
Efficient Implementation

of the Non-Local Exchange Potential

within the FLAPW Method

von

Markus Betzinger

Diplomarbeit in Physik

vorgelegt der

Fakultät für Mathematik, Informatik und Naturwissenschaften

der Rheinisch-Westfälischen Technischen Hochschule Aachen

im
September 2007

angefertigt am

Institut für Festkörperforschung (IFF)
Forschungszentrum Jülich





Contents

1 Introduction 1

2 Theory 5

2.1 Density-functional theory (DFT) . . . . . . . . . . . . . . . . . . . . 7
2.2 Kohn-Sham formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Coupling-constant integration . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Hybrid functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Generalized Kohn-Sham scheme . . . . . . . . . . . . . . . . . . . . . 15
2.6 Self-interaction and discontinuity of Exc . . . . . . . . . . . . . . . . . 16

3 Electronic-structure methods 19

3.1 APW method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 LAPW method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Representation of density and potential . . . . . . . . . . . . . 23
3.2.1.1 Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1.2 Lattice harmonics . . . . . . . . . . . . . . . . . . . 23

3.2.2 Poisson solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Exchange-correlation potential . . . . . . . . . . . . . . . . . . 27
3.2.4 Core electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.5 Local Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.6 Brillouin-zone integration . . . . . . . . . . . . . . . . . . . . 29
3.2.7 Self-consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Evaluation of the exchange potential 33

4.1 Construction of the mixed basis . . . . . . . . . . . . . . . . . . . . . 36
4.1.1 Muffin-tin region . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Interstitial region . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Calculation of
〈

M̃q,Iφ
σ
n,k

∣
∣
∣φσ

n′,k+q

〉

. . . . . . . . . . . . . . . . . . . . 42
4.2.1 Muffin-tin region . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Interstitial region . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Treatment of the Γ point . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 k · p perturbation theory . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Calculation of the momentum matrix . . . . . . . . . . . . . . 51

4.4 Spatial symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.1 Irreducible Brillouin zone . . . . . . . . . . . . . . . . . . . . . 53



iv Contents

4.4.2 Extended irreducible Brillouin zone . . . . . . . . . . . . . . . 54
4.4.3 Calculation of

〈
φσ

n′,k

∣
∣P (R, τ )

∣
∣φσ

n,k

〉
. . . . . . . . . . . . . . . 55

4.4.4 Restriction of the Coulomb matrix to the IBZ . . . . . . . . . 57
4.4.5 Inversion symmetry . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Core electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Total energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.7 Adding and subtracting an additional potential . . . . . . . . . . . . 62

5 First calculations 65

5.1 Hartree-Fock calculation for Diamond (C) . . . . . . . . . . . . . . . 65
5.2 Hartree-Fock calculation for Silicon (Si) . . . . . . . . . . . . . . . . . 70
5.3 PBE0 functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Generation of band structures . . . . . . . . . . . . . . . . . . . . . . 77

6 Conclusion & Outlook 81

A Coupling-constant integration for gKS 85

B kp perturbation theory 87

Bibliography 89



1 Introduction

Within the last decades, density-functional theory (DFT) has evolved into a pow-
erful and widely used tool to simulate the electronic structure of matter from first
principles. Its impact becomes manifest in the awarding of the Nobel prize to Walter
Kohn for his pioneering work on DFT and John A. Pople for his developments of
computational methods in quantum chemistry in the year 1998.

The success of DFT is based on the fact, that the electron density n(r) is used as
the independent variable to describe the electron system instead of the commonly an-
ticipated complex N -particle wave function Ψ(r1, . . . , rN). The density depends only
on 3 spatial coordinates in contrast to the many-body wave function, which depends
on the 3N spatial coordinates of the electrons, leading to a significant reduction of
complexity.

The fundament of DFT is laid by the Hohenberg-Kohn theorem [1]. It shows
that there exists a one-to-one correspondence between the external potential and the
ground-state electron density. This implies that the many-body Hamiltonian and also
the N -particle wave function are uniquely defined by the ground-state density. With
this all expectation values are functionals of the density. Furthermore, Hohenberg
and Kohn showed that the corresponding total-energy functional becomes minimal for
the true ground-state density. Since, however, the functional is unknown, we cannot
apply the variational principle directly. Instead, Kohn and Sham [2] introduced a
fictitious system of non-interacting particles moving in an effective local potential
which is defined in such a way that the densities of the fictitious and the real system
coincide. For this purpose Kohn and Sham write the total energy as the sum of
the kinetic energy of the non-interacting particles, the Hartree energy, the potential
energy and the exchange-correlation (xc) energy. The latter contains the energy
contributions from electron exchange and correlation, but also a correction for the
kinetic energy. Application of the variational principle then leads to a set of tractable
one-particle equations which can be solved by standard numerical techniques. From
the resulting one-particle wave functions the density is easily calculated and it is
identical to the true ground-state density by construction.

Unfortunately, the xc energy functional is unknown in general. For the homoge-
neous electron gas, however, a functional can be fitted to very accurate Quantum
Monte-Carlo calculations [3, 4]. When one applies the resulting functional also to in-
homogeneous systems, it is known as the local-density approximation (LDA). In spite
of its seeming crudeness the LDA yields very good results and is still often applied
today. Furthermore, local-density variations are taken into account in functionals
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based on the generalized-gradient approximation (GGA), which generally improve
on total energies leading to numerous applications in quantum chemistry [5, 6]. The
latter are often called semi-local, while the former are called local.

A third generation of functionals is based on a combination of local or semi-local
functionals with the explicit Hartree-Fock (HF) exchange energy, which is non-local.
These functionals are called hybrid functionals. The first of its kind was a half-and-
half mixing of an LDA functional with the HF exchange potential and was proposed
by Becke in 1993 [7]. Since then various other semi-empirical and ab initio function-
als have been published in literature [8–12]. The former contain parameters which
are fitted to experiment (e.g. B3LYP), while the latter are derived solely from first
principles (e.g. PBE0).

From a practical point of view hybrid functionals are distinguished from local or
semi-local exchange-correlation functionals by

• accurate binding energies of covalently bound molecules with a root mean
square deviation of 2-3 kcal/mol1 from experimental values [8],

• an opening of the band gap in bulk semiconductors and insulators [13, 14],

• an improved description of localized d- and f -electrons in transition metals and
rare-earth compounds [15],

• an improved prediction of the adsorption site of small molecules on extended
surfaces [16].

Thus hybrid functionals are a distinct improvement over local or semi-local xc func-
tionals. From a theoretical point of view these functionals possess

• a reduced unphysical self-interaction compared with local or semi-local func-
tionals,

• an additional, non-zero discontinuity of the chemical potential at integral par-
ticle numbers in contrast to local or semi-local functionals.

We will briefly describe what we mean by this. Due to the only approximate treat-
ment of exchange, LDA or GGA xc functionals do not completely cancel the electronic
self-interaction contained in the Hartree energy. As a consequence the electron partly
interacts with itself. The explicit use of exact exchange in hybrid functionals reduces
this unphysical self-interaction leading to an improved description of localized d- and
f -electrons.

The band gap, defined by the difference of electron affinity and ionization energy,
can be expressed in the framework of DFT by the sum of the band gap of the non-
interacting fictitious system and an exchange-correlation discontinuity. In contrast

11 eV = 23.06 kcal/mol
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to LDA or GGA functionals the non-local exchange potential contains a non-zero dis-
continuity, which contributes to the band gap. Thus, the band gap, which is usually
underestimated by LDA or GGA functionals, opens when hybrid functionals are used.

For the numerical realization of DFT within the KS formalism several computational
schemes have been developed. In the present work we use the FLAPW method
(full-potential linearized augmented plane wave method) [17, 18]. It relies on a de-
composition of space into muffin-tin (MT) spheres centered at the atom position and
the interstitial region (IR). Solutions of the scalar-relativistic, spherical Schrödinger
equation are used as basis functions in the MT spheres and plane waves are used
in the IR. The FLAPW method is an all-electron approach, which does not use any
shape approximations for the potential or density, e.g. spherical averages of the po-
tential inside the MT spheres or a constant potential in the interstitial region. Its
elaborate choice of basis functions makes it universally applicable to electron sys-
tems, including d- and f -electron systems, with compact as well as open structures.
It is widely considered to be one of the most precise methods in solid-state physics.

In this thesis the non-local Hartree-Fock exchange, which is an integral part in hy-
brid functionals, is implemented in the FLAPW method as realized in the FLEUR

code [19]. Our implementation uses a mixed basis, comprising MT functions and
interstitial plane waves, which is specifcally designed for representing wave-function
products. As a result the exchange matrix elements can be written as Brillouin-
zone (BZ) sums over vector-matrix-vector products. The long-range nature of the
Coulomb interaction leads to a divergent term in the BZ sum. This divergence is
separated from the sum and integrated analytically, while the non-divergent rest is
integrated by standard methods. Spatial symmetry is exploited to reduce the com-
putational effort.

The implementation is tested with HF and PBE0 calculations of bulk Si, C, GaAs,
NaCl and MgO. It is found that a comparatively small mixed-basis set is sufficient to
obtain converged band energies. The HF and PBE0 calculations open the band gap
already after the first iteration. The HF approach, however, drastically overestimates
it. The PBE0 functional overestimates the band gap for semiconductors as much as
local or semi-local functionals underestimate it, whereas for insulators the band gap
is still slightly underestimated, but much closer to experiment then the PBE result.

Chapter 2 gives an introduction into density-functional theory, the Kohn-Sham (KS)
formalism and the construction of hybrid functionals. In practice hybrid functionals
are applied within the generalized Kohn-Sham (gKS) scheme. The differences be-
tween the KS and the gKS formalism are discussed in detail. The FLAPW method
is presented in detail in Chapter 3, with emphasis on algorithms and techniques,
which are necessary for understanding the implementation of the non-local exchange
potential. In Chapter 4 details of a practical implementation of the non-local ex-
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change potential into the FLAPW code FLEUR are given. In particular, importance
is attached to computational efficiency. Finally, in Chapter 5 the numerical realiza-
tion is tested on prototype semiconductors and insulators. In the last chapter the
main conclusions are drawn and an outlook is given.



2 Theory

A large variety of solid-state phenomena from electronic transport over magnetism
to vibronic properties results from the motion of the electrons and ions under their
mutual interaction. The quantum mechanical electronic and ionic motion is governed
by the Schrödinger equation

H |Ψ〉 = i~
∂

∂t
|Ψ〉 , (2.0.1)

with the many-body Hamiltonian

H = −1

2

∑

j

∇2
j −

∑

α

1

2Mα

∇2
α

−
∑

j,α

Zα

|rj − Rα|
+

1

2

∑

j,k

j 6=k

1

|rj − rk|
+

1

2

∑

α,β

α6=β

ZαZβ

|Rα − Rβ|
(2.0.2)

where Zα and Mα denote the atomic number and mass of the α-th atomic ion, Rα its
space coordinates and rj the coordinates of the j-th electron.1 In general, equations
(2.0.1) and (2.0.2) describe the whole field of non-relativistic solid-state physics.
However, in practice an exact solution of the many-body Schrödinger equation is
impossible.

Due to the enormous mass difference between ions and electrons their motion takes
place at different time scales. On the time scale of electron motion the ions appear
fixed. This justifies to define an electronic Hamiltonian

H =
∑

j









−1

2
∇2

j +
∑

α

Zα

|rj − Rα|
︸ ︷︷ ︸

V (rj)









+
1

2

∑

j,k
j 6=k

1

|rj − rk|
, (2.0.3)

where the ion positions Rα are parameters (Born-Oppenheimer approximation) [20].
A brute-force solution of the Hamiltonian (2.0.3) for an iron atom (Z = 26), by

sampling each coordinate direction with 10 grid points, requires the storage of 1078

numbers. This already shows, that approximations are inevitable.

1Hartree units are used throughout this work except where noted.
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If the electron-electron interaction

Vee =
1

2

∑

j,k
j 6=k

1

|rj − rk|
(2.0.4)

is neglected the stationary solution of (2.0.1) with the Hamiltonian (2.0.3) is a single
Slater determinant Φ of one-particle wave functions {φj} obeying

[

−1

2
∇2 + V (r)

]

φj(r) = εjφj(r) . (2.0.5)

However, this is an oversimplification, as Vee represents a very important energy
contribution. Instead of the Hamiltonian the wave functions can be approximated,
which leads to the Hartree and Hartree-Fock approach.

In the Hartree method the many-electron wave function Ψ is written as a product
of one-particle wave functions

Ψ(r1, r2, . . . , rN) = φα1(r1)φα2(r2) . . . φαN
(rN) , (2.0.6)

where αi denotes a set of quantum numbers. The Pauli principle is only considered
insofar as two one-particle wave functions are not allowed to agree in all quantum
numbers. A conditional equation for the wave functions φαi

(ri) is obtained by mini-
mizing the total energy

EHartree = 〈Ψ|H|Ψ〉 (2.0.7)

=

N∑

i=1

∫

d3r φ∗
αi

(r)

[

−1

2
∇2 + V (r)

]

φαi
(r) +

1

2

∑

i,j

i6=j

∫∫

d3rd3r′
|φαi

(r)|2|φαj
(r′)|2

|r− r′|

with respect to φ∗
αi

(Ritz variational principle).

In contrast to the Hartree approach the Hartree-Fock (HF) method uses single
Slater determinants of one-particle wave functions. With the anti-symmetrization
of the wave function the Pauli principle is fully taken into account, which yields an
additional energy contribution

EHF = EHartree −
1

2

∑

i,j
i6=j

∫∫

d3rd3r′
φ∗

αi
(r)φαj

(r)φ∗
αj

(r′)φαi
(r′)

|r− r′|

=

N∑

i=1

∫

d3r φ∗
αi

(r)

[

−1

2
∇2 + V (r)

]

φαi
(r) +

1

2

∫∫

d3rd3r′
n(r)n(r′)

|r − r′|

−1

2

∑

i,j

∫∫

d3rd3r′
φ∗

αi
(r)φαj

(r)φ∗
αj

(r′)φαi
(r′)

|r− r′| , (2.0.8)
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the so-called exchange energy. However, both approaches lead to an unsatisfying
description of physical properties (e.g. in the HF method the derivative of the one-
particle energies with respect to k is divergent at the Fermi vector kF leading to a
vanishing density of states at EF for metals [21]).

The Hartree-Fock Hamiltonian F , obtained by minimizing (2.0.8) with respect to
φ∗

αi
, is the starting point for Møller-Plesset (MP) perturbation theory, a quantum-

chemical method [22, 23]. It treats correlation effects beyond Hartree-Fock theory in
a perturbative manner

HMP = F + λ (H − F ) . (2.0.9)

Møller-Plesset perturbation theory is classified by the highest order n of λ, which is
considered in the expansion of the total energy (denoted by MPn).

Density-functional theory (DFT) offers a reformulation of the many-body problem,
which results in a tremendous reduction of the computational complexity in contrast
to MP perturbation theory and other quantum chemical methods.

2.1 Density-functional theory (DFT)

In the last decades density-functional theory has become one of the most powerful
tools to simulate the quantum-mechanical electronic structure of materials (bulk
systems, thin films, surfaces and interfaces, semiconductors, magnetic materials and
so on). In density-functional theory the electron system is described by the electron
density n(r), which only depends on three spacial coordinates, instead of the complex
many-electron wave function Ψ.

The basis of DFT is given by the Hohenberg-Kohn theorem [1]. It states that
a unique mapping exists between the external potential V (r) and the ground-state
density n(r)

n ↔ V . (2.1.1)

Since the external potential V determines the Hamiltonian (2.0.3), the many-body
wave function Ψ is a functional of V via (2.0.1) and of the ground-state density via
(2.1.1). Consequently any expectation value can be regarded as a functional of the
density n

O [n] = 〈Ψ [n]|O |Ψ [n]〉 . (2.1.2)

In particular one can write

E[n] = 〈Ψ [n]|H |Ψ [n]〉

= F [n] +

∫

d3r V (r)n(r) (2.1.3)
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for the total energy with

F [n] = 〈Ψ [n]|T + Vee |Ψ [n]〉 . (2.1.4)

F is a universal functional in that it is the same for each electron system and inde-
pendent of the external potential.

For this total-energy functional Hohenberg and Kohn showed a variational princi-
ple: E [n] takes its minimum for the true ground-state density n0(r)

δ

δn

[

E [n] − µ′
(∫

d3r n(r) − N

)]∣
∣
∣
∣
n=n0

= 0 , (2.1.5)

where the Lagrange multiplier µ′ ensures particle conservation.
The equation (2.1.3) together with the variational principle does not lead to a

practicable scheme for the determination of the ground-state density, because the
universal functional F [n] is unknown.

2.2 Kohn-Sham formalism

The Kohn-Sham (KS) formalism provides an ingenious and practicable reformulation
of the many-body problem. It maps the interacting electron system to a system of
non-interacting electrons moving in an effective, external potential V KS.

The idea of Kohn and Sham [2] is to write the universal functional F as a sum of
the kinetic energy T KS of a non-interacting system, the Hartree energy UH and the
exchange-correlation energy Exc

F [n] = TKS [n] +
1

2

∫∫

d3rd3r′
n(r)n(r′)

|r− r′|
︸ ︷︷ ︸

UH[n]

+Exc [n] . (2.2.1)

The exchange-correlation energy

Exc [n] = F [n] − UH [n] − TKS [n] (2.2.2)

also includes the correction for the error done by replacing the kinetic energy of
the real system by the kinetic energy T KS of a non-interacting system. From the
stationary condition (2.1.5) the equation

δTKS

δn(r)
+

∫

d3r′
n(r′)

|r − r′| +
δExc

δn(r)
+ V (r) − µ′ = 0 (2.2.3)

is obtained. It is formally equivalent to that obtained for a system of non-interacting
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electrons, the so-called KS system, moving in the effective potential

V KS(r) = V (r) +

∫

d3r′
n(r′)

|r− r′| + Vxc(r) , (2.2.4)

where

Vxc(r) =
δExc

δn(r)
(2.2.5)

is the exchange-correlation potential. Consequently, the ground-state density n0(r)
of the interacting system is found by solving the one-particle KS equations

(

−1

2
∇2 + V KS(r)

)

φi(r) = εiφi(r) (2.2.6)

and subsequently occupying the electron states according to the Pauli principle. The
density is then given by

n0(r) =
occ.∑

i

|φi(r)|2 . (2.2.7)

Because V KS itself depends on the density n, the equation must be solved self-
consistently. The true ground-state energy E0 is then obtained by

E0 = E [n0] = TKS [n0] + UH [n0] + Exc [n0] +

∫

d3r n0(r)V (r) . (2.2.8)

Theoretically this scheme is exact. However, the exact form of the exchange-
correlation energy Exc is unknown. A simple approximation to Exc is the so-called
local-density approximation (LDA). In the LDA it is assumed, that the electrons
locally act as a homogeneous electron gas. The exchange energy per electron in a
homogeneous electron gas can be derived exactly with the Hartree-Fock method [24]

εx(n) = − 3

4π
(3π2n)

1
3 , (2.2.9)

whereas the remaining correlation contribution is parameterized by a fit to quantum
Monte-Carlo calculations [3, 4]. Finally, the exchange-correlation energy in LDA has
the form

ELDA
xc [n] =

∫

d3r n(r)εLDA
xc (n(r)) . (2.2.10)

Surprisingly, this approximation works quite well for a wide range of systems. Its
success bases on the fact, that ELDA

xc is the exact solution of a model system, the
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homogeneous electron gas. So, it fulfills all constraints, which the exact exchange-
correlation energy must obey, like sum rules, scaling and limiting conditions [25].
Furthermore it is commonly accepted, that the error made in the exchange part
partially cancels with the error made in the correlation part.

The next logical step to improve the LDA is to consider density gradients as well.
This leads to the so-called generalized gradient approximation (GGA) [5, 6]

EGGA
xc [n] =

∫

d3r f (n(r),∇n(r)) . (2.2.11)

2.3 Coupling-constant integration

In order to obtain further physical insight into the exchange-correlation energy Exc,
the coupling-constant integration method or adiabatic-connection method [26–28] is
discussed.

A fictitious system of N electrons is introduced with a scaled electron-electron
interaction λVee and an external potential Vλ, which is defined such that the ground-
state density nλ

0 is equal to the real, physical density n0 for any λ ∈ [0, 1]

Hλ = T + Vλ + λVee . (2.3.1)

The case λ = 1 corresponds to the interacting system with Vλ=1 = V and λ = 0 to
the non-interacting KS system with Vλ=0 = V KS.

By subtracting the total energy of the KS system from the interacting one, an
expression for the exchange-correlation energy Exc

Exc [n] = E [n] − EKS [n] − 1

2

∫∫

d3rd3r′
n(r)n(r′)

|r − r′|

−
∫

d3r V (r)n(r) +

∫

d3r V KS(r)n(r) (2.3.2)

is obtained. The energy difference of the interacting and the KS system can be
evaluated alternatively by calculating the derivative of the ground-state energy of
the fictitious system with respect to λ

dE(λ)

dλ
=

d

dλ
〈Ψλ|Hλ |Ψλ〉 (2.3.3)

= 〈Ψλ|
d

dλ
Hλ |Ψλ〉

= 〈Ψλ|Vee |Ψλ〉 +
d

dλ

∫

d3r Vλ(r)n(r) ,

where the Hellman-Feynman theorem has been applied and Ψλ denotes the many-
electron ground-state wave function of Hλ, and subsequent integration. Combining
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equations (2.3.2) and (2.3.3) yields an exact expression for the exchange-correlation
energy

Exc =

∫ 1

0

dλ 〈Ψλ|Vee |Ψλ〉 −
1

2

∫

d3rd3r′
n(r)n(r′)

|r − r′| (2.3.4)

=

∫ 1

0

dλ Exc,λ

where

Exc,λ = 〈Ψλ|Vee |Ψλ〉 −
1

2

∫

d3rd3r′
n(r)n(r′)

|r − r′| . (2.3.5)

For a better understanding the expression (2.3.4) is represented in terms of the
exchange-correlation hole nh

xc(r, r
′) [29, 30]. For this we define the λ-dependent pair-

density nλ
2(r, r

′)

nλ
2(r, r

′) = 〈Ψλ|
∑

i,j
i6=j

δ(r − ri)δ(r
′ − rj) |Ψλ〉 (2.3.6)

and the λ-dependent exchange-correlation hole

nh
xc,λ(r, r

′) =
nλ

2(r, r
′) − n(r)n(r′)

n(r)
. (2.3.7)

The exchange-correlation hole nh
xc(r, r

′) itself is a coupling-constant average

nh
xc(r, r

′) =

∫ 1

0

dλ nh
xc,λ(r, r

′) (2.3.8)

and it fulfills the sum-rule
∫

d3r′ nh
xc(r, r

′) =

∫

d3r′ nh
xc,λ(r, r

′) = −1 . (2.3.9)

With these definitions we can write

Exc =
1

2

∫∫

d3rd3r′
n(r)nh

xc(r, r
′)

|r − r′| (2.3.10)

=
1

2

∫∫

d3rd3r′
n(r)nh

xc(r, r − r′)

|r′| .

Thus Exc results from the interaction of the electrons with their exchange-correlation
hole. The hole is created on the one hand by the Coulomb repulsion and on the other
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hand by the Pauli principle, which separates electrons of the same spin in space.
Both equivalent representations of the exchange-correlation energy Exc, equation

(2.3.4) and (2.3.10), are the basis to construct approximate expressions.

2.4 Hybrid functionals

The construction of hybrid functionals is motivated by expression (2.3.4). The inte-
grand Exc,λ at λ = 0 corresponds to the Hartree-Fock exchange-energy expression

Ex = −1

2

∑

i,j

∫∫

d3rd3r′
φ∗

i (r)φj(r)φ
∗
j(r

′)φi(r
′)

|r− r′| (2.4.1)

evaluated with KS orbitals, because the many-electron wave function Ψλ=0 is a single
Slater determinant Φ of KS orbitals {φi}. As a consequence exact exchange is a fun-
damental ingredient of the exchange-correlation functional. The class of functionals,
which are combinations of a local or a semi-local and an exact-exchange part, are
called hybrid functionals.

The simplest way to approximate the integrand (2.3.5) is a linear interpolation

Exc,λ = Exc,λ=0 + λ (Exc,λ=1 − Exc,λ=0) , (2.4.2)

which gives

Exc =
1

2
(Exc,λ=1 + Exc,λ=0) =

1

2
(Exc,λ=1 + Ex) . (2.4.3)

At or near λ = 1 the exchange-correlation hole nh
xc,λ is deeper because of the full

electron-electron interaction strength and thus more localized. It has been shown
in Ref. 31, that local or semi-local approximations for the exchange-correlation en-
ergy describe the exchange-correlation hole nh

xc(r, r − r′) accurately for small r − r′.
Consequently, they are especially suited for the λ = 1 end of the integral and one
obtains

Exc =
1

2
(EDF

xc + Ex) , (2.4.4)

where DF denotes any local or semi-local density functional. This approximation
has been proposed by Becke [7] with EDF

xc = ELDA
xc and it is known as ’half-and-half

mixing’.
In order to further improve the approximation for Exc, a detailed understanding of

the λ dependence of the integrand Exc,λ is necessary. For the homogeneous electron
gas it can be calculated exactly (s. Fig. 2.1). For high densities the curve is nearly
linear in λ. Its curvature becomes larger for smaller densities.

Perdew et al. [32] interpolate the λ dependence of the integrand between λ = 0
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(a) high-density limit (b) low-density limit

Figure 2.1: The λ dependence of the exchange-correlation energy per particle for
the uniform electron gas, where rs denotes the Wigner-Seitz radius(

rs =
(

3
4πn

)1/3
)

. Graphs are taken from Ref. 29.

and λ = 1 by

Exc,λ = EDF
xc,λ +

(
Ex − EDF

x

)
(1 − λ)n−1 (2.4.5)

with

EDF
x = EDF

xc,λ=0 . (2.4.6)

By reformulating the scaling of the electron-electron interaction as a scaling of the
space coordinates of the many-electron system [33–35], one obtains

Exc,λ [n] =
d

dλ

{

λ2Exc

[
n( r

λ
)

λ3

]}

. (2.4.7)

With the consequence that for any density functional EDF
xc there exists a coupling-

constant representation EDF
xc,λ. The functional form (2.4.5) guarantees, that the inte-

grand is identical to its exact expression Ex at λ = 0 and to the density-functional
approximation EDF

xc,λ at λ = 1, where it is supposed to be accurate. The integer n
determines how rapid Exc,λ tends to EDF

xc,λ for λ → 1. It is argued, that the inte-
ger n should be the lowest order of Møller-Plesset (MP) perturbation theory, which
provides a realistic description of the many-electron system. For a large class of ma-
terials Møller-Plesset perturbation theory of fourth order (MP4) gives very accurate
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results. Thus, one obtains

Exc = EDF
xc +

1

4

(
Ex − EDF

x

)
. (2.4.8)

With EDF
xc = EPBE

xc this defines the PBE0 functional.
Becke [8] further proposed a generalized, semi-empirical approximation for Exc of

the form

ELDA
xc + a0(Ex − ELDA

x ) + ax∆EB88
x + ac∆Ec . (2.4.9)

Here, in contrast to equation (2.4.4) also gradient corrections for correlation ∆Ec

and exchange ∆EB88
x , in particular the Becke88 exchange functional [36], are taken

into account. The three parameters a0, ax and ac are determined by a fit to the 56
atomization energies, 42 ionization energies, 8 proton affinities and the 10 first-row
total atomic energies of the molecules of the G1 database [37]. Equation (2.4.9)
fulfills the homogeneous electron-gas limit, if the same applies for the correlation
functional.

Originally, Becke proposed to use the PW91-functional [38] for ∆Ec. Another
variant is the famous B3LYP functional, which uses the Lee-Yang-Parr functional
[39].

In practice, hybrid functionals are typically not applied within the KS density-
functional formalism. Instead, a Hartree-Fock density-functional or generalized KS
(gKS) formalism is applied (s. Sec. 2.5). This leads to Hartree-Fock-like equations
for the orbitals {φi}

[

−1

2
∆ + V gKS(r)

]

φi(r) − a
∑

k

∫

d3r′
φ∗

k(r
′)φi(r

′)

| r − r′ | φk(r) = εiφi(r) , (2.4.10)

where V gKS is the effective potential of the gKS system and

a = 1/2 for equation (2.4.4)
a = 1/4 for equation (2.4.8)
a = a0 for equation (2.4.9) .

For the treatment of hybrid functionals within the KS formalism a local effective
potential V KS(r) is required. In the framework of the optimized-effective-potential
(OEP) [40, 41] method a local effective potential is generated from an orbital-
dependent exchange-correlation functional, e.g. Ex. However, this scheme is rather
complex mathematically and numerically .
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2.5 Generalized Kohn-Sham scheme

It is sometimes argued, that the treatment of hybrid functionals according to (2.4.10)
is outside the realm of density-functional theory at all. This is not correct. It is
outside the KS formalism. In the KS formalism the universal functional is written as
a sum of the Hartree energy, the exchange-correlation energy and the kinetic energy
of a non-interacting electron system

TKS [n] = minΦ→n 〈Φ|T |Φ〉 , (2.5.1)

which finally leads to tractable one-particle equations. The minimization Φ → n is
over single Slater determinants Φ yielding the density n. As the separation (2.2.1) is
arbitrary, one can define a different partitioning of the universal functional F , leading
to the gKS system2 [42]. For hybrid functionals we write

F [n] = minΦ→n 〈Φ|T + aVee |Φ〉 + (1 − a)UH [n] + EgKS
xc [n]

= minΦ→n [〈Φ|T |Φ〉 + aEx + aUH [n]]
︸ ︷︷ ︸

:=S[n]

+(1 − a)U [n] + EgKS
xc [n] ,(2.5.2)

where a ∈ [0, 1] is a parameter, UH [n] denotes the Hartree energy and EgKS
xc [n]

subsumes missing exchange-correlation effects, that are not already contained in S [n].
Application of the Hohenberg-Kohn variational principle to (2.5.2) yields

δS

δn
+ (1 − a)VH +

δEgKS
xc

δn
+ V (r) − µ′ = 0 . (2.5.3)

This Euler-Lagrange equation is formally equivalent to that obtained for a system,
with an external potential

V gKS(r) = VH(r) + V gKS
xc (r) + V (r) , (2.5.4)

where

V gKS
xc (r) =

δEgKS
xc

δn(r)
, (2.5.5)

and an orbital-dependent exact-exchange potential. Thus the one-particle wave func-
tions, building up the Slater determinant, are solutions of Hartree-Fock-like equations

[

−1

2
∆ + V gKS(r)

]

φi(r) − a
∑

k

∫

d3r′
φ∗

k(r
′)φi(r

′)

| r − r′ | φk(r) = εiφi(r) , (2.5.6)

2Note that in contrast to the KS system the gKS system is not defined uniquely.
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and the density is obtained by (2.2.7).
If one chooses a = 0, the gKS scheme corresponds to the KS formalism. For a = 1 a
HF scheme with DFT correlation is obtained. Any value in-between defines a hybrid
functional.

Strictly speaking the treatment of hybrid functionals in the above defined gKS
system contains an inconsistency, because the KS coupling-constant integration ex-
pression for Exc is used to find the parameter a and the local exchange-correlation
functional of the gKS system. However, an analogous calculation (s. Appendix A) as
in the coupling-constant integration method for the KS system yields a corresponding
expression for the gKS system

EgKS
xc =

∫ 1

0

dλExc,λ − aEgKS
x +

〈
ΦKS

∣
∣T
∣
∣ΦKS

〉
−
〈
ΦgKS

∣
∣T
∣
∣ΦgKS

〉
, (2.5.7)

where Exc,λ is defined as in equation (2.3.5) and EgKS
x denotes the exact-exchange

energy evaluated with the gKS Slater determinant ΦgKS. In fact, this expression
should be the basis for approximations to EgKS

xc . If the difference between the KS
and the gKS Slater determinant is neglected, (2.5.7) becomes

EgKS
xc =

∫ 1

0

dλExc,λ − aEx , (2.5.8)

which justifies the above described treatment.

2.6 Self-interaction and discontinuity of Exc

Hybrid functionals, that contain exact exchange explicitly, are especially suited to
describe the electronic structure of molecules, semiconductors and localized d- and
f -electrons [8, 13–15]. Two special features of the exchange term distinguish them
from local or semi-local functionals: a partial compensation of the electronic self-
interaction and the non-vanishing discontinuity of the exchange-correlation potential
at integral particle numbers.

Due to the separation of the Hartree energy UH [n] (s. Eq. (2.2.1)) and the only
approximate treatment of exchange in local or semi-local exchange-correlation func-
tionals the total energy E [n] contains an unphysical self-interaction. This means
that the electron wave function φi is determined by an electrostatic potential which
is partly created by itself. The usage of exact exchange Ex [n] in hybrid functionals
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partially compensates the unphysical self-interaction

Vx(r) := −
∑

j

∫

d3r′
φ∗

j(r
′)φi(r

′)

|r − r′| φj(r)

= −
∫

d3r′
φ∗

i (r
′)φi(r

′)

|r− r′| φi(r) −
∑

j 6=i

∫

d3r′
φ∗

j(r
′)φi(r

′)

|r − r′| φj(r) . (2.6.1)

Furthermore, the functional Ex [n] is discontinuous at integral particle numbers,
which is necessary for an improved determination of band gaps in semiconductors or
insulators. This fact is discussed in the following.

In principle, the energy spectrum of the Kohn-Sham system has no physical mean-
ing, because it is the spectrum of an auxiliary non-interacting system. But the band
structure is often qualitatively similar to the band structure of the real material.
Quantitatively LDA and GGA band gaps for semiconductors calculated by the en-
ergy difference of the lowest unoccupied KS state and highest occupied state are
roughly 50% too small.

The band gap of a semiconductor or an insulator can be expressed by the ground-
state energies of the N − 1, N and N + 1 electron systems

Egap = E(N − 1) − E(N) − (E(N) − E(N + 1))

=
E(N − 1) − E(N)

N − 1 − N
+

E(N + 1) − E(N)

N + 1 − N
, (2.6.2)

which is the energy difference between ionization energy and electron affinity. Since
systems with N � 1 are regarded, the fractions in (2.6.2) can be understood as the
right- and left-hand side derivatives of E with respect to N . By using the definition
of the chemical potential µ(N) = ∂E(N)

∂N
the band gap can be expressed in terms of µ

Egap = −µ(N − 0) + µ(N + 0) , (2.6.3)

where ±0 denote the derivatives from the right and left, respectively. Furthermore,
the Lagrange parameter µ′ introduced in (2.1.5) is identical to the chemical potential

µ(N) =
∂E(N)

∂N
=

∫

d3r
δE[n]

δn(r)

∣
∣
∣
∣
n=n0,N

︸ ︷︷ ︸

µ′(N)

∂n(r)

∂N
= µ′(N) . (2.6.4)

Hence the band gap results from the discontinuity of the functional derivative of E
with respect to n

Egap =
δE[n]

δn(r)

∣
∣
∣
∣
n=n0,N+0

− δE[n]

δn(r)

∣
∣
∣
∣
n=n0,N−0

. (2.6.5)
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The addition of an electron to the N electron system (N � 1) only leads to an
infinitesimal change in the density. So the changes in the total energy

E = TKS +
1

2

∫∫

d3rd3r′
n(r)n(r′)

|r− r′| +

∫

d3r′ V (r′)n(r′) + Exc (2.6.6)

can only arise from a discontinuity in T KS and Exc.
This argumentation is also valid for the KS system. However, the band gap in the

KS system with the total energy

EKS = TKS +

∫

d3r′ V KS(r′)n(r′) (2.6.7)

can only be caused by the discontinuity of T KS at integral particle numbers, which
results from the different shape of the KS wave function of the highest occupied and
lowest unoccupied state in band-gap materials

εKS
N+1 − εKS

N =
δTKS

δn

∣
∣
∣
∣
N+0

− δTKS

δn

∣
∣
∣
∣
N−0

. (2.6.8)

Finally, the band gap of the physical system can be expressed in terms of the KS
band gap and the discontinuity ∆xc of the exchange-correlation energy

Egap = εKS
N+1 − εKS

N + ∆xc . (2.6.9)

Thus the underestimation of the band gap calculated by the difference of the lowest
unoccupied and highest occupied KS state can be attributed on the one hand to the
approximations for Exc and on the other hand to the neglect of the discontinuity
∆xc. LDA and GGA functionals do not contain a discontinuity ∆xc, because they
are analytic functionals of the density.

The exact-exchange expression Ex is orbital-dependent as the kinetic energy T KS

and so it also exhibits a discontinuity, which adds to the gKS band gap

EgKS
gap =

δTKS

δn

∣
∣
∣
∣
N+0

− δTKS

δn

∣
∣
∣
∣
N−0

+ a
δEx

δn

∣
∣
∣
∣
N+0

− a
δEx

δn

∣
∣
∣
∣
N−0

= εKS
N+1 − εKS

N + a
δEx

δn

∣
∣
∣
∣
N+0

− a
δEx

δn

∣
∣
∣
∣
N−0

. (2.6.10)

It must be noted that although it is expected that the gKS scheme should provide
better band gaps, the gKS eigenspectrum is still the spectrum of an artificial system.
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There is a variety of numerical methods to solve the KS equations (2.2.6). Most
methods rely on the representation of the KS wave functions in a basis set {χ},
which is adapted to the physical problem. In this way the differential KS equation
is cast into an algebraic one

∑

G

HG′G(k)zG(n,k) = εn,k

∑

G

SG′G(k)zG(n,k) (3.0.1)

where

HG′G(k) =

∫

d3r χ∗
k,G′(r)

[

−1

2
∇2 + V KS(r)

]

χk,G(r) (3.0.2)

SG′G(k) =

∫

d3r χ∗
k,G′(r)χk,G(r) (3.0.3)

φn,k(r) =
∑

G

zG(n,k)χk,G(r) (3.0.4)

and k denotes the k point and n the band index. In general the overlap matrix SG′G

is not diagonal and therefore equation (3.0.1) represents a generalized eigenvalue
problem

Hz = εSz . (3.0.5)

From the large spectrum of electronic-structure methods we describe the linearized
augmented-plane-wave (LAPW) method, which has been used in this work, and its
precursor, the APW method, as well as numerical aspects of a practical implemen-
tation.

3.1 APW method

The basis set {χ} should be chosen according to the system at hand. Since our main
interest is in periodic systems, one could, inspired by the Bloch theorem, choose plane
waves. In this basis each power of the momentum operator is diagonal, in particular
the kinetic energy. The Hartree potential is obtained by a simple algebraic expression.
However, near the atom cores the wave functions vary rapidly. Consequently, its
accurate representation requires a large number of plane waves. This can be avoided
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Figure 3.1: Division of space into muffin-tin (MT) spheres and the interstitial region
(IR) .

by using so-called pseudo-potentials, i.e., effective potentials created by the atomic
nuclei and the core electrons. In a full-potential approach, where core electrons are
treated on the same footing as valence electrons, the use of a plane-wave basis set is
impractical due to the large number of basis functions needed to achieve convergence.

Taking into account that the potential is nearly spherical around the atomic nucleus
and relatively smooth between the atoms, it is natural to divide the space into two
regions, the muffin-tin (MT) spheres, that are centered at the atom positions, and
the interstitial region (s. Fig. 3.1). In the APW method solutions of the scalar-
relativistic, spherical Schrödinger equation are used as basis functions in the MT
spheres and plane waves are used in the IR. For a non-spin-polarized system with a
single-atom basis the APW basis in the unit cell can be written as

χk,G(r) =

{
1√
NΩ

exp [i (k + G) r] r ∈ IR
1√
N

∑

lm alm(k,G)ul(r)Ylm(r) r ∈ MT
, (3.1.1)

where Ω is the unit-cell volume, N the number of unit cells, ul the radial solution of
the spherical Schrödinger equation1

{

− d2

dr2
+

l(l + 1)

r2
+ V (r) − El

}

rul(r) = 0 (3.1.2)

1For simplicity we give the non-relativistic equations here.
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to the energy parameter El. The coefficients alm(k,G) are determined by requiring
continuity of the basis function on the sphere boundary yielding the coefficients

alm(k,G) =
4πil√

Ωul(RMT)
jl (|k + G|RMT)Y ∗

lm(k + G) , (3.1.3)

where the Rayleigh expansion

exp [i (k + G) r] = 4π
∑

lm

iljl(|k + G|r)Y ∗
lm(k + G)Ylm(r) (3.1.4)

has been used and RMT denotes the sphere radius.
If the denominator of (3.1.3) vanishes, numerical problems can occur (asymptote
problem). A further difficulty of the APW method is caused by the lack of variational
freedom of the χk,G in the MT region, which leads to the requirement that the energy
parameter El must equal the band energies. With this, equation (3.0.5) becomes
a non-linear equation in the energies. This makes the APW method difficult to
implement and computationally demanding.

3.2 LAPW method

The LAPW method solves the above mentioned essential problems of the APW
approach. The basis functions {χ} are modified in the MT region by adding a
second radial function, the energy derivative u̇l(r) of the radial function ul(r). So,
the basis functions in the unit cell take the form

χk,G(r) =

{
1√
NΩ

exp [i (k + G) r] r ∈ IR
1√
N

∑

lm [alm(k,G)ul(r) + blm(k,G)u̇l(r)]Ylm(r) r ∈ MT
,(3.2.1)

where the energy derivative is obtained from
{

− d2

dr2
+

l(l + 1)

r2
+ V (r) − El

}

ru̇l(r) = rul(r) . (3.2.2)

By requiring continuity of the basis functions (3.2.1) and their radial derivatives on
the MT sphere boundary the coefficients alm(k,G), blm(k,G) are fixed

alm(k,G) (3.2.3)

= 4πil
(

d
dr

u̇l(RMT) − i (k + G) u̇l(RMT)
)

ul(RMT) d
dr

u̇l(RMT) − u̇l(RMT) d
dr

ul(RMT)
jl (|k + G|RMT) Y ∗

lm(k + G)
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blm(k,G) (3.2.4)

= 4πil
(

d
dr

ul(RMT) − i (k + G)ul(RMT)
)

u̇l(RMT) d
dr

ul(RMT) − ul(RMT) d
dr

u̇l(RMT)
jl (|k + G|RMT)Y ∗

lm(k + G).

The addition of the energy derivative u̇l(r) in the MT region improves the flexibility
of the basis. With the consequence that solutions of the radial Schrödinger equation
(3.1.2) with energy ε can be synthesized up to an error of the order O [(ε − El)

2]

ul(ε, r) = u(El, r) + u̇l(El, r)(ε − El) + O
[
(ε − El)

2
]

. (3.2.5)

With this increased flexibility the energy parameters need not equal the band en-
ergies, which are then obtained from a linear generalized eigenvalue equation by a
single diagonalization. This is an enormous simplification compared to the APW
method.

Furthermore there is no asymptote problem in the LAPW approach. This can be
shown by using the equations (3.1.2), (3.2.2) and the normalization of ul(∫

drr2u2
l (r) = 1

)

[

− d2

dr2
+

l(l + 1)

r2
+ V (r) − El

]

f(r) = 0

[

− d2

dr2
+

l(l + 1)

r2
+ V (r) − El

]

g(r) = f(r)

⇒ −g
d2

dr2
f + f

d2

dr2
g = −f 2

⇒
∫ RMT

0

dr

[

−g
d2

dr2
f + f

d2

dr2
g

]

= −
∫ RMT

0

dr f 2

⇒ f(r)
d

dr
g(r) − g(r)

d

dr
f(r)

∣
∣
∣
∣
RMT

= −1

⇒ r2

(

ul(r)
d

dr
u̇l(r) − u̇l(r)

d

dr
ul(r)

)∣
∣
∣
∣
RMT

= −1 , (3.2.6)

where

f(r) = rul(r)

g(r) = ru̇l(r) . (3.2.7)

Equation (3.2.6) shows, that the denominator in (3.2.3) and (3.2.4) does not vanish.

The basis-set size can be controlled by the parameters G-cutoff gmax and l-cutoff
lmax. All G vectors inside a sphere around k with radius gmax and all contributions
in the MT region of angular momentum smaller than or equal lmax are taken into
account. Due to the matching conditions at the MT sphere there exists a connection
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between lmax, gmax and the MT radius RMT. Since a l-cutoff of lmax allows to represent
functions with maximum 2lmax nodes along a great circle around the MT sphere
(s. Fig. 3.2), i.e. lmax/πRMT nodes per distance, and a G-cutoff of gmax functions
with gmax/π nodes per distance, it makes sense to choose gmax, lmax and RMT such,
that the maximal number of nodes per distance is the same in the MT and IR. This
leads to the criterion

RMTgmax = lmax . (3.2.8)

3.2.1 Representation of density and potential

The rapid variations of the wave functions in the vicinity of the atoms are also seen
in the density n(r) =

∑occ.
n,k |φn,k(r)|2. In order to cope with them a dual representa-

tion for the density similar to that for the wave functions is necessary. Furthermore,
the fact that the density is invariant under symmetry operations can be exploited to
reduce the computational effort. This is achieved by choosing a symmetry-adapted
basis set: symmetrized plane waves in the IR, so-called stars, and symmetrized spher-
ical harmonics in the MT spheres, so-called lattice harmonics. The same applies for
the potential.

3.2.1.1 Stars

The stars [17] are symmetrized plane waves

φs(r) =
1

Nop

∑

{R,τ}
exp [iRG (r− τ )] , (3.2.9)

where Nop denotes the number of space-group elements {R, τ}, R denotes the rota-
tional part, τ the translational part. The so-defined stars are invariant under any
symmetry operation. All components of a star have the same |G|.

The stars can be constructed by calculating all G within the sphere of radius gs
max,

where the exact representation of the density n(r) within the IR requires a gs
max twice

as large as the gmax for the basis functions. Then the G’s are ordered according to
their length and those G’s of the same length are determined, which can be mapped
onto each other by symmetry operations. The number of stars is normally much
smaller than the number of plane waves.

3.2.1.2 Lattice harmonics

Inside the MT spheres an expansion in spherical harmonics multiplied by radial func-
tions is used. Symmetry adapted spherical harmonics, so-called lattice harmonics L
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Figure 3.2: Number of nodes of a spherical harmonic along a great circle. Figure
taken from Ref. 43.
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are generated by exploiting the site symmetry of the corresponding atom [17]. As
the application of a rotation does not change the l quantum number of the spherical
harmonic, the i-th lattice harmonics centered at atom Ra can be written as

Li,a(r − Ra) =
∑

m

ca
imYlm(r − Ra) . (3.2.10)

The coefficients ca
im are determined by requiring invariance under all symmetry op-

erations of the site symmetry and orthogonality of the lattice harmonics.

Symmetry-equivalent MT spheres exhibit the same charge density (potential) in-
side (except for a rotation). So, the representation for only one atom of a group
of equivalent atoms, the so-called representative atom, has to be calculated. The
representations for the other members of the group are either obtained by rotating
the representation of the representative atom explicitly. Or, if a local reference frame
in each MT sphere is defined, which rotates according to the symmetry operation,
which maps the representative atom to the atom under consideration, the expansion
coefficients are the same for all atoms of a group.

3.2.2 Poisson solver

The electrostatic potential V (r) consists of the Hartree potential

VH(r) =

∫

d3r′
n(r′)

|r − r′| (3.2.11)

and the nuclear potential. It can be determined by integrating the Poisson equation

∆V (r) = −4πntotal(r) , (3.2.12)

where ntotal(r) subsumes electronic and nuclear charge

ntotal(r) = n(r) +
∑

α

Zαδ(r − Rα) . (3.2.13)

In the case of a pure plane-wave basis the solution is trivial

V (G) =
4πntotal(G)

G2
. (3.2.14)

In order to determine the electrostatic potential V (r) in the FLAPW method, where
space is divided into MT spheres and the interstitial region, the density in the latter
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is extended over the whole space

ntotal(r) = nIR
total(r)Θ(r) + nMT

total(r) (1 − Θ(r))

= nIR(r) + ñMT(r) (1 − Θ(r)) , (3.2.15)

where

ñMT(r) = nMT
total(r) − nIR(r) (3.2.16)

Θ(r) =

{
1 , r ∈ IR
0 , r ∈ MT

. (3.2.17)

The electrostatic potential in the IR is created by the interstitial charge but also
by the MT multipole moments. Weinert [44] proposed to replace the charge in the
MT spheres by a smoother one, the so-called pseudo-charge, which has the same
multipole moments as ñMT and a convergent Fourier transformation. Otherwise the
choice of the pseudo-charge distribution is arbitrary. Usually the polynomial form

ñMT
pseudo(r) =

∑

lm

Qlm
1

Rl+3
MT

(
r

RMT

)l (

1 − r2

R2
MT

)N

Ylm(r) (3.2.18)

is chosen with a parameter N (typically N = 1
2
RMTgmax). The multipole moments

of the pseudo-charge are

qpseudo
lm =

√

4π

2l + 1

∫

d3r ñpseudo
MT (r)rlY ∗

lm(r)

=

√

4π

2l + 1

Qlm

Rl+3
MT

∫ RMT

0

dr rl+2

(
r

RMT

)l(

1 − r2

R2
MT

)N

=

√

4π

2l + 1
Qlm

∫ 1

0

dx x2l+2
(
1 − x2

)N

= Qlm
2NN ! (2l + 1)!!

(2l + 2N + 3)!!
. (3.2.19)

The coefficients Qlm are chosen in such a way that the multipole moments of the
pseudo-charge qpseudo

lm are identical to the moments qlm of the charge ñMT(r). Thus
the potential V in the IR can be computed via (3.2.14) for the density nIR(r) +
ñpseudo

MT (r)Θ(r ∈ MT) .

As the IR potential is now given on the sphere boundary, the determination of
the potential in the MT spheres constitutes a spherical boundary problem in each
sphere for the true electronic charge density. This problem is solved by using the
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Green-function approach [45]

V MT(r) =

∫

MT

d3r′ nMT(r′)G(r, r′) − R2
MT

4π

∮

MT

dΩ V (r′)
∂G

∂n′ , (3.2.20)

where the Green function G(r, r′) for the spherical geometry is given by

G(r, r′) = 4π
∑

lm

Ylm(r′)Ylm(r)

2l + 1

min(r, r′)l

max(r, r′)l+1

(

1 −
(

max(r, r′)

RMT

)2l+1
)

. (3.2.21)

Finally, the MT potential is expanded into lattice harmonics

V MT(r) =
∑

i

VMT,i(r)Li(r) (3.2.22)

and the potential of the nucleus Zα/r is added to the spherical component.

3.2.3 Exchange-correlation potential

The computation of the local or semi-local part of the exchange-correlation potential
Vxc must be performed in real space, because it is in general a non-linear function of
the density. The calculation principally consists of three steps

• calculation of the density at the points of a real-space grid

• evaluation of the exchange-correlation potential at the real-space grid points

• representation of Vxc in stars and lattice harmonics.

In the IR the transformation of the density from a plane-wave basis to a real space
grid and vice-versa is performed by a fast Fourier transformation [46].

In the MT spheres the radial part of the density is already stored on a radial mesh.
However, the lattice harmonics must be evaluated at each mesh point. Then Vxc is
computed at each discrete point and its representation in radial functions multiplied
by lattice harmonics is determined [17].

3.2.4 Core electrons

The radial functions ul and u̇l of the LAPW basis set are orthogonal to any other
radial solution u of (3.1.2) with a different energy parameter and with a vanishing
value on the MT sphere boundary and beyond as it is approximatively the case for
core electrons. This can be shown by subtracting the radial Schrödinger equations
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for u and ul as well as for u and u̇l, respectively

(E − El) r2uul = ru
d2

dr2
rul − rul

d2

dr2
ru

(E − El)

∫ MT

0

dr r2uul = ru
d

dr
rul

∣
∣
∣
∣

MT

0

− rul
d

dr
ru

∣
∣
∣
∣

MT

0

= 0 (3.2.23)

(E − El) r2uu̇l = r2uul + ru
d2

dr2
ru̇l − ru̇l

d2

dr2
ru

(E − El)

∫ MT

0

dr r2uu̇l =

∫ MT

0

dr r2uul + ru
d

dr
ru̇l

∣
∣
∣
∣

MT

0

− ru̇l
d

dr
ru

∣
∣
∣
∣

MT

0

= 0 . (3.2.24)

Because of this orthogonality the LAPW basis cannot describe the core electrons.
Due to their spatial confinement it is justified to treat them atomic-like, by solving
the fully relativistic Dirac equation with the spherical part (l = 0) of the potential.
For example for Silicon the 1s1/2, 2s1/2, 2p1/2 and 2p3/2 electrons are considered as
core electrons.

However, high-lying core states (e.g. 3d electrons in GaAs), so-called semi-core
states, whose wave functions extend considerably over the MT sphere boundary can-
not be described well neither as core nor as valence electrons in a normal LAPW
approach. In order to make an accurate description of these states possible, local
orbitals (lo) are added to the LAPW basis set.

3.2.5 Local Orbitals

As discussed in the previous section for the correct treatment of semi-core states
additional basis functions, local orbitals (lo), are needed in the corresponding MT
sphere [47]. Their radial part is constructed by linear combinations of ul(El), u̇l(El)
and a third radial function ul(E

lo
l ) with an additional energy parameter E lo

l

ulo
l (r) = alo

l ul(r, El) + blo
l u̇l(r, El) + clo

l ul(r, E
lo
l ) , (3.2.25)

so that ulo
l and dulo

l /dr vanish on the MT boundary and ulo
l is normalized. These

three conditions determine the coefficients alo
l , blo

l and clo
l uniquely. Finally, the basis

functions added to the LAPW basis at atom a have the form

χlo,a
k,lm(r) =

1√
N

∑

T

ulo
l (|r − Ra − T|)Ylm(r − Ra − T) exp [ikT] . (3.2.26)

The local orbitals χlo,a
k,lm can be used very specifically, e.g., if one wants to describe the

3d semi-core states of Ga in GaAs correctly only local orbitals with d character at
the Gallium atom must be added to the basis set. As a result the number of LAPW



3.2 LAPW method 29

basis functions only increases by 2l + 1 local orbitals per equivalent atom.
In the case of a system with inversion symmetry local orbitals are desirable, which

obey the relation
χlo(−r) = χlo(r)∗, (3.2.27)

in order to obtain a real Hamiltonian2. This can be achieved by constructing linear
combinations over all local orbitals of the same atom type α

χlo,α
k,Glo(r) =

∑

a∈α

∑

T

∑

m

clo,a
lm ulo

l (|r − Ra − T|)Ylm(r − Ra − T) exp [ikT] , (3.2.28)

and matching these to virtual plane waves which have zero amplitude

clo,a
lm =

1√
V

4π exp
[
i(k + Glo)Ra

]
iljl(|k + Glo|RMT)Y ∗

lm(R(k + Glo)) . (3.2.29)

R denotes the rotation which maps the global frame to the local one attached to
the MT centered at Ra (cf. Eq. (3.1.3)). The Bessel function does not influence the
angular behavior and can be omitted. The Glo are chosen in such a way that the
local orbitals are linearly independent.

3.2.6 Brillouin-zone integration

Summing up all occupied states is necessary for the calculation of several quantities,
e.g. the density n(r) =

∑

k,εn(k)≤EF
|φn,k(r)|2 or the eigenvalue sum

∑

k,εn(k)≤EF
εn,k.

In an infinite system these sums involve an integral over the Brillouin zone (BZ)

∑

k,εn(k)≤EF

fn(k) → 1

VBZ

∫

εn(k)≤EF

d3k fn(k) . (3.2.30)

The integration over the reciprocal space can be calculated numerically by using for
example the tetrahedron [48] or the special points method [49]. In both approaches
the integral is replaced by a weighted sum

∑

n,k w(n,k)fn(k).

2 Let I be the inversion operator, H be the Hamiltonian of a system with inversion symmetry and
χk,G(−r) = χ∗

k,G(r) be valid. Then I commutes with H and the matrix elements of H in the
basis {χk,G} are real symmetric:

〈χk,G |H |χk,G′〉 = 〈χk,G |IHI |χk,G′〉
=

〈
χ∗

k,G |H |χ∗

k,G′

〉

= 〈χk,G′ |H |χk,G〉
= (〈χk,G |H |χk,G′〉)∗ .
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3.2.7 Self-consistency

Since the local potential of the KS system depends on the density itself the KS
equations must be solved self-consistently. That means, starting with a suitably
chosen density n1, for example a superposition of atomic densities, the potential is
set up, the KS equations are solved and a new density n2(r) =

∑occ.
n,k |φn,k(r)| is

constructed. These steps formally define a mapping

nm+1(r) = F [nm(r)] . (3.2.31)

It is iterated until the integrated square of the difference between output and input
densities is smaller than a given threshold (usually 10−4 − 10−6me/Bohr3).

However in practice this scheme is often divergent. In order to achieve convergence
the output density has to be mixed with the input density. Different mixing schemes
are available, like simple mixing and Broyden mixing of first and second kind. In the
first case the new density is constructed by a linear combination of the input and
output density

nm+1(r) = (1 − α)nm(r) + αF [nm(r)] (3.2.32)

with the mixing parameter α. Simple mixing provides a linear convergence, that
means

|δnm+1|
|δnm|

≤ const. , (3.2.33)

where δnm denotes the distance of the density of the m-th iteration from the unknown
fix-point n0

δnm = nm − n0 . (3.2.34)

The Broyden mixing schemes belong to the so-called quasi-Newton methods. They
base on the idea to find the zero point of the mapping

F̃ [n] = F [n] − n . (3.2.35)

When the density is expanded into a set of basis functions, it can be represented by a
coefficient vector. So, equation (3.2.35) can be regarded as a function mapping from
CN to CN , where N denotes the number of basis functions. In order to find the zero
point of the mapping it is expanded around the approximate solution nm

F̃ [n] = F̃ [nm] + J(n − nm) , (3.2.36)

where J denotes the Jacobian. In analogy to the Newton method in one dimension
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n(r)

V KS = V ext + VH + Vxc

[
−1

2
∇2 + V KS

]
φi(r) = εiφi(r)

εi, φi(r)

nnew(r) =
∑occ.

i |φi(r)|2

‖nnew(r) − n(r)‖ < ε

nnew(r)

generate start den-
sity from atomic so-
lutions Yes

No

Construct V KS

Solving Kohn-Sham eq.
Calculate new density

Check convergency

Mix nnew, n

Self-consistency

Figure 3.3: Schematic program process

the approximation nm+1 is obtained by the condition

F̃ [nm+1] = 0

⇒ nm+1 = nm − J−1F̃ [nm] . (3.2.37)

The difficulty in this method arises in the setting up and inversion of the Jacobian
J . In the quasi-Newton methods it is set up approximately and improved in each
iteration step. Quasi-Newton methods converge super-linearly

|δnm+1|
|δnm|

→ 0 . (3.2.38)

A detailed discussion of the different methods can be found in [50].
Finally the numerical process of the self-consistency loop is schematically illus-

trated in Figure 3.3 .
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potential

As discussed in chapter 2 the non-local exchange potential is an important ingredient
in hybrid functionals, which in the gKS scheme lead to one-particle equations of the
form
(

−1

2
∇2+V σ

gKS(r)

)

φσ
n,k(r)−a

occ.∑

n′,q

∫

d3r′
φσ∗

n′,q(r
′)φσ

n,k(r
′)

| r − r′ | φσ
n′,q(r)= εσ

n,kφ
σ
n,k(r) , (4.0.1)

where from now on we also take into account the electron spin σ. In the LAPW basis
{
χσ

k,G

}
the differential equation becomes an algebraic one

∑

G

[
Hσ

G′G(k) + aV σ
x,G′G(k)

]
zσ
G(n,k) = εσ

n,k

∑

G

Sσ
G′G(k)zσ

G(n,k) (4.0.2)

with the exact-exchange matrix

V σ
x,G′G(k) = −

occ.∑

n′,q

∫∫

d3rd3r′
χσ∗

k,G′(r)φσ
n′,q(r)φ

σ∗
n′,q(r

′)χσ
k,G(r′)

| r − r′ | . (4.0.3)

While straightforward in Gaussian and plane-wave basis sets, its efficient imple-
mentation in the highly accurate LAPW method is still a challenge. In order to
illustrate the effort for the computation of one matrix element V σ

x,G′G(k) within the
LAPW method, the number of double integrals, which must be evaluated, is esti-
mated. The double integral (4.0.3) can be decomposed into
∫

MT

d3r

∫

MT

d3r′... +

∫

MT

d3r

∫

IR

d3r′... +

∫

IR

d3r

∫

MT

d3r′... +

∫

IR

d3r

∫

IR

d3r′... .

For Silicon with lmax = 8, gmax = 3.6 Htr and a lattice constant of 5.43Å the basis
set
{
χσ

k,G

}
consists of 222 elements. The number of double integrals for the different

combinations split up into

•
∫

MT
d3r
∫

MT
d3r′...: 1624 integrals

•
∫

MT
d3r
∫

IR
d3r′... &

∫

IR
d3r
∫

MT
d3r′...: 1622 · 222 integrals
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•
∫

IR
d3r
∫

IR
d3r′...: 2222 integrals .

In total 700.449.156 integrals must be evaluated to obtain one matrix element V σ
x,G′G(k)

not including the summation over the Brillouin zone (BZ).
Therefore an efficient algorithm is needed to reduce the effort for computing the

exchange term. One possibility is to generalize the Poisson solver (s. Sec. 3.2.2), since
the product φσ∗

n′,q(r
′)χσ

k,G(r′) can be regarded as an artificial density n̂(r′), which is
in general complex and does not show the symmetry of the crystal. A generalization
of the Poisson solver permits to calculate the integral

∫

d3r′
φσ∗

n′,q(r
′)χσ

k,G(r′)

|r − r′| . (4.0.4)

A detailed discussion of this approach can be found in Ref. 51.

We use a different approach. It is based on the representation of the product
φσ

n′,q(r)χ
σ∗
k,G(r) in a specifically designed basis {M}. In this way, the computation of

the exchange potential V σ
x,G′G becomes a BZ sum over vector-matrix-vector products

V σ
x,G′G(k) (4.0.5)

= −
occ.∑

n′,q

∑

IJ

〈

φσ
n′,k+q

∣
∣
∣χσ

k,GM̃q,I

〉〈

Mq,I

∣
∣
∣
∣

1

|r − r′|

∣
∣
∣
∣
Mq,J

〉〈

M̃q,Jχσ
k,G′

∣
∣
∣φσ

n′,k+q

〉

where
{

M̃
}

is the biorthogonal basis. The Coulomb matrix [52]

CIJ(q) =

〈

Mq,I

∣
∣
∣
∣

1

|r − r′|

∣
∣
∣
∣
Mq,J

〉

=

∫∫

d3rd3r′
M∗

q,I(r)Mq,J(r′)

|r− r′| , (4.0.6)

has to be calculated only once at the beginning of a calculation: instead of calculating
the double integral (4.0.3) in each self-consistency step for all combinations of G, G′,

k, q and n′ only the projection
〈

M̃q,Jχσ
k,G

∣
∣
∣φσ

n′,k+q

〉

, a single integral, has to be
evaluated.

We compute the exchange potential (4.0.3) in the space of the wave functions
and subsequently transform it to the LAPW basis. This procedure simplifies the
treatment of the Γ point (s. Sec. 4.3) and permits to eliminate negligible contributions
to the exchange matrix, which will speed up calculations considerably (s. Ch. 5).

For the transformation a relation between basis and wave functions is needed.
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Equation (3.0.4) can be formally written as

φσ(k) = T σT

(k) χσ(k) (4.0.7)

with

T σ(k) =






zσ
G1

(n1,k) . . . zσ
G1

(nN ,k)
...

. . .
zσ
GN

(n1,k) zσ
GN

(nN ,k)




 (4.0.8)

χσ(k) =






χσ
G1

(k)
...

χσ
GN

(k)




 φσ(k) =






φσ
n1,k
...

φσ
nN ,k




 . (4.0.9)

Due to the orthogonality of the wave functions

T σT∗

SσT σ = 1 (4.0.10)

the inverse of T is

T σ−1

= T σT∗

Sσ . (4.0.11)

Thus, the transformation is given by

V σ
x,G′G(k)

=−
occ.∑

n′,q

∫∫

d3rd3r′
χσ

k,G(r)φσ∗
n′,k+q(r)φ

σ
n′,k+q(r

′)χσ∗
k,G′(r′)

|r− r′| (4.0.12)

=−
∑

n1,n2

T σ−1

n1,G(k)

occ.∑

n′,q

∫∫

d3rd3r′
φσ

n1,k(r)φ
σ∗
n′,k+q(r)φ

σ
n′,k+q(r

′)φσ∗
n2,k(r

′)

|r − r′| T σ−1∗

n2,G′(k)

and (4.0.5) becomes

V σ
x,n1n2

(k) (4.0.13)

= −
occ.∑

n′,q

∑

IJ

〈

φσ
n′,k+q

∣
∣
∣φσ

n1,kM̃q,I

〉〈

Mq,I

∣
∣
∣
∣

1

|r − r′|

∣
∣
∣
∣
Mq,J

〉〈

M̃q,Jφσ
n2,k

∣
∣
∣φσ

n′,k+q

〉

.

It should be noted, that the transformation maps the exchange potential on the
LAPW basis functions of the previous self-consistency cycle instead of on the current
basis. In the limit of convergence this inconsistency vanishes. Its influence on the
convergence behavior has been examined by inserting a projector
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∑

G

|χk,G〉 〈χk,G| (4.0.14)

on the actual basis set. With this the exchange potential is approximately trans-
formed on the current basis set. However, we have observed only little changes in
the convergence behavior or in the converged results.

4.1 Construction of the mixed basis

A good basis set {M} for representing the products of wave functions should be
provided by MT and interstitial functions, each constructed from products of the
corresponding parts in the LAPW basis functions. In contrast to the LAPW basis
set the interstitial functions are not combined with those in the MT spheres to build
continuous functions all over the space. Instead, they are simply grouped together
in a mixed basis [53].

4.1.1 Muffin-tin region

Within the MT region of a given atom a the product of two LAPW basis functions
consists of terms

uaσ
pl (r)uaσ

p′l′(r)Y
∗
lm(r)Yl′m′(r) = uaσ

pl (r)uaσ
p′l′(r)

∑

LM

Glm,l′m′,LMYLM(r) , (4.1.1)

where p and p′ distinguish between radial function ul, energy derivative u̇l and local
orbital ulo

l , and

Glm,l′m′,LM =

∫

dΩ Y ∗
lm(r)Yl′m′(r)Y ∗

LM(r) (4.1.2)

are the Gaunt coefficients, which are non-zero only if L ∈ {|l − l′|, . . . , l + l′}, M =
m′ − m or |M | < L.

The product of two radial functions

ϕaσ
iL (r) = uaσ

pl (r)uaσ
p′l′(r) (4.1.3)

multiplied by a corresponding spherical harmonic is defined as a preliminary basis in
the MT sphere at atom a

M̂aσ
iLM (r) = ϕaσ

iL (r)YLM(r) . (4.1.4)
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To each L there are several combinations of pl and p′l′. These combinations are
counted with the index i.

The so-defined set
{

M̂
}

consists of several hundred functions (s. Table 4.2). In
order to reduce the MT basis-set size several additional parameters are introduced
into the FLEUR input file (s. Fig. 4.1):

lcutm: Only basis functions M̂ up to L ≤ lcutm are constructed.

select: The keyword select is used to restrict the radial functions upl, which are used

to set up
{

M̂
}

. As an example the choice select = 3, 2; 4, 4 restricts the radial

functions in equation (4.1.3) to l ≤ 3 for p = 1, l ≤ 2 for p = 2, l′ ≤ 4 for p′ = 1
and p′ = 2. The radial part of a local orbital (p > 2,p′ > 2) is always used to

construct
{

M̃
}

.

mtol: In order to get rid of those functions M̂ for a fixed L, which do not significantly
improve the flexibility of the basis set, the overlap matrix between the different
radial functions ϕaσ

iL

OL
(iσ)(i′σ′) =

∫ RMT(a)

0

drr2ϕaσ
iL (r)ϕaσ′

i′L (r) (4.1.5)

is diagonalized and only those eigenvectors with an eigenvalue, which is greater
then the threshold mtol (typical value 10−4), are retained. As a side effect the
basis set is orthogonalized and becomes spin-independent, because products of
both spin-up as well as spin-down basis functions are included in (4.1.5).

Table 4.2 shows the number of MT basis functions for different choices of these
parameters.
As the product of two Bloch functions is again a Bloch function, the final form of
the MT basis functions is obtained by constructing Bloch functions explicitly

Ma
k,iLM(r) =

1√
N

∑

T

M̂iLM (r− T − Ra) exp [ik(T + Ra)]

Ma
k,iLM(r + T′) = exp [ikT′] Ma

k,iLM(r) . (4.1.6)

The factor exp [ikRa] has been added to obtain a simple expression for the Coulomb-
matrix expansion.

4.1.2 Interstitial region

The product of two plane waves is again a plane wave. Consequently the basis M in
the IR is simply defined by
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Mk,I(r) =

{ 1√
V

exp [i(k + GI)r] for r ∈ IR

0 for r ∈ MT
. (4.1.7)

These functions are not orthogonal, because they are non-zero only in the interstitial
region. Therefore the set of biorthogonal functions

M̃k,I(r) =
∑

J

O−1
JI (k)Mk,J(r) (4.1.8)

is used in conjunction with {M} with the k-dependent overlap matrix

OIJ(k) = 〈Mk,I | Mk,J〉 , (4.1.9)

but must never be constructed explicitly. The overlap matrix is k-dependent, since
the number of basis functions can vary at different k points.

{

Mk,J

}

and
{

M̃k,I

}

form a pairwise orthonormal set of functions
〈

Mk,I

∣
∣
∣M̃k,J

〉

= δIJ .

The size of the interstitial basis set can be controlled by a G cutoff gcutm (s. Fig. 4.1).

The complete mixed basis is a combination of the two sets
{
Ma

k,iLM , Mk,G

}
=
{
Mk,I

}
.

The MT function Mk,I are zero in the IR and vice-versa.

In Figure 4.2 the MT representation of selected wave-function products in the
mixed basis

{
Mk,I

}
is compared with the exact product. With higher cutoff values

lcutm convergence with the exact curve is achieved.

In the IR the representation becomes exact when a gcutm twice as large as the G

cutoff gmax of the LAPW basis is chosen.
If the basis is sufficiently complete it is justified to use the completeness relation

∑

I

∣
∣
∣M̃k,I

〉〈

Mk,I

∣
∣
∣ = 1 (4.1.10)

in the space of wave-functions products.
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L mtol = 0 mtol = 0.0001 mtol = 0.0001 mtol = 0.0001
select = 8, 8; 8, 8 select = 8, 8; 8, 8 select = 4, 4; 4, 4 select = 4, 4; 4, 4

lcutm = 16 lcutm = 16 lcutm = 16 lcutm = 4
0 27 12 10 10
1 48 10 8 8
2 66 10 8 8
3 78 9 7 7
4 87 8 7 7
5 90 7 6
6 90 7 5
7 84 7 4
8 75 6 3
9 60 6
10 48 5
11 36 5
12 27 5
13 18 5
14 12 4
15 6 4
16 3 3

Sum 11295 1535 428 186

Table 4.2: The number of radial basis functions with angular-momentum quantum
number L for different choices of the parameters mtol, select and lcutm.
The last row shows the total number of MT functions taking into account
the multiplicity M = −L, . . . , L. The results are obtained for Silicon with
lmax = 8.
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Figure 4.1: Additional parameters in the input file that control the size of the mixed
basis: gcutm, mtol, lcutm and select.
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Figure 4.2: Comparison of the exact wave-function product φ∗
n1,kφn2,k+q with its

mixed-basis representation for different lcutm inside a MT sphere for
Silicon.
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4.2 Calculation of
〈

M̃q,Iφ
σ
n,k

∣
∣φσ

n′,k+q

〉

For a given k point the representation of the product φσ∗
n,k(r)φ

σ
n′,k+q(r) in the biorthog-

onal set
{

M̃
}

must be calculated for all occupied bands n′, for all bands n and for all
q . Due to the different basis functions in the MT spheres and the IR, the evaluation
is discussed separately for each region.

4.2.1 Muffin-tin region

In the MT region the biorthogonal functions M̃q,I are identical to the functions Mq,I

(I = aiLM) and non-zero only in the MT sphere a

∫

d3rM∗
q,I(r)φ

σ∗
n,k(r)φ

σ
n′,k+q(r)

=
1

N
1
2

exp [−iqRa]
∑

plm

∑

p′l′m′

caσ∗
plm(n,k)caσ

p′l′m′(n′,k + q)

∫ RMT(a)

0

dr r2ϕa
iL(r)uaσ

pl (r)uaσ
p′l′(r)

∫

dΩ Y ∗
LM(r)Yl′m′(r)Y ∗

lm(r)
︸ ︷︷ ︸

GLM,l′m′,lm

. (4.2.1)

The sum over m′ cancels, if the property of the Gaunt coefficients GLM,l′m′,lm =
0 if m′ 6= m + M is exploited. Furthermore, the radial integral remains identical if
pl and p′l′ are exchanged, which can be used to restrict the sum over p′l′ and we can
write

∫

d3r M∗
q,I(r)φ

σ∗
n,k(r)φ

σ
n′,k+q(r)

=
1

N
1
2

exp [−iqRa]
∑

plm

p
∑

p′=1

l∑

l′=0

∫ RMT(a)

0

dr r2ϕa
iL(r)ua

pl(r)u
a
p′l′(r)

[
caσ∗
plm(n,k)caσ

p′l′m+M(n′,k + q)Glm,l′m+M,LM

+caσ∗
p′l′(m−M)(n,k)caσ

plm(n′,k + q)Gl′m−M,lm,LM

]
. (4.2.2)

The vector k + q can fall outside the first Brillouin zone (1. BZ). Then we must
replace k + q by k + q + G′ in (4.2.2), where G′ maps k + q back into the 1. BZ.
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4.2.2 Interstitial region

Now the computation of
〈

M̃q,Iφ
σ
n,k

∣
∣
∣φσ

n′,k+q

〉

for an interstitial basis function M̃q,I

with I = GI is discussed. The product of two wave functions φσ∗
n,kφ

σ
n′,k+q in the IR is

φσ∗
n,k(r)φ

σ
n′,k+q(r) =

∑

GG′

z∗G(n,k)zG′(n′,k + q)
1

V
exp [i (q + G′ − G) r] , (4.2.3)

where the exponential function can be regarded as an interstitial basis function
Mq,G′−G

φσ∗
n,k(r)φ

σ
n′,k+q(r) =

∑

GG′

z∗G(n,k)zG′(n′,k + q)
1√
V

Mq,G′−G(r) . (4.2.4)

By exploiting the pairwise orthogonality of
{

M, M̃
}

the representation is easily
obtained

∫

d3r M̃∗
q,GI

(r)φσ∗
n,k(r)φ

σ
n′,k+q

=
∑

GG′

z∗G(n,k)zG′(n′,k + q)
1√
V

∫

d3r M̃q,GI
(r)Mq,G′−G(r)

︸ ︷︷ ︸

δGI ,G′−G

=
1√
N

1√
Ω

∑

G

z∗G(n,k)zG+GI
(n′,k + q) . (4.2.5)

The factor 1√
N

in (4.2.2) and (4.2.5) combine to a factor 1
N

in (4.0.13), which
cancels with the factor N from the sum over the BZ.

4.3 Treatment of the Γ point

Due to the long-range nature of the Coulomb interaction the Coulomb matrix CIJ(q)
diverges for q → 0. The 3-dimensional BZ integration over this divergence (∼ 1/q2)
yields a finite value. However, numerically the BZ integral is evaluated by a weighted
sum over a discrete k-point mesh (s. Sec. 3.2.6), which contains the Γ point, where the
integrand is infinite. In order to integrate over the divergence properly we separate
the divergent part from the non-divergent one and integrate it analytically.

For this the Coulomb matrix (4.0.6) is diagonalized around the Γ point. In a
complete basis the exact eigenvectors and -values of the Coulomb matrix would be
plane waves 1√

V
exp [i (q + GI) r] with eigenvalues 4π/|q+GI |2. However, the mixed

basis is only complete in the space spanned by the products of wave functions. Thus
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the resulting eigenvectors Eq,I with eigenvalues eq,I are similar but not identical to
plane waves. As a constant function is added to the basis {M}, the plane wave with
GI=1 = 0 is represented exactly in the limit q → 0. The remaining eigenvalues eq,I

and -vectors Eq,I are calculated numerically. After the transformation into the basis
of eigenvectors {Eq,I}, one obtains for small q

∑

IJ

occ.∑

n′

wσ
n′,k+q

〈

φσ
n′,k+q

∣
∣
∣φσ

n1,kM̃q,I

〉

CIJ(q)
〈

M̃q,Jφσ
n2,k

∣
∣
∣φσ

n′,k+q

〉

=
occ.∑

n′

wσ
n′,k+q

〈

φσ
n′,k+q

∣
∣
∣
∣
φσ

n1,k

1√
V

exp [iqr]

〉
4π

q2

〈
1√
V

exp [iqr] φσ
n2,k

∣
∣
∣
∣
φσ

n′,k+q

〉

+
∑

I 6=1

occ.∑

n′

wσ
n′,k+q

〈
φσ

n′,k+q

∣
∣φσ

n1,kEq,I

〉
eq,I

〈
Eq,Iφ

σ
n2,k

∣
∣φσ

n′,k+q

〉
, (4.3.1)

where V denotes the crystal volume and wσ
n,k the integration weight of band n and

point k. The two terms correspond to the divergent and the non-divergent term,
respectively. The former contains additional q-dependent terms. In order to obtain
the analytic behavior of the divergent term around the Γ point, the projections
of the wave-function products φσ∗

n,kφ
σ
n′,k+q on the plane wave 1√

V
exp [iqr] have to

be expanded around q = 0. For this the Bloch property of the wave functions
φσ

n,k(r) = uσ
n,k(r) exp [ikr] is employed and uσ

n,k+q is expanded around q = 0

〈
1√
V

exp [iqr] φσ
n,k

∣
∣
∣
∣
φσ

n′,k+q

〉

(4.3.2)

=
1√
V

〈
uσ

n,k

∣
∣ uσ

n′,k+q

〉

=
1√
V

[
〈
uσ

n,k

∣
∣ uσ

n′,k

〉
+
〈
uσ

n,k

∣
∣ ∇T

kuσ
n′,k

〉
q +

1

2
qT
〈
uσ

n,k

∣
∣ ∇2

ku
σ
n′,k

〉
q + O

(
q3
)
]

=
1√
V

{
1 + 1

2
qT
〈
uσ

n,k

∣
∣ ∇2

ku
σ
n,k

〉
q + O (q3) forn = n′

〈
uσ

n,k

∣
∣ ∇T

kuσ
n′,k

〉
q + 1

2
qT
〈
uσ

n,k

∣
∣ ∇2

ku
σ
n′,k

〉
q + O (q3) forn 6= n′ ,

where ∇2
k abbreviates the Hesse matrix ∇k∇T

k .

If the transformation from the LAPW basis {χ} to the wave functions {φ} had not

been performed, the term
〈

1√
V

exp [iqr] χσ
k,G

∣
∣
∣φσ

n,′k+q

〉

would have to be evaluated

instead of (4.3.2). The evaluation of this term is much more complex, because no
orthogonality between un,k and χk,G can be exploited.

Inserting (4.3.2) into (4.3.1) leads to an analytic expression for the divergence
around the Γ point
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A(q) :=
occ.∑

n′

wσ
n′,k+q

〈

φσ
n′,k+q

∣
∣
∣
∣
φσ

n1,k

1√
V

exp [iqr]

〉
1

q2

〈
1√
V

exp [iqr] φσ
n2,k

∣
∣
∣
∣
φσ

n′,k+q

〉

=
4π

V

{

wσ
n1,kδn1,n2

[
1

q2
+

1

2
q̂T
(〈
∇2

ku
σ
n1,k

∣
∣ uσ

n1,k

〉
+
〈
uσ

n1,k

∣
∣ ∇2

ku
σ
n1,k

〉)
q̂

]

+ (1 − δn1,n2)
1

q

(
wσ

n2,k

〈
∇T

kuσ
n2,k

∣
∣ uσ

n1,k

〉
+ wσ

n1,k

〈
uσ

n2,k

∣
∣ ∇T

kuσ
n1,k

〉)
q̂

+
1

2
(1 − δn1,n2)q̂

T
(
wσ

n2,k

〈
∇2

ku
σ
n2,k

∣
∣ uσ

n1,k

〉
+ wσ

n1,k

〈
uσ

n2,k

∣
∣ ∇2

ku
σ
n1,k

〉)
q̂

+

occ.∑

n′ 6=n1,n2

wσ
n′,kq̂

T
〈
∇ku

σ
n′,k

∣
∣ uσ

n1,k

〉 〈
uσ

n2,k

∣
∣ ∇T

kuσ
n′,k

〉
q̂

}

(4.3.3)

where q̂ denotes the unit vector.

The terms containing ∇k are evaluated by k ·p perturbation theory (s. Sec. 4.3.1)

〈
uσ

n,k

∣
∣ ∇ku

σ
n′,k

〉
=







−i

D

φσ
n,k

˛

˛

˛
∇

˛

˛

˛
φσ

n′,k

E

εσ
n′,k

−εσ
n,k

if εσ
n′,k 6= εσ

n,k

0 otherwise
(4.3.4)

Re
(〈

uσ
n,k

∣
∣ ∇2

ku
σ
n,k

〉)
=

all∑

n′ 6=n

〈
φσ

n′,k

∣
∣∇
∣
∣φσ

n,k

〉 〈
φσ

n,k

∣
∣∇T

∣
∣φσ

n′,k

〉

(εσ
n′,k − εσ

n,k)
2

(4.3.5)

〈
∇2

ku
σ
n2,k

∣
∣ uσ

n1,k

〉
+
〈
uσ

n2,k

∣
∣ ∇2

ku
σ
n1,k

〉
=2

all∑

n′ 6=n1,n2

〈
φσ

n2,k

∣
∣∇
∣
∣φσ

n′,k

〉 〈
φσ

n′,k

∣
∣∇T

∣
∣φσ

n1,k

〉

(εσ
n2,k − εσ

n′,k)(ε
σ
n1,k − εσ

n′,k)
(4.3.6)

For clarity expressions for occupied and unoccupied states n1 and n2 are given for
a band-gap material:

• n1 and n2 occupied

A(q) =
4π

V

1

Nk

{

δn1,n2

1

q2
(4.3.7)

+ q̂T

[
all∑

n′ 6=n1,n2

(δn1,n2 − fn′,k)

〈
φσ

n′,k

∣
∣∇
∣
∣φσ

n1,k

〉 〈
φσ

n2,k

∣
∣∇T

∣
∣φσ

n′,k

〉

(εσ
n′,k − εσ

n1,k)(ε
σ
n′,k − εσ

n2,k)

]

q̂

+ (1 − δn1,n2)q̂
T

all∑

n′ 6=n1,n2

〈
φσ

n2,k

∣
∣∇
∣
∣φσ

n′,k

〉 〈
φσ

n′,k

∣
∣∇T

∣
∣φσ

n1,k

〉

(εσ
n2,k − εσ

n′,k)(ε
σ
n1,k − εσ

n′,k)
q̂

}
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• n1 and n2 unoccupied

A(q) = −4π

V

1

Nk

{

q̂T

[
occ.∑

n′ 6=n1,n2

〈
φσ

n′,k

∣
∣∇
∣
∣φσ

n1,k

〉 〈
φσ

n2,k

∣
∣∇T

∣
∣φσ

n′,k

〉

(εσ
n′,k − εσ

n1,k)(ε
σ
n′,k − εσ

n2,k)

]

q̂

}

(4.3.8)

• n1 occupied and n2 unoccupied or vice versa

A(q) =
4π

V

1

Nk

{

−q̂T

[
occ.∑

n′ 6=n1,n2

〈
φσ

n′,k

∣
∣∇
∣
∣φσ

n1,k

〉 〈
φσ

n2,k

∣
∣∇T

∣
∣φσ

n′,k

〉

(εσ
n′,k − εσ

n1,k)(ε
σ
n′,k − εσ

n2,k)

]

q̂

+
1

q
(−i)

〈
φσ

n2,k

∣
∣∇T

∣
∣φσ

n1,k

〉

εσ
n1,k − εσ

n2,k

(fn1,k − fn2,k) q̂ (4.3.9)

+
1

2
q̂T
(
fn1,k

〈
uσ

n2,k

∣
∣∇2

ku
σ
n1,k

〉
+ fn2,,k

〈
∇2

ku
σ
n2,k

∣
∣ uσ

n1,k

〉)
q̂

}

where fn,k is the occupation number defined by

fn,k =

{
1 if the state (n,k) is occupied
0 else

(4.3.10)

and Nk denotes the total number of k points. We neglect the second-order term
〈
uσ

n2,k

∣
∣∇2

ku
σ
n1,k

〉
or
〈
∇2

ku
σ
n2,k

∣
∣ uσ

n1,k

〉
in equation (4.3.9).

Thus, analytic expressions for the divergent term around q = 0 have been found.
The expansion of the integrand is tested with the k-point set 1 × 1 × 100, which is
dense in one direction. In the long-wavelength limit the exact integrand

∑

n′

∑

I,J

〈

φσ
n′,k+q

∣
∣
∣φσ

n1,kM̃q,I

〉

CIJ(q)
〈

M̃q,Jφσ
n2,k

∣
∣
∣φσ

n′,k+q

〉

(4.3.11)

is compared with the expansion

A(q) +
∑

n′

∑

I 6=1

〈
φσ

n′,k+q

∣
∣φσ

n1,kE0,I

〉
e0,I

〈
E0,Iφ

σ
n2,k

∣
∣φσ

n′,k+q

〉
. (4.3.12)

Figure 4.3 shows, that for the different combinations of n1 and n2 the exact integrand
and the expansion always become identical for q → 0.

Finally, the BZ integration is decomposed into a numerical integration of the non-
divergent part and an analytical integration of the divergent part A(q). Figure 4.4
illustrates this approach schematically. The red curve represents the exact integrand
and the black one its expansion around the Γ point, which is integrated analytically.
The difference between expansion and exact integrand is integrated numerically (red
area).
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Figure 4.3: For selected combinations of n1 and n2 the expansion around the Γ point
is compared with the exact integrand.

We finally obtain

∑

n′,q

∑

IJ

〈

φσ
n′,k+q

∣
∣
∣φσ

n1,kM̃q,I

〉

CIJ(q)
〈

M̃q,Jφσ
n2,k

∣
∣
∣φσ

n′,k+q

〉

=
V

8π3

∫

BZ

d3qA(q)

︸ ︷︷ ︸

analytic integration

+
∑

n′,q6=0

wσ
n′,k+q

∑

IJ

〈

φσ
n′,k+q

∣
∣
∣φσ

n1,kM̃q,I

〉

CIJ(q)
〈

M̃q,Jφσ
n2,k

∣
∣
∣φσ

n′,k+q

〉

−
∑

q6=0

A(q)

︸ ︷︷ ︸

numerical integration q6=0

+
∑

n′

wσ
n′,k

∑

I 6=1

〈
φσ

n′,k+q

∣
∣φσ

n1,kE0,I

〉
e0,I(0)

〈
E0,Iφ

σ
n2,k

∣
∣φσ

n′,k+q

〉

︸ ︷︷ ︸

numerical integration of non-divergent part at q=0

. (4.3.13)

Since our aim is to obtain the value of the integral rather than the integrand itself,
as exact as possible, we can spherically average the terms of the type

−q̂T

[
∑

n′ 6=n1,n2

〈
φσ

n′,k |∇|φσ
n1,k

〉 〈
φσ

n2,k

∣
∣∇T

∣
∣φσ

n′,k

〉

(εσ
n′,k − εσ

n1,k)(ε
σ
n′,k − εσ

n2,k)

]

q̂ (4.3.14)
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in equations (4.3.7), (4.3.8) and (4.3.9), which gives

−4π

3

3∑

i=1

∑

n′ 6=n1,n2

〈
φσ

n′,k |∂xi
|φσ

n1,k

〉 〈
φσ

n2,k |∂xi
|φσ

n′,k

〉

(εσ
n′,k − εσ

n1,k)(ε
σ
n′,k − εσ

n2,k)
(4.3.15)

and add them to the numerical integration.
The analytic integration over the divergence of A(q) is simplified by introducing a

switching-off function g(q)

g(q) =

{

1 − q3

q3
0

(

4 − 3 q
q0

)

for 0 ≤ q ≤ q0

0 q > q0

(4.3.16)

with the properties g(0) = 1, g(q) = 0 for q ≥ q0 and g′(0) = g′(q0) = 0, where q0

denotes the radius of the largest sphere, that fits into the 1. BZ. By replacing A(q)
with g(q)A(q) the integration region becomes spherical, and we use

∫

BZ

d3q g(q)
1

q2
= 4π

∫ q0

0

[

1 − q3

q3
0

(

4 − 3
q

q0

)]
1

q2
dq =

12

5
πq0 (4.3.17)

∫

BZ

d3q g(q)
1

q
q̂ = 0 . (4.3.18)

It must be noted that A(q) must also be substituted by g(q)A(q) in the numerical
integration.
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Figure 4.4: Decomposition of the integration into an analytic (dark grey) and a nu-
merical part (light red).
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4.3.1 k · p perturbation theory

The k ·p perturbation theory allows to expand φσ
n,k+q around φσ

n,k. For this the wave
function φσ

n,k+q is written as

φσ
n,k+q(r) = ũσ

n,k+q(r) exp [i(k + q)r]

= ũσ
n,k+q(r) exp [ikr]
︸ ︷︷ ︸

=:uσ
n,k+q

(r)

exp [iqr] , (4.3.19)

where ũσ
n,k+q is the periodic part of the wave function. For q = 0 uσ

n,k+q corresponds
to the wave function φσ

n,k(r).
By applying the gKS differential equation to (4.3.19), an equation for uσ

n,k+q(r) is
obtained, where terms of order q2 are neglected (a detailed calculation can be found
in the Appendix B)

[

−∇2

2
+ V gKS(r)

]

uσ
n,k+q(r) −

∑

n′,b

∫

d3r′
uσ∗

n′,b(r′)uσ
n,k+q(r

′)

|r − r′| uσ
n′,b(r) + qpuσ

n,k+q(r)

= εn,k+qu
σ
n,k+q(r) (4.3.20)

Obviously, qp = q(−i∇) can be treated as a perturbation. First order Rayleigh-
Schrödinger perturbation theory yields

〈

uσ
n′,k

∣
∣ uσ1

n,k

〉

=

〈
uσ

n′,k

∣
∣p
∣
∣uσ

n,k

〉

εσ
n,k − εσ

n′,k

=

〈
φσ

n′,k

∣
∣p
∣
∣φσ

n,k

〉

εσ
n,k − εσ

n′,k

(4.3.21)

if εσ
n,k 6= εσ

n′,k and

〈

uσ
n′,k

∣
∣ uσ1

n,k

〉

= 0 (4.3.22)

if εσ
n,k = εσ

n′,k.
Comparing the coefficients of the quadratic order in

0 =
〈
φσ

n,k+q

∣
∣φσ

n′,k+q

〉

= 〈un,k+q|un′,k+q〉
= 〈un,k|un′,k〉 +

[〈

u1
n,k

∣
∣
∣ un′,k

〉

+
〈

un,k

∣
∣
∣u1

n′,k

〉]

q

+
1

2
qT

[〈

u2
n,k

∣
∣
∣
∣
un′,k

〉

+

〈

un,k

∣
∣
∣
∣
u2

n′,k

〉

+ 2
〈

u1
n,k

∣
∣
∣ u1T

n′,k

〉]

q + O(q3) (4.3.23)

gives equation (4.3.6).
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4.3.2 Calculation of the momentum matrix

The calculation of the MT contribution to the momentum matrix
〈
φσ

n,k

∣
∣p
∣
∣φσ

n′,k

〉
= −i

〈
φσ

n,k

∣
∣∇
∣
∣φσ

n′,k

〉
(4.3.24)

is performed by applying the nabla operator in the so-called ’natural’ coordinates,
which are defined by

z−1 =
1√
2
(x − iy) (4.3.25)

z1 =
1√
2
(−x − iy) (4.3.26)

z0 = z , (4.3.27)

and afterwards transforming back to Cartesian coordinates. In the natural coordi-
nates the ∇ operator is

∂z−1 =
1√
2
(∂x + i∂y)

=
1√
2

[

sin θ exp ( iϕ) ∂r +
1

r
exp ( iϕ)

(

cos θ∂θ +
i

sin θ
∂ϕ

)]

(4.3.28)

∂z1 =
1√
2
(−∂x + i∂y)

= − 1√
2

[

sin θ exp (−iϕ) ∂r +
1

r
exp (−iϕ)

(

cos θ∂θ −
i

sin θ
∂ϕ

)]

(4.3.29)

∂z0 = ∂z = cos θ∂r −
sin θ

r
∂θ . (4.3.30)

By using recursion relations for Legendre polynomials and spherical harmonics [54]
one obtains

1√
2

exp (iϕ) sin θYlm(r) = F−1
lm Yl+1,m+1(r) + G−1

lmYl−1,m+1(r) (4.3.31)

− 1√
2

exp (−iϕ) sin θYlm(r) = F 1
lmYl+1,m−1(r) + G1

lmYl−1,m−1(r) (4.3.32)

cos θYlm(r) = F 0
lmYl+1,m(r) + G0

lmYl−1,m(r) (4.3.33)
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and

1√
2

exp (iϕ)

[

cos θ∂θ +
i

sin θ
∂ϕ

]

Ylm(r)

= −l F−1
lm Yl+1,m+1(r)+(l + 1)G−1

lmYl−1,m+1(r) (4.3.34)

− 1√
2

exp (−iϕ)

[

cos θ∂θ −
i

sin θ
∂ϕ

]

Ylm(r)

= −l F 1
lmYl+1,m−1(r)+(l + 1)G1

lmYl−1,m−1(r) (4.3.35)

− sin θ∂θYlm(r)

= −l F 0
lmYl+1,m(r)+(l + 1)G0

lmYl−1,m(r) (4.3.36)

where

F−1
lm = −

√
(l+m+1)(l+m+2)

2(2l+1)(2l+3)

F 1
lm = −

√
(l−m+1)(l−m+2)

2(2l+1)(2l+3)

F 0
lm =

√
(l−m+1)(l+m+1)

(2l+1)(2l+3)

G−1
lm =

√
(l−m)(l−m−1)
2(2l−1)(2l+1)

G1
lm =

√
(l+m)(l+m−1)
2(2l−1)(2l+1)

G0
lm =

√
(l−m)(l+m)
(2l−1)(2l+1)

. (4.3.37)

With these expressions the matrix element
〈
φσ

n,k

∣
∣ ∂zi

∣
∣φσ

n′,k

〉
can be easily calculated

〈
φσ

n,k

∣
∣ ∂zi

∣
∣φσ

n′,k

〉

MT
=

∑

a

∑

plm

∑

p′l′m′

caσ∗
plm(n,k)Aaa,σ

plm,p′l′m′(∂zi
)caσ

p′l′m′(n′,k) (4.3.38)

with

Aaa,σ
plm,p′l′m′(∂zi

)

:=

∫

MT(a)

d3r uaσ
pl (r)Y ∗

lm(r)∂zi

(
uaσ

p′l′Yl′m′(r)
)

(4.3.39)

= F i
l′m′δl,l′+1δm,m′−i

(∫

dr r2uaσ
pl (r)∂ru

aσ
p′l′(r) − l′

∫

dr ruaσ
pl (r)uaσ

p′l′(r)

)

+ Gi
l′m′δl,l′−1δm,m′−i

(∫

dr r2uaσ
pl (r)∂ru

aσ
p′l′(r) + (l′ + 1)

∫

dr ruaσ
pl (r)uaσ

p′l′(r)

)

.

For the interstitial contribution one directly obtains
〈
φσ

n,k

∣
∣∇
∣
∣φσ

n′,k

〉

IR

=
∑

G

∑

G′

zσ∗
G (n,k)zσ

G′(n′,k)

∫

IR

d3r exp [−i (k + G) r]∇ exp [i (k + G′) r]

= i
∑

G

∑

G′

zσ∗
G (n,k)zσ

G′(n′,k) (k + G′)OGG′ (4.3.40)
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with

OGG′ =

∫

IR

d3r exp [i (G′ − G) r]

= δGG′ − 4π

Ω

∑

a

I
(
G′ − G, RMT(a)

)
exp [i (G′ − G)Ra] (4.3.41)

and

I (k, R) =
sin (|k|R) − |k|R cos (|k|R)

|k|3 . (4.3.42)

We use the fact that the momentum operator is Hermitian to test the implemen-
tation. Hence

〈φn,k|∇ |φn′,k 〉 = −〈φn′,k| ∇ |φn,k 〉∗ (4.3.43)

should be valid. For the Hermiticity it is necessary that the wave functions φn,k and
φn′,k are continuous and differentiable. However, it exists a slight discontinuity of the
LAPW basis set at the MT sphere boundary. Thus also the wave functions exhibits
this discontinuity. As a result equation (4.3.43) is only fulfilled for the first three
digits in practice.

4.4 Spatial symmetry

4.4.1 Irreducible Brillouin zone

A spatial symmetry operation is denoted by P (R, τ ). Its action on a function f is
defined by

P (R, τ )f(r) = f
[
R−1(r− τ )

]
. (4.4.1)

A symmetry operation maps each atom of the system onto itself or an equivalent
atom, so that the system after applying the operation is indistinguishable from the
original one. Consequently the Hamiltonian H commutes with any symmetry oper-
ation P

[P, H] = 0 . (4.4.2)

From this follows that P (R, τ )φσ
n,k(r) is an eigenfunction of H with eigenvalue εσ

n,k

H P (R, τ )φσ
n,k(r) = P (R, τ ) Hφσ

n,k(r)

= εσ
n,kP (R, τ )φσ

n,k(r) . (4.4.3)
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Using the Bloch theorem

φσ
n,k(r) = uσ

n,k(r) exp [ikr]

=
∑

G

βσ
G(n,k) exp [i(k + G)r] (4.4.4)

P acts on φσ
n,k(r) according to

P (R, τ )φσ
n,k(r)

=
∑

G

βσ
nk,G exp

[
i(k + G)R−1(r − τ )

]
(4.4.5)

=
∑

G̃

βσ
R−1(G̃−G′)

(n, R−1(k′ + G′)) exp
[

−i(k′ + G̃)τ
]

exp
[

iG̃r
]

︸ ︷︷ ︸

uσ
nk′

(r)

exp [ik′r]

where G′ maps Rk back into the BZ

Rk = k′ + G′ . (4.4.6)

As a consequence the eigenspectra at k and k′ are equivalent.
Thus, it is sufficient to know the wave functions φσ

n,k and eigenvalues εσ
n,k at those k

points, from which all other k points can be generated by symmetry operations. This
minimal set is called irreducible Brillouin zone (IBZ). The wave functions (eigenval-
ues) at k /∈ IBZ can be constructed from its parent k point in the IBZ.

4.4.2 Extended irreducible Brillouin zone

The exchange term

−
occ.∑

n′,q

∫∫

d3rd3r′
φσ

n1,k(r)φ
σ∗
n′,k+q(r)φ

σ
n′,k+q(r

′)φσ∗
n2,k(r

′)

|r − r′| (4.4.7)

contains the point k, at which the Hamiltonian is set up and diagonalized, and
the summation q points. In general, both points cannot be restricted to the IBZ
simultaneously. While we can restrict the k points to the IBZ, we must use an
extended irreducible Brillouin zone (EIBZ(k)) for the summation q points, which
depends on k. The EIBZ(k) contains those points, from which the whole BZ can be
generated by applying the subset of symmetry operations, which keep k invariant.
This subset is called little group of k.

By applying the symmetry operation P of the little group of k, which maps q′
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on q, on the exchange term (4.4.7) at q′, the value of the double integral does not
change, because the symmetry operation is equivalent to a rotation and translation
of the coordinate system

−
occ.∑

n′

∫∫

d3rd3r′
φσ

n1,k(r)φ
σ∗
n′,k+q′(r)φσ

n′,k+q′(r′)φσ∗
n2,k(r

′)

|r − r′|

= −
occ.∑

n′

∫∫

d3rd3r′
Pφσ

n1,k(r)Pφσ∗
n′,k+q′(r)Pφσ

n′,k+q′(r′)Pφσ∗
n2,k(r

′)

|r− r′| . (4.4.8)

The action of P on φσ
n,k generates a wave function belonging to the eigenspace

of εσ
n,k. Consequently Pφσ

n,k can be expressed as a linear combination of the wave
functions in that eigenspace

Pφσ
n,k =

∑

n′

εσ
n′,k

=εσ
n,k

〈
φσ

n′,k

∣
∣P
∣
∣φσ

n,k

〉
φσ

n′,k (4.4.9)

If n is not degenerate, Pφσ
n,k equals to φσ

n,k except for a phase factor. With an
analogous equation for the inner wave functions we can show

∑

n′

εσ
n′,k+q′

=εσ
n,k+q′

Pφσ∗
n′,k+q′(r)Pφσ

n′,k+q′(r′) =
∑

n′′

εσ
n′′,k+q

=εσ
n,k+q

φσ∗
n′′,k+qφ

σ
n′′,k+q . (4.4.10)

Finally, the exchange term at q′ /∈ EIBZ(k) can be calculated from the corresponding
exchange term at q ∈ EIBZ(k) by the following transformation

−
occ.∑

n′

∫∫

d3rd3r′
φσ

n1,k(r)φ
σ∗
n′,k+q′(r)φσ

n′,k+q′(r′)φσ∗
n2,k(r

′)

|r − r′|

= −
∑

n3
εσ
n3k

=εσ
n1,k

∑

n4
εσ
n4,k

=εσ
n2,k

〈
φσ

n3,k

∣
∣P
∣
∣φσ

n1,k

〉 〈
φσ

n4,k

∣
∣P
∣
∣φσ

n2,k

〉∗

occ.∑

n′

∫∫

d3rd3r′
φσ

n3,k(r)φ
σ∗
n′,k+q(r)φ

σ
n′,k+q(r

′)φσ∗
n4,k(r

′)

|r− r′| . (4.4.11)

4.4.3 Calculation of
〈
φσ

n′,k

∣
∣P (R, τ )

∣
∣φσ

n,k

〉

Due to the different representation of the wave functions in the MT spheres and the
IR the term

〈
φσ

n′,k

∣
∣P (R, τ )

∣
∣φσ

n,k

〉
is evaluated separately in both regions

〈
φσ

n′,k

∣
∣P (R, τ )

∣
∣φσ

n,k

〉
=
〈
φσ

n′,k

∣
∣P (R, τ )

∣
∣φσ

n,k

〉

MT
+
〈
φσ

n′,k

∣
∣P (R, τ )

∣
∣φσ

n,k

〉

IR
. (4.4.12)
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The action of P (R, τ ) on φσ
n,k in the MT spheres is analyzed by using its formal

definition (4.4.1)

P (R, τ )φσ
n,k(r) =

1√
N

∑

a,T

∑

plm

caσ
plm(n,k)uaσ

pl

(
|R−1(r − τ − RT − RRa)|

)

Ylm

(
R−1(r − τ − RT − RRa)

)
exp [ikT] (4.4.13)

=
1√
N

∑

a,T

∑

plm′

[
∑

m

Dl
m′m(R)c

(P−1a)σ
plm (n,k) exp [iRkT′]

]

uaσ
pl (|r− T − Ra|)Ylm′ (r − T − Ra) exp [iRkT] , (4.4.14)

where it has been used that P (R, τ ) maps atom a onto itself or a symmetry-equivalent
atom, which does not necessarily lie inside the first unit cell. The translation T′ maps
it back into the first unit cell

RRa + τ + T′ = Ra′ . (4.4.15)

Dl
mm′(R) denotes the Wigner rotation matrices

Ylm(Rr) =
∑

m′

Dl
m′m(R−1)Ylm′(r) (4.4.16)

with the properties
∑

m

Dl
m′m(R)Dl

mm′′(R−1) = δm′m′′ , Dl
mm′(R−1) = Dl∗

mm′(R) (4.4.17)

and P−1 the inverse symmetry operation. So far we have not exploited, that P (R, τ )
belongs to the little group of k

P (R, τ )φσ
n,k(r) =

1√
N

∑

a,T

∑

plm′

[
∑

m

Dl
m′m(R)c

(P−1a)σ
plm (n,k) exp [ikT′]

]

uaσ
pl (|r − T − Ra|)Ylm′ (r − T − Ra) exp [ikT] , (4.4.18)

from which follows the MT contribution

〈
φσ

n′,k

∣
∣P (R, τ )

∣
∣φσ

n,k

〉

MT
=

∑

a

∑

lm

∑

pp′

caσ∗
p′lm(n′,k)

∫ RMT(a)

0

dr r2uaσ
p′l(r)u

aσ
pl (r)

[
∑

m′′

Dl
mm′′(R)c

(P−1a)σ
plm′′ (n,k) exp [ikT′]

]

. (4.4.19)
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For r ∈ IR we have

P (R, τ )φσ
n,k(r)

=
1√
V

∑

G

zσ
G(n,k) exp

[
i(k + G)R−1(r − τ )

]

=
1√
V

∑

G

zσ
R−1(G+G̃)

(n,k) exp [−i (k + G) τ ] exp [i(k + G)r] , (4.4.20)

where G̃ maps Rk back into the BZ

Rk + G̃ = k. (4.4.21)

Consequently the interstitial contribution to the matrix elements is

〈
φσ

n′,k

∣
∣P (R, τ )

∣
∣φσ

n,k

〉

IR
=

∑

G′

∑

G

zσ∗
G′(n′,k)zσ

R−1(G+G̃)
(n,k) exp [−i (k + G) τ ]

1

V

∫

IR

d3r exp [i(G − G′)r] . (4.4.22)

4.4.4 Restriction of the Coulomb matrix to the IBZ

In order to reduce the effort for calculating and storing the Coulomb matrix CIJ(q),
it is only evaluated at q ∈ IBZ. If the Coulomb matrix is needed at q′ /∈ IBZ,
it can be transformed from its parent q ∈ IBZ to q′. However, instead of trans-
forming the Coulomb matrix it is much faster to transform the scalar products〈

M̃q′,Iφ
σ
n,k

∣
∣
∣φσ

n′,k+q

〉

in the vector-matrix-vector product.

In order to calculate the transformation the behavior of M under a symmetry
operation P is needed. In analogy to the transformation of the wave functions under
P one obtains

P (R, τ )Ma
q,PLM(r)

= exp [−i(q′+G)τ ]exp [iGRa′ ]
∑

M ′

DL
M ′M(R)Ma′

q′,PLM ′(r) (4.4.23)

⇒ Ma
q′,PLM ′(r)

= exp [i(q′+G)τ ]exp [−iGRa′ ]
∑

M

DL∗
M ′M(R) P (R, τ )Ma

q,PLM(r) (4.4.24)
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P (R, τ )Mq,GJ
(r) =

1√
V

exp
[
i(q + GJ)R−1(r − τ)

]

= exp [−i(q′ + G′)τ ] Mq′,G′=RGJ+G(r) (4.4.25)

⇒ Mq′,G′(r) = exp [i(q′ + G′)τ ] P (R, τ )Mq,R−1(G′−G)(r) (4.4.26)

where G maps Rq back into the first BZ

Rq = q′ + G (4.4.27)

and atom a′ is symmetry-equivalent to atom a under the symmetry operation P .
To derive the corresponding equations the exchange term is regarded at q′ /∈ IBZ.
For clarity only the right-hand side of equation (4.0.13) is considered for a IR and
MT mixed-basis function M

∑

I

〈

Mq′,J

∣
∣
∣
∣

1

|r − r′|

∣
∣
∣
∣
Mq′,I=G′

〉〈

M̃q′,I=G′φσ
n2,k

∣
∣
∣φσ

n′,k+q

〉

=
∑

G′

〈

Mq′,J

∣
∣
∣
∣

1

|r− r′|

∣
∣
∣
∣
exp [i(q′ + G′)τ ] P (R, τ )Mq,G′′(G′)

〉

〈

M̃q′,G′φσ
n2,k

∣
∣
∣φσ

n′,k+q

〉

=
∑

G′′

〈

Mq′,J

∣
∣
∣
∣

1

|r− r′|

∣
∣
∣
∣
P (R, τ )Mq,G′′

〉

exp [i(q′ + G + RG′′)τ ]
〈

M̃q′,RG′′+Gφσ
n2,k

∣
∣
∣φσ

n′,k+q

〉

(4.4.28)

∑

I

〈

Mq′,J

∣
∣
∣
∣

1

|r− r′|

∣
∣
∣
∣
Mq′,I=aPLM

〉〈

M̃q′,I=aPLMφσ
n2,k

∣
∣
∣φσ

n′,k+q

〉

=
∑

aPLM

〈

Mq′,J

∣
∣
∣
∣

1

|r − r′|

∣
∣
∣
∣

∑

M ′

DL∗
MM ′(R)P (R, τ )Ma

q,PLM ′

〉

exp [i(q′ + G)τ ]

exp [−iGRa′ ]
〈

M̃a
q′,PLMφσ

n2,k

∣
∣
∣φσ

n′,k+q

〉

=
∑

aPLM ′

〈

Mq′,J

∣
∣
∣
∣

1

|r − r′|

∣
∣
∣
∣
P (R, τ )Ma

q,PLM ′

〉

exp [i(q′ + G)τ ]

exp [−iGRa′ ]
∑

M

DL∗
MM ′(R)

〈

M̃a
q′,PLMφσ

n2,k

∣
∣
∣φσ

n′,k+q

〉

(4.4.29)

The action of the symmetry operation on Mq,G′′ or Ma
q,PLM ′ within the Coulomb
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matrix cancels by applying the same scheme for the left side.

4.4.5 Inversion symmetry

So far the spatial symmetry operations are not specified. However, if the physical
system under consideration possesses inversion symmetry in particular, the evaluation
of the exchange term can be further simplified.

Since in a system with inversion symmetry the inversion operator I commutes with
the Hamiltonian and the LAPW basis functions χk,G become the complex conjugates
of themselves under the action of I

I χk,G(r) = χk,G(−r) = χ∗
k,G(r), (4.4.30)

the corresponding Hamiltonian is real symmetric

〈χk,G|H |χk,G′ 〉 =
〈
χk,G| I†HI |χk,G′

〉

= 〈χk,G′|H |χk,G 〉
= 〈χk,G|H |χk,G′ 〉∗ . (4.4.31)

This fact is already exploited for the set-up of the Hamiltonian in the FLEUR code.
The MT functions of the mixed basis M , as defined in Section 4.1.1, do not fulfill

the corresponding equation to (4.4.30). However, we can modify them such that they
obey the analogous equation:

M
′a
q,PLM(r)

=
1√
2N

∑

T

[

ϕa
PL(|r − Ra − T|)YLM(r− Ra − T) exp [iqRa] (4.4.32)

+(−1)L+Mϕa
PL(|r + Ra − T|)YL−M(r + Ra − T) exp [−iqRa]

]

exp [iqT]

M
′′a
q,PLM(r)

=
1√
2N

∑

T

i
[

ϕa
PL(|r − Ra − T|)YLM(r − Ra − T) exp [iqRa] (4.4.33)

−(−1)L+Mϕa
PL(|r + Ra − T|)YL−M(r + Ra − T) exp [−iqRa]

]

exp [iqT] .

In the particular case, that an atom is placed at the origin (Ra = 0) and m = 0, one
sets

Ma=0
q,PLM=0(r) =

{
1√
N

∑

T ϕa
PL(|r − T|)YLM=0(r − T) exp [iqT] l even

i√
N

∑

T ϕa
PL(|r − T|)YLM=0(r − T) exp [iqT] l odd

(4.4.34)
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With this the Coulomb matrix CIJ(q) and
〈

M̃q,Iφ
σ
n,k

∣
∣
∣φσ

n′,k+q

〉

become real-valued
and the computation of the vector-matrix-vector product more efficient.

4.5 Core electrons

The exchange potential for the valence electrons contains a sum over all occupied
states φσ

n′,k+q(r) including core electrons. For the core electrons the fully relativistic
Dirac equation with the spherical component of the local effective potential is solved.
The radial functions belonging to the set of quantum numbers

{
n, l, j = l + 1

2

}
and

{
n, l, j = l − 1

2

}
(principal quantum and angular-momentum quantum number n and

l) differ only very little. Hence we can average over the two radial functions, which
gives a single radial function uc,aσ

nl . With this the core wave functions are given by

φc,σ
n′=(nlm),k(r) =

1√
N

∑

a,T

uc,aσ
nl (|r− T − Ra|)Ylm(r − T − Ra) exp [ikT] , (4.5.1)

whose contribution to the exchange potential

V σ,core
x,n1n2

(k) = −
core∑

n′

∑

q

∫∫

d3rd3r′
φσ

n1,k(r)φ
c,σ∗
n′,k+q(r)φ

c,σ
n′,k+q(r

′)φσ∗
n2,k(r

′)

|r − r′| (4.5.2)

can be evaluated directly without employing the mixed basis. The product

φc,σ
n′,k+q(r)φ

σ∗
n,k(r) =

1

N

∑

a,T

∑

p′l′m′

caσ∗
p′l′m′(n,k)uc,aσ

pl (|r− T − Ra|)uaσ
p′l′(|r − T − Ra|)

Ylm(r − T − Ra)Y
∗
l′m′(r − T − Ra) exp [iqT] (4.5.3)

is reformulated as a sum over radial functions multiplied by spherical harmonics.
With the Gaunt coefficients (4.1.2) and denoting the products uc,aσ

pl uaσ
p′l′ by ϕaσ

PL, where
P again distinguishes between different combinations of pl and p′l′ with |l− l′| ≤ L ≤
l + l′, one obtains

φc,σ
n′,k+q(r)φ

σ∗
n,k(r) =

1

N

∑

a,T

∑

PLM

caσ∗
p′l′m−M(n,k)Gl′m−M,lm,LMϕaσ

PL(|r−T−Ra|)

YLM(r−T−Ra) exp [iqT] . (4.5.4)
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Hence the core contribution to the exchange term involves double integrals of the
form

∫∫

d3rd3r′
ϕa′σ

P ′L′(|r−T′−Ra′ |)Y ∗
L′M ′(r−T′−Ra′)ϕaσ

PL(|r−T−Ra|)YLM(r−T−Ra)

|r − r′| . (4.5.5)

This type of integrals must be evaluated in the calculation of the Coulomb matrix [52]
and can be written as the sum of three terms, of which two are periodic in reciprocal
space and therefore vanish in the BZ integration and one survives

V σ,core
x,n1n2

(k)

= −
core∑

n′

∑

a

∑

PLM

∑

P ′

4π

2L + 1
Gl′(L,P )m−M,lm,LMGl′(L,P ′)m−M,lm,LM

caσ
p′(P,L),l′(P,L),m−M(n1,k)caσ∗

p′(P ′,L)l′(P ′,L)m−M(n2,,k) (4.5.6)
∫ RMT(a)

0

dr r2ϕaσ
LP (r)

[
1

rL+1

∫ r

0

dr′ r′L+2ϕaσ
LP ′(r′) + rL

∫ RMT(a)

r

dr′
ϕaσ

LP ′(r′)

r′L−1

]

.

A direct treatment of the core electrons with the non-local exchange potential is not
implemented, so far. However, if the core states are described by local orbitals, they
are formally treated as valence electrons and experience the full non-local exchange
potential.

4.6 Total energy

In the gKS scheme the total energy consists of

• kinetic energy T

• Hartree energy UH

• exchange correlation energy EgKS
xc

• electron-nuclear energy Ene

• nuclear-nuclear interaction energy Enn

• electron exchange energy a · Ex

E = T + UH + EgKS
xc + Ene + Enn + a · Ex, (4.6.1)

where
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T =
occ.∑

n,k,σ

∫

d3rφσ∗
n,k(r)

(

−1

2
∇2

)

φσ
n,k(r) (4.6.2)

UH =
1

2

∫∫

d3rd3r′
n(r)n(r′)

|r− r′| (4.6.3)

Ex = −1

2

occ.∑

n,k,σ

occ.∑

n′,k′

∫∫

d3rd3r′
φσ∗

n,k(r)φ
σ
n′,k′(r)φσ∗

n′,k′(r′)φσ
n,k(r

′)

|r − r′| . (4.6.4)

In order to avoid numerical instabilities arising from the evaluation of the Laplace
operator within the kinetic energy part, the gKS equation (2.2.6) is used to find an
expression for the kinetic energy

T =
occ.∑

n,k,σ

εσ
n,k −

∑

σ

∫

d3r nσ(r)
[
V (r) + V gKS,σ

xc (r)
]
− 2UH − 2aEx (4.6.5)

with

n(r) =
∑

σ

nσ(r) . (4.6.6)

With this the total energy is given by

E =
occ.∑

n,k,σ

εσ
n,k −

∑

σ

∫

d3r nσ(r)
[
V (r) + V gKS,σ

xc (r)
]
−UH+EgKS

xc +Ene+Enn−aEx

=

occ.∑

n,k,σ

εσ
n,k −

∑

σ

∫

d3r nσ(r)V gKS,σ
xc (r) − UH + EgKS

xc + Enn − aEx (4.6.7)

In the case EgKS
xc = V gKS,σ

xc = 0 the total-energy expression coincides with the HF
total energy.

4.7 Adding and subtracting an additional potential

The radial functions uσ
pl(r) of the LAPW basis set are determined by the spherical

component of the local potential. In a pure Hartree-Fock calculation (V gKS
xc = 0,

a = 1) the local potential consists of the external and Hartree potential. By adding
the Xαpotential, a local form of the Hartree-Fock exchange term, we hope to create
radial functions, which are suited for the representation of the HF wave functions.
Later the Xα potential is again subtracted from the total Hamiltonian.
Moreover, we perform a HF or hybrid functional calculation starting from a converged
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n(r)

V gKS = V ext + VH + V gKS
xc

Vx(r) =
∑occ.

j

∫
d3r′

φ∗
j (r′)φi(r

′)

|r−r′| φj(r)

[
−1

2
∇2 + V gKS(r)

]
φi(r) + aVx(r) = εiφi(r)

εi, φi(r)

nnew(r) =
∑occ.

i |φi(r)|2

‖nnew(r) − n(r)‖ < ε

nnew(r)

use converged DFT
calculation as input

Yes

No

Construct V

Solving gKS equation

Calculate new density

Check convergency

Mix nnew, n

Self consistency

Figure 4.5: Process flow of a HF (a = 1) or hybrid-functional calculation (0 < a < 1)
(cf. Fig. 3.3).

DFT calculation employing a local or semi-local functional (s. Fig. 4.5), because the
computation of the exchange term requires wave functions at each k point. For the
first iteration the local potential must be adopted from the converged DFT calcula-
tion. With the consequence that this local effective potential is used together with
the non-local exchange potential. Therefore it is desirable to subtract some amount
of the adopted exchange correlation potential in the first iteration. For example for
a PBE0 calculation starting from a PBE calculation, we subtract 25% of the PBE
exchange-correlation potential in the first iteration.

Consequently, we have to evaluate matrix elements of the local or semi-local
exchange-correlation potential, which is a standard problem in the FLAPW method
[17].





5 First calculations

The implementation of the non-local exchange potential discussed in the previous
chapter is tested on selected prototype semiconductors and insulators. The aim
is to assess the influence of the convergence parameters on the accuracy and the
computational cost.

5.1 Hartree-Fock calculation for Diamond (C)

Diamond crystallizes in a face-centered cubic (fcc) structure with the experimental
lattice constant a = 6.743 a.u. and is a system with inversion symmetry. Starting
from a converged DFT calculation with the Xα potential and the basis-set parameters
gmax = 4.2 Htr and lmax = 6, a Hartree-Fock (HF) calculation

(
V gKS

xc = 0, a = 1
)

is
started. In the first iteration the converged Xα orbitals are used to evaluate the
exchange term. Since the Xα potential is the local form of the exchange potential
for a homogeneous electron gas, it should be a reasonable starting point for a HF
calculation.

In a pure HF calculation the local potential (s. Eq. (2.5.6)) is given by the sum
of Hartree potential VH and external potential V . The radial functions u and u̇ of
the LAPW basis are determined by the spherical component of this local potential
(cf. Eq. (3.1.2) and (3.2.2)). In order to include the exchange approximately in this
step we add the Xα potential to the local potential before generating the radial
functions and subtract it later.

The core electrons, i.e., the two 1s1/2 electrons of Diamond, are treated in the
frozen-core approximation, where the core wave functions are kept fixed during the
self-consistence cycle.

Already after the first HF iteration the opening of the band gap is observed. A self-
consistent density is achieved after about 40 − 60 iterations with a Broyden mixing
scheme (s. Fig. 5.1). In comparison with the Xα calculation for Diamond it needs
roughly 5 times more iterations to converge. We assume this fact is caused by using
a mixing scheme only for the density but not for the wave functions. As the input
density for a new iteration is a mixture of several densities of previous iterations, it
is never consistent with the wave functions used to build up the exchange potential
before convergence is achieved. This inconsistency leads to a finite self-interaction
contribution.

The convergence of the eigenspectrum with respect to the basis-set parameters
of {M} is examined by varying one parameter and keeping the others fixed. Ta-
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Figure 5.1: Convergence behavior of the density and the total energy of a Diamond
calculation with a Broyden mixing scheme. The density distance is de-
fined as the integrated square of the difference between input and output
density and the distance in the total energy is measured with respect to
the converged total energy.
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gcutm [Htr] 4.20 4.50 5.00 5.50 6.00 6.50 7.50
Γ1v [eV] −28.70 −28.86 −29.04 −29.08 −29.08 −29.07 −29.06
Γ25v [eV] 0 0 0 0 0 0 0
Γ15c [eV] 15.32 15.23 15.12 15.10 15.10 15.10 15.11
Γ2′c [eV] 25.46 25.28 25.06 25.01 25.01 25.02 25.03
X1c [eV] 13.87 13.72 13.57 13.53 13.54 13.54 13.55
L1c [eV] 18.87 18.76 18.64 18.62 18.62 18.63 18.63

X4v → X1c [eV] 22.02 21.90 21.78 21.76 21.76 21.77 21.77
L3′v → L1c[eV] 22.48 22.39 22.28 22.27 22.28 22.28 22.28

Table 5.1: Convergence of band energies for Diamond at high-symmetry points in the
BZ with respect to the parameter gcutm (lcutm = 4).

lcutm 2 4 6 8
Γ1v [eV] −29.26 −29.08 −29.08 −29.08
Γ25v [eV] 0 0 0 0
Γ15c [eV] 15.06 15.10 15.10 15.10
Γ2′c [eV] 24.82 25.01 25.01 25.01
X1c [eV] 13.55 13.53 13.54 13.54
L1c [eV] 18.62 18.62 18.62 18.62

X4v → X1c [eV] 21.87 21.76 21.76 21.76
L3′v → L1c[eV] 22.33 22.27 22.27 22.27

Table 5.2: Convergence of band energies for Diamond with respect to lcutm (gcutm =
5.5 Htr).

ble 5.1 shows the dependence of selected band energies on the parameter gcutm.
Energies are measured with respect to the valence-band maximum. We can conclude
that for Diamond already gcutm = 5.5 Htr (1.31 · gmax) ensures convergence of the
band structure. Convergence of the band energies in terms of the maximal angular
momentum is achieved with lcutm = 4 (s. Table 5.2).

In order to analyze the ability of M to represent the wave-function products in spite
of the changes of the radial functions of the FLAPW basis set in each self-consistence
step, we have compared the results above, where the mixed basis M is generated once
at the beginning of the calculation, with that obtained from a calculation, where the
mixed basis M and the Coulomb matrix CIJ(q) is build up in each iteration step. The
differences in the converged results between both approaches are negligible, which
justifies to generate M once at the beginning of a calculation and keep it fixed.

The computation of the non-local exchange term is by far the most expensive
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number of bands 0 10 20 30 40 60 100
Γ1v [eV] −22.38 −28.93 −28.94 −29.05 −29.07 −29.08 −29.08
Γ25v [eV] 0 0 0 0 0 0 0
Γ15c [eV] 4.72 15.05 15.14 15.10 15.10 15.10 15.10
Γ2′c [eV] 14.74 25.88 25.14 25.07 25.07 25.02 25.01
X1c [eV] 2.80 13.89 13.79 13.59 13.55 13.55 13.53
L1c [eV] 7.23 18.72 18.73 18.63 18.62 18.62 18.62

X4v → X1c [eV] 9.89 21.94 21.90 21.81 21.77 21.77 21.76
L3′v → L1c[eV] 10.30 22.30 22.39 22.28 22.28 22.28 22.27

time per it.[s] 10.86 24.1 39.1 56.7 74.0 116.5 185.8

Table 5.3: Convergence of the band energies for Diamond with respect to the
exchange-matrix size given by the number of bands and corresponding
timings for a single iteration (lcutm = 4, gcutm = 5.5 Htr). Calculations
are performed on a single CPU.

step in the build-up of the Hamiltonian. For an efficient implementation further
approximations are necessary. The off-diagonal elements of the exchange matrix in
the space of the wave functions decrease with increasing band number. This can be
understood, if the exchange term is regarded as a small perturbation. In perturbation
theory of first order a state n′ contributes to a state n with a weight proportional to

1
εn−εn′

. So we can restrict the number of bands for which the exchange term in the
space of wave functions is evaluated without loosing too much accuracy. Table 5.3
shows that already with 30 − 40 bands the error is well below 0.1 eV for the band
energies and the computational cost for each iteration is reduced by a factor of 3.

Figure 5.2 shows a detailed chart, how much time is spent in the different program
routines, which are needed to calculate the exchange potential, in a single iteration.
Nearly 2/3 of the time for one iteration is spent in the subroutine ’wavefunction prod-
ucts’, which calculates the representation of the wave-function product in the mixed
basis, 1/3 is needed to set up the exchange matrix (’valence exchange’). The time
spent in the other routines, which calculate the valence-core exchange, the irreducible
representation and generate the wave functions at all k points from the irreducible
one, is much smaller. While the computation of the wave-function products scales
linearly with the number of bands, the time needed to set up the exchange matrix
elements splits up into the time for the computation of the Γ point decomposition
and the time for the calculation of the vector-matrix-vector products leading to a
scaling of the form

a0 + a1n
2 , (5.1.1)
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Figure 5.2: Detailed analysis of the time spent in each routine per iteration on a
single CPU.

where n denotes the number of bands.
Finally, we examine the convergence with respect to the number of k points. So

far all calculations have been performed with a 4×4×4 k-point set, corresponding to
8 k points in the IBZ. Since the Hamiltonian is built up at the irreducible points of
the BZ and each matrix element of the non-local exchange potential contains a sum
over occupied states, the time needed for one iteration scales not linearly with the
number of k points. For example in the case of a 8×8×8 k-point mesh the exchange
matrix must be set-up at 29 irreducible points and each exchange matrix element
contains a sum over 512 k points. For a 6×6×6 k-point mesh the irreducible wedge
consists of 16 points and for each matrix element a sum over 216 k points must be
performed. Consequently the computation time scales as

aNkNIBZ , (5.1.2)

where Nk denotes the total number of k points and NIBZ the number of irreducible
points. However, for small k-point sets the restriction of the sum over the occupied
states to the EIBZ(k) leads to a significant reduction in computation time.

We check the convergence for a 2 × 2 × 2, 4 × 4 × 4, 6 × 6×6 and 8×8 × 8 mesh
(s. Table 5.4). On the basis of these calculations we can conclude that relative dense
k-point sets are needed to achieve convergence. This agrees with findings by Paier
et. al [55], who conclude in a projector augmented wave (PAW) approach that for
converged PBE0 calculations of semiconductors at least a 12×12 × 12 k-point mesh
is needed.

In Table 5.4 the results are compared with a FLAPW HF calculation by Massidda
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2 × 2 × 2 4 × 4 × 4 6 × 6 × 6 8 × 8 × 8 Exp.
Γ1v [eV] −28.13 −29.07 −29.23 −29.27 −29.4a −24.2b

Γ15c [eV] 15.43 15.10 14.84 14.78 14.7a 7.3b

Γ2′c [eV] 25.39 25.07 24.83 24.79 24.5a 15.3b

X1c [eV] 13.73 13.55 13.31 13.26 13.2a

L1c [eV] 18.84 18.62 18.42 18.37 18.3a

X4v → X1c [eV] 21.40 21.77 21.61 21.58 21.5a 12.5b

L3′v → L1c[eV] 22.28 22.28 22.12 22.09 22.0a 12.5b

time pro it. [s] 24.0 74.1 550.7 2516.8

a Ref. 51 (FLAPW calculation)
b Ref. 56

Table 5.4: Convergence of the Hartree-Fock band energies of Diamond with respect
to the k-point set (lcutm = 4, gcutm = 5.5, number of bands = 40). The
calculated band energies are compared with theoretical and experimental
values from the literature.

et. al [51]. They only use 2 special Chadi-Cohen k points [57]. A comparison with the
experimental results shows, that pure HF calculations overestimate the experimental
band gap and transition energies by about a factor of 2. This can be attributed to
the fact that the HF method only considers static correlation between electrons of
the same spin, but no dynamic correlation. It gives a practical hint, that a scaled
exchange operator should give better results.

5.2 Hartree-Fock calculation for Silicon (Si)

Analogous tests have been performed with bulk Silicon (experimental lattice constant
a = 10.26 a.u.) starting from converged Xα calculations with the basis parameters
lmax = 8 and gmax = 3.6 Htr.

We conclude that 40 bands, a gcutm of 4.5 Htr (1.25 · gmax) and an lcutm of 4 are
sufficient to obtain band energies with an accuracy of 0.1eV employing a 4 × 4 × 4
k-point set (s. Tables 5.5, 5.6 and 5.7). The results for Silicon are in agreement
with Ref. 51. The small deviations we attribute to the use of different k-point sets.

5.3 PBE0 functional

Once the non-local exchange potential is implemented, the PBE0 functional is simply
obtained by scaling the non-local exchange potential down to 25% and adding 75%
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number of bands 0 10 30 40 50 60 120
Γ1v [eV] -12.65 -16.34 -16.90 -16.95 -16.90 -16.89 -16.90
Γ25v [eV] 0 0 0 0 0 0 0
Γ15c [eV] 1.65 9.34 9.33 9.27 9.32 9.32 9.31
Γ2′c [eV] 4.46 11.62 11.08 11.03 11.09 10.99 10.99
X1c [eV] -1.12 7.20 6.92 6.80 6.83 6.84 6.82
L1c [eV] 1.18 8.30 8.24 8.07 8.12 8.13 8.11

X4v → X1c [eV] 2.27 11.10 10.72 10.65 10.63 10.61 10.61
L3′v → L1c[eV] 2.49 10.05 9.82 9.71 9.69 9.69 9.67

time pro it.[s] 143.89 167.38 239.00 260.16 294.55 325.81 528.74

Table 5.5: Convergence of the band and transition energies of Silicon with respect to
the exchange-matrix size given by the number of bands with corresponding
timings for a single iteration (gcutm = 5 Htr,lcutm = 4).

gcutm [Htr] 3.60 4.00 4.50 5.00 5.50 6.00
Γ1v [eV] -16.96 -16.96 -16.95 -16.95 -16.95 -16.95
Γ25v [eV] 0 0 0 0 0 0
Γ15c [eV] 9.30 9.29 9.28 9.27 9.27 9.27
Γ2′c [eV] 11.09 11.06 11.04 11.03 11.03 11.03
X1c [eV] 6.84 6.82 6.81 6.80 6.80 6.80
L1c [eV] 8.12 8.09 8.08 8.07 8.07 8.07

X4v → X1c [eV] 10.68 10.67 10.65 10.65 10.65 10.65
L3′v → L1c[eV] 9.75 9.72 9.71 9.71 9.71 9.71

Table 5.6: Convergence with respect to the parameter gcutm for Silicon (lcutm = 4,
number of bands = 40).
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lcutm 2 4 6 8 Exp.
Γ1v [eV] -17.20 -16.95 -16.95 -16.95 −17.1a −12.5b

Γ25v [eV] 0 0 0 0
Γ15c [eV] 9.16 9.28 9.27 9.27 9.0a 3.4b

Γ2′c [eV] 10.74 11.04 11.04 11.04 10.6a 4.2b

X1c [eV] 6.73 6.81 6.81 6.81 6.6a 1.3c

L1c [eV] 7.96 8.08 8.07 8.07 7.8a 2.4c

X4v → X1c [eV] 10.73 10.65 10.65 10.65 10.5a 4.2c − 4.5b

L3′v → L1c[eV] 9.67 9.71 9.71 9.71 9.4a 3.5b − 3.9c

a Ref. 51 (FLAPW calculation)
b Ref. 58
c Ref. 59

Table 5.7: Convergence of selected band energies of Silicon with respect to the pa-
rameter lcutm (number of bands = 40, gcutm = 4.5 Htr). The calculated
values are compared with theoretical and experimental values.

of PBE exchange and 100% of PBE correlation. The latter semi-local functionals are
already implemented in the FLEUR code.

The local potential for the PBE0 hybrid functional (s. Eq. (2.5.6)) is given by

V gKS(r) = V (r) + VH(r) + 0.75V PBE
x + V PBE

c
︸ ︷︷ ︸

V gKS
xc

. (5.3.1)

We assume that this is already a reasonable potential for the generation of the radial
functions and do not add any Xα contribution.

Using the converged parameters of the HF calculations for C and Si, we examine the
performance of the PBE0 functional for these materials. Self-consistency is achieved
after 30 − 40 iterations with a Broyden mixing scheme. Selected PBE and PBE0
band energies and experimental values are shown in Tables 5.8 and 5.9.

As anticipated in Section 2.6 the opening of the band gap with respect to the PBE
calculation can be observed for both materials. The description of Diamond with
the PBE0 functional agrees well with the experimental results. In the case of Silicon
the PBE0 functional overestimates the band gap by about the same amount as PBE
underestimates it. The results for both materials are in good agreement with the
results of Paier et. al [55], who use a larger k-point set (12 × 12 × 12).

We analyze the influence of the frozen-core approximation for Silicon by describ-
ing its 2p electrons with local orbitals. Thus, the 2p electrons are treated as valence
electrons and experience the full non-local exchange potential. Here, we must fix
the energy parameter for the local orbital. Otherwise small oscillations in the band
energies of the 2p electrons prevent convergence. The changes in the band energies
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Si PBE PBE0 Exp.
Γ1v [eV] -11.98 -13.36 -12.5b

Γ15c [eV] 2.54 4.02 3.97a 3.4b

Γ2′c [eV] 3.38 5.13 4.2b

X1c [eV] 0.69 2.02 1.93a 1.3c

L1c [eV] 1.53 2.98 2.88a 2.4c

X4v → X1c [eV] 3.56 5.22 4.2c-4.5b

L3′v → L1c[eV] 2.74 4.33 3.5b-3.9c

a Ref. 55: PAW calculation
b Ref. 58
c Ref. 59

Table 5.8: PBE, PBE0 and experimental results for Silicon (gcutm = 4.5, lcutm = 4,
number of bands=40 and 4 × 4 × 4 k-point set). Energies are measured
with respect to the valence-band maximum.

C PBE PBE0 Exp
Γ1v [eV] -21.46 -23.51 -24.2b

Γ15c [eV] 5.63 7.82 7.69a 7.3b

Γ2′c [eV] 13.33 16.20 15.3b

X1c [eV] 4.78 6.78 6.66a

L1c [eV] 8.57 10.98 10.77a

X4v → X1c [eV] 11.03 13.62 12.5b

L3′v → L1c[eV] 11.33 14.02 12.5b

a Ref. 55: PAW calculation
b Ref. 56

Table 5.9: PBE, PBE0 and experimental band energies for Diamond (gcutm =
4.5 Htr, lcutm = 4, number of bands=40 and 4 × 4 × 4 k-point set).
Energies are measured with respect to the valence-band maximum.
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between PBE0 calculations with and without local orbitals are in the same order of
magnitude as corresponding changes in PBE calculations, where the core wave func-
tions are not fixed. We conclude that the difference is caused by the non-relativistic
description of the 2p electrons when local orbitals are employed and that the frozen-
core approximation affects the results only very little.

So far systems with inversion symmetry have been calculated. The implementa-
tion for systems without inversion symmetry is tested by computing the electronic
structure of GaAs at the experimental lattice constant of a = 10.68 a.u. with the
PBE0 functional.

The 3d electrons of Ga are loosely bound (∼ −0.3 Htr) and extend considerably
over the MT boundary. Thus, they must be described by local orbitals. Because of
the higher atomic number of As its 3d electrons are bound more strongly and can be
treated as core electrons.

The integrand (4.3.11) of the non-local exchange term for GaAs is shown for the
diagonal element n1 = n2 = 10 with a one dimensional, dense k-point set in Figure
5.3. It shows a steep, nearly δ-like behavior close to qx = 0. This behavior is caused
by the terms of the form

〈φn1,k |∇|φn2,k〉
εn2,k − εn1,k

(5.3.2)

in the Γ decomposition. Since the PBE calculation (lmax = 8, gmax = 3.5) of GaAs
yields a semiconductor with a small direct band gap of ∼ 0.5eV , the energy de-
nominator in (4.3.8) causes a relative large value at q = 0 for the diagonal element
n1 = n2 = 10. As a result the numerical integration converges badly with the k-point
sampling. With a 4 × 4 × 4 k-point mesh GaAs becomes a metal after the first it-
eration. Unfortunately, using finer k-point meshes increases the computational cost
drastically. An alternative is to avoid the evaluation of these terms in the first iter-
ation altogether. Then the band gap opens after the first iteration as it should and
as a consequence the integrand becomes smoother and a finer k-point mesh is not
needed anymore.

This approach is at first applied to a GaAs calculation without local orbitals.
Therefore the 3d electrons of Ga are artificially restricted to the MT region, by ap-
plying an additional electric field for the calculation of the core states. Consequently
also the loosely bound Gallium 3d states possess a nearly vanishing probability on
the MT sphere and do not occur in the valence spectrum. The self-consistent results
obtained with this approach are shown in Table 5.10.

The treatment of the 3d electrons of Ga with local orbitals causes convergence
problems with a Broyden mixing scheme. The band energies of the 3d electrons
oscillate which prevents the system to converge. Even with a fixed energy parameter
for the local orbitals the calculation does not converge. If one employs a linear
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Figure 5.3: Integrand (4.3.11) of GaAs along a line in the BZ from the Γ point to
2π
a

(0.25, 0, 0). The steep increase close to qx = 0 is caused by small
denominators in (4.3.8).

GaAs PBE PBE0 Exp.
Γ1c [eV] 0.56 2.23 2.01a 1.52b

X1c [eV] 1.48 2.90 2.67a

L1c [eV] 1.02 2.58 2.37a

a Ref. 55: PAW calculation
b Ref. 60

Table 5.10: Selected PBE, PBE0 and experimental band energies for GaAs. The
PBE0 results are obtained without local orbitals (gcutm = 4.5 Htr,
lcutm = 4, number of bands=40 and a 4 × 4 × 4 k-point set). Ener-
gies are given with respect to the valence-band maximum.
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GaAs PBE PBE0 Exp.
Γ1c [eV] 0.56 2.23 2.01a 1.52b

X1c [eV] 1.48 2.83 2.67a

L1c [eV] 1.02 2.54 2.37a

a Ref. 55: PAW calculation
b Ref. 60

Table 5.11: PBE0 results for GaAs with local orbitals (gcutm = 4.5 Htr, lcutm = 4,
number of bands=40 and a 4 × 4 × 4 k-point set). Energies are given
with respect to the valence-band maximum.

MgO PBE PBE0 Exp.
Γ15 [eV] 4.84 7.67 7.24a 7.8b

X4′ [eV] 9.14 12.01 11.67a

L1 [eV] 7.91 10.79 10.38a

a Ref. 55: PAW calculation
b Ref. 61

Table 5.12: PBE0 results for MgO (gcutm = 5.0 Htr, lcutm = 4, number of bands=40
and a 4× 4× 4 k-point set). The PBE calculation is performed with the
basis parameters lmax = 8 and gmax = 4.1 Htr. Energies are given with
respect to the valence-band maximum.

mixing scheme in analogy to (3.2.32) for the densities with α = 0.05 and for the
energy parameters, the calculation converges steadily, but very slowly. After 200
iterations a distance in the density of 0.0005 me

Bohr3
is achieved. A comparison of the

calculations with and without local orbitals shows (s. Tables 5.10 and 5.11), that
the treatment of the 3d electrons with local orbitals affects the excitation energies
only very little. The slight discrepancies to the PAW calculations from Ref. 55 is
attributed to the use of different k-point sets.

After applying the PBE0 implementation to covalently-bound materials with and
without inversion symmetry, we calculate the band gap of the ionically bound systems
MgO and NaCl. Both materials crystallize in the Rocksalt structure. The calcula-
tions are performed at the experimental lattice constants (MgO: a = 7.99 a.u., NaCl:
a = 10.87 a.u.). We find, that the opening of the band gap brings it in good agree-
ment to the experimental value (s. Tables 5.12 and 5.13).

In all cases starting from a converged PBE calculation the admixture of exact ex-
change opens the band gap. It seems, that the PBE0 functional overestimates the
band gaps for semiconductors and still underestimates it for large gap insulators,
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NaCl PBE PBE0 Exp.
Γ15 [eV] 5.08 7.49 7.26a 8.5b

X4′ [eV] 7.39 9.88 9.66a

L1 [eV] 7.29 9.61 9.41a

a Ref. 55: PAW calculation
b Ref. 62

Table 5.13: Converged PBE0 results for NaCl with parameters gcutm = 4.0 Htr,
lcutm = 4, number of bands=40 and a 4 × 4 × 4 k-point set. The PBE
results are obtained with lmax = 10 and gmax = 3.7 Htr. Energies are
given with respect to the valence-band maximum.

where the underestimation is reduced drastically in comparison to a PBE calcula-
tion.

5.4 Generation of band structures

KS band structures are usually generated by

• choosing a moderate k-point set to converge the calculation

• generating a fine, one dimensional k-point mesh, which samples the high sym-
metry directions (Γ → L, X → Γ etc.)

• starting from the converged calculation a single iteration with the fine, one
dimensional k-point set.

This scheme is not practicable for calculations with the non-local exchange potential,
since its evaluation at a certain k point involves the wave functions at all other k

points.
In order to approximate the band structures, we use the 4 × 4 × 4 k-point set,

which contains five k points on a line X → Γ → L and interpolate between them
with polynomials. Furthermore, we consider in the interpolation whether the band
under consideration possesses extrema at the high symmetry points or not. For this
we have oriented on a LDA or GGA band structure of the same material. In the case
of band-crossing the energy eigenvalues must be rearranged according to the bands.
Otherwise the interpolation does not work.

By applying this scheme the band structures for the above discussed materials
along X → Γ → L are obtained (s. Fig. 5.4, 5.5, 5.6 and 5.7).



78 First calculations

-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

X Γ L

E
-E

F
 [e

V
]

(a) PBE

-30

-20

-10

 0

 10

 20

 30

 40

X Γ L

E
-E

F
 [e

V
]

(b) HF

-20

-10

 0

 10

 20

X Γ L

E
-E

F
 [e

V
]

(c) PBE0

Figure 5.4: Band structure of Diamond obtained from a PBE, HF and PBE0 calcu-
lation.
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Figure 5.5: Band structure of Silicon obtained from a PBE, HF and PBE0 calculation.
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Figure 5.6: PBE and PBE0 band structure for MgO.
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Figure 5.7: Band structure of NaCl obtained from a PBE and PBE0 calculation.



6 Conclusion & Outlook

In the present work we have implemented the Hartree-Fock-type exchange in the con-
text of density-functional theory (DFT) into the full-potential linearized augmented
plane-wave method (FLAPW) [17, 18] as realized in the FLEUR program [19]. This
provides the essential basis for the further implementation of hybrid functionals for
the exchange-correlation energy of density-functional theory. Hybrid functionals are
currently explored as a practical approach to functionals with chemical accuracy for
molecules, with improved band gaps in bulk semiconductors and insulators and with
an improved description of strongly correlated systems. Several of these functionals
have been developed. We have implemented and worked with the PBE0 functional
first published by Perdew, Burke and Ernzerhof [10].

The Hartree-Fock-type exchange is non-local in nature. As compared to the local
potential which is central to the Kohn-Sham theory, the non-local potential provides
a much wider class of potentials to search for the optimal density, but meets the chal-
lenge that the implementation into an all-electron method with a numerical basis set
for the wave functions is a non-trivial task and the computational cost becomes an
issue.

In this thesis we have chosen a mixed basis set for the representation of wave-function
products consisting of muffin-tin and interstitial plane-wave functions as explored
first by Kotani [53] to describe the non-local exchange with sufficient accuracy and
efficiency. In this basis the non-local exchange potential becomes a Brillouin-zone
(BZ) sum over vector-matrix-vector products. Due to the long-range nature of the
Coulomb interaction the matrix diverges at the Γ-point. Therefore, we separate the
divergent term from the non-divergent rest and integrate it analytically. The inte-
gration of the remaining non-divergent part is performed with standard techniques.
Furthermore, spatial symmetry is exploited to reduce considerably the effort for cal-
culating the exchange term.

The efficiency of the basis set was investigated in detail. It was found that al-
ready moderate basis-set parameters of the mixed-basis set are sufficient to obtain
converged results. The main parameters are gcutm and lcutm, as they are called in
the input file of FLEUR, and specify the reciprocal cutoff radius for the plane waves
and the maximal angular-momentum quantum number of the muffin-tin functions,
respectively. Further parameters include a tolerance value (mtol) for eliminating lin-
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ear dependencies from the basis as well as a set of numbers (select) defining from
which FLAPW radial functions the mixed basis is to be generated.

It was found that a truncation of the exchange matrix in the space of the wave
functions to only 30-40 bands is possible without compromising the accuracy. This
reduces the computational effort drastically.

We have applied the non-local exchange in Hartree-Fock and PBE0 calculations
to Si, C, GaAs, MgO and NaCl. We found that the opening of the band gap in
the first iteration already brings it close to the converged result. However, full self-
consistency of the electron density is achieved only after 40-50 iterations. For the
semiconductors the PBE0 functional overestimates the band gap about as much as
the semi-local PBE functionals underestimates it. In the case of large-gap insulators
the PBE0 functional still slightly underestimates the experimental band gap and is
in much better agreement with experiment than the PBE functional.

Due to the enormous computational effort to evaluate the exchange potential com-
pared with DFT calculations employing local or semi-local functionals an efficient
and massive parallelization of the program code is desirable and it is indispensable
for applications to larger systems. Furthermore, an efficient mixing scheme for den-
sity and wave functions (e.g. the direct inversion of iterative space method [63, 64])
might reduce the number of iterations to achieve self-consistence.

Recently, a novel hybrid functional has been published by Heyd, Scuseria and
Ernzerhof [65], which is known as the HSE functional. It is based on the PBE0 func-
tional and divides the exact exchange as well as the DFT exchange part in a short-
and long-range part. The long-range part of the exact exchange term is replaced by
a suitable local density functional. With this, the evaluation of the exchange term
in real-space codes or codes, which rely on a local basis set, becomes much faster,
because the non-locality of the exchange interaction in space is reduced. On the
other hand this partitioning can also be beneficial in a reciprocal-space description,
because the short-range exchange potential is not divergent at the Γ point and should
therefore converge faster with respect to the number of k points [55].

In conclusion with this work the fundament for the implementation of further hy-
brid functionals (B3LYP, B3PW91, B1B91 etc.) within the FLEUR program has been
laid. They are a distinct improvement over local or semi-local exchange-correlation
potentials and present a further step on the ’Jacob’s ladder’ towards the universal
functional.
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Figure 6.1: Jacob’s ladder towards the ’divine’ functional.





A Coupling-constant integration

for gKS

In analogy to the coupling-constant integration method for the KS system an expres-
sion for the exchange-correlation energy of the gKS system can be derived

EgKS
xc [n] = E [n]−EgKS [n]−(1 − a)U [n]+

∫

d3r
[
V gKS(r) − V (r)

]
n(r) . (A.0.1)

The energy difference of the fully interacting system E [n] and the gKS system
EgKS [n] is written as

E [n] − EgKS [n] = E [n] − EKS [n] + EKS [n] − EgKS [n] . (A.0.2)

By using the coupling-constant integration expression

E [n] − EKS [n] =

∫ 1

0

dλ 〈Ψλ |Vee|Ψλ〉 +

∫

d3r
[
V (r) − V KS(r)

]
n(r) (A.0.3)

one obtains

EgKS
xc [n] =

∫ 1

0

dλ 〈Ψλ |Vee|Ψλ〉 + EKS [n] − EgKS [n] − (1 − a)U [n]

+

∫

d3r
[
V gKS(r) − V KS(r)

]
n(r) . (A.0.4)

With

EKS [n] =
〈
ΦKS |T |ΦKS

〉
+

∫

d3r V KS(r)n(r) (A.0.5)

and

EgKS [n] =
〈
ΦgKS |T |ΦgKS

〉
+

∫

d3r V gKS(r)n(r) (A.0.6)
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we finally get

EgKS
xc [n] =

∫ 1

0

dλExc,λ − aEgKS
xc +

〈
ΦKS |T |ΦKS

〉
−
〈
ΦgKS |T |ΦgKS

〉
(A.0.7)

where

Exc,λ = 〈Ψλ |Vee|Ψλ〉 − U [n] (A.0.8)

EgKS
xc =

〈
ΦgKS |Vee|ΦgKS

〉
− U [n] . (A.0.9)



B kp perturbation theory

We apply the non-local gKS equation (4.0.1) to the wave function (4.3.19) and obtain with

[

−∇2

2
+ V gKS(r)

]

un,k+q(r) exp [iqr] −
∑

n′,b

∫

d3r′
φ∗

n′,b(r′)un,k+q(r
′) exp [iqr′]

|r − r′| φn′,b(r)

= εn,k+qun,k+q(r) exp [iqr]

⇔ exp [iqr]

[

−∇2

2
− iq∇ + V gKS(r) − q2

]

un,k+q(r) −
∑

n′,b

∫

d3r′
φ∗

n′,b+q(r
′)un,k+q(r

′) exp [iqr′]

|r − r′| φn′,b+q(r)

= εn,k+qun,k+q(r) exp [iqr]

⇔
{[

−∇2

2
− iq∇ + V gKS(r) − q2

]

un,k+q(r) −
∑

n′,b

∫

d3r′
u∗

n′,b+q(r
′)un,k+q(r

′)

|r − r′| un′,b+q(r)

}

exp [iqr]

= εn,k+qun,k+q(r) exp [iqr]

⇒
[

−∇2

2
+ V gKS(r)

]

un,k+q(r) −
∑

n′,b

∫

d3r′
u∗

n′,b(r′)un,k+q(r
′)

|r− r′| un′,b(r) + −iq∇un,k+q(r) + q2un,k+q(r)

= εn,k+qun,k+q(r) (B.0.1)

a differential equation for un,k+q(r). For q = 0 this equation is identical to the gKS equation for φn,k. Thus we can treat
qp = −iq∇ as a small perturbation, where the term q2 can be omitted in first order perturbation theory.

For the non-local potential we get the same relations in first order perturbation theory as for a local potential
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∑

n′′

〈

un′′,k|u1
n,k

〉∫

d3ru∗
n′,k(r)

[(

−∇2

2
+ V gKS(r)

)

un′′,k(r) −
∑

n′′′,b

∫

d3r′
u∗

n′′′,b(r′)un′′,k(r
′)

|r− r′| un′′′,b(r)

]

︸ ︷︷ ︸

εn′′,kun′′,k(r)

+ 〈un′,k|W |un,k 〉

=
∑

n′′

εn′′,k

〈

un′′,k|u1
n,k

〉

〈un′,k|un′′,k〉 + 〈un′,k|W |un,k 〉

= εn′,k

〈

un′,k|u1
n,k

〉

+ 〈un′,k|W |un,k 〉

= ε1
n,k 〈un′,k|un,k〉 + εn,k

〈

un′,k|u1
n,k

〉

. (B.0.2)
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