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Motivation
● How well does DFT (+LDA) describe the ground state magnetic properties?

✔  Fair description of several systems such as 3-d ferromagnets, Fe, Co; 
magnetic compounds of transition metals FeNi, NiCr, CoMn,; ...

✗  Contradiction with experiments for weak itinerant electron magnets: 

DFT Experiments
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Motivation
● How well does DFT (+LDA) describe the ground state magnetic properties?

✔  Fair description of several systems such as 3-d ferromagnets, Fe, Co; 
magnetic compounds of transition metals FeNi, NiCr, CoMn,; ...

✗  Contradiction with experiments for weak itinerant electron magnets: 

● The DFT (+LDA) description of magnetism is at a mean field level, and 
neglects fluctuations: tendency to overestimate magnetism

● Measurements of spin-fluctuations of the order of Bohr magneton 
in Y

0.93
Sc

0.07
Mn

2
 [Shiga etal, JPSP 57, 3141 (1988)]

● Spin-fluctuations in Ni
3
Ga destabilize the ferromagnetic ground state 

predicted by DFT [Aguayo etal, PRL 92, 147201 (2004)]
● Spin-fluctuations in Ni

3
Al can correct the magnetic moment predicted by 

DFT [Ortenzi etal, PRB 86, 064437 (2012)]

DFT Experiments

MnSi 0.68 0.27

Ni
3
Al 0.7 0.23

ZrZn
2

0.5 0.2

● Evidence for large effects of spin-fluctuations:

Magnetic moments:
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Motivation: nanostructures

Lang, Stepanyuk, Wildberger, Zeller and 
Dederichs, SSC 92 755 (1994)

Impurities on Ag(100) Chains

Monolayers:

Blügel, PRL 68 851 (1992)

Wildberger, Stepanyuk, Lang, Zeller and 
Dederichs, PRL 75 509 (1995)
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Motivation: nanostructures
● Nanostructures on non-magnetic metallic substrates

● Experimentally, no local moment 
has been found in these systems
[see, for instance, Ru and Rh in 
Ag(100), Honolka etal, PRB 76, 
144412 (2007)]

● DFT predicts large local moments 
(Stoner criterion almost always 
fulfilled)

Lang, Stepanyuk, Wildberger, Zeller 
and Dederichs, SSC 92 755 (1994)
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Motivation: nanostructures
● Nanostructures on non-magnetic metallic substrates

Can spin-fluctuations correct the local magnetic moments predicted by DFT?

Srivastaka etal, JPPM 18, 9463 (2006)

● DFT predicts large local moments 
(Stoner criterion almost always 
fulfilled)

Lang, Stepanyuk, Wildberger, Zeller 
and Dederichs, SSC 92 755 (1994)

● Experimentally, no local moment 
has been found in these systems
[see, for instance, Ru and Rh in 
Ag(100), Honolka etal, PRB 76, 
144412 (2007)]
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Introduction: opposite views of magnetism
Itinerant electronsLocalized electrons

● Localized in real space

● Magnetic moment: integer value 
(Hund's rule)

● Examples: magnetic insulators, 
rare earth metals...

● Localized in momentum space

● Magnetic moment: rational value

● Examples: transition metals, weak 
ferromagnetic compounds...
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Introduction: opposite views of magnetism
Itinerant electronsLocalized electrons

● General common feature: temperature dependence of magnetic moment and 
inverse susceptibility
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Stoner model

● Effects of exchange are treated within a molecular field term: 

● Magnetic susceptibility

● Criterion for magnetism provided: 
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Stoner model

● Effects of exchange are treated within a molecular field term: 

● Magnetic susceptibility

● Criterion for magnetism provided: 

● Main drawback of Stoner theory: extension to finite temperatures

● Temperature enters only through Fermi occupation factors: too weak 
temperature dependence

● Wrong analytic behavior of temperature dependent variables as 
compared to experiments; in particular, Curie-Weiss law not recovered
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Spin fluctuations
● Moriya and Kawabata, JPSJ 34 639 (1973); Moriya, JMMM 14 1 (1979)
● Murata and Doniach, PRL 29 285 (1972)
● Shimizu, RPP 44 329 (1981)
● Lonzarich and Taillefer, JPCCM 18 4339 (1985)
● Mohn and Wohlfart, JPFMP 17 2421 (1986)
● Takahashi, JPSJ 55 3553 (1986)
● Solontsov and Wagner, PRB 51 12410 (1994)
● ...
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Spin fluctuations
Phenomenological approach

● Phenomenological Landau-Ginzburg 
method: expansion of free energy with 
magnetization as the order parameter

With                                 

Stoner criterion, 
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Spin fluctuations
Phenomenological approach

● Phenomenological Landau-Ginzburg 
method: expansion of free energy with 
magnetization as the order parameter

● Including spin-fluctuations (m); from scalar to vectorial quantities

● Spin-fluctuations affect the (main) coefficient responsible for the magnetic 
order;                                                     push towards a nonmagnetic state

With                                 

Stoner criterion, 
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Spin fluctuations
Gaussian statistics

● Gibbs-Bogoliubov (Peierls-Feynman) inequality:
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Spin fluctuations
Gaussian statistics

● Gibbs-Bogoliubov (Peierls-Feynman) inequality:

are variational parameters to be determined from

● The theory leads to a set of equations to be solved self-consistently to 
determine (numerically) quantities such as bulk moment, spin-fluctuations 
or inverse susceptibility at a given temperature T: 
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Spin fluctuations
Gaussian statistics

● Renormalization of expansion coefficients of free energy by spin-fluctuations
✔Finite temperatures: deviations of Curie temperature and susceptibility within 

15% as compared to experiments: spin-fluctuations seem to cover the 
essential physics of magnetic coupling

✔Curie-Weiss law of itinerant electron magnets 
✗ Inappropriate discontinuos change of the spontaneous magnetization at Tc 
✗ Neglects spin-fluctuations at T=0

Kübler, Theory 
of Itinerant 
Electron 
Magnetism
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Spin fluctuations, T=0

● Fluctuation-dissipation theorem:

with the Bose occupation factor

● Zero-point (ZP) spin-fluctuations:
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Spin fluctuations, T=0

● [Aguayo etal, PRL 92, 147201 (2004)] Renormalization of the Stoner 
criterion by zero-point spin-fluctuations; calculation of approximate 
susceptibility within DFT+LDA

● Experimental evidence for large zero-point spin-fluctuations, 
                         , [Shiga etal, JPSP 57, 3141 (1988); Ziebeck etal, PRB 31, 5884 (1982) ]

● Correct the magnetic properties of DFT+LDA at T=0 adjusting the 
exchange-correlation potential taking into account ZP spin-fluctuations
[Ortenzi etal, PRB 86, 064437 (2012)]



Mitglied der Helmholtz-Gemeinschaft

Spin fluctuations, T=0

● [Aguayo etal, PRL 92, 147201 (2004)] Renormalization of the Stoner 
criterion by zero-point spin-fluctuations; calculation of approximate 
susceptibility within DFT+LDA

● Effect of ZP spin-fluctuations at finite T? 
See review by:
Takahashi, JPCM 13 6323 (2001)
also: 
Solontsov & Wagner, PRB 51 12410 (1994) 

● Experimental evidence for large zero-point spin-fluctuations, 
                         , [Shiga etal, JPSP 57, 3141 (1988); Ziebeck etal, PRB 31, 5884 (1982) ]

● Correct the magnetic properties of DFT+LDA at T=0 adjusting the 
exchange-correlation potential taking into account ZP spin-fluctuations
[Ortenzi etal, PRB 86, 064437 (2012)]

Takahashi & Moriya JPSP 54 1592 (1985)

Model calculations in MnSi
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Goal of the project: nanostructures

Lang, Stepanyuk, Wildberger, Zeller 
and Dederichs, SSC 92 755 (1994)

Can zero-point spin-fluctuations correct the magnetic state predicted by DFT?
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Goal of the project: nanostructures

Goal: calculate the zero-point spin-fluctuation from ab-initio
● Method: Korringa-Kohn-Rostoker Green function

● Real-space approach for describing the impurity

● Access to dynamical magnetic susceptibility:

Details in Lounis, Costa, Muniz, Mills, PRL 105 187205 (2010)
                Lounis, Costa, Muniz, Mills, PRB 83 035109 (2011)
 

: Green function of the unperturbed system 
: Green function of the perturbed system (impurity) 

: change in the potential induced by the perturbation

Can zero-point spin-fluctuations correct the magnetic state predicted by DFT?
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● Technical problem: frequency integration
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Goal of the project: nanostructures

● Technical problem: frequency integration

● Frequency integration along the real axis: computationally very heavy 
Possible solution: integrate in complex plane, but...

● Currently, the method gives access to the susceptibility only along the 
real axis

● Green functions are not analytical on the same side of the complex 
plane
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Final remarks 

● What is the magnitude of longitudinal spin-fluctuations?
(coupling to the charge density)

● Are spin-fluctuations independent of temperature, as suggested by 
Takahashi? 

● Impact of spin-orbit interaction

● Impact of dimensionality: surfaces, thin-films

Thank you
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