 to 0 eV. The distances from H6 to the oxygen atoms are large (2.81, 3.16 for 
LDA and 2.76, 2.83 for GGA respectively), and since there is also a carbon atom in between, 
an H-O interaction is excluded. The H7 has different PLDOS characteristics that H6. The H7-
O4 distance is smaller (2.59 for LDA, 2.46 for GGA), and a small interaction exists. In is 
known that the nitrogen atom is more electronegative than the hydrogen atom. The N-H bond 
is slightly ionic, so that the PLDOS characteristics are different than for the previous 
hydrogen atoms. 

The carboxylate group shows similar features as for the formate molecule (see 
Formate 2, 3). The weakly bound electrons are located in the energy range -1.5…0.0 eV. 
These electrons correspond to combinations of pz-orbitals (ππππ-sytem perpendicular on the OCO 
plane) as well as anti-bonding combinations of px, py and s orbitals (in the OCO plane). The 
nitrogen atom has no ππππ-electrons. The peak at -0.5 eV located at the oxygen atoms 
corresponds to a ππππ-state (see also Figure Formate 2 and 3). It has negligible intensity at the 
nitrogen atom. The N5-atom spectrum shows two peaks at -1.5 and 0.0 eV corresponding to 
weakly bound electrons that can possibly participate in the binding of the glycine to a metal 
ion or a metal surface. The bonding states of the N5-C1 are located in the energy range -
18.0…-3.5 eV (two low lying s-type states at –15.0 and -13.0 eV and more p-type states in the 
energy range -8.5…-3.5 eV).  
 The C2-PLDOS shows predominantly p-type states in the interval -21.0…-3.5 eV 
which participate in the molecular bonding. 
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 Figure Glycinate 5: GGA Partial local density of states of the glycinate (radical) 
molecule. 
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8.5 Glycinate-Cu(110) system 

The discussion is arranged in the following way: we first present the energetics of the 
different configurations and the reason for the order of stability in terms of bond strengths. 
Then, we present details about the atomic structure and general characteristics of PLDOS-
spectra of the adsorbed molecules for the most stable configuration “Heterochiral domain 1”. 
We discuss the differences with the other configurations, which characterize the different 
bond geometries and strengths, as well.  

 The optimized configurations are shown in four figures (Cu-green, O-red, C-gray, N-
blue, H-dark grey.):  

(a) Figure “Heterochiral domain 1” where the unit cell contains both enantioners (“left” 
and “right”) and direction from the carboxylate group to the amino group of both 
molecules oriented in [ ]100  direction; 

(b) Figure “Heterochiral domain 2” with the orientation of one molecule turned with 180° 
to the [ ]100  direction; 

(c) Figure “Homochiral domain 1” with two enantiomers of the same type and both 
molecules oriented in the [ ]100  direction; 

(d) Figure “Homochiral domain 2” with the orientation of one molecule turned by 180° to 
the [ ]100  direction.  

Calculational details 
 The LDA and GGA calculations of the glycinate on Cu(110) have been performed 
using an inversion-symmetric slab containing 5 layers of Cu and two glycinate molecules on 

the each sides of the slab. The unit cell has the dimension 24 ⋅⋅ a  (vertical), 2/23 ⋅⋅ a , 
a⋅2  (lateral) with a  being the theoretical bulk lattice constant of the copper-fcc 3.559 Å for 

LDA and 3.641 for GGA for a 12x12x12 k-point set.  
 For the LDA calculations a 1x2x2 k-point set has been used and a 1x3x3 in the case of 
GGA. The vacuum is larger than 7.50 Å for the LDA, and 7.70 Å for the GGA. For both cases 
(LDA and GGA) an energy-cutoff of 25 Ry was used.  
 In the starting configurations we have used the previously relaxed positions of the 
Cu(110) surface, the molecules have been placed such that the N and O atoms are on top of 
Cu-surface atoms. For all structures the first two layers of the surface and the molecules were 
allowed to relax without any constraint. 
 The geometries that have been obtained using the GGA and LDA functional for the 
exchange-correlation potential are quite similar. 
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Figure Heterochiral domain 1: The top view of the final relaxed configuration of 
the “Heterochiral domain 1”. Two different enantiomers are present in the unit cell with the 
C-C-axis oriented similarly relative to the Cu-surface. The Cu21, C19, C23 are aligned along to 
the [ ]011  direction and Cu21 and Cu27 define the [ ]100  direction. Both molecules bind the 

copper surface strongly via the nitrogen atoms (N47, N49) that are on top of copper atoms (for 
each nitrogen atom a single bond with a copper atom is formed). For each molecule one of the 
oxygen atoms (O39, O45) is sitting on top of a copper atom forming a strong bond. The other 
oxygen atom (O41, O43) of each molecule is situated in “bridge”-position between two copper 
atoms along to the [ ]100  direction. Each of the O41 and O43 forms two bonds with two Cu 

atoms. The analysis of the distances between the different hydrogen and oxygen atoms of the 
adsorbed molecules suggests that hydrogen bonds are formed (the shorter ones are between 
O45…H55 and O39…H63). The calculated bond lengths between the atoms in the molecules and 
with the surface are given in Table “Heterochiral domain 1”. 

second and third layer of the unit cell first and second layer of the unit cell 
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Figure Heterochiral domain 2: Both enantiomers are present in the unit cell but 
rotated with 1800 relative to each other. The minimum energy configuration corresponds to 
the geometry for which the carboxylic oxygen atoms and nitrogen atom are alternatively 
aligned along [ ]011 . One of the molecules binds the copper surface strongly via the N47 atom 

that is on top of a copper atom (a single bond with a copper atom is formed) and less with the 
oxygen atoms because each of them binds two copper atoms. The other molecule binds to the 
copper surface strongly via the two oxygen atoms that are on top of two neighboring copper 
atoms and weaker via the nitrogen atom that forms two bonds with two copper atoms of the 
surface. From the analysis of the H…O distances one can see that hydrogen bonds are formed, 
which seem to be stronger (because they are shorter) than in the case when the molecules are 
not rotated (see Table “Heterochiral domain 2”). 

second and third layer of the unit cell first and second layer of the unit cell 
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Figure-1 Homochiral domain 1: Two enantiomers of the same type are in the unit 
cell. For this configuration each of the molecules binds differently to the copper surface. One 
of the molecules binds to the surface such that each of the nitrogen and oxygen atoms is 
forming short bonds with a copper atom (around 2 Å). The other molecule binds to the copper 
surface strongly via the nitrogen atom and less with the oxygen atoms. The analysis of the 
O...H distances shows that hydrogen bonds are formed (see Table “Homochiral domain 1”). 

second and third layer of the unit cell first and second layer of the unit cell 
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Figure Homochiral domain 2: Two enantiomers of the same type in the unit cell 
but rotated with 1800 relative to each other. In this configuration one of the molecules binds to 
the copper surface via a strong nitrogen-copper bond and weaker oxygen-copper bonds, since 
the oxygen atoms are binding two neighboring copper atoms. The other molecule binds to the 
surface via two strong oxygen-copper bonds and weaker bond with the nitrogen atom. The 
analysis of the O…H distances shows that between the molecules strong hydrogen bonds are 
formed (see Table “Homochiral domain 2”).  

second and third layer of the unit cell first and second layer of the unit cell 
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Table Heterochiral domain 1: The important bond lengths for the “Heterochiral 
domain 1” (for the numbering of the atoms see Figure “Heterochiral domain 1”).  

Bond length in  
the molecules (Å) 

Bond length of the  
Cu-surface atoms with 

N and O atoms (Å) 
O…H distances (Å) 

 LDA GGA  LDA GGA  LDA GGA 
C31-C33 
C35-C37 

1.491 
1.489 

1.517 
1.513 

N47-Cu27 2.036 2.109 O45…H55 1.980 2.082 

C31-H51 
C35-H59 

1.115 
1.139 

1.114 
1.139 

N49-Cu23 2.028 2.099 O39…H63 2.024 2.062 

C31-H53 
C35-H61 

1.136 
1.136 

1.134 
1.133 

O39-Cu21 2.191 2.213 O41…H61 2.345 2.234 

C31-N47 
C35-N49 

1.467 
1.465 

1.487 
1.489 

O41-Cu19 2.308 2.229 O43…H53 2.452 2.456 

N47-H55 
N49-H63 

1.080 
1.082 

1.080 
1.079 

O41-Cu25 2.464 2.543 O41…H65 2.542 2.436 

N47-H57 
N49-H65 

1.080 
1.080 

1.076 
1.075 

O45-Cu29 2.191 2.223 O43…H57 2.615 2.543 

C33-O39 
C37-O43 

1.319 
1.320 

1.329 
1.335 

O43-Cu25 2.229 2.281 O39…H61 2.985 2.879 

C33-O41 
C37-O45 

1.320 
1.322 

1.333 
1.327 

O43-Cu29 2.396 2.481    

Table Heterochiral domain 2: The important bond lengths for the “Heterochiral domain 2” 
(for the numbering of the atoms see Figure “Heterochiral domain 2”). 

Bond length in 
the molecules (Å) 

Bond length of the 
Cu-surface atoms with 

N and O atoms (Å) 
O…H distances (Å) 

 LDA GGA  LDA GGA  LDA GGA 
C31-C33 
C35-C37 

1.550 
1.490 

1.575 
1.496 

N47-Cu21 2.196 2.208 O45…H55 2.633 2.682 

C31-H51 
C35-H59 

1.134 
1.146 

1.101 
1.137 

N49-Cu25 
N49-Cu29 

2.391 
2.615 

2.429 
2.754 

O39…H61 1.860 1.961 

C31-H53 
C35-H61 

1.128 
1.130 

1.128 
1.124 

O39-Cu27 2.269 2.285 O41…H63 1.390 1.329 

C31-N47 
C35-N49 

1.479 
1.464 

1.497 
1.464 

O39-Cu29 2.468 2.512 O43…H53 3.290 3.218 

N47-H55 
N49-H63 

1.085 
1.110 

1.067 
1.072 

O41-Cu27 2.440 2.507 O45…H51 2.653 2.685 

N47-H57 
N49-H65 

1.088 
1.067 

1.089 
1.060 

O41-Cu25 2.476 2.563    

C33-O39 
C37-O43 

1.317 
1.300 

1.338 
1.342 

O45-Cu23 1.962 2.030    

C33-O41 
C37-O45 

1.329 
1.308 

1.353 
1.336 

O43-Cu19 2.015 2.078    
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Table Homochiral domain 1: The important bond lengths for the “Homochiral 
domain 1” (for the numbering of the atoms see Figure “Homochiral domain 1”). 

Bond length in  
the molecules (Å) 

Bond length of the  
Cu-surface atoms with 

N and O atoms (Å) 
O…H distances (Å) 

 LDA GGA  LDA GGA  LDA GGA 
C31-C33 
C35-C37 

1.491 
1.481 

1.510 
1.504 

N47-Cu21 2.061 2.127 O45…H55 1.737 1.601 

C31-H51 
C35-H59 

1.122 
1.139 

1.117 
1.134 

N49-Cu23 2.034 2.111 O39…H63 2.021 2.089 

C31-H53 
C35-H61 

1.140 
1.137 

1.136 
1.131 

O39-Cu27 2.465 2.534 O41…H65 2.223 2.301 

C31-N47 
C35-N49 

1.454 
1.460 

1.468 
1.467 

O41-Cu27 2.359 2.413 O43…H53 2.222 2.284 

N47-H55 
N49-H63 

1.083 
1.086 

1.080 
1.180 

O41-Cu25 2.565 2.792 O41…H63 2.271 2.338 

N47-H57 
N49-H65 

1.080 
1.072 

1.074 
1.071 

O45-Cu23 2.0564 2.003 O39…H63 2.021 2.089 

C33-O39 
C37-O43 

1.315 
1.316 

1.322 
1.323 

O43-Cu19 2.0291 2.056    

C33-O41 
C37-O45 

1.331 
1.334 

1.342 
1.336 

      

Table Homochiral domain 2: The important bond lengths for the “Homochiral domain 2” 
(for the numbering of the atoms see Figure “Homochiral domain 2”). 

Bond length in  
the molecules(Å) 

Bond length of the  
Cu-surface atoms with 

N and O atoms (Å) 
O…H distances (Å) 

 LDA GGA  LDA GGA  LDA GGA 

C31-C33 
C35-C37 

1.489 
1.490 

1.523 
1.527 

N47-Cu21 2.070 2.136 O45…H53 2.000 1.991 

C31-H51 
C35-H59 

1.137 
1.142 

1.131 
1.137 

N49-Cu25 

N49-Cu29 
2.400 2.376 O39…H63 1.553 1.643 

C31-H53 
C35-H61 

1.127 
1.128 

1.124 
1.123 

O39-Cu27 2.589 2.660 O41…H61 2.002 1.989 

C31-N47 
C35-N49 

1.473 
1.465 

1.492 
1.485 

O39-Cu29 2.434 2.508 O43…H55 1.710 1.758 

N47-H55 
N49-H63 

1.087 
1.092 

1.077 
1.084 

O41-Cu27 2.064 2.103    

N47-H57 
N49-H65 

1.079 
1.073 

1.073 
1.072 

O41-Cu25 2.505 2.598    

C33-O39 
C37-O43 

1.305 
1.301 

1.313 
1.326 

O45-Cu23 2.006 2.072    

C33-O41 
C37-O45 

1.311 
1.305 

1.332 
1.318 

O43-Cu19 2.242 2.293    
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Energetics and Bond Strength 

 For the final relaxed configurations the bond lengths between the atoms of the 
molecule are very little changed from the C-C, C-N, C-O, N-H and C-H bonds in the free 
radical, that means that the molecules bind the surface as an entity and no elongation or strong 
intramolecular deformation occurs. The Cu atoms do not show a specific reconstruction of the 
copper surface under the molecular layer, they remain close to the positions of the clean 
Cu(110) surface. 
 The most stable configuration is found to be the “Heterochiral domain 1”. The Table 
Glycinate on Cu (110) sytem contains the energy differences of the calculated structures. The 
most stable one is taken as reference (zero level). The positive energies indicate the 
decreasing of stability of the given configuration. The Figures “Heterochiral domain 1”, 
“Heterochiral domain 2”, “Homochiral domain 1”, “Homochiral domain 2” show the top 
views of the final relaxed configurations.  

Table Glycinate on Cu (110) system: (The energies are expressed in eV) 

Domain 
Heterochiral 
(0 rotated) 

Homochiral 
(0 rotated) 

Homochiral 
(180 rotated) 

Heterochiral 
(180 rotated) 

LDA 0.000 0.823 2.129 3.128 
GGA 0.000 0.770 1.235 2.482 

 The stability can be explained in terms of the chemical interaction of the molecules 
with the atoms of the copper surface (When quoting numbers we refer to the GGA-results). In 
the most stable configuration, “Heterochiral domain 1”, six strong bonds are formed: two N-
Cu bonds of 2.10 Å and four O-Cu bonds of 2.21 up to 2.28 Å. Also, between the molecules 
two hydrogen bonds are formed (see Figure “Heterochiral domain 1” and Table “Heterochiral 
domain 1”). 
 In the “Homochiral domain 1” four strong bonds are formed: two N-Cu bonds and 
another two Cu-O bonds of one molecule. The other two Cu-O bonds of the second molecule 
are longer by 0.3 to 0.4 Å, and are thus much weaker. In this configuration three strong 
hydrogen bonds are formed, one more than in the previous configuration. It is known that a 
hydrogen bond reduces the energy by some tenths eV, but this is not enough to compensate 
the weaker Cu-O bonds (see Figure “Homochiral domain 1” and Table “Homochiral domain 
1”). Thus the “Heterochiral domain 1” has the lower energy due to the strong Cu-O and Cu-N 
bonds.  
 In the “Homochiral domain 2”, where the molecules are 180° rotated relative to each 
other in the unit cell, only three strong bonds are formed: one Cu-N of one molecule and two 
Cu-O bonds of the other molecule. The other Cu-N and Cu-O are weaker since they are 
elongated by 0.37 to 0.45 Å compared to the other ones. The molecules interact strongly 
along the [ ]011  direction and not at all in the [ ]100  direction (see “Figure Homochiral domain 

2” and “Homochiral domain 2”). This can be nicely seen in Figure “Glycinate-Cu(110) 
system” (left panel) which shows a top view of the absorbed molecules together with a 
surface of constant electron charge.  
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For the last configuration, “Heterochiral domain 2”, the arrangement of the 
molecules in the unit cell weakens the interaction of the molecules with the surface 

even more. Only two strong Cu-O bonds are formed. The presence of both enantiomers in the 
unit cell and the rotation relative to each other places one nitrogen atom on top of a copper 
atom. This interacts with an oxygen atom of the other molecule, as well. So, the Cu-N bond 
length is longer by 0.07 Å than in the “Homochiral domain 2”. The other Cu-N and Cu-O 
bond lengths are quite large; also from the analysis of the H…O distances one sees that only 
two strong H…O interactions exist (see Figure “Heterochiral domain 2” and Table 
“Heterochiral domain 2” and also Figure “Glycinate-Cu(110) system”: right panel). 
 Our conclusion is that the chemical bonds of the nitrogen and oxygen atoms of the 
molecules with the copper-surface atoms make the difference in the stability of the different 
structures. The arrangement where stronger bonds with the surface atoms are formed is more 
stable. For the “Heterochiral domain 1” the molecules adsorbed at the surface are arranging 
themselves in a more homogeneous structure compared with the other structures (see Figure 
“Glycinate-Cu(110) system” where a top view of the absorbed molecules together with a 
surface of constant electron charge for relaxed configuration is presented). Although for some 
structures more or stronger hydrogen bonds are formed they do not have a big influence on 
the relative stability of the configurations.  

Our results for the most stable configuration (Heterochiral domain 1) are in good 
agreement with the LEED patterns [BWS98] that show the presence of glide plane symmetry 
in the surface unit cell. One should mention that this glide plane symmetry couldn’t formally 
occur in the Homochiral domains. Also, the N-Cu bond 2.10 (2.03) Å for GGA (LDA) are in 
good agreement with the 2.04 determined experimentally by XPD [HKW98]. 

The two nitrogen atoms in the “Heterochiral domain 1” are practically equivalently 
displaced along the [ ]011  direction (N47 0.03 Ås and N47 0.04 Å) and only two distinct 

oxygen positions are present in the system, as well. Contrary, for the “Homochiral domain 1” 
the two nitrogen atoms occupy non-equivalent positions. Also, there are four different copper-
oxygen bonds, which is inconsistent with XPD data [TKW03].  
 Another important observation is that for the “Heterochiral domain 1” the hydrogen 
atoms bonded to the carbon atom are nonequivalent and distinct relative to the surface: one 
hydrogen bond is almost parallel, and the other one is perpendicular to the surface. This 
makes the carbon atom a chiral center in the molecule. For the “Homochiral domain 1”, 
where the molecules are binding differently to the copper surface, just one molecule in the 
unit cell has a chiral carbon, for the other molecule the C-H bonds angles relative to the 
surface are 57° and 28°, and are thus less distinct. 
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Figure Glycinate-Cu(110) system: Top views of the absorbed molecules together 
with a surface of constant electron charge for relaxed configuration.  

  

(Molecules are with 0° rotated relative to each other) 
Heterochiral domain 1                                                  Homochiral domain 1 

Heterochiral domain 2                                                  Homochiral domain 2 
(Molecules are with 180° rotated relative to each other) 
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Atomic and Electronic Structure  

 In the following will present some details of the atomic structure and some general 
characteristics of PLDOS-spectra for the molecules’ atoms of the relaxed configurations. At 
first, we will discuss the characteristics of the most stable configuration, “Heterochiral 
domain 1”, and then some specifics of the other ones. 

Heterochiral domain 1: both enantiomers are present in the unit cell 

The molecules, oriented with their main axis N-C-C along to the [ ]100  direction, are 

forming alternatively bridges between Cu atoms of the surface. The C31-H51 and C35-H59 
bonds are almost parallel to the normal at the surface. The C31-H53 and C35-H61 bonds are 
almost parallel to the surface. The bonds formed by the N and O atoms with the Cu(110)-
surface are: Cu21-O39, Cu29-O45, Cu19-O41-Cu25-O43-Cu19, Cu27-N47, Cu23-N49 (see Figure 
“Heterochiral domain 1” and Table “Heterochiral domain 1”).  

The O39 and O45 are displaced from on top position of the Cu atoms along to [ ]001  

direction. The O41 and O43 are binding alternatively both Cu19 and Cu25. They are situated in a 
bridge position between these copper atoms along to [ ]100  direction. The positions of O39 and 

O45 atoms can be practically considered equivalent. The other atoms O41, O43 are in equivalent 
positions, as well. The N atoms are situated in equivalent positions relative to the on top Cu 
atoms. They are displaced from the ideal top site positions of the Cu(110) surface in opposite 
directions (with 0.03 and 0.05 Å) along [ ]011 . The Cu atoms that are binding these nitrogen 

atoms are slightly following the nitrogen displacement (0.01 and 0.02 Å).  
The electronic structure of the molecules’ atoms is analyzed with the help of Partial 

Local Density of States (PLDOS). Compared with the spectra of isolated radical, we generally 
observe a shift of all peaks to lower energy (Figure-1, 2 PLDOS “Heterochiral domain 1”). 
The low-lying s-type peaks (<< -13.0 eV) are shifted almost rigidly due to the change of 
average potential when the molecules bind the Cu surface. In addition, the states close to the 
Fermi energy down to -5.0 eV are individually shifted due to the hybridization when the 
respective orbitals are participating in bonding to Cu atoms. This is characteristic for the N 
atom of the amino group and O atoms of the carboxylate group. We expect that all p-electrons 
residing on the N and O atoms corresponding to these states participate in binding to the Cu 
surface.  

The analysis of the distances between the different hydrogen and oxygen atoms of the 
adsorbed molecules suggest that hydrogen bonds are formed. All hydrogen atoms have 
different PLDOS-spectra. We conclude that oxygen-hydrogen interaction cannot be excluded.  
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Figure-1 PLDOS Heterochiral domain 1: GGA-PLDOS of the first molecule’s 
atoms: N47, C31, C33, O39, O41, H51, H53, H55, H57. (The deeper s-type state at -23.53 

eV is not shown)  
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Figure-2 PLDOS Heterochiral domain 1: GGA-PLDOS of the second molecule’s 
atoms: N49, C35, C37, O43, O45, H59, H61, H63, H65. (The deeper s-type state at -23.53 

eV is not shown).    
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Heterochiral domain 2: both enantiomers are present in the unit cell but rotated 
with 180° realtiv to each other. 

 The starting configuration has been chosen with the nitrogen and oxygen atoms on top 
of copper atoms. Due to the interaction between molecules, the final configuration has one 
molecule with the nitrogen atom in a bridge position between neighboring copper atoms along 
to [ ]011  direction and the oxygen atoms in top of copper atoms. The other molecule has the 

nitrogen on a top position and the oxygen atoms in bridge ones. The analysis of both 
geometrical and electronic configurations shows that each of the molecules is binds different 
the copper surface (see Figure “Heterochiral domain 2” and Table “Heterochiral domain 2”). 

Compared to previous configuration, “Heterochiral domain 1”, no interaction between 
the molecules along to the [ ]100  direction is observed (see Figure “Heterochiral domain 2” 

and Figure “Glycinate-Cu(110) system” left panel). 

Figure-1 PLDOS Heterochiral domain 2: The different characteristics of N and carboxylic 
C atoms for the Heterochiral domain 2 compared with N and C atoms of the most stable 
configuration “Heterochiral domain 1”. (i) For the N atoms of the “Heterochiral domain 1” 
these high p-type peaks are below -5.0 eV, but for the N atoms of the “Heterochiral domain 2” 
these peaks are above -5.0 eV; (ii) The carboxylic carbon (C33) of the “Heterochiral domain 
1” has a nearly degenerate peak around -11.0 eV. This is clearly split in two peaks for the 
carboxylic carbon atoms (C33, C37). Moreover, relative intensity of these two is different and 
depends if the oxygen atoms are occupying on-top positions (for C37) or bridge position (for 
C33).  
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The O43 and O45 are forming a single bond with the Cu19 and Cu23 atoms. 
Relative to the copper surface their position can be considered equivalent. Each of 

the O39 and O41 are forming two bonds with copper nearest neighbors. These oxygen atoms 
are situated in bridge positions along to the [ ]011  direction and practically their position is 

equivalent relative to the copper surface (see Figure “Heterochiral domain 2”). We conclude 
that the carboxylate groups bind different the Cu surface compared with the “Heterochiral 
domain 1”. The PLDOS of all oxygen atoms shows similar characteristics, but differences can 
be seen in the PLDOS-spectra of the carboxylic carbons (see Figure-1 PLDOS “Heterochiral 
domain 2”). 
 There are two different N-Cu bond lengths (with N47 slightly displaced from on-top 
position and N49 in bridge position). The PLDOS-spectra of the two nitrogen atoms has 
different p-type characteristics in the binding energy range -10.0 up to -2.0 eV. For the 
“Heterochiral domain 1” N47 has the p-type peak at slightly below -5.0 eV. This peak is 
slightly above -5.0 eV for the “Heterochiral domain 2” (see Figure-1 PLDOS “Heterochiral 
domain 2”).  

Homochiral domain 1: two enantiomers of the same type in the unit cell. 

 The carboxylate group of one molecule binds the surface via the O43 and O45 atoms. 
The bond lengths have similar length although O43 is with 0.73 Å and O45 with 1.44 Å 
displaced from on-top positions along to [ ]100  direction. For the other carboxylate group, O41 

is situated in a hollow site between four copper atoms of the first layer and on top of a copper 
atom from the second layer. It forms weaker bonds with all of them. The O39 is displaced 
along to [ ]011  direction with 0.70 Ås from on top of a copper atom from the first layer. The 

bond length is much larger compared with the ones formed by the other oxygen atoms of the 
other molecule. There are four different positions of the oxygen atoms. Each of the molecules 
binds different the copper surface. The corresponding PLDOS shows slightly different 
characteristics.  

The N49 is sitting on top of a copper atom and the N47 is displaced along to the [ ]011  

direction with 0.4 C. The bond lengths are almost equal and their corresponding PLDOS-
spectra show similar characteristics.  

Homochiral domain 2: two enantiomers of the same type in the unit cell but rotated with 
180° relative to each other. 

The starting configuration has been chosen with the oxygen and nitrogen atoms 
situated on top of the copper atoms. Due to the interaction between molecules, including 
hydrogen bonds, the final relaxed configuration has two of the oxygen and one nitrogen atoms 
in the bridge positions along to [ ]011  direction. There are no interactions between the 

molecules along to [ ]001  direction (see Figure “Glycinate-Cu(110) system”).  

 Relative to the copper surface can be considered that two by two the oxygen positions 
are equivalent. The PLDOS-spectra of the O and N atoms shows similar characteristics. The 
carboxylic carbon atoms show different characteristics in PLDOS-spectra (see Figure-1 
“Homochiral domain 2”). The trend is the same as in for the “Heterochiral domain 2”.  
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Heterochiral domain 1 

 

Homochiral domain 2 

 

 

Figure-1 PLDOS Homochiral domain 2: The 
different characteristics of carboxylic C atoms for the 
“Homochiral domain 2” compared with carboxylic C 
atom of the most stable configuration “Heterochiral 
domain 1”.  

The carboxylic C of the “Heterochiral domain 1” has 
a nearly degenerate s-type peak around -11.0 eV. For 
the “Homochiral domain 2”, the interactions between 
the molecules, and with the Cu-surface atoms, as well, 
have as main effect the clear splitting of this s-type 
peak. The splitting can be seen also in the 
“Heterochiral domain 2” where the molecules are with 
180° rotated relative to each other.  

We conclude that the most stable configuration is the “Heterochiral domain 1”, where 
both enantiomers are present in the unit cell with 0° rotated relative to each other. The 
molecules are lying flat and bind to the surface via both functional groups (carboxylate -
COO- and amino H2N-). In this configuration short and strong Cu-N and Cu-O bonds are 
formed. For one molecule the N and one O atom are slightly displaced from on-top Cu-sites. 
The other O atom is forming a bridge between two Cu-surface atoms along to [ ]100  direction. 

The N atoms of the molecules have equivalent positions and the four O atoms occupy two 
distinct positions relative to the Cu surface. The hydrogen atoms that bind the carbon atom are 
nonequivalent and distinct relative to the surface: one bond direction is almost parallel and the 
other is almost perpendicular to the surface. This shows that the carbon atom is a chiral center 
in the molecule. There are interactions between the adsorbed glycinate molecules via 
hydrogen bonds. We assume that two stronger hydrogen bonds are formed.  
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Summary and Outlook 

 In the following, we summarize the main contributions of the present work for 
the understanding of the interaction between organic molecules with the Cu(110) 
surface by performing ab initio calculations. We have used the program package 
EStCoMPP (Electronic Structure Code for Material Properties and 
Processes) that is based on density functional theory, pseudopotential and supercell 
approaches.  

 In order to describe accurately the molecule-metal surface interaction we have 
implemented the generalized gradient approximation (GGA) ([PW92], [PBE96-98]) 
for the exchange-correlation functional in the EStCoMPP-package. This includes 
two atomic generation programs (one used to generate norm-conserving type 
pseudopotentials of the Kleinman-Bylander form (KB) [BHS82, KB82], and the other 
used to generate non-norm-conserving type pseudopotentials using the projector-
augmented plane wave method (PAW) [Blö94, Kro01]) and the main program used in 
the solid-state calculations. In the main program the gradient-corrected exchange-
correlation functional can be evaluated using two schemes: a traditional scheme1 
[PBE92, PBE96-97] and a new scheme proposed by White and Bird2 [WB94]. In 
addition, a new scheme to calculate the partial core-correction charge3 (PCC) in real 
space has been implemented.  
 A series of pseudopotentials have been generated: Si, Cd, S, Ti, O, Cu, N, C, 
Pt, Ga (PAW-type) and Sr (KB-type). Several calculations including various bulk 
crystals (Si-cubic, Cd-hex, CdO-cubic, CdS-cubic, CdS-hex, SrO, TiO-cubic, SrTiO3-
sc, SiO2-hex, TiN-cubic, Pt-cubic, PtGa2-cubic, Cu-cubic) and molecules (SiH3, NO, 
CO, CN, O2, NH3, CH4, formate, 3-thiophene carboxylate and glycinate) have been 
performed in order to verify the accuracy of our generated pseudopotentials, and the 
approximations to the exchange-correlation functional. All tests show that our results 
are in good agreement with experimental and theoretical data in the literature.  

                                                 
1 The traditional scheme uses the second order derivatives whose calculation requires the use of a high-
quality representation of the density on the FFT-grid. 
2 In this formulation the total exchange-correlation potential and energy are exactly calculated on the 
minimum FFT-grid by using a product of first order gradients instead of second order derivatives. 
3 This approach takes into account the tail of the core-electrons in the calculation of the exchange-
correlation potential and energy. The real space implementation avoids the oscillations, and negative 
values of the real space charge, when the FFT is performed on a finite plane-wave basis set.  
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Cadmium Complexes in Si and Ge  

Using the local density approximation (LDA) we have performed calculations 
in order to search for the correct local geometry of the Cd-vacancy and Cd-interstitial 
complexes in Si and Ge. We found that for both Si and Ge the substitutional Cd-
vacancy complex is unstable and relaxes to a split vacancy complex with the Cd on 
the bond center site. Also, for the Cd-interstitial complex we obtained a highly 
symmetrical split configuration. For these geometries a collaboration group [HH03] 
has calculated the electric field gradients (EFG’s) of these complexes and found that 
they are in good agreement with experiments.  

 The main part of this thesis is the investigation of the bonding of the 
carboxylate group of several molecules to the Cu(110) surface: formate, 3-thiophene 
carboxylate (planar molecules) and glycinate (3-dimensional structure).  

 This is prerequisite for the study of possible applications of organic molecules 
in catalysis, sensors, adhesion, corrosion inhibition, molecular recognition, 
optoelectronics lithography and molecular (bio)electronic devices. 

 Formate molecule 
 Several geometries corresponding to low and high coverages of formate 
molecules in a (2x2) unit cell on clean and oxygen-precovered Cu surface have been 
optimized. For all configurations we found that the molecule is sitting with its 
molecular plane perpendicular to the Cu(110)-surface. For low coverage (one formate 
molecule in the unit cell) we found that in the stable configuration the molecule is in a 
bridge position (each oxygen of the carboxylate group binds a single copper atom so 
that the carboxylate group forms a bridge between two nearest-neighbor copper atoms 
along to [ ]011  direction). The Cu surface atoms that are not binding directly to 

oxygen atoms show inward relaxations as on the clean Cu(110) surface. In contrast, 
nearly no relaxation relative to the ideal unrelaxed Cu(110) surface is found for the 
Cu atoms that are forming the bonds with O atoms. 
 At high coverage (two formate molecules in the unit cell) the most stable 
configuration is the one with both molecules in bridge positions. The Cu-surface 
atoms show outward relaxations larger than in the low coverage case. The geometries 
of both formate molecules are quite similar to that of the molecule at low coverage.  
 In the case of oxygen-precovered Cu-surface, at high coverage of formate 
molecules, we find again that the stable configuration is the one with both molecules 
in bridge positions. A large outward relaxation of the Cu surface layer is found. The 
molecular geometry of the formate molecules does not change significantly and it is 
similar as in the previously discussed systems. The extra oxygen atom (the 0.25ML 
oxygen monolayer) is only slightly displaced from its fourfold hollow site starting 
position. This oxygen atom binds more strongly to the second layer Cu atom than to 
the first layer atoms.  
 The Cu-O bond length is practically the same in all configurations and does 
not depend on the coverage ratio. The oxygen adsorption does not influence the 
binding of the oxygen atoms of the carboxylate group with the first layer of the Cu-
surface. The main changes due to oxygen coverage are in the first interlayer 
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relaxations. With increasing coverage the first Cu-surface layer relaxes towards the 
positions corresponding to the unrelaxed (110) surface, and for the oxygen precovered 
surface the inward relaxation for the clean Cu(110) surface is over-compensated and 
turned into a large outward relaxation. 

 3-thiophene carboxylate molecule 
 Four different geometries corresponding to a (2x1) unit cell (high coverage) of 
3-thiophene carboxylate molecules on Cu(110) surface have been optimized. In the 
final stable configuration the molecule sits perpendicular to the surface in bridge 
position above the first Cu-surface layer with the carboxylate group oriented along to 
the [ ]011  direction. The most important change due to adsorption is in the geometry 

of the molecule. In the gas phase the single molecule has a planar geometry with an 
extended π -system over the thiophene ring and carboxylate group. The adsorption of 
the molecule breaks this planarity. There are strong lateral interactions that appear 
between neighboring thiophene rings. As a consequence, in the adsorbed molecules 
the thiophene rings are rotated by 24° relative to the carboxylate group.  
 The relaxations of the Cu-surface layer are almost the same as those of the 
clean Cu(110) surface. Compared with the case of formate adsorption on Cu(110) 
surface (high and low coverage) the Cu-O bonds and the O-C-O angles are slightly 
shorter (0.07 Å and 3° respectively). Also, the first interlayer distance differs. While 
in the case of the formate-Cu(110) system the Cu-surface layer relaxes outward 
relative to the clean Cu(110) surface, for the 3-thiophene-carboxylate-Cu(110) system 
the Cu-surface layer is practically unchanged. There are small lateral displacements of 
the Cu-atoms towards the oxygen atoms. Although the planarity of the molecule is 
broken, and the π -system is affected accordingly (decomposed to carboxylate group 
and thiophene ring), we belive that a small interaction of the π -system of the 
thiophene ring via carboxylate group with the Cu-surface exist.  

 Glycinate molecule 
 In the case of the glycinate molecules adsorbed on the Cu(110) surface (two 
molecules in a (3x2) unit cell) several geometries have been optimized. The most 
stable one was found to be the Heterochiral domain 1, where both enantiomers are 
present in the unit cell with zero degree rotated relative to each other. The molecules 
are lying flat and bind to the surface via both functional groups (carboxylate -OCO- 
and amino H2N-). In this configuration short and strong Cu-N and Cu-O bonds are 
formed. The hydrogen atoms that are binding the carbon atom are non-equivalent and 
distinct relative to the surface: one bond direction is almost parallel and the other is 
perpendicular to the surface. This makes the carbon atom a chiral center in the 
molecule. The N and one O atom of each molecule are slightly displaced from on-top 
Cu-sites. The other O atom is forming a bridge between two Cu-surface atoms along 
to [ ]100  direction. The carboxylate group is no longer perpendicular to the surface as 

in the case of formate or 3-thiphene carboxylate molecules. For the glycinate-Cu(110) 
system, the Cu-O bonds are 0.22-0.29 Å larger than in the case of the formate- or 3-
thiophene carboxylate-Cu(110) systems. There are interactions between the adsorbed 
glycinate molecules via more hydrogen bonds. From the H-O distances we deduce 
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that two stronger hydrogen bonds are formed. The Heterochiral domain 1 shows a 
glide plane symmetry that is also observed in the experiments.  

Outlook 

 Our results for the optimized geometries open the possibility to thoroughly 
investigate the electronic structure of adsorbed molecules, in particular of the 
interaction of the conjugated π -system with the metal surfaces. 
 (a-1) We plan to study further other adsorption of the carboxylic acids 
containing conjugated aromatic π -systems. Several studies should be performed on the 
adsorption of the carboxylic acids with similar structures as the 3-thiophene 
carboxylic acid where one replaces the heteroatom (S) of the thiophene ring with Se 
and/or Te atoms (yielding selenophene and tellurophene rings). A very interesting 
question is the influence of the heteroatom (S, Se, Te) on the π -system and on the 
bonding of the molecule to the surface (rotation angle, bond lengths and electronic 
structure). One can also replace the carbon of the carboxylic group with a boron or 
nitrogen atom (see Table “Proposed Molecules”). The influence of the B or N atoms4 
on the bonding properties and most importantly on the interaction of the π -system 
with metal-surface should be investigated.  

Table Proposed Molecules: 

X

O

OH

 

where X: 
   S  3-thiophene-carboxylic acid 
   Se  3-selenophene-carboxylic acid 
   Te  3-tellurophene-carboxylic acid 

 

X

B

OH

OH

 

   S  3-thiophene- boronic acid 
   Se  3-selenophene- boronic acid 
   Te  3-tellurophene- boronic acid 

 

X

N

O

O  

   S  3-nitrothiophene 
   Se  3-nitroselenophene 
   Te 3-nitrotellurophene 

 

 (a-2) We will investigate the rotation of the five-membered ring of the π -
system and its influence on the distribution of π -electrons over the molecules. The 
rotation angle and the the interaction of the π -electrons with the metal surface (see 
molecules on Table “Proposed Molecules”) can possible be changed when the 
molecules are adsorbed on (110)-surfaces of other noble metals, e.g. Pt, Pd, Au or Ag 
which have larger lattice constants than Cu, and thus the ring rotation is expected to 
be smaller.  

                                                 
4 No π -bond with the oxygen atom is formed because the B atom has fewer in valence electrons than 
the C atom. The N atom forms π -bond with the oxygen atom, and it has more valence electrons than the 
C atom as well. 
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 (b) the glycinate can be regarded as an anchoring group for a series of more 
complicated molecules which bind to the surface via both functional groups, amino (-
NH2) and carboxylate (-OCO-). In principle, the hydrogen atom of the glycinate 
molecule, that is almost perpendicular on the (110)-surface, can be replaced by a 
functional group able to interact specifically with other incoming species. Another 
possibility is the replacement of the hydrogen by a π -system rings to get closer to 
molecules considered for molecular electronics. 
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Appendix A.1. 

Functional (variational) derivative1 

 Functional derivatives play the same role for functionals as the concept of the partial 

derivatives play for function of n variables. We consider the functional: 

( ) ( )∫=
b

a

dxyyxFyJ ',,     (A.1.-1) 

where ( ) Aay =  and ( ) Bby = . 

 The approach here is first to reformulate the functional by discretization as a function 
of n-variables and then pass to the limit ∞→n . Now we will divide the interval [ ]ba,  into 

1+n  equal subintervals by introducing the points: 
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 In this way the smooth function ( )xy  is replaced by polygonal lines ( )00 , yx , 

( ) ( ) ( )1111 ,,,,...,, ++ nnnn yxyxyx , where ( ) ii yxy = . So (A.1.-1) can be approximated by the 

sum: 

( ) ∑
=

+ ∆








∆
−

=
n

i

ii
iin x

x

yy
yxFyyyyJ

1

1
321 ,,,...,,,   (A.1.-3) 

which is a function of n variables. 

 In the next step we will calculate the partial derivatives 
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1 For more details about functional and functional derivatives see “Calculus of variations”, I.M. Gelfand and 
S.V. Fomin (Moscow State University) 1963, Prentice-Hall Inc. 
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The derivative of the term 
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 The second and third term on the right-hand side can be written as derivatives with 
respect to ky' , because only the ky' -term in F  is differentiated with respect to ky : 
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 For the case when ∞→n  and 0=∆ x , the relation (A.1.-7) converges to the limit: 
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 In the case of the exchange correlation potential, rx
r

=  and3 ∇=
rd

d
r  so that one can 

write4: 
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2 One should keep in mind that ∞→n  and 0→∆ x  so we can write 
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4 Another way to arrive to this equation is using theTaylor theorem. For details see Appendix A, pag.250 in 
“Density-Functional Theory of Atoms and Molecules”, R.G. Parr and W. Yang, Oxford Univ. Press 1989 
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Appendix A.2. 

Exchange-correlation terms in DFT  

 The gradient corrected exchange-correlation energy can be written as: 

( )[ ] ( ) ( )( )∫ ∇= rdrnrnfrnE XCXC

rrrr
,     (A.2.-1) 

and the exchange-correlation potential is defined as a functional or variational derivative of 

XCE  with respect to the density ( )rn
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 (A.2.-2) 

(see Appendix A.1 how one can show the validity of relation A.2.-2). 

 Normally, the exchange dependent part and correlation dependent part of the potential 
and energy are additive: 



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EEE
     (A.2.-3) 

 This allows us to write the contributions in the exchange-correlation energy density as 
a sum of two contributions: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )rnrnfrnrnfrnrnf CXXC

rrrrrr
∇+∇=∇ ,,,  (A.2.-4) 

as a sum of the Xf -exchange function and Cf -correlation function. 

 In the case of a spin polarized system the corresponding relations are: 
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  (A.2.-6) 

where =↑σ  (up), =↓σ  (down) and ( ) ( ) ( )rnrnrn
rrr ↓↑ += . We wrote these formulae here 

because the functionals that we are going to use are formulated with spin polarization [PW92, 
PBE96-98]. 

 The traditional generalized gradient approximation yields potential functions, which 
are rapidly varying near the ion core, and in order to approximate these using the plane wave 
basis set, one needs a very large number of plane waves (high energy cut-off). In the LDA, 
the charge density has Fourier components only for reciprocal lattice vectors max2GG ≤ . For 

an accurate calculation of energy and potential the corresponding real space grid associated 
with the FFT grid in reciprocal space must go beyond max2G . The energy depends on ( )rn

r
∇  

only, but the potential requires also terms proportional to ( )rn
r2∇  and ( ) ( )rnrn

rr
∇∇⋅∇ . The 

last terms cause the problem in the Fourier coefficients. In practice one has to take a FFT grid 
with max4GG ≤  to obtain ( ) ( )rnrn

rr
∇∇⋅∇  with satisfactory accuracy.  

 White and Bird [WB94] have suggested a more efficient scheme in which one can 
rewrite the gradient terms of exchange-correlation energy using functions that can be 
calculated precisely on the minimal FFT grid. In practice, the exchange-correlation energy 
and the exchange-correlation potential are discreet sums over N real-space grid points of the 
minimum FFT grid ( max2G ): 
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 Since we are working with the charge in the reciprocal space one can calculate the 
derivatives as: 
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where N is the number of  the reciprocal-lattice vectors G
r

 of the minimum FFT grid ( max2G ). 

 The reformulation of the exchange correlation potential is: 
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in which one can see that the exchange correlation potential can be calculated exactly using 
the FFT minimum grid and no higher-quality representation of the charge density is required. 
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Appendix A.3. 

Explicit formula of the terms used in 
calculation of exchange-correlation 

energy and potential 

 The terms of relation (A.2.-2), the derivative of the exchange-correlation function with 
respect to the ( )rn

r
 and the derivatives with respect to the ( )rn

r
∇  can be written as sum over 

derivatives of exchange function and correlation function: 
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 The exchange function is defined as: 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )sFrnrnrnrnrnrnrnf XXX ⋅⋅+=∇∇ ↓↑↓↑↓↑ rrrrrrr hom,,, ε  (A.3.-2) 

where ( ) ( )rnrnrn
rrr ↓↑ +=)(  is the total charge (spin-up and spin-down) and ( )rs

r
 is the 

normalized density gradient (see equation 1.3-10, Chapter 1.3). 

 The derivatives of the exchange function are: 
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 Finally, the expression for the exchange potential for spin-up or spin down is: 
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 The correlation function is defined as: 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ){ }trHrrnrnrnrnrnrnf ssCC ,,,,,, hom ξξε +⋅+=∇∇ ↓↑↓↑↓↑ rrrrrr
 (A.3.-5) 

 Correspondingly, the derivatives of the correlation function are: 
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 The relation which is used to calculate the correlation is: 
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where 
2

1

4







=
π

F
s

k
k  and the significance of the other terms is given in Chapter 1.3. 
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Appendix A.4. 

Formulae 

 The Legendre Polynomial ( )xPm
l  satisfies the differential equation: 
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 The formula for ( )xPm
l  given by Rodrigues: 
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with the condition of orthogonality: 
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 The complex spherical harmonics ( )ϕθ ,m
nY  are defined as: 
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with the complete orthogonality integral: 
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 The real spherical harmonics ( )ϕθ ,lmy  are defined as: 
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with the complete orthogonality integral: 
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Table of real spherical harmonics for 2≤l : 

l  m  lmy  
θ∂

∂ lmy
 

2

2

θ∂
∂ lmy

 

1 -1 
( ) ( )

π
ϕθ sinsin3

2

1
 

( ) ( )
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2

1
 

( ) ( )
π
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1 0 
( )

π
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4

1 2
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π
ϕθθ 2sincossin15

2

1
 

( )( ) ( )
π

ϕθ 2sin1cos215

2

1 2 −
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2
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2

1−  
( )( ) ( )
π

ϕθ sin1cos215

2

1 2 −−  

2 +2 
( ) ( )
π

ϕθ 2sinsin15

2

1 2

−  
( ) ( )
π

ϕθ 2cossin15 2

−  
( ) ( ) ( )

π
ϕθθ 2sincossin15−  

 



APPENDIX A.4. 

 135

 

 

 

Table of real spherical harmonics for 3=l  (part 1): 

l  m  lmy  
θ∂

∂ lmy
 

2

2

θ∂
∂ lmy

 

3 -3 
( ) ( )
π

ϕθ 3sinsin70

8

1 3

 
( ) ( ) ( )

π
ϕθθ 3sincossin70

8

3 2

 
( ) ( )( ) ( )

π
ϕθθ 3sin1cos3sin70

8

3 2 −
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( ) ( ) ( )
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4

1 2
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ϕθθ sincos1511cos42

8

1 2+−
 

( ) ( )( ) ( )
π

ϕθθ sincos4511sin42

8

1 2+−−  

3 0 
( ) ( )( )

π
θθ cos3cos57

4

1 3 −
 

( ) ( )( )
π

θθ 1cos5sin7

4

3 2 −−  
( ) ( )( )

π
θθ 11cos15cos7

4

3 2 −−  

3 +1 
( ) ( )( ) ( )

π
ϕθθ cos1cos5sin42

8

1 2 −
 

( ) ( )( ) ( )
π

ϕθθ coscos1511cos42

8

1 2+−
 

( ) ( )( ) ( )
π

ϕθθ coscos4511sin42

8

1 2+−−  

3 +2 
( ) ( ) ( )

π
ϕθθ 2coscossin105

4

1 2

 
( ) ( )( ) ( )

π
ϕθθ 2cos1cos3sin105

4

1 2 −
 

( ) ( )( ) ( )
π

ϕθθ 2cos7cos9cos105

4

1 2 −
 

3 +3 
( ) ( )
π

ϕθ 3cossin70

8

1 3

 
( ) ( ) ( )

π
ϕθθ 3coscossin70

8

3 2

 
( ) ( )( ) ( )

π
ϕθθ 3cos1cos3sin70

8

3 2 −
 

 



APPENDIX A.4. 

 136

 

 

 

 

Table of real spherical harmonics for 3=l  (part 2): 

l  m  
ϕ∂

∂ lmy
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Table of real spherical harmonics for 4=l  (part 1): 

l  m  lmy  
θ∂
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2

2
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4 -4 
( ) ( )
π
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16
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π
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4
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8
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Table of real spherical harmonics for 4=l  (part 1): 
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 The plane-wave can be written in terms of Bessel- and complex spherical-harmonics 

according to the formula: 

( ) ( ) ( ) ( ) ( ) ( )∑∑ ΩΩ=ΩΩ=⋅⋅

ml
lrlmklm

l

ml
lrlmklm

lrki
rkYYirkYYi jje

,

*

,

* 44
rrrr

rrrr

rr

ππ  (A.4.-8) 

where the spherical Bessel functions are (up to 4=l ): 
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Appendix A.5. 

Details about the GGA implementation in 
the subroutines of EStCoMPP-program 

 In the pseudopotential generation programs the values for the key (kxc: governs the 
choice of the exchange-correlation functional) used to perform calculation with GGA 
functional are: 63-66 for PW91, 73-76 for PBE, 83-86 for PBE-review [PW92, PBE96-98], 
the last digit the choice of the 3-to-6 point formula for calculating the derivatives. 
 Since in the atomic program the calculations are done for a single atom the charge is 
spherical and a simple radial mesh is used: 

( ) ( )( ) b11a ⋅−= −⋅ ieir       (A.5-1) 

 In the subroutine grdchlh_new2.f the first and second derivatives are calculated on the 
radial mesh in a "semi-analytical" form (the help array idrd /  is calculated in the subroutine 

rmesh.f) accordingly to the expressions: 
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The parts [ ]( )
id

rnd i  and [ ]( )
2

2

id

rnd i  are evaluated numerically using a 3- up to 6-point 

formula. Then using the derivatives all the gradients and different product of gradients are 
calculated in the subroutine mkgl0_new.f. All these are used in the subroutine 
ve_xcallg_new.f to calculate the exchange-correlation potential and energy ( XCv , XCE ) due 

to the given electron density. The subroutines are implemented such that one can deal also 
with spin-polarized calculations, although we do not use this feature at the moment. 
 In the atomic-generation programs the radial grid is dense (at least 750 points on a 
radius of 1.1 a.u) so that the calculation of the first and second derivatives is very accurately 
done. In the solid-state calculation program the supercell real-space grid is generated by the 
FFT using a plane-wave cutoff of maxgmaxqp G×  where gmaxqp is equal 2. This is usually 

dense enough for getting a good description of the electron density in the LDA 
approximation. But for the GGA case it turns out that for the calculation of second derivatives 
a grid at least four times denser is required. If a coarse grid is used, the second derivatives are 
not accurate enough, and as a result the exchange correlation potential is not well described. 
This will introduce oscillations in the charge from a self-consistent step to the other so that in 
many cases, where the charge is strongly varying in the space (i.e. single molecules, 
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molecules at the surfaces or simple surfaces), the number of sc-iterations required to achieve 
convergence can be much larger than the number of sc-iterations required when using the 
“Bird and White”-scheme. 
 The values for the keys, kxc-governing the choice of the exchange-correlation 
functional, used to perform calculations with GGA functionals are: 33-PW91, 34-PBE, 35-
PBE-review in the case of traditional scheme ( maxgmaxqp G× ), and 76-PBE, 86- PBE-review 

for using the Bird and White-scheme. 
 For the KB-potentials (norm-conserving) the only contribution to the charge density 
charge density is the plane-wave part. This can be expressed as: 

( ) ( )∑ ⋅−=
G

rGieGnrn
r

rrrr
      (A.5-4) 

Thus, the derivatives of the charge density are analytically calculated in the reciprocal space, 
and via FFT's transformed to real space. All the gradients and their products are then available 
on the real space FFT-grid. 
 In the subroutine potgen.F the first and second derivatives of the charge density in the 
reciprocal space are calculated accordingly to the formulas: 

( ) ( ) ( )∑ ⋅−−=
G

rGi
j

j

eGnGi
xd
rnd

r

rrr
r

    (A.5-5) 

( ) ( ) ( )∑ ⋅−−=
G

rGi
jk

jk

eGnGGi
xdxd
rnd

r

rrr
r

2
2

   (A.5-6) 

with ZYXjk ,,, = . Then, FFT's are performed to find out the first- and second- order and 

mixed derivatives in real space. The subroutine mkgxyz3_GGA.F creates the gradients in the 
real space, and the subroutine ve_xcallg_new.f is used to calculate the exchange-correlation 
potential and energy (XCv , XCE ). 

 If the Bird and White-scheme is used instead of evaluating second order derivatives 
the subroutine fxc_pbe_wb.f calculates the quantities accordingly to formula (A.2-9), and 
then the exchange-correlation potential and energy the exchange-correlation potential is 
computed.  
 In the case of the PAW-pseudopotentials, because they are non-norm-conserving, two 
types of charge densities exist inside of the augmentation spheres: “true” and “smooth”. The 
plane waves are over all space in the supercell. The “smooth” charge density represents the 
contribution of the pseudo wave function (plane-waves) inside of the PAW augmentation 
spheres. This has to be replaced by the “true” charge density corresponding to the true wave 
functions inside of augmentation region in order to recover the total charge of the atoms (see 
Chapter 3.4, formula 3.4-9). Since the projectors used for transformation are given on a radial 
mesh, the two charge contributions are expressed on the same radial mesh inside of the 
spheres, and the exchange-correlation potential is calculated on this mesh. The two charges, 
their derivatives and gradients are conveniently evaluated in spherical polar coordinates. In 
the subroutine vxcvd.F XCE  and XCv  are calculated for the both charges using the lmy  

components up to 4=l . 
 In order to accurately treat non-spherical charges an angular grid corresponding to 128 
radial directions is constructed on each sphere. Along each of these directions an exponential 
radial grid is used on which the projectors are given. There are at least 750 radial points. The 
number of points is determined in the pseudopotential generation program, and it depends on 
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the radius of the pseudopotential. The subroutine pol_angle.F calculates the angles θ  and ϕ  

for all grid-points in the sphere, which are then used as an input in the gradients calculation. 

 The lmy  and all angular derivatives like: 
θ∂

∂ lmy
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2

2
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∂ lmy

, 
ϕ∂

∂ lmy
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2

2

ϕ∂
∂ lmy

, 
ϕθ∂∂

∂ lmy2

, up to 

4=l , expressed in the real space, are programmed in the subroutine lgndr2_new.F (A 
detailed table with all formula is given in Appendix A.4). All the other derivatives like radial 

and mixed (radial-angular) derivatives as 
r∂

∂
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2

2

r∂
∂

, 
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∂
r

2

, 
ϕ∂∂

∂
r

2

 are calculated in 

grdchlh_new3.F subroutine using a 6 point-formula. 
 The necessary lmy -dependent gradients are calculated in mkgylm.F. The terms are 

collected and the exchange-correlation potential and energy are determined in the subroutine 
ve_xcallg_new.F. More detailed explanations can be found in the comments of the 
subroutines. 
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Appendix B 

Partial core-correction in real space 

 The calculation the partial core-correction charge density in real space is done in 
several steps in the subroutines: prprhoc_new.F, grdchlh_new2.F, prprhoc_real_space.F 
and splint.f. First, the subroutine prprhoc_new.F reads the core charge for each type of 
atom and defines a sphere of a given radius for each atom. This radius is chosen at the 
point where the outer tail of the core charge is smaller than 10-6. Then, in the subroutine 
grdchlh_new2.F are calculated first and second derivatives (the partial core-correction 
charge density is always a spherical charge given on a radial mesh an so only radial 
derivatives are calculated). 
 Knowing the position of the atoms in the unit cell the next step consists in 
identifying the points of the real space grid of the unit cell (associated with the FFT), 
which are inside of each defined atom sphere. For all this points the distances from the 
atom-position to the grid points inside of each sphere are calculated. By using a cubic-
spline interpolation function (subroutine splint.f) the values of the partial core-correction 
charge densities are calculated and properly assigned to each of the real space grid points 
of the unit cell. 
 Observation: The sphere around an atom, which contains the partial core-
correction, is not always entirely confined in the same unit cell, or in other words, 
depending on the position of the atom, part of the defined partial core-correction sphere 
extends to neighboring unit cells. This corresponds to the case that different parts of the 
partial core-correction sphere are situated in different places of the unit cell. One can 
identify the proper real space grid points and calculate the values of the partial core-
correction charge density by displacing the atom in all the equivalent positions in the 
neighboring unit cells (for details please see the comments in prprhoc_real_space.F).  
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Appendix C 

Parameters and Tests of the 
PAW-pseudopotentials 

C 1: Detailed information of the generated pseudopotentials 

C a r bo n  
 The pseudopotential was generated using the keys LDA  (kxc=2, [VWN80]) and GGA 
(kxc=76, [PBE96-98]). In order to construct the projectors (two per each l -channel) two 
configurations have been chosen: one is the ground-state (with the occupancy of the l -
channels 2s2 2p2); the ground state eigenvalues yielding the bound states were used to 
generate the projectors. As second configuration the same occupancy for s- and p- channels 
has been chosen, but it contains in addition the d-channel (with 0 occupancy), which is taken 
as local potential. For this second atom one has the freedom to choose different reference 
eigenvalues in such a way that they are positioned in the range of the valence eigenvalues of a 
given compound. These eigenvalues in general yield as solutions non-bound states.The exact 
parameters used in generation of the pseudopotential are listed in the table below: 

Carbon pseudopotential table 1:  

s-channel p-channel d-channel Atom 
number radius energy radius energy radius energy 
1 (2s2 2p2) 1.10 -1.009802 1.10 -0.388706 --- --- 

2 (2s2 2p23d0) 1.10 -0.700000 1.10 -0.700000 1.10 -0.300000 

 Before the reliability of the constructed pseudopotential is proven many tests have to 
be made. In the atomic generation program for two additional excited configurations of the 
carbon atom (2s1 2p3 and 2s1.5 2p2.5) all-electron and pseudopotential calculations are 
performed and the valence eigenvalues are compared (see Carbon pseudopotential table 2). 

Carbon pseudopotential table 2: 

s-channel p-channel excited energies Atom 
number All-

electron 
Pseudo All-

electron 
Pseudo All-

electron 
Pseudo 

1(2s2 2p2) -1.009802 -1.009858 -0.388706 -0.388749 0.000000 0.000000 
3(2s1 2p3) -1.042740 -1.042851 -0.419940 -0.419979 0.622003 0.622047 

4(2s1.5 2p2.5) -1.026852 -1.026936 -0.404822 -0.404861 0.310789 0.310804 
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Carbon figure 1: the ‘2s’ and ‘2p’ pseudo and all electron bound state wave functions in the 
ground state configuration of C are identical starting from 1.1 a.u. (represented by doted line). 

distance a.u. distance a.u. 

Carbon figure 2: Logarithmic derivatives and their differences in the range of valence 
electrons: the dotted blue resonance that appears near –20 Ry is due to the 1s2 core level, 
since the pseudopotential describes only the properties of the valence electrons this resonance 
is smoothed out by the logarithmic derivative of the ‘s’  pseudo-wave-function.  

Energy (Ry) Energy (Ry) 

Carbon figure 3: Charge densities of the C.  

distance a.u. 

 The first analysis (in the atomic generation program) shows that a good carbon 
pseudopotential has been generated. 
 The partial core-correction (pseudo core charge) is taken from the atom with the 
ground-state configuration (no. 1) and is fitted at PCCr  0.544 a.u. This corresponds to a large 

partial core-correction (due to the small radius). 
 Using the same values for cutoff radii and reference energies another pseudopotential 
has been generated where the partial core-correction is fitted at 1.1 a.u. (radius of the 
pseudopotential). This corresponds to a small partial core-correction (due to the large radius). 
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Rappe criterion ([RRKJ90]) suggest a cut-off energy of 36 Ry for the convergence of the total 
energy. 

N i t r o g e n  

 The pseudopotential for Nitrogen atom was generated using LDA  (kxc=2) and GGA 
(kxc=76) schemes for the exchange correlation potential. For the construction of the two 
projectors two configurations were used: (1) the ground state with the occupancy of the l -
channels 2s2 2p3 where the projectors are taken to be the bound state eigenfunctions and (2) 
the same occupancy of the s- and p-channels has been chosen with different reference 
energies. In addition the 3d-channel (with 0 occupancy) potential is taken as local potential. 
The exact parameters used for generating the Nitrogen pseudopotential are listed below: 

Nitrogen table 1: 

s-channel p-channel d-channel Atom number 
radius energy radius energy radius energy 

1 (2s2 2p3) 1.2 -1.363963 1.2 -0.521450 --- --- 
2 (2s2 2p3 3d0) 1.2 -0.950000 1.2 -0.950000 1.2 -0.400000 

 As tests all-electron and pseudopotential calculations were done for two excited 
configurations of the atom with the occupancy: 2s1.5 2p3.5 and 2s1 2p4 (see table below). 

Nitrogen table 2: 

s-channel p-channel excited energies Atom 
number All-

electron 
Pseudo All-

electron 
Pseudo All-

electron 
Pseudo 

1 
(2s2 2p2) 

-1.363963 -1.363964 -0.521450 -0.521450 0.000000 0.000000 

3 
(2s1.5 2p3.5) 

-1.380694 -1.380719 -0.537110 -0.537110 0.421529 0.421537 

4 
(2s1 2p4) 

-1.396614 -1.396658 -0.552054 -0.552054 0.843568 0.843596 

Nitrogen figure 1: ‘2s’ and ‘2p’ all-electron and pseudo-wave functions: for the case of 
nitrogen there is one valence electron more than in the case of carbon, so that the s and p all-
electron wave functions are more localized. The cut-off radius 1.2 a.u. of the pseudopotential 
is larger than the position of the maximum of the wave functions. 

distance a.u. distance a.u. 
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 A pseudopotential is easier to construct when the wave function has its maximum 
localized (close to the nucleus) and the radius of the pseudopotential is larger than this 
maximum. But another factor that makes it difficult to generate a pseudopotential is the height 
of the maximum. The 1.2 a.u. cut-off radii (for all the l -channels) of the nitrogen 
pseudopotential is larger than the position of the maximum of the wave functions, but its 
height is large and the radius is too close to this maximum. This makes it difficult to construct 
the nitrogen pseudopotential. 

Nitrogen figure 2: Logarithmic derivatives and their differences in the range of the valence 
electrons. 

Energy (Ry) Energy (Ry) 

 The logarithmic derivatives of the pseudo-wave functions do not show any resonances 
because the pseudo-wave functions are without nodes. 

Nitrogen figure 3: Charge densities of the N.  

distance a.u. 

 The larger partial core-correction (pseudo core charge) was fitted at PCCr  0.438 a.u. 

using the ground state configuration of atom no. 1. The radius is smaller than in the case of 
the carbon pseudopotential. The intersection point where the pseudo core-charge becomes 
smaller than the valence pseudo-charge is determined on one hand by the localization of the 
wave functions (stronger in the case of the nitrogen than for the carbon) and on the other hand 
by the cut-off radius of the pseudopotential. For a larger cut-off radius the intersection point is 
shifted to higher values, then the all-electron core charge becomes smaller there, and 
automatically the partial core-correction taken into account is smaller. Also for the nitrogen a 
pseudopotential that takes into account the small pseudo core-charge fitted at a larger radius 
(1.2 a.u.) has been generated.  
 Since we use the pseudopotential in the calculations for molecules, where the bond 
lengths are quite small, we need to construct the pseudopotential with a small cut-off radius. 
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This small radius can introduce ghost states and in order to eliminate them, deep reference 
energies have to be used for the construction of the second projector. Rappe criterion suggest 
a cut-off energy of 36 Ry for the convergence of the total energy. 

Ox y g en 

 The ground states with the occupancy 2s2 2p4 and the bound state energies have been 
used to generate the first series of projectors. For the second series of projectors reference 
energies yielding unbound states are used. The d-channel pseudopotential (with 0 occupancy) 
was taken as local potential. The exact parameters used in generation of the pseudopotential 
are listed in the Oxygen table 1: 

Oxygen table 1: 

s-channel p-channel d-channel Atom 
number radius energy radius energy radius energy 

1 
(2s2 2p4) 

1.10 -1.757696 1.10 -0.664255 --- --- 

2 
(2s2 2p4 3d0) 

1.10 -0.400000 1.10 -0.090000 1.10 -0.400000 

 In the oxygen case three configurations have been used to test the pseudopotential in 
the atomic generation program: 2s1.9 2p4.1, 2s1.7 2p4.3 and 2s2 2p3 (positive ion). 

Oxygen table 2: 

s-channel p-channel excited energies 
Atom 

number All- 
electron 

Pseudo 
All-

electron 
Pseudo 

All-
electron 

Pseudo 

1 
(2s2 2p2) 

-1.757696 -1.757696 -0.664255 -0.664256 0.000000 0.000000 

3 
(2s1.9 2p4.1) 

-1.761145 -1.761149 -0.667419 -0.667419 0.109358 0.109358 

4 
(2s1.7 2p4.3) 

-1.767966 -1.767980 -0.673676 -0.673676 0.328160 0.328161 

5 
(2s2 2p3) 

-2.911417 -2.911444 -1.797568 -1.797581 1.208230 1.208233 

Oxygen figure 1: ‘2s’ and ‘2p’ all-electron and pseudo-wave functions for O. 

distance a.u. distance a.u. 
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 Also in the case of oxygen the cut-off radii of the pseudopotentials (1.1 a.u.) are larger 
than the maximum position of the wave functions but since the electronic charge is larger than 
in the case of carbon and nitrogen the wave functions are strongly localized close to the 
nucleus. The cut-off radii of the pseudopotential are close to the value of the maximum of the 
wave functions. This makes it difficult to generate the pseudopotential. In the case of carbon 
and nitrogen low reference energies for the second projector have been used to eliminate the 
ghost state. In the case of oxygen these reference energies are higher (especially for the p-
channel). 

Oxygen figure 2: Logarithmic derivatives and their differences in the range of valence 
electrons. The 1s resonance is lower than –30 Ry.  

Energy (Ry) Energy (Ry) 

Oxygen figure 3: Charge densities. 

distance a.u. 

 Due to the strong localization of the wave functions the all-electron core-charge is 
even more localized for the oxygen atom than for nitrogen and carbon. Thus the partial core-
correction is fitted at even smaller PCCr  0.373 a.u. Also, a pseudopotential with the same 

cutoff radii but with small partial core-correction has been generated. Rappe criterion suggest 
a cut-off energy of 36 Ry for the convergence of the total energy. 
 Using the same reference energies in the constructions of the second series of 
projectors but larger cutoff radius of 1.4 a.u. another pseudopotential has been generated 
which can successfully be used for oxide bulk calculations (please see the next part of the 
bulk tests). For this one the Rappe criterion suggest a cut-off energy of 30 Ry for the 
convergence of the total energy. 
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S u l f u r  

 Sulfur has the same number of valence electrons like the oxygen atom but they are on 
the next higher shell. As it is expected, the cut-off radius will be larger than in the oxygen 
case but, since there is no fix rule how to construct a good pseudopotential, the parameters 
which have been used to get good oxygen pseudopotential, cannot be used in sulfur case. The 
only thing, which one needs to do, is to try different radii and reference energies. The ground 
state with the occupancy of the l -channels 3s2 3p4 has been used to generate the first series of 
projectors, the second series of projectors have been generated with reference energies 
yielding unbound states. The d-channel (with 0 occupancy) was taken as local potential. The 
exact parameters used in the generation of the pseudopotential are listed in the Sulfur table 1: 

Sulfur table 1: 

s-channel p-channel d-channel Atom 
number radius energy radius energy radius energy 

1 (3s2 3p4) 1.40 -1.260020 1.40 -0.516051 --- --- 
2 (3s2 3p4 3d0) 1.40 -0.100000 1.40 -0.800000 1.10 -3.7 

 Tests were done in the atomic generation program for this pseudopotential for three 
excited configurations (see table below): 3s2 3p3 (positive ion), 3s2 3p5 (negative ion) and 
3s1.8 3p4.2 (excited configuration). 

Sulfur table 2: 

s-channel p-channel excited energies Atom 
number All-electron Pseudo All-

electron 
Pseudo All-

electron 
Pseudo 

1 
(3s2 3p4) 

-1.260020 -1.260020 -0.516051 -0.516114 0.000000 0.000000 

3 
(3s2 3p3) 

-2.021729 -2.022004 -1.235380 -1.235663 0.865992 0.866232 

4 
(3s2 3p5) 

-0.653452 -0.653411 0.053520 0.053495 -0.214414 -0.214419 

5 
(3s1.8 3p4.2) 

-1.270080 -1.270092 -0.524275 -0.524343 0.148978 0.148966 

Sulfur figure 1: ‘3s’ and ‘3p’ all-electron and pseudo-wave functions for S.  

distance a.u. distance a.u. 
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 The sulfur valence wave functions are not as localized as for the 2p-atoms and they 
have a large maximum. For the calculation of the molecules we need a small cutoff radius that 
is close to the maximum of the wave functions. Moreover, for the 3p wave-function the cutoff 
radius is smaller than the maximum of the wave function and thus the construction of the 
corresponding pseudo-wave-function becomes difficult. In contrast to the oxygen case, the 
ghost states that appear in the p-channel are shifted to higher energies (above 15 Ry) when a 
low reference energy is used in the construction of the second projector. For the s-channel the 
ghost states are eliminated by using a smaller cutoff radius (1.1 a.u.) for the local (d) potential 
and a corresponding low reference energy. 

Sulfur figure 2: Logarithmic derivatives and their differences in the range of valence 
electrons. 

Energy (Ry) Energy (Ry) 

Sulfur figure 3: Charge densities. 

 

distance a.u. 

 Since for the sulfur there are more core electrons, the intersection point where the all-
electron core charge becomes comparable to the pseudo valence charge is at =PCCr 0.91 a.u. 

For one of the generated pseudopotentials we use the large partial core-correction that is fitted 
at this intersection point, and for the other one a small pseudo core-charge is fitted at 1.4 a.u. 
Rappe criterion suggest a cut-off energy of 20.25 Ry for the convergence of the total energy.  
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S i l i co n 

 The silicon pseudopotential can be easily constructed within a norm-conserving 
scheme using one projector per each channel. For comparison (to check the implementation of 
GGA and of partial core-correction) a PAW-pseudopotential with 2 projectors per l -channel 
was generated. The bound state configuration is 3s2 3p2 and the occupancy of the channels for 
the second atom is 3s2 3p2 3d0, the d-channel was taken as local potential. The exact 
parameters used in generation of the pseudopotential using are listed in the Silicon table 1: 

Silicon table 1: 

s-channel p-channel d-channel Atom 
number radius energy radius energy radius energy 

1 (3s2 3p2) 1.80 -0.791461 1.80 -0.300634 --- --- 
2 (3s2 3p2 3d0) 1.80 -0.100000 1.80 -0.400000 1.40 -1.900000 

 The test done in the atomic generation program for this pseudopotential was by using 
three excited configurations: 3s2 3p1 (positive ion), 3s1.8 3p2.2 and 3s1 3p3 (see table below). 

Silicon table 2: 

s-channel p-channel excited energies Atom 
number All-electron Pseudo All-

electron 
Pseudo All-

electron 
Pseudo 

1 
(3s2 3p2) 

-0.791461 -0.791461 -0.300634 -0.300664 0.000000 0.000000 

3 
(3s2 3p1) 

-1.395371 -1.395668 -0.857537 -0.857770 0.569682 0.569787 

4 
(3s1.8 3p2.2) 

-0.802879 -0.802909 -0.309583 -0.309621 0.098414 0.098410 

5 
(3s1 3p3) 

-0.845810 -0.845960 -0.343417 -0.343489 0.496766 0.496792 

Silicon figure 1: ‘3s’ and ‘3p’ all-electron and pseudo-wave functions for the Silicon PAW-
pseudopotential. 

distance a.u. distance a.u. 
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Silicon figure 2: Logarithmic derivatives and charge densities of the Silicon PAW-
pseudopotential 

Energy (Ry) distance a.u. 

 The large partial core-correction for silicon PAW-pseudopotential is fitted at a radius 
of 1.16 a.u. Rappe criterion suggest a cut-off energy of 16 Ry for the convergence of the total 
energy. 
 Silicon is a simple case for which one can construct norm-conserving and also non-
norm-conserving pseudopotentials using a relative small plane wave basis set (Gmax from 3.5 
to 4.0) in the both cases. The parameters used are given in the next tables: 

Tabel Silicon 1: Si norm-conserving (Kleimman-Bylander) pseudopotential: 

Cutoff radii (a.u) Atom  
number s-channel p-channel d-channel 

1 (3s2 3p2) neutral atom 1.15 1.25 - 
2 (3s2 3p0.25 3d0.75) positive ion 1.15 1.25 1.25 

 The local potential has been chosen for 0=l , s-channel, from the atom number 1.  

C o p p e r 

 For the copper atom six projectors have been generated (using LDA -[VWN80] and 
GGA-[PBE96-98]): two for each s-, p- and d-channels. The ground state with the occupancy 
4s1 4p0 3d10 has been used for generating the projectors corresponding to the bound states. 
The p-level has no electrons, and the p-bound state is very extended. This makes difficult to 
obtain a good transferable pseudopotential with a small cutoff radius. The second series of 
projectors have been generated with reference energies yielding unbound states. The 4f-
channel (with 0 occupancy) is used as local potential. The exact parameters used in generation 
of the pseudopotential are listed in the Copper table 1: 

Copper table 1: 

s-channel p-channel d-channel f-channel Atom number 
radius Energy radius energy radius energy radius energy 

1 
(4s1 4p0 3d10) 

2.00 -0.32622 2.40 -0.05184 2.10 -0.05184 --- --- 

2 
(4s1 4p0 3d10 4f0) 

2.00 0.70000 2.40 0.90000 2.10 -0.17000 1.60 0.60000 
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 The d-all-electron wave function is quite localized and the cutoff radius of 2.1 a.u. is 
far away from the maximum of wave function. Using higher reference energies for the local 
potential the ghost states in the other l -channels are easily shifted to non-harming high 
energies. The radius of the pseudopotential is determined by the p-channel, the construction 
of the corresponding pseudo-wave-function being difficult due to the large radius of the 
maximum of the all-electron p-wave function. In order to shift the ghost states and to get a 
pseudopotential with good convergence in solid state calculations for the s- and p- channels 
high reference energies are used when the second projectors are generated. 
 In the atomic generation program three excited configurations with different 
occupancy of the s-, p- and d-channels have been used to test the pseudopotential, atom 3 
with 4s1 4p0.2 3d9.8, atom 4 with 4s0.7 4p0.3 3d10 and atom 5 with 4s2 4p0 3d9 (see Copper table 
2).  

Copper table 2: 

s-channel p-channel d-channel excited energies Atom 
number All-

electron Pseudo All-
electron Pseudo All-

electron Pseudo All-
electron Pseudo 

1 -0.32622 -0.32624 -0.05184 -0.05185 -0.38318 -0.383187 0.00000 0.00000 
3 -0.36703 -0.36663 -0.07701 -0.07688 -0.47807 -0.479728 0.07304 0.07304 
4 -0.36225 -0.36247 -0.07874 -0.07880 -0.43439 -0.433967 0.08345 0.08348 
5 -0.41720 -0.41546 -0.08895 -0.08837 -0.72777 -0.747650 0.17637 0.18509 

Copper figure 1: ‘4s’, ‘4p’ and ‘3d’ all-electron and pseudo-wave functions for the Cu 
PAW-pseudopotential. 

distance a.u. distance a.u. 

distance a.u. distance a.u. 

 Due to the relatively small cutoff radii of the pseudopotential, the intersection radius 
of the all-electron core-charge with the valence pseudo charge is quite large, close to the 
maximum of the valence pseudo-charge. Thus, the overlap of the tail of the all-electron core-
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charge and valence pseudo charge is much larger than in the other generated pseudopotentials. 
The partial core-charge is fitted at 1.24 a.u. The pseudo core-charge has a higher maximum 
than the valence pseudo charge, while in the case of carbon, nitrogen and oxygen is the other 
way around. Rappe criterion suggest a cut-off energy of 23 Ry for the convergence of the 
total energy.  

Copper figure 2: Logarithmic derivatives and their differences of the copper pseudopotential. 
The peak which appear in the differences of logarithmic derivatives is the 3d resonance of the 
all electron and pseudo-wave function. 

Energy (Ry) Energy (Ry) 

C a d mi u m 

 For the cadmium atom six projectors have been generated: two for each s-, p- and d- 
channels using the LDA  scheme for the exchange-correlation potential. The ground state has 
the occupancy 5s2 5p0 4d10. We used the bound states to construct the first series of 
projectors, although the 5p-level has no electrons. This is quite extended and the p-channel 
determines the augmentation radius of the pseudopotential. The second series of projectors 
have been generated with reference energies yielding unbound states. The 4f-channel (with 0 
occupancy) is used as local potential. The partial core-correction is taken from the second 
atom at a radius of 2.3 a.u. The exact parameters used in generation of the pseudopotential are 
listed in the table below: 

Cadmium table 1: 

s-channel p-channel d-channel f-channel 
Atom number 

radius energy radius energy radius energy radius energy 
1 

(5s2 5p0 4d10) 2.33 -0.40845 2.60 -0.10524 2.60 -0.10525 --- --- 

2 
(5s2 5p0 4d104f0) 2.33 -0.10000 2.60 -0.40000 2.60 -0.60000 2.60 -0.40000 

 Compared with the copper pseudopotential negative reference energies are used to 
generate the second projector in order to eliminate the ghost states.  
 In the atomic generation program three other excited configurations with different 
occupancy of the s-, p- and d-channels have been used to test the pseudopotential, atom 3 
with 5s2 5p0.6 3d9.4, atom 4 with 5s1.5 5p0.5 4d10 and atom 5 with 5s1.5 5p0.8 4d9.7. 

Rappe criterion suggest a cut-off energy of 20.25 Ry for the convergence of the total 
energy. 
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Cadmium table 2: 

s-channel p-channel d-channel excited energies Atom 
number All-

electron 
Pseudo All-

electron 
Pseudo All-

electron 
Pseudo All-

electron 
Pseudo 

1 -0.40845 -0.40848 -0.10524 -0.10525 -0.94105 -0.94105 --- --- 
3 -0.50827 -0.50880 -0.16745 -0.16729 -1.19207 -1.19757 0.55791 0.55978 
4 -0.45137 -0.45141 -0.13881 -0.13882 -1.00670 -1.00679 0.15381 0.15381 
5 -0.49867 -0.49880 -0.16692 -0.16687 -1.12829 -1.13198 0.42819 0.42877 

Cadmium figure 1: ‘5s’, ‘5p’ and ‘4d’ all-electron and pseudo-wave functions for the Cd 
PAW-pseudopotential. 

distance a.u. distance a.u. 

distance a.u. distance a.u. 

Cadmium figure 2: Logarithmic derivatives and their differences for the cadmium 
pseudopotential. 

Energy (Ry) Energy (Ry) 
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Ga l l i u m  

 For the gallium atom six projectors have been generated: two for each s-, p- and d-
channels. The ground state has the occupancy 4s2 4p1 3d10 that is used to construct the 
projectors corresponding to the bound states. The 4p-level has one electron and thus the 
extended p-bound state has the largest cutoff radius. The second series of projectors has been 
generated using reference energies, which yield unbound states. The 4f-channel (with 0 
occupancy) is used as local potential. The small partial core-correction is taken from atom no. 
2 at a radius of 1.97 a.u. The exact parameters used in generation of the pseudopotential are 
listed in the table below: 

Gallium table 1: 

s-channel p-channel d-channel f-channel Atom number 
radius energy radius energy radius energy radius energy 

1 
(4s2 4p1 3d10) 

1.95 -0.65603 2.00 -0.20326 2.20 -1.47240 --- --- 

2 
(4s2 4p1 3d104f0) 

1.95 -0.20000 2.10 -0.60000 2.00 0.60000 2.20 -0.99000 

 Due to the large radius of the maximum of the p-all-electron wave-function and the 
fact that the radius of the pseudopotential is smaller that this maximum the ghost states in the 
p-channel are shifted when different cutoff radii in the construction of the two projectors are 
used. The low reference energy of the local potential eliminates the ghost states that appear in 
the s-channel.  
 An observation here is that sometimes the ghost states that appear in one l -channel 
are not due to the specific parameters used in the construction of the projector of that l -
channel. The ghost states are eliminated when the cutoff radii or/and reference energies of 
other l -channels are changed, although the l -channels themselves are well described for the 
those parameters. 
 In the atomic generation program three other excited configurations with different 
occupancy of the s-, p- and d-channels have been used to test the pseudopotential, atom 3 
with 4s2 4p1.1 3d9.9, atom 4 with 4s1.9 4p1.1 3d10 and atom 5 with 4s1.7 4p1.3 3d10 occupancy of 
the l -channels. 

Gallium table 2: 

s-channel p-channel d-channel excited energies Atom 
number All-

electron 
Pseudo All-

electron 
Pseudo All-

electron 
Pseudo All-

electron 
Pseudo 

1 -0.65603 -0.65607 -0.20326 -0.20329 -1.47240 -1.47240 --- --- 
3 -0.67399 -0.67395 -0.21317 -0.21316 -1.53696 -1.54116 0.12964 0.12985 
4 -0.66437 -0.66441 -0.20914 -0.20916 -1.48635 -1.48629 0.04540 0.04540 
5 -0.68054 -0.68059 -0.68059 -0.22054 -1.51364 -1.51345 0.13692 0.13693 
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Gallium figure 1: ‘4s’, ‘4p’ and ‘3d’ all-electron and pseudo-wave functions and charge 
densities for the Ga PAW-pseudopotential. 

distance a.u. distance a.u. 

distance a.u. distance a.u. 

Gallium figure 2: Logarithmic derivatives and their differences. 

Energy (Ry) Energy (Ry) 

Rappe criterion suggest a cut-off energy of 18.5 Ry for the convergence of the total 
energy. 

T i t a n i u m 1 (generated using neutral configuration) 

 In the case of the titanium pseudopotential two projectors for each s-, p- and d- 
channels have been generated. The neutral ground state that has been chosen in the 
construction of this pseudopotential has the occupancy 3s2 3p6 3d4. This is used to construct 
the projectors corresponding to the bound states. The second series of projectors has been 
generated from the same configuration with reference energies yielding unbound states. The 
4f-channel (with 0 occupancy) is used as local potential. A small partial core-correction is 
taken into account fitted at 1.19 a.u. (atom no 2). The exact parameters used in generation of 
the pseudopotential are listed in Titanium table 1. 



PARAMETERS OF THE PSEUDOPOTENTIALS  

 159 

Titanium table 1: 

s-channel p-channel d-channel f-channel Atom number 
radius energy radius energy radius energy radius energy 

1 
(3s2 3p6 3d4) 

1.70 -4.14392 1.70 -2.48986 2.00 -0.08393 --- --- 

2 
(3s2 3p6 3d4 4f0) 

1.20 -0.30000 1.30 -0.40000 2.00 -0.30000 2.00 -0.60000 

 The construction of the projectors for the d-channel is difficult due to the small cutoff 
radius required for the pseudopotential. The d-electrons are not localized but rather spread 
over a large distance in space. Even if in the construction of the ‘d’ pseudo-wave-function 
ghost states do not appear the projectors generated for the d-channel will introduce ghost 
states in s- and p-channels. These are eliminated or shifted to higher energies only when in 
the construction of the second projector for s- and p-channels a small cutoff radius is taken 
into account. 
 In the atomic generation program three other excited configurations with different 
occupancy of the s-, p- and d-channels have been used to test the pseudopotential, atom 3 
with 3s2 3p5.9 3d4.1, atom 4 with 3s2 3p5.8 3d4.2 and atom 5 with 3s2 3p6 3d3 (positive ion) 
occupancy of the l -channels. 

Titanium table 2: 

s-channel p-channel d-channel excited energies Atom 
number All-

electron 
Pseudo All-

electron 
Pseudo All-

electron 
Pseudo All-

electron 
Pseudo 

1 -4.14392 -4.14394 -2.48986 -2.48989 -0.08393 -0.083936 --- --- 
3 -4.15052 -4.15086 -2.49588 -2.49621 -0.08587 -0.085873 0.24079 0.24081 
4 -4.15705 -4.15771 -2.50184 -2.50248 -0.08784 -0.087851 0.48200 0.48206 
5 -4.72609 -4.72597 -3.06881 -3.06871 -0.61186 -0.611892 0.31647  0.31648  

Titanium figure 1 : ‘3s’, ‘3p’ and ‘3d’ all-electron and pseudo-wave functions and charge 
densities for the Ti PAW-pseudopotential. 

dist
ance a.u. 

dist
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nce a.u. 

dist
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Titanium figure 2 : Logarithmic derivatives and their differences. 

Energy (Ry) Energy (Ry) 

Rappe criterion suggest a cut-off energy of 21 Ry for the convergence of the total 
energy. 

T i t a n i u m 2  (generated using ionic configuration) 

 Another titanium pseudopotential has been generated considering the ground state as 
being a partial ionic configuration with the occupancy 4s2 3p6 3d0.5. For this pseudopotential 
six projectors have been constructed, two projectors for the s-, p- and d-channels, but 
compared with the previous ones the s-projectors are constructed considering as valence states 
the 4s levels. The second series of projectors has been generated from the same configuration 
with reference energies yielding unbound states. The 4f-channel (with 0 occupancy) is used as 
local potential. A small partial core-correction is taken into account fitted at 2.31 a.u. (atom 
no 2). The exact parameters used in generation of the pseudopotential are listed in the 
Titanium table 3. 
 The cutoff radius for the s-channel is smaller than the maximum of the wave function 
and ghost states appear. These can be shifted only when high reference energy for the second 
s-projector and a low reference energy for the local f-potential are used.  
 In the atomic generation program three other excited configurations with different 
occupancy of the s-, p- and d-channels have been used to test the pseudopotential, atom 3 
with 4s2 3p6 3d2, atom 4 with 4s2 3p6 3d1 and atom 5 with 4s2 3p5.5 3d2 occupancy of the l -
channels. 

Titanium table 3: 

s-channel p-channel d-channel f-channel 
Atom number 

radius energy radius energy radius energy radius energy 
1 

(4s2 3p6 3d0.5) 2.30 -1.20865 2.30 -4.34719 2.30 -1.72812 --- --- 

2 
(4s2 3p6 3d0.5 4f0) 2.30 1.90000 2.30 -1.20000 1.80 -1.00000 2.30 -2.60 

Titanium table 2: 

s-channel p-channel d-channel excited energies Atom 
number All-

electron 
Pseudo All-

electron 
Pseudo All-

electron 
Pseudo All-

electron 
Pseudo 

1 -1.20865 -1.20870 -4.34719 -4.34719 -1.72812 -1.728125 --- --- 
3 -0.33421 -0.33624 -2.84589 -2.83492 -0.34002 -0.333330 -1.47964 -1.47227 
4 -0.88503 -0.88545 -3.78690 -3.78117 -1.20380 -1.199500 -0.73074 -0.72958 
5 -0.59787 -0.59897 -3.33239 -3.32554 -0.77511 -0.769900 0.06204 0.06487 
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Titanium figure 3 : ‘4s’, ‘3p’ and ‘3d’ all-electron and pseudo-wave functions and charge 
densities for the Ti PAW-pseudopotential. 

distance a.u. distance a.u. 

distance a.u. distance a.u. 

Titanium figure 4 : Logarithmic derivatives and their differences. 

Energy (Ry) Energy (Ry) 

P l a t i n u m  

 For the platinum atom six projectors have been generated: two for each s-, p- and d-
channels. The ground state has the occupancy 5s2 5p6 5d10 that is used to construct the 
projectors corresponding to the bound states. The second series of projectors has been 
generated from the same configuration with reference energies yielding unbound states. The 
5f-channel (with 0 occupancy) is used as local potential. The small partial core-correction is 
taken from atom no. 2 at a radius of 1.99 a.u. The exact parameters used in generation of the 
pseudopotential are listed in the Platinum table 1.  
 The d-channel is that one which determines the augmentation radius of the 
pseudopotential due to the extended d all-electron wave-function. Although the all-electron 
wave functions that characterize the s- and p-channels are quite localized, in the construction 
of the projector corresponding to the unbound states small cutoff radii have to be used in 
order to eliminate the ghost states. 
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Platinum table 1: 

s-channel p-channel d-channel f-channel 
Atom number 

radius energy radius energy radius energy radius energy 
1 

(5s2 5p6 5d10) 2.10 -5.66213 2.10 -3.53681 2.10 -0.36012 --- --- 

2 
(5s2 5p6 5d105f0) 1.25 -1.20000 1.40 -1.20000 2.10 -1.20000 2.10 -1.10000 

 In the atomic generation program three other excited configurations with different 
occupancy of the s-, p- and d-channels have been used to test the pseudopotential, atom 3 
with 5s2 5p6 5d9, atom 4 with 5s2 5p6 5d8 and atom 5 with 5s2 5p5.8 5d8.7 occupancy of the l -
channels. 

Platinum table 2: 

s-channel p-channel d-channel excited energies Atom 
number All-

electron 
Pseudo All-

electron 
Pseudo All-

electron 
Pseudo All-

electron 
Pseudo 

1 -5.66213 -5.66214 -3.53681 -3.53681 -0.36061 -0.360614 --- --- 
3 -6.46544 -6.46554 -4.33435 -4.33449 -1.10704 -1.107095 0.72147 0.72149 
4 -7.41120 -7.41216 -5.26964 -5.27047 -1.97782 -1.978180 2.25512 2.25531 
5 -6.94617 -6.94708 -4.80802 -4.80874 -1.54217 -1.542400 2.03179 2.03193 

Platinum figure 1: ‘5s’, ‘5p’ and ‘5d’ all-electron and pseudo-wave functions and charge 
densities for the Pt PAW-pseudopotential. 

distance a.u. distance a.u. 

distance a.u. distance a.u. 
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Platinum figure 2: Logarithmic derivatives and their differences. 

Energy (Ry) Energy (Ry) 

Rappe criterion suggest a cut-off energy of 25 Ry for the convergence of the total 
energy. 
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Tests of the PAW-pseudopotentials  

C 2.1: Bulks1 

S i l i co n  b u l k   

 Silicon is a simple case for which one can construct norm-conserving and also non-
norm-conserving pseudopotentials using a relative small plane wave basis set (Gmax from 3.5 
to 4.0) in both cases.  
 The results for the Si norm-conserving pseudopotential obtained for different sets of k-
points and different energy cutoff (expressed as Gmax) are: 

Table Silicon 3: The calculated LDA  Si bulk lattice constant (Å) for different sets of k-points 
and different cutoff energies. (The experimental lattice constant is aexp = 5.43 Å) 

Gmax   
k-point 

3.0 3.5 4.0  

5x5x5 5.425 5.411 5.397 Gmax 
6x6x6 5.424 5.407 5.394 

k-point 
3.7 4.0 

9x9x9 5.413 5.406 5.393 4x4x4 5.411 5.401 
12x12x12 5.423 5.406 5.393 

 

 

 One can see that the lattice constant is well described at Gmax = 4 with a set of 4x4x4 
k-point. These calculations have been done for the case when no partial core-correction is 
taken into account. 
 In the case of GGA pseudopotential the results for the fitted lattice constant using the 
upper parameters (Gmax = 4, 4x4x4 k-point) and three different functionals for the exchange-
correlation are: 

Table Silicon 4: The calculated GGA Si bulk lattice constant (Å) for different exchange-
correlation functionals (4x4x4 k-point). 

Type of fitting 
Exchange-correlation functional 

UEBR2 MURN 3 

PW91 5.411 5.410 
PBE 5.414 5.413 

PBE_review 5.420 5.419 

 As expected for the GGA, the lattice constant is slightly larger than the LDA result. 
Using the same parameters for the energy cutoff and set of k-points, PBE-GGA functional, 
but in addition a partial core-correction taken at a radius of 1.19 a.u. (the intersection point of 
valence charge density and true all-electron core charge density), the lattice constant is 5.400 
(UEBR fit), 5.410 (MURN fit).  

                                                 
1 The experimetal lattice constants of the following bulks are taken from “Crystal structures” (University of 
Arizona, Tucson) by Ralph W. G. Wyckoff, Printed and Published by Robert E. Krieger Publishing Company, 
INC (1992). For all bulks they are expressed in (Å). 
2 For UEBR-fit see [BS88] 
3 For MURN-fit see [Mur44]  
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 In principle for the Si atom no partial core-correction (PCC) needs to be taken into 
account, but an important observation is that when using GGA functional one always should 
include a small partial core-correction. If the energy of a single Si atom in a big box is 
computed within the GGA and no PCC is considered, then the energy of the atom in the big 
box is higher than the energy of the single atom obtained from the atomic program; to 
overcome this problem the PCC needs to be included in the calculation. 

C d - me ta l  b u l k  - h ex a g o na l 

 In the case of cadmium the pseudopotential was generated and used with a large radius 
from were the partial core correction has been fitted: 2.60 a.u. (which is the radius of the 
pseudopotential). 
 The experimental lattice constants for cadmium metal are: a = 2.98 and c = 5.62 Å 
with the c/a = 1.8859. The k-point set used to perform the calculation for fitting the lattice 
constant was 15x15x15 with a cutoff energy corresponding to Gmax = 4.5 Ry1/2. The LDA  
fitted parameters are atheoretic = 2.974 for UEBR fit (2.976 for MURN fit) and ctheoretic = 5.573 
(5.570 MURN fit) with the (c/a) theoretic = 1.8739 (1.8716 MURN fit).  

C d O  b u l k  - f c c  

 Two different oxygen pseudopotentials with small and large cutoff radius, respectively 
have been used. For these pseudopotentials the cutoff radius was also used to fit the partial 
core correction and this means that a small PCC was taken into account. The fitted lattice 
constant using the UEBR and MURN function for different energy cutoffs are presented in 
the table below. In this case the proper energy cutoff at which the lattice constant can be 
considered converged corresponds to the Gmax = 5.0 Ry1/2. The experimental lattice constant 
is a = 4.695 (Å).  

Table CdO 1: Cd with 6.2=cutr  and O with 4.1=cutr , 9x9x9 k-point set, LDA  

Gmax UEBR error %  MURN error %  
4.0 4.629 -1.40 4.643 -1.10 
4.5 4.637 -1.23 4.629 -1.40 
5.0 4.672 -0.48 4.671 -0.51 
5.5 4.662 -0.70 4.660 -0.74 
6.0 4.660 -0.74 4.580 -2.44 

Table CdO 2: Cd with 6.2=cutr  and O with 1.1=cutr , 6x6x6 k-point set, LDA  

Gmax UEBR error %  MURN error %  

4.0 4.705 + 0.20 4.673 - 0.45 
4.5 4.653 - 0.89 4.639 - 1.11 
5.5 4.665 - 0.64 4.645 - 1.05 

The GGA result using 6x6x6 k-point set and an energy cutoff of 30.25 Ry (Gmax = 5.5 
Ry1/2) gives a lattice constant of 4.817 for UEBR and MURN fit (larger with 2.59 % than 
experimental). 
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C d S  b u l k  - f c c 

 The experimental lattice constant is aexp = 5.818. The sulfur pseudopotential used to 
perform the calculation uses a small partial core-correction fitted at a radius of 1.4 a.u.; a 
3x3x3 k-point set has been chosen in the calculation. 

Table CdS-fcc: Cd with 6.2=cutr  and S with 4.1=cutr , 3x3x3 k-point set, LDA  

Gmax UEBR error %  MURN error %  
4.0 5.844 0.44 5.837 0.32 
4.5 5.771 -0.80 5.763 -0.94 
5.5 5.740 -1.34 5.743 -1.28 

CdS bulk -hexagonal 

 The experimental lattice constants are aexp = 4.1348 and cexp = 6.749. The same 
pseudopotentials like above have been used in the calculations. A 3x3x2 k-point set has been 
considered to describe well the lattice parameters. 

Table CdS-hexagonal: Cd with 6.2=cutr  and S with 4.1=cutr , 3x3x2 k-point set, LDA  

Gmax  a (Å) error %  c (Å) error %  c/a error %  
UEBR 4.099 -0.86 6.698 -1.20 1.6340 0.10 4.2 
MURN 4.104 -0.74 6.680 -1.60 1.6276 -0.28 
UEBR 4.041 -2.26 6.551 -3.07 1.6211 -0.68 

4.5 
MURN 4.009 -3.04 6.539 -3.25 1.6310 -0.07 

S rO  bu l k  - f c c  

 A 9x9x9 k-point set was used in the calculations with two different cutoff energies. 
The pseudopotential for the oxygen is that one with a small cutoff radius and a small partial 
core-correction. The experimental lattice constant is aexp = 5.1602, the fitted parameters are 
given below. 
Table SrO-fcc 1: Sr with =cutr  and O with 1.1=cutr , 9x9x9 k-point set, LDA  

Gmax UEBR error %  MURN error %  
5.0 5.078 - 1.58 5.071 - 1.71 
5.5 5.070 - 1.73 5.063 -1.86 

T i O  b u l k  - f c c  

 Two different pseudopotentials (PSP) have been used to perform calculation in order 
to fit the lattice constant of the TiO-fcc. One is obtained from a neutral configuration and the 
other one from an ionic configuration (the parameters are given in the previous section), and 
for the oxygen atom both pseudopotentials with small and large cutoff radius were used, as 
well. The experimental lattice constant is aexp = 4.1766 Å.  
Table TiO-fcc 1: Ti neutral PSP and O with 4.1=cutr , 4x4x4 k-point set, LDA  

Gmax UEBR error %  MURN error %  
5.0 4.235 1.39 4.234 1.37 
5.5 4.203 0.63 4.201 0.58 
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Table TiO-fcc 2: Ti neutral PSP and O 4.1=cutr  with, 9x9x9 k-point set, LDA  

Gmax UEBR error %  MURN error %  

5.0 4.222 1.08 4.223 1.11 
5.5 4.199 0.53 4.195 0.44 
6.0 4.189 0.29 4.185 0.20 
6.5 4.186 0.22 4.182 0.13 

Table TiO-fcc 3: Ti ion PSP and O with 4.1=cutr , 9x9x9 k-point set, LDA  

Gmax UEBR error %  MURN error %  
5.0 4.185 0.20 4.185 0.20 
5.5 4.181 0.10 4.174 -0.06 

Table TiO-fcc 4: O with 1.1=cutr , 9x9x9 k-point set, LDA , Gmax = 5.5 Ry1/2 

Ti-PSP UEBR error %  MURN error %  
neutral configuration 

0.2=cutr  a.u. 4.187 0.24 4.181 0.10 

ionic configuration 
3.2=cutr  a.u. 4.185 0.20 4.185 0.20 

S r T i O 3  bu l k - s c 

 The experimental lattice constant is aexp = 3.905 Å. 

Table SrTiO3-fcc: Ti neutral PSP and O with 4.1=cutr , 5x5x5 k-point set, LDA  

Gmax UEBR error %  MURN error %  
5.3 3.848 -1.45 3.798 -2.74 
5.5 3.850 -1.40 3.805 -2.56 
6.0 3.863 -1.07 3.812 -2.38 

S i O2  bu l k  - h ex a g o na l 

 In the case of SiO2 a 9x9x8 k-point set has been used; the pseudopotential used for 
oxygen was that one with the large cutoff radius and for the silicon the simple norm-
conserving pseudopotential (KB-type) without partial core-correction. The experimental 
lattice parameters are: aexp = 4.913 and cexp = 5.404 Å with the c/a = 1.0999. 

Table SiO2-hexagonal 1: Si with 25.1=cutr  and O with 1.1=cutr , LDA 

Gmax  a (Å) error %  c (Å) error %  c/a error %  
UEBR 4.864 -0.99 5.377 -0.54 1.1055 -0.50 4.5 
MURN 4.860 -1.07 5.375 -0.59 1.1070 -0.63 
UEBR 4.863 -1.01 5.366 -0.77 1.1035 -0.31 

5.0 
MURN 4.859 -1.01 5.363 -0.89 1.1037 -0.34 
UEBR 4.872 -0.83 5.374 -0.61 1.1035 -0.28 

5.5 
MURN 4.870 -0.87 5.375 -0.59 1.1037 -0.34 
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T i N  bu l k  - f c c  
 The experimental lattice parameter is aexp = 4.235 Å. The 9x9x9 k-point set has been 
used. For the nitrogen pseudopotential a small partial core-correction was taken into account, 
it was fitted on a radius of 1.2 a.u.  

Table TiN-fcc 1: Ti neutral PSP and N with 2.1=cutr , LDA  

Gmax UEBR error %  MURN error %  
4.7 4.141 - 2.21 1.141 - 2.20 
5.0 4.140 - 2.24 4.140 - 2.24 
5.5 4.128 - 2.128 4.125 - 2.59 

Table TiN-fcc 1: Ti ion PSP with 4.1=cutr  and N with 2.1=cutr , LDA  

Gmax UEBR error %  MURN error %  
4.8 4.216 - 0.43 4.211 - 0.54 
5.2 4.174 - 1.40 4.170 - 1.42 

P t - me ta l  f c c 

 We used the platinum pseudopotential from were the partial core correction has been 
fitted at large radius: 2.00 a.u (the radius of the pseudopotential is 2.1 a.u.). The experimental 
lattice constants for platinum metal is aexp = 3.923 Å.  

Table Pt-fcc 1: LDA  results for a 9x9x9 k-point set 

Gmax UEBR error %  MURN error %  

5.0 3.933 + 0.26 3.933 + 0.26 
5.5 3.921 - 0.02 3.921 - 0.02 
6.0 3.919 - 0.10 3.918 - 0.12 

P t Ga2  f c c 

 For this bulk a 9x9x9 k-point set was used. too. The gallium pseudopotential has been 
constructed using a radius of 2.2 a.u and the partial core-correction is fitted at a radius of 2.1 
a.u. The experimental lattice constant is aexp = 5.911 Å. 

Table PtGa2-fcc: LDA  results for a 9x9x9 k-point set 

Gmax UEBR error %  MURN error %  
4.5 5.889 - 0.36 5.889 - 0.37 
5.0 5.867 - 0.73 5.857 - 0.90 
5.5 5.861 - 0.83 5.856 - 0.92 
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Ga As  a nd  Ga P f cc 

 The pseudopotentials for As and P that have been used are the norm-conserving 
pseudopotentials (KB -type) and they have been generated and tested by the previous PhD 
students. The 4x4x4 k-point set has been used to perform the calculations. 

Table GaAs-fcc: LDA  results, aexp = 5.653 Å. 

Gmax UEBR error %  MURN error %  
4.0 5.600 -0.93 5.618 -0.61 
4.5 5.622 -0.54 5.591 -1.09 
5.0 5.613 -0.70 5.506 -2.06 

Table GaP-fcc: LDA  results, aexp = 5.450 Å. 

Gmax UEBR error %  MURN error %  
4.0 5.289 -2.95 5.269 -3.32 
4.5 5.397 -0.97 5.392 -1.06 
5.0 5.389 -1.11 5.387 -1.15 

C u - me ta l  f c c 

 Two different cupper pseudopotentials for two cutoff radii: 2.6 and 2.4 a.u. have been 
generated. The results for the one with the large cutoff radius (the partial core-correction is 
taken for a large radius of 2.6 a.u.) for different k-point sets are given in the tables below.  

Table Cu-fcc 1: 6x6x6 k-point set, PCC on a radius of 2.6 a.u. 

Gmax UEBR error %  MURN error %  
4.0  -LDA 3.566 -1.21 3.559 -1.41 
5.0  -LDA 3.557 -1.46 3.556 -1.49 
5.0  -GGA 3.679 -1.91 3.672 -1.71 

Table Cu-fcc 2: LDA  results, 9x9x9 k-point set, PCC at a radius of 2.6 a.u. 

Gmax UEBR error %  MURN error %  
4.0 3.540 -1.91 3.537 -2.02 
4.5 3.533 -2.13 3.531 -2.18 
5.0 3.531 -2.18 3.530 -2.21 
5.3 3.531 -2.18 3.530 -2.21 
5.5 3.531 -2.18 3.530 -2.21 

Table Cu-fcc 3: LDA  results, 15x15x15 k-point set, PCC at a radius of 2.6 a.u.  

Gmax UEBR error %  MURN error %  
4.0 3.534 -2.10 3.531 -2.18 
4.5 3.531 -2.18 3.529 -2.24 
5.0 3.530 -2.21 3.528 -2.27 
5.3 3.530 -2.21 3.528 -2.27 
5.5 3.530 -2.21 3.528 -2.27 
5.7 3.530 -2.21 3.528 -2.27 
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 One can conclude that for the energy cutoff of 25 Ry the lattice parameter is 
converged. Anyway, the error in the estimation of the lattice constant can be considered 
satisfactory. Using a 16x16x16 k-point set and repeating the calculation for this energy cutoff 
yield to atheotetical = 3.549 for UEBR fit (3.545 for MURN fit). In all the previous calculation a 
small partial core-correction has been used. Taking into account a bigger partial core-
correction and (fitted at the intersection point of the valence charge with core charge: 1.33 
a.u.) and using the same k-point set and energy cutoff and PBE-GGA formalism for the 
exchange-correlation energy and potential the results for the lattice constant are: atheoretical = 
3.672 for UEBR fit (3.658 for MURN fit). For all these calculations we find a small overlap 
of the pseudopotentials spheres at the minimum lattice constant. 
 A new pseudopotential with the small cutoff radius of 2.4 a.u. has been generated to 
avoid this overlap. In this case the partial core-correction used was fitted at a radius of 1.23 
a.u. 

Table Cu-fcc 4: 16x16x16 k-point set, 4.2=cutr , PCC at a radius of 1.23 a.u. 

Gmax UEBR error %  MURN error %  

4.5  -LDA 3.510 - 2.70 3.496 - 3.10 
5.0  -LDA 3.560 - 1.39 3.553 -1.50 
5.0  -GGA 3.658 + 1.34 3.657 + 1.30 

 The conclusion is that the last pseudopotential describes well the properties of the Cu 
atom. In order to test further the new Cu-pseudopotential some more calculations of the 
relaxation of Cu(110) surface have been performed. The parameters used where: 3x12x17 k-
point set and an energy cutoff of 25 Ry, with 7 and 13 Cu layers, and 9.51 and 19.02 a.u. 
vacuum above Cu surface. The symmetry group that has been used was 1

2hD . The results of 

the interlayer relaxation for this surface are in good agreement with experimental data end 
with other calculated relaxations that have been reported in the literature. In the Table 
“Cu(110) surface 1” the results are summarized (see references on the next page). 
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Table Cu(110) surface 1: Interlayer relaxation (∆  %) of Cu(110) surface 

Present calculations 
LDA GGA 

LDA-PP 
Rodach1 

FLAPW -GGA 
Da Silva2 

PAW-GGA 
VASP, Liem3 

Experimental 
Adams4  

7 layers 13 layers 7 layers - 13 layers 6 layers - 

vacuum a.u 9.51 19.02 9.51 - 9.51 - - 14.59 - 

surfE  (eV atom) 1.301 1.078 1.422 - - - 0.907 0.893 - 

∆12
 - 11.00 - 11.46 - 11.07 -11.42 - 11.01 - 9.30 - 9.73 - 10.08 - 3.0 to - 10.0 

∆23
 + 3.59 + 3.38 + 3.72 + 3.39 + 3.60 + 2.08 + 3.63 + 5.30 0.0 to 8.0 

∆34
 -1.69 - 1.99 - 2.14 - 2.32 -1.45 + 1.10 - 1.16 + 0.10 - 

∆45
 - - - 0.39 - 0.95 - - + 0.39 - - 

∆56
 - - - 0.98 - 1.02 - - - 0.08 - - 

∆67
 - - - 0.87 - 1.12 - - + 0.14 - - 

 
1-Th. Rodach, K.P. Bohnen, K.M. Ho, Surf. Sci. 286(1993) 66; 
2- J.L. Da Silva PRB submitted (2004); 
3- S.Y. Liem, G. Kresse, J.H.R. Clarke, Surf. Sci. 415(1998) 194; 
4- D.L. Adams, H.B. Nielsen, J.N. Andersen, Surf. Sci. 128(1983) 294. 
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C  2 .2 :  Mo l e cu l e s4 

S i H 3  mo l e cu l e   

 A series of calculations using LDA  and GGA have been done for the SiH3 molecule in 
order to compare the results obtained with Si norm-conserving pseudopotential (KB ) and non-
norm-conserving pseudopotential (PAW). In all these cases partial core-correction has been 
used but with different ways of fitting. To our experience, asymmetric molecules like SiH3 are 
very sensitive to the correct application of partial core correction. In both cases the real space 
implementation of PCC is used, in the case of the KB -type pseudopotential the partial core-
charge is simply added to the charge due to the plane-waves that is calculated on the real 
space grid. In the case of PAW-type the PCC is added to the smooth and true charge densities 
inside of the augmentation sphere. For the PAW-type of the Si pseudopotential the PCC is 
taken into account on a radial mesh inside the augmentation sphere and on the normal FFT 
real space grid outside the sphere. For H a purely local pseudopotential is used. The results 
presented have been obtained by relaxing all hydrogen atoms without any constraint (i.e. no 
symmetry has been used). 

Table 1 SiH3 molecule: bond lengths and angles for LDA  and GGA exchange-correlation 
functionals. 

 Si-H 
bond length (a.u)  

α : H-Si-H angle 

(degree) 

H-H 
distance (a.u) 

KB-LDA  1.4970 111.64 2.4769 
PAW-LDA  1.5036 111.72 2.4891 

KB-GGA  1.4523 113.30 2.4265 
PAW-GGA 1.4587 114.79 2.4577 

 In both cases, LDA  and GGA, the Si-H bond length and H-Si-H angle are in very 
good agreement for the KB - and PAW-type pseudopotentials. The radius from where the 
partial core-correction was fitted is 1.19 for the KB -pseudopotential and 1.16 for the PAW-
pseudopotential. The calculation has been done in a cubic box of 8.53 Å3 using the gamma 
point and an energy cutoff of 25 Ry (Gmax = 5 Ry1/2).  

 

Figure SiH3 molecule: 
blue – Si atom 
grey – H atom 

 The next tables present LDA and GGA bond length for different molecules, for the 
GGA two values for the bond length have been calculated: one is corresponding to the case 
when the second derivatives have been evaluated on a grid corresponding to 2*Gmax and the 

                                                 
4 All the bond length are in a.u. 
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second one is corresponding to the case when using the Bird and White scheme for which the 
evaluation of the second derivatives is very accurate. 
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N O  mo l ec u l e   
 A series of calculations has been carried out for the NO molecule. In the tables below 
we present the results in the case of using a small partial core-correction for both atoms (the 
radii used to fit the PCC are equal to the radii of the pseudopotentials).  

Table NO: gamma point, small PCC, experimental bond length = 2.175 a.u., cubic box of a = 
10 Å. 

Gmax LDA Error %  
GGA 
2 Gmax 

Error %  
GGA 

Bird-White  
Error %  

4.0 2.806 + 29.0 2.827 + 30.00 2.803 + 28.9 
4.5 2.542 + 16.8 2.560 + 17.7 2.435 + 11.9 
5.0 2.359 + 8.4 2.367 + 9.2 2.364 + 8.68 
5.5 2.239 + 2.9 2.256 + 3.7 2.235 + 2.75 
6.0 2.181 + 0.3 2.199 + 1.1 2.191 + 0.72 
6.5 2.165 - 0.5 2.184 + 0.4 2.178 + 0.1 
7.0 2.165 - 0.5 2.185 + 0.5 2.175 0.0 
7.5 2.166 - 0.4 2.186 + 0.5 - - 

 The results obtained by other groups are: 2.169ref-1 using LDA (- 0.27%), 2.189 (+ 
0.64% ) [PBE96-98], 2.181 (+ 0.27% ) [ES99], 2.192 (+ 0.78% ) [AB99] using GGA.   
 When taking into account a larger partial core-correction and using an energy cutoff of 
25 Ry (Gmax = 5.0 Ry1/2) the LDA  bond length is 2.357 a.u. with 8.5% larger than 
experimental, but when using GGA within the Bird and White scheme the bond length is 
2.320 a.u with 6.7% larger than experimental, so the larger partial core-correction helps to get 
bond length shorter with 2% at the same energy cutoff.  

C O  mo l ec u l e   

 In the case of the CO molecule it was very difficult to reach a reasonable level of 
selfconsistency for the GGA calculation on a grid corresponding to 2*Gmax. This is because of 
the large oscillations that occur in the evaluation of the gradients (second derivatives) from 
one selfconsistent step to the next. In the case of using the Bird and White scheme for the 
calculation of second derivatives the oscillations are not present anymore and the calculation 
of the bond length can be performed. The radii where the partial core-correction is fitted are 
equal to the augmentation radii of the pseudopotentials; this means that a small PCC is being 
taken into account. 

Table CO 1: gamma point, small PCC, experimental bond length = 2.131 a.u., cubic box of a 
= 10 Å 

Gmax LDA Error %  
GGA 

Bird-White  
Error %  

4.0 2.469 + 15.9 2.490 + 16.9 
4.5 2.404 + 12.8 2.418 + 13.4 
5.0 2.284 + 7.2 2.277 + 6.9 
5.5 2.197 + 3.1 2.189 + 2.7 
6.0 2.148 + 0.8 2.146 + 0.7 
6.5 2.131 0.0 2.138 + 0.3 
7.0 2.129 - 0.1 2.134 + 0.2 
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 The calculated bond lengths for a larger partial core-correction (see details of the 
pseudopotentials) are presented in the table below. 

Table CO 2: gamma point, large PCC, experimental bond length 2.131 a.u., cubic box of a = 
10 Å. 

Gmax LDA Error %  
GGA 

Bird-White  
Error %  

5.0 2.283 + 7.1 2.266 + 6.3 
8.0 2.126 - 0.2 2.104 - 1.25 

 The results reported in the literature for the bond lengths are: 2.150r(+0.9%) [ES99] 
and 2.146 (+0.7%) [AB99] for the case of using the GGA formalism for the exchange 
correlation potential. 
 In the case of the CO molecule using a larger partial core-correction for both 
pseudopotentials at the same energy cutoff (Gmax = 5.0 Ry1/2) the bond length is just with 
0.6% smaller than in the case of using the smaller partial core-correction, so the influence of 
the PCC is much smaller than in the case of the NO molecule. 

C N  mo l e cu l e   

 Again the first results are for the case of considering a small partial core-correction for 
both pseudopotentials. The structure of the molecule can easily be converged using a grid of 
2*Gmax in the calculation of the second derivatives. The same accuracy of the bond length is 
obtained with the Bird and White scheme, the only difference is that for the latter the number 
of iterations required for reaching the selfconsistency is less than half of the number of sc-
iterations needed when using a real space grid corresponding to 2*Gmax.   

Table CN: gamma point, small PCC, experimental bond length = 2.214 a.u., cubic box of a = 
10 Å. 

Gmax LDA Error %  
GGA 
2 Gmax 

Error %  
GGA 

Bird-White  
Error %  

4.0 2.419 + 9.2 2.436 + 10.0 2.376 + 9.8 
4.5 2.351 + 6.2 2.367 + 6.9 2.362 + 6.7 
5.0 2.286 + 3.3 2.301 + 3.9 2.287 + 3.3 
5.5 2.235 + 0.9 2.250 + 1.6 2.235 + 0.9 
6.0 2.210 - 0.2 2.227 + 0.6 2.214 0.0 
6.5 2.204 - 0.4 2.221 + 0.3 2.210 - 0.2 
7.0 2.203 - 0.5 2.221 + 0.3 2.210 -0.2 

 Using the larger partial core-correction and the energy cutoff of 25 Ry the bond length 
is 2.280 (+ 3.1%) with LDA  and 2.230 with GGA (+ 0.8%). In the ref-2 the LDA  bond length 
is 2.203 (- 0.5%) and GGA is 2.218 (+ 0.2) ([PBE96-98], [ES99], [AB99], [DB93]). 
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O 2  m o l e c u l e   

 The bond length of the oxygen molecule has been calculated taking into account a 
small partial core-correction. The calculation of the second derivatives on the real space grid 
corresponding to 2*Gmax introduces oscillations from one self-consistent step to the next one 
so that it becomes difficult to converge the system. Increasing the temperature and changing 
the mixing parameter can improve the convergence but the oscillations are still present and a 
big number of iterations are needed to achieve the required self-consistency.  

Table O2: gamma point, small PCC, experimental bond length = 2.283 a.u., cubic box of a = 
10 Å. 

Gmax LDA Error %  
GGA 
2 Gmax 

Error %  
GGA 

Bird-White  
Error %  

4.0 2.957 + 29.6 2.972 + 30.2 2.813 + 23.2 
4.5 2.684 + 17.7 2.699 + 18.2 2.578 + 12.9 
5.0 2.482 + 8.8 2.498 + 9.4 2.382 + 4.34 
5.5 2.344 + 2.8 2.362 + 3.4 2.333 + .2.2 
6.0 2.272 - 0.4 2.294 + 0.5 2.277 - 0.2 
6.5 2.265 - 0.7 2.293 + 0.4 2.288 + 0.2 
7.0 2.277 - 0.2 2.308 + 1.1 2.295 + 0.5 

 When an energy cutoff of 30.25 Ry is used the calculated bond lengths agree well with 
the experimental ones and other GGA data from literature: 2.306 (+ 1.1%) [PBE96-98], 2.299 
(+ 0.8%) [ES99] and 2.307(+ 1.2%) [AB99]. 

N H 3  mo l ec u l e   

 The experimental bond length N-H is 1.192 a.u. and the angle HNH is 106.68o. The 
nitrogen pseudopotential has been generated by taking into account a small partial core-
correction fitted at the augmentation radius of the pseudopotential. The calculations have been 
performed in a cubic box with a = 14 Å.  

Table NH3 1: LDA  results, gamma point, nitrogen pseudopotential with small PCC 

Gmax Bond length Error %  Angle (degree) Error %  
4.0 2.197 + 14.9 94.71 - 11.2 
4.5 2.118 + 10.8 98.14 - 8.0 
5.0 2.036 + 6.5 101.71 - 4.6 
5.5 1.973 + 3.2 105.09 - 1.5 
6.0 1.945 + 1.7 106.46 - 0.2 
6.5 1.933 + 1.1 107.20 + 0.5 

7.0 1.932 + 1.0 107.3 + 0.6 

 

Figure NH3 molecule: 
blue – N atom 
grey – H atom 
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Table NH3 2: GGA results, gamma point, nitrogen pseudopotential with small PCC, real 
space grid corresponding to 2*Gmax  

Gmax Bond length Error %  Angle (degree) Error %  

4.0 2.110 + 10.4 98.52 - 7.6 
4.5 2.109 + 10.3 97.52 - 8.6 
5.0 2.020 + 5.7 102.45 - 3.9 
5.5 1.960 + 2.5 106.13 - 0.5 
6.0 1.926 + 0.8 111.14 + 4.18 
6.5 1.913 + 0.1 112.70 + 5.64 
7.0 1.912 0.0 109.20 + 2.36 

Table NH3 3: GGA results, gamma point, N pseudopotential with small PCC, Bird and 
White scheme. 

Gmax Bond length Error %  Angle (degree) Error %  

4.0 2.201 + 15.11 94.61 - 11.3 
4.5 2.122 + 10.9 97.69 - 8.4 
5.0 2.038 + 6.6 100.97 - 5.3 
5.5 1.974 + 3.24 104.15 - 2.4 
6.0 1.946 + 1.77 105.45 - 1.2 
6.5 1.933 + 1.09 106.15 - 0.5 
7.0 1.922 + 1.04 106.24 - 0.4 

 The calculated N-H bond length and H-N-H angle reported in the literature are 1.930 
a.u. (+0.94%) and 107.30 (+0.58) for LDA  and 1.9331 a.u. (+1.10%) and 105.60 (-1.01%) for 
GGA ([PBE96-98], [ES99], [AB99], [DB93]). 

C H 4  mo l ec u l e   

 The experimental C-H bond length is 2.052 a.u. The LDA  bond lengths reported in the 
literature are: 2.074 a.u [PBE96-98],, 2.081 a.u. [DB93] and for the GGA functional 2.071 
a.u. (+0.92) [PBE96-98],  2.073 a.u. (+1.02) [AB99]. In the calculation of the C-H bond 
length for the carbon atom a partial core correction fitted on a large radius has been used. The 
results for different energy cutoff are listed in the Table “CH4 1”. 
Table CH4 1: gamma point, small PCC, cubic box with a = 14 Å. 

Gmax LDA Error %  
GGA 
2 Gmax 

Error %  
GGA 

Bird-White  
Error %  

4.0 2.223 + 8.33 2.216 + 7.99 2.178 + 6.13 
4.5 2.189 + 6.67 2.185 + 6.48 2.1487 + 4.71 
5.0 2.137 + 4.14 2.134 + 3.99 2.100 + 2.32 
5.5 2.092 + 1.94 2.089 + 1.80 2.060 + 0.38 
6.0 2.076 + 1.94 2.073 + 1.02 2.039 - 0.64 
6.5 2.073 + 1.02 2.071 + 0.92 2.034 - 0.88 
7.0 2.074 + 1.07 2.072 + 0.97 2.034 - 0.86 
7.5 2.074 + 1.07 2.072 + 0.97 - - 

 
Fig. CH4 molecule: 
light grey – C atom 
dark grey – H atom 

 Taking into account a large partial core correction for the carbon pseudopotential and 
using an energy cutoff of 25 Ry the calculated bond length is 2.112 a.u., i.e. 2.92% larger than 
the experimental value. 



PLDOS FOR CLEAN Cu(110) SURFACE 

 178 

Appendix D 

PLDOS for clean Cu(110) surface 

Figure PLDOS of clean Cu(110) surface: 

 

 

 

 

 (right panel) side view of the supercell used in 
calculations of the clean Cu(110) surface (7 
layers of copper).  

 (left panel) the PLDOS characteristics of the 
Cu atoms of the supercell: 

� the inner Cu1, Cu2 atoms have bulk 
characteristics with the d-band (and some 
p-type states) in the energy interval of -
5.0…-2.0 eV. Most s-type states appear 
at lower energy interval: -8.5…-4.5 eV.  

� for the Cu3 and Cu4 the d-band is 
narrowing (energy range of -4.5…-2.0 eV 
and -4.0…-1.9 eV, respectively). This 
behavior is due to the smaller 
coordination number of the surface 
atoms.  
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It is often helpful to understand which atomic states (characterized by angular-
momentum) of a given atom are contributing to the eigenfunctions of the total system. Thus 
one calculates the partial local density of states (PLDOS) of the atom by projecting the 
eigenfunction to states of certain angular-momentum symmetry l  in a sphere surrounding the 
atom µ . The angular momentum is not a conserved quantity in a solid, but formally, an 
expansion into different symmetry contributions can be done by decomposing plane waves 
into Bessel's functions lj  times spherical harmonics LY , where the site of atom µ  is taken as 

the origin (see Anhang D in [Kro01]). Integration yields the quantity: 

( )
2

3
∫ Ψ=ΨΨ=

µ

ν
µ

µν
µ

ν
µ
ν

S
klklk

l
k

PrrdPRq rrrr
r

  (D-1) 

where the matrix elements are (see equation A.4.8): 

( ) ( ) ( )∑∑ ++
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=Ψ −−

m
LLl
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G

GiG
k

ki

kl rYGkYrGkjiec
e

Pr µµ
τ

ν

τ

ν
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µ πµ
µ rrrrr

r

rr

r

r

r 4  (D-2) 

and the integration is performed in a sphere µS  around the atom µ . A suitable choice of the 

radius of the sphere is apparently half of the nearest-neighbor distance.  
The partial local density of states is defined as: 

( ) ( )∫ ∑ −=
1.BZ

3:PLDOS ν
ν

µ
ν

µ εεδε
k

l
kL qkdD rr    (D-3) 

The pseudopotential approach guarantees that using pseudo-wave functions (expanded 
in plane waves) the PLDOS-spectra describe exactly the distribution of the energy levels. For 
the norm-conserving pseudopotentials (Kleinman-Bylander form where the wave-functions 
are norm-conserving) the relative heights of s-, p- and d-levels are correctly reproduced as 
well. This is not true for non-norm-conserving pseudopotentials (PAW form). Since the 
pseudo-wave functions are non-norm-conserving, for a correct description of the relative 
heights of the l -channels, the augmentation charge should be added.  

All PLDOS-spectra in this thesis have been calculated using only the pseudo-wave 
functions. This means that the relative heights of s-, p- and d-levels are not exactly described. 
This is specially the case of the pseudopotentials for which d-pseudo-wave functions have 
been constructed (see the plots of all electron and pseudo-wave functions of the 
pseudopotentials in Appendix “Parameters and Tests of the PAW-pseudopotentials”).  
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