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Introduction

It has always been a dream of physicists to understand and predict properties of materials
without resorting to direct experimental measurements. In principle, the fundamental
laws describing our world between the nuclear and astronomical scales are well-known.
All we need to do is solve the time-dependent many-body Schrödinger equation providing
direct access to all properties. Neglecting relativistic effects it takes the form

i
∂

∂t
|Ψ〉 = H|Ψ〉 ,

where |Ψ〉 is the many-body wavefunction and

H =
Nn∑

α=1

P 2
α

2Mα

+
Ne∑

j=1

p2
j

2m
−

Ne∑

j=1

Nn∑

α=1

Zαe
2

|rj −Rα|
+

Ne∑

j<k

e2

|rj − rk|
+

Nn∑

α<β

ZαZβe
2

|Rα −Rβ|
,

denotes the many-body Hamiltonian of the system. Zα is the atomic number, Mα the
mass, Rα the position, and P α the momentum of nucleus α. pj and rj denote the
jth electron’s momentum and position. Ne, Nn are the number of electrons and nuclei,
respectively. This equation does not only describe essentially all everyday phenomena but
also unusual quantum effects. Striking examples are macroscopic quantum states such as
superconductivity, superfluidity, or the entanglement of states that lies at the heart of
quantum computing.

Soon after Schrödinger formulated his equation [1], Dirac realized that this ”Theory of
Almost Everything” comes with a catch [2]:

The underlying laws necessary for the mathematical theory of a large part
of physics and the whole of chemistry are thus completely known, and the
difficulty is only that exact applications of these laws lead to equations
which are too complicated to be soluble. It therefore becomes desirable that
approximate practical methods of applying quantum mechanics should be
developed, which can lead to an explanation of the main features of complex
atomic systems without too much computation.
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The complexity, Dirac refers to, arises from the quantum many-body nature of the
problem. As illustration let us consider a simplified iron atom. With its Ne = 26
electrons the total electronic wavefunction depends on 26 times 3 coordinates. Choosing
a very crude approximation by specifying the wavefunction on a grid with 10 points per
coordinate yields 1078 numbers to store – let alone process. This huge amount of data
cannot even be stored on a hard drive as large as our home galaxy, the milky way.

The most successful, “approximate practical method” of applied quantum mechanics
for condensed matter systems is density-functional theory. It works well for many
classes of materials, where it is a good approximation to think of each electron as an
individual entity, moving in the static mean-field created by the other electrons and
atomic nuclei. This is justified, when the electronic structure can be described by well-
defined quasiparticles. However, for many materials of scientific as well as technological
interest, density-functional theory fails to give even qualitative insights. In these strongly
correlated materials the electronic interaction is so strong that the phenomena produced
cannot be predicted by studying the electrons individually – instead, we need to describe
them collectively.

Strongly correlated systems often show unusual physics: they can be Mott insulators,
exhibit heavy-fermion behavior, orbital ordering, or, in one dimension, show spin-charge
separation (e.g. in TTF-TCNQ). Effects such as the colossal magnetoresistance in man-
ganites for spintronics or high-Tc superconductivity in cuprates are hot topics and highly
interesting for real-world applications.

A characteristic quantity for strongly correlated systems is the ratio of the local
Coulomb interaction, the Hubbard-U , and the bandwidth W . While it is small for
ordinary materials, the ratio is about or even greater than 1 for systems with strong
correlations. Typical representatives have partially filled d- or f -electron bands, where the
large ratio stems from the strong localization and thus large Coulomb repulsion in these
orbitals. A second class of strongly correlated materials are molecular crystals. Here, the
relevant orbitals are quite extended so that the corresponding Us are small. However, the
bandwidth originating from a very small overlap of the molecules is even smaller.

The electronic structure of strongly correlated materials is often studied with angular-
resolved photo-emission spectroscopy (ARPES) and neutron-scattering experiments. In
general, these materials are very sensitive to external perturbations. Theoretically,
ARPES and neutron-scattering results are closely related to the spectral functions and
spin susceptibilities. A direct calculation of these functions poses, however, a hard
problem. Since the single-particle picture breaks down and related techniques are not
applicable, we have to deal with a full non-perturbative many-body problem. Even with
the latest generation of supercomputers only the simplest model-Hamiltonians can be
solved. Therefore, we have to make every effort to capture the most relevant physics in
these simple models.

Obviously, the models have to be constructed in such a way that only the relevant
degrees of freedom are taken into account. Even though a systematic down-folding
approach exists, in practice the basic models are usually derived from intuition.

The prime and simplest model to treat strongly correlated systems is the Hubbard
model. It describes itinerant electrons in a single tight-binding band and their mutual
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local Coulomb repulsion in an orbital. A slightly generalized Hamiltonian which also
contains the next-neighbor interaction is

H = −
∑

σ,ij

tijc
†
i,σcj,σ + U

∑

i

ni↑ni↓ + V
∑

〈i,j〉
ninj ,

where tij denotes the tight-binding hopping matrix, U the local, and V the next-neighbor
interaction. The simplest model applicable to heavy-fermion systems is the periodic
Anderson model. It describes localized and correlated impurities (f -orbitals) coupled to
a band of non-interacting, conduction electrons via a small hybridization V :

HPAM =
∑

kσ

εkσa
†
kσakσ + V

∑

lσ

(
f †lσclσ + c†lσflσ

)
+ εf

∑

lσ

f †lσflσ + U
∑

l

nfl↑n
f
l↓ .

One of the most successful techniques to actually solve these models is dynamical
mean-field theory, where the lattice Hamiltonian is self-consistently mapped onto an
artificial single-impurity Anderson model. Among the many different DMFT-impurity
solvers such as different flavors of quantum Monte Carlo we use exact diagonalization.
The solution gives direct access to the impurity- as well as the lattice spectral function,
where the latter contains a local approximation to the correct self-energy Σ. Formally, the
spectral functions are the imaginary parts of the corresponding single-particle (2-point)
Green’s functions. Local susceptibilities are also readily obtained from this method.

The evaluation of general lattice susceptibilities like the aforementioned spin-spin
correlation function proves, however, difficult. The problem lies not only in its many-body
nature but also in the complexity of one of the ingredients – the vertex function. As we
will see in chapter 3 it is built from two-particle Green’s functions being expectation values
of four field-operators, evaluated at, in general, four different times. Their evaluation is
challenging due to the computational complexity of the quantity itself and the amount of
data needed to obtain reliable results. Even working with relatively small baths in the
Anderson impurity model, we need supercomputers for actual calculations.

Having the two-particle Green’s function and particle-hole bubbles originating from
the local and lattice Green’s function we can employ a Dyson-like equation to obtain
arbitrary lattice susceptibilities, enabling us to study the exotic correlation effects in
these strongly correlated materials.

As input for realistic calculations we need model parameters. Traditionally, they have
been guessed, estimated by comparison with experiment, or semi-empirically determined.
This approach is, obviously, unsatisfactory. Still, for general materials these procedures
are “state-of-the-art”, as no feasible other way is known. For organic crystals, however, we
devise an approach to systematically evaluate realistic, material-specific model parameters.
It will be covered in chapter 2. In a nutshell: Taking the positions and orientations of
the molecules from X-ray experiments we construct a new crystal from DFT-relaxed
molecules. For dimers within this crystal we obtain the hopping matrix elements from
the bonding/anti-bonding splitting of the relevant molecular orbitals. The Coulomb
parameters are harder to determine. If we treated all electrons in the Hubbard model,
we would need to use the bare Coulomb integrals. However, the neglect of all but the
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relevant electrons leads to a renormalization of the parameters. In a two-step process we
first use DFT to obtain the screening due to the electrons inside the molecules, giving
the intra-molecularly screened Coulomb parameter U0 and V0.

To obtain the screening contribution ∆U and ∆V of all the other molecules in the
system we proceed with a classical electrostatic approach, where we represent the molecules
by polarizable point dipoles. Building a cluster of N unit cells containing these dipole
molecules we extract the energetic response to an additional charge on one or two molecules.
Extrapolating to infinitely large N we obtain the screening contributions ∆U and ∆V .
This approach is developed in chapter 1.

Finally, we apply this procedure to two compounds, TTF-TCNQ and (BEDT-TTF)2I3

and obtain the parameters for a realistic description in terms of an extended Hubbard
model. We find relatively small hopping matrix elements in comparison to the effectively
strongly-screened Coulomb integrals – a situation typical of organic crystals.

For (BEDT-TTF)2I3 we observe a strong dependence of the characteristic ratio U/W
on the molecular orientations in the crystal, suggesting experiments for pressure exerted
on the sample. The realistic parameters for TTF-TCNQ help to resolve a long-standing
problem in the interpretation of the experimental data and demonstrating the importance
of longer-range Coulomb interactions in organic crystals.
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6 Electrostatic Screening in Dielectrics

Inside a material an external electric potential V (r, ω) is shielded by the mobile charges
of the system. This screening leads to a change, usually a reduction, of the external
potential, which in linear response can be described in terms of a new effective potential
V eff(r, ω).

In chapter 2 we will study organic crystals which belong to the group of non-polar
dielectrics. The basic building blocks of these systems are molecules or atoms that are
only weakly bound. Hence, we can unambiguously assign a charge density to each lattice
site. In systems where the hybridization is too strong we would have to resort to the
modern theory of polarization based on the Berry phase (e.g. refer to Resta [3]).

Usually the molecules forming an organic crystal do not carry permanent dipole
moments, e.g. due to their spatial symmetry. Therefore, we can describe the screening by
considering the molecules as sets of polarizable point dipoles. With these new building
blocks we rebuild the crystal giving a microscopic point dipole model (MPDM). Within
this model we can then derive effective parameters for organic crystals.

This chapter introduces and discusses the MPDM and its solutions for several dimensions.
It is structured in four sections. We start with an introduction to the general theory. The
following two sections describe low-dimensional systems embedded in three-dimensional
space. Three-dimensional systems are covered in the final section of this chapter.

1.1. Introduction

Given a general charge distribution %(x) we define its electrostatic potential Φ(x) as

Φ(x) =

∫

R3

d3x′
%(x′)

|x− x′|
. (1.1)

For a localized charge density % (x), such as a molecule in an organic crystal, it is possible
to construct a sphere of radius R enclosing all charges (electrons and nuclei) around its
center. Outside this sphere we can expand

1

|x− x′|
=
∞∑

n=0

1

n!
(−x′ ·∇)

n 1

|x|
=

1

|x|
− x′ ·∇ 1

|x|
+ · · · (1.2)

yielding

Φ(x) =
q

|x|
+
p ·x
|x|3

+
1

2

∑

ij

Qij
xixj
|x|5

+ · · · , (1.3)

where q denotes the total charge

q =

∫
d3x′ %(x′) , (1.4)

p, the electric dipole moment

p =

∫
d3x′ x′%(x′) , (1.5)
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and, Qij, the quadrupole moment tensor

Qij =

∫
d3x′ (3x′ix

′
j − |x′|2δij)%(x′) . (1.6)

The electrostatic energy of this localized charge distribution within an external potential
Φext(x) is given by

W =

∫
d3x %(x)Φext(x) . (1.7)

Using expansion (1.3) we obtain

W = qΦext(0)− p ·Eext(0)− 1

2

∑

ij

Qij

∂Eext
j (0)

∂xi
+ · · · , (1.8)

where the electric field Eext(x) is

Eext(x) = −∇Φext(x) . (1.9)

Usually the external potentials vary rather slowly. Contributions of order higher than the
dipole term can be neglected since the quadrupole and higher tensors are small and decay
fast. Hence, we neglect all but the first two terms in the microscopic point-dipole model.

From equations (1.9) and (1.3) we obtain the electric field of a point charge at the
origin

Epc(x) =
qn

|x|2
, (1.10)

and that of a dipole at the origin

Edip(p,x) =
3n(p ·n)− p

|x|3
, (1.11)

where n = x/|x|.
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1.1.1. Microscopic Point-Dipole Model

If an atom or molecule is exposed to an external electric field, it responds by rearranging
the electrons with respect to the nuclei in such way that the resulting field depolarizes, i.e.
weakens, the original external field. As a first approximation we regard the molecule as a
set of polarizable point dipoles defining the microscopic point-dipole model (MPDM).

In linear response the polarization of a single dipole costs an energy of p2/2α, where α
denotes its polarizability. Obviously the higher the polarizability the larger the response.
According to equation (1.8) the energy of a dipole placed inside an external electric field
is −p ·Eext.

Figure 1.1.: Dipole arrangement in the x-y-plane induced by a negative point charge
in the center of a three-dimensional cubic crystal of atoms regarded as
polarizable point dipoles (α ≈ 0.076).

Describing the full crystal within the MPDM we have at least a single point dipole per
lattice site (see figure 1.1). Let Ri be the position of site i, pi and αi the corresponding
dipoles and their polarizabilities. The energy of a dipole in the lattice not only depends
on the external field but also on the field of all other dipoles in the system, −pi ·Elocal

i .
Using the dipole fields (1.11), we obtain for the microscopic local field at lattice site i

Elocal
i = Eext

i +
∑

j,j 6=i
Edip

(
pj,Ri −Rj

)
. (1.12)

Consequently, the change in energy due to fixed dipoles p and an external electric field
Eext is

∆W =
∑

i

(
p2
i

2αi
− pi ·

(
1

2

∑

j,j 6=i
Edip

(
pj,Ri −Rj

)
+Eext

i

))
, (1.13)
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external field Eext
i =

qn

|Ri − R0|2

initialize Emicro
i = Eext

i

induced dipoles pi = αiE
micro
i

total field Emicro
i = Eext

i +
∑

j !=i

3n(pj · n)− pj

|Ri − Rj |3

∆U =
1

2

∑
pT
i α
−1
i pi −

∑
piE

micro
i

Figure 1.2.: Scheme to obtain the self-consistent solution for the screening problem.

where the dipole-dipole energy term has been reduced by a factor of 2 to avoid double
counting.

Allowing the dipoles pi to change to minimize their energy, the variational principle
yields the actual dipole arrangement

pi = αiE
local
i = αi

(
Eext
i +

∑

j,j 6=i
Edip

(
pj,Rj −Rj

)
)
. (1.14)

Obviously, changing dipole i alters the local field for all the others. That in turn influences
the local field at site i and therefore pi. To obtain a solution, the coupled system of
equations (1.14) has to be solved self-consistently. For a real-space based MPDM code
figure 1.2 shows a scheme to do so.

1.1.2. Vector-Space Notation

It is practical to reformulate the problem in a vector notation to use the methods of linear
algebra. We define the dipole-dipole matrix Γiµ,jν which relates the Cartesian component
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µ = x, y, z of the induced electric field at site i to the dipole component ν at site j

Γiµ,jν =
3RijµRijν − δµνR2

ij

R5
ij

, i 6= j , (1.15)

where Rij = Ri −Rj. Using Γiµ,jν we can write the field caused by the induced dipoles
as

|Eind〉 = Γ|p〉 , (1.16)

where |p〉 is

|p〉 =




p1x

p1y

p1z

p2x
...




, (1.17)

and likewise for the electric field. This Dirac-like notation, introduced by Allen [4, 5],
goes back to Luttinger and Tisca [6]. Following this notation the general change in energy
due to the induced dipoles (1.13) reads

∆W =
1

2

〈
p
∣∣∣α−1 − Γ

∣∣∣p
〉
− 〈p|Eext〉 . (1.18)

As self-consistent solution (1.14) we get the dipole arrangement

|p〉 =
(
α−1 − Γ

)−1 |Eext〉 , (1.19)

which leads to an energy reduction

∆W0 = −1

2

〈
Eext

∣∣∣
(
α−1 − Γ

)−1
∣∣∣Eext

〉
. (1.20)

1.1.3. Obtaining the Screening Energy for Coulomb Parameters

To obtain Coulomb parameters we place point charges into the lattice of polarizable
dipoles and calculate the energy correction (1.20) due to the newly induced dipoles. As
an ingredient we need the energetic response ∆u of the crystal to a single charge. It gives
rise to the field Eext(R) = Epc(R), where Epc(R) is given by equation (1.10). According
to (1.20) we obtain the energy correction ∆u = ∆W 1pc

0 .
From this we can readily obtain the screening contribution for the local Hubbard-U .

It is the response of the crystal to two charges on the same site ∆W 2pc
0 , corrected for

the energy of two isolated additional charges, i.e. ∆U = ∆W 2pc
0 − 2∆u. Since the charge

enters the correction (1.20) quadratically, we find ∆U = 2∆u.
For the inter-site Coulomb parameters Vl we place two equal charges q into the crystal:

one at site i and the other at site j such that Ri −Rj = l. The resulting electric field
is Eext(R) = Epc(R−Ri) +Epc(R−Rj). Due to the linearity of equation (1.19) the
superposition principle for the point charges holds for the dipoles, as well. Therefore,
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we decompose the dipoles into a component |p(i)〉 induced by the charge at site i and
likewise for j:

|p〉 = |p(i)〉+ |p(j)〉 . (1.21)

Without dipoles in the system the external field is unscreened, i.e. V 0
l = q2/|l|. Within a

lattice of dipoles the energy reduction (1.20) due to polarization is

∆W0,l = −
〈
Ei

∣∣∣
(
α−1 − Γ

)−1
∣∣∣Ei

〉
/2−

〈
Ej

∣∣∣
(
α−1 − Γ

)−1
∣∣∣Ej

〉
/2

−
〈
Ei

∣∣∣
(
α−1 − Γ

)−1
∣∣∣Ej

〉
/2−

〈
Ej

∣∣∣
(
α−1 − Γ

)−1
∣∣∣Ei

〉
/2 , (1.22)

where |Ei〉 denotes the electric field caused by the point charge at site i. Evidently, the
first two terms yield the on-site Coulomb correction ∆U , which is not to be included in
∆Vl. Thus,

∆Vl = ∆W0,l − 2∆u (1.23)

= −
〈
Ei

∣∣∣
(
α−1 − Γ

)−1
∣∣∣Ej

〉
/2−

〈
Ej

∣∣∣
(
α−1 − Γ

)−1
∣∣∣Ei

〉
/2 (1.24)

= −
〈
E0

∣∣∣
(
α−1 − Γ

)−1
∣∣∣El
〉
. (1.25)

In the final step we make i the origin of the system and exploit that the two summands
are equal due to symmetry. For i = j, i.e. l = 0, the correction to the Coulomb integral
(1.25) obviously gives ∆V0 = 2∆u = ∆U .

1.1.4. Ferroelectric Catastrophe and Reciprocal Space

Together with the polarizability, the dipole-dipole matrix Γ determines the physics of the
system. It is practical to expand Γ in its spectral representation

Γ =
∑

γ

γ |γ〉〈γ| , (1.26)

where γ denotes its eigenvalues and |γ〉 its eigenvectors. With this we can rewrite the
dipole equation (1.19) for site i. In the presence of an external field it is

pi = 〈i|p〉 =
∑

γ

(
α−1 − γ

)−1 〈i|γ〉〈γ|Eext〉 . (1.27)

The energy reduction due to screening can be cast as

∆W0 = −1

2

∑

γ

〈Eext|γ〉〈γ|Eext〉
(
α−1 − γ

)−1
. (1.28)

In ordinary dielectrics the polarizability is small enough that α−1 > γmax holds, where
γmax is the largest eigenvalue of Γ. However, for α−1 = γmax the dipoles and the energy
reduction (1.28) diverge if the external field has a component parallel to |γmax〉. Thus,
the system becomes instable. This is a manifestation of the ferroelectric instability.
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Ferroelectric instability Equation (1.18) gives the energy correction for an arbitrary
arrangement of dipoles. In the absence of an external field it collapses to the quadratic
form

∆W =
1

2

〈
p
∣∣∣α−1 − Γ

∣∣∣p
〉
. (1.29)

Usually (α−1 − Γ) is positive definite. Therefore, minimization leads to the trivial solution:
∆W0 = 0 with |p0〉 = 0, i.e. an entirely unpolarized system with no non-vanishing dipoles
and reduction in energy. However, for α−1 = γmax the matrix (α−1 − Γ) becomes positive
semi-definite and consequently, there is no unique solution. For even larger polarizabilities
the system is not stable. |p〉 = 0 becomes an instable fixed point and the energy
correction diverges ∆W0 → −∞. At this ferroelectric instability the system is polarized
spontaneously with the dipole pattern determined by the eigenvector |γmax〉 to γmax. This
behavior can be found in infinite solids as well as finite clusters.

Reciprocal Space In infinite periodic crystals we can exploit translation symmetry.
Γ can be thought of as a tight-binding Hamiltonian in elementary condensed matter
physics. In that picture the hopping takes the role of the dipole-dipole interaction which,
in contrast to usual hopping, is long range.

The eigenstates of Γ are Bloch-like waves,

〈jµ|γ〉 = 〈jµ|kn〉 =
1√
N

exp (ikRj) εµ (kn) , (1.30)

where j is the site, µ = x, y, z the coordinate component, and n the band index. εµ (kn)
denotes the polarization vector which solves

Γµν(k)εν(kn) = γ(kn)εµ(kn), (1.31)

where Γµν(k) is the 3 × 3 dipole-dipole matrix (for one atom per unit cell) in Fourier
space

Γµν(k) =
1

N

∑

j 6=i
e−ik · rij

(
∇µ∇ν

1

Rij

)
=

1

N

∑

j 6=i
exp (−ik · rij)

(3rµijr
ν
ij − r2

ijδµν)

r5
ij

. (1.32)

Γµν(k) is a tracefree matrix, i.e. Tr (Γµν(k)) = 0. This follows directly from (1.32) since∑
µ∇2

µ = ∆ and ∆1/Rij is only non-vanishing for i = j. These terms are, however,
omitted in the summation.

A direct evaluation of the sum (1.32) converges very slowly. For numerical calculations
we therefore resort to the Ewald method [7]. It decomposes the summation into two parts:
a sum over the short-range interaction terms in real space and the longer-range terms in
reciprocal space. This leads to an overall fast convergence (cf. [8] and appendix A).

Once we have the complete eigensystem we can directly obtain the self-consistent
dipoles for arbitrary external fields according to equation (1.27)

|p〉 =
∑

kn

1

α−1 − γ(kn)
|kn〉〈kn|Eext〉 , (1.33)
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Figure 1.3.: The eigenvalue γk of the dipole-dipole interaction matrix Γ as a function
of k for a simple cubic lattice of polarizable point dipoles. The largest
eigenvalue is at the M -point (π, π, 0). γCM = 4π/3 is determined by the
CM relation (largest eigenvalue at the Γ-point) and indicated by the
upper green line. Since it is doubly occupied and Tr (Γµν(k)) = 0 the
lowest eigenvalue at the Γ-point is −8π/3 (lower green line). For the
definition of the high-symmetry points see for instance [11, page 693].

and the corresponding energy reduction

∆W0 = −1

2

∑

kn

〈Eext|kn〉〈kn|Eext〉
α−1 − γ(kn)

. (1.34)

For isotropic systems one Γ-point eigenvector and the corresponding eigenvalue have
been independently derived by Mossotti [9] in 1850 and Clausius [10] in 1897. The
eigenstate describes a uniformly polarized system, where all dipoles point along the same
crystallographic axis with the same magnitude as does the induced field. Equation (1.16)
shows that this configuration is an eigenvector whose eigenvalue is given by the Clausius-
Mossotti relation, γCM = γΓ = 4πn/3, where n denotes the density of the polarizable
dipoles (cf. section 1.4.1).

Is γCM the maximal eigenvalue γmax which – for fixed density – determines the critical
polarizability αc? Sauer [12], Luttinger and Tisza [6] showed that for body-centered and
face-centered cubic crystals this ferroelectric eigenstate actually is one of the dominant
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states (refer to figures A.1 and A.2 in appendix A). Luttinger and Tisza, however, also
proved in the same paper that in simple cubic systems an anti-ferroelectric state provides
a slightly larger eigenvalue. Figure 1.3 shows the “band structure”. We indeed identify the
maximum of the eigenvalues at the M -point (anti-ferroelectric state) [4]. As a consequence
the ferroelectric catastrophe actually happens already for smaller polarizabilities than
predicted by the Clausius-Mossotti relation (for simple cubic αc ≈ 0.1867).
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1.2. Screening in a One-Dimensional Chain

For an infinite one-dimensional chain of polarizable point dipoles with polarizability α
there exists an analytical solution which we present in the beginning of this section.
Then, we discuss peculiar screening processes found in these systems. In the final part we
assess the convergence of numerical real-space approaches by comparing to the analytical
solution.

1.2.1. Confinement to One Dimension

Let the one-dimensional chain run along the ez axis. A single dipole pm at position
Rm = ma causes an electric dipole field (1.11). At site n with position Rn = na it is

Edip
m (n) =





2pmez
|n−m|3a3

, p ‖ ez (longitudinal)

−pm
|n−m|3a3

, p ⊥ ez (transversal)
where n 6= m , (1.35)

and a denotes the lattice constant. Apart from the case of an external field with a
component perpendicular to the chain, the dipole moments are forced to point along the
chain direction. We will exclusively consider longitudinal dipole moments and fields.

The change in energy due to an arbitrary dipole arrangement (1.20) is

∆W =
∑

n

(
p2
n

2αn
−
∑

m6=n

pnpm
|n−m|3a3

− pnEext
n

)
. (1.36)

Minimization, δW/δpn = 0, again gives the dipole arrangement

p0n = αn
(
Eext
n + Edip

n

)
= αn

(
Eext
n +

∑

m 6=n

2pm
|n−m|3a3

)
. (1.37)

In the absence of an external field and for a uniform polarizability αn = α for all sites
the system is homogeneous and translationally invariant. Hence, all dipoles are equal
pn = p and equation (1.37) collapses to

p =
4ζ(3)α

a3
p , (1.38)

where ζ(s) =
∑∞

n=1
1/ns is Riemann’s zeta function (ζ(3) ≈ 1.20206). Obviously p = 0

is the trivial solution of this equation. It describes an unpolarized chain. For α̃ =
4ζ(3)α/a3 < 1, this is the only solution. For α̃ = 1, any p is a solution. Finally, for α̃ > 1,
the solution diverges for any non-vanishing p. p = 0 is an unstable fix point of equation
(1.38). This is the ferroelectric instability in one dimension (cf. section 1.1.4).

For a homogeneous external field the translation invariance is retained and the micro-
scopic local field at all sites reads

Elocal = Eext +
4p

a3
ζ(3) , (1.39)
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where p is implicitly given by
p = αElocal . (1.40)

Solving for p explicitly and inserting the result in (1.39) yields

Elocal =
1

1− α̃
Eext . (1.41)

Note that the external field is effectively enhanced. We discuss this enhancement in
section 1.2.3, after presenting the analytical solution to the one-dimensional problem for
inhomogeneous external fields.

1.2.2. Analytical Solution

The situation for arbitrary external fields is more complicated. To solve the linear system
of equations (1.37) we rely on the vector-space notation introduced in section 1.1.2. In
one dimension the Γ matrix has a very simple form

Γnm =
2

|n−m|3a3
=

1
a3




. . . . . . . . . . . . . . . . . . . . .

. . . 0 2/13 2/23 2/33 2/43 . . .

. . . 2/13 0 2/13 2/23 2/33 . . .

. . . 2/23 2/13 0 2/13 2/23 . . .

. . . 2/33 2/23 2/13 0 2/13 . . .

. . . 2/43 2/33 2/23 2/13 0
. . .

. . . . . . . . . . . . . . . . . . . . .




. (1.42)

The translation invariance is immediately evident. Γ is equivalent to a one-dimensional
single-band tight-binding Hamiltonian where the dipole interaction takes the role of
the hopping matrix elements. The only difference is the slow decay of the off-diagonal
elements (∝ 1/r3).

To diagonalize Γ we use an ansatz of Bloch waves 〈n|k〉 = einka. As eigenvalues we
obtain a sum of cosines decaying with 1/r3

γk =
2

a3

∞∑

m=1

eimka + e−imka

m3
=

2

a3

(
Li3(eika) + Li3(e−ika)

)
=

4

a3
Re
(
Li3(eika)

)
, (1.43)

where Lis(z) are the polylogarithms Lis(z) =
∑∞

k=1 z
k/ks. This function is plotted in

figure 1.4. We observe the highest eigenvalue γmax at k = 0 causing the ferroelectric
instability for 1/α = γmax = 4ζ(3)/a3.

From the eigenfunctions and eigenvalues we obtain the energy reduction (1.34) in one
dimension for arbitrary external fields

∆W0 = − a

4π

∫ π/a

−π/a
dk
〈Eext|k〉〈k|Eext〉

1/α− γk
. (1.44)
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Figure 1.4.: Eigenvalue of the dipole interaction “matrix” Γ which in one dimension
just is the k-dependent number Γzz(k). γmax is found at k = 0.

Similarly, we obtain the self-consistent dipoles from (1.33)

p0n = 〈n|p〉 = 〈n| (1/α− Γ)−1 |Eext〉 =
a

2π

∫ π/2a

−π/2a
dk
〈n|k〉〈k|Eext〉

1/α− γk
. (1.45)

Applying these formulæ to the special case of a point charge q at n = 0 gives the
screening contribution to the local Coulomb integral ∆U . The charge causes an external
field Eext

n = Epc
n = qn/(a2|n|3) for n 6= 0, giving

∆u = ∆W0 = − q2

2πa

∫ π

0

dκ
Im
(
Li2(eiκ)

)2

ζ(3)/α̃− Re (Li3(eiκ))
, (1.46)

which stems from the interaction of the point charge with the induced dipoles

p0n = − qa
2π

∫ π

0

dκ sin (κn)
Im
(
Li2(eiκ)

)

ζ(3)/α̃− Re (Li3(eiκ))
. (1.47)

The screening contribution to the non-local Coulomb parameters ∆Vl follows for an
external field composed of two charges Eext

n = Epc
n + Epc

n−l. The resulting total energy
correction is

∆W0 = − a

4π

∫ π/a

−π/a
dk
|〈Epc

0 |k〉|2 + |〈Epc
l |k〉|2 + 〈Epc

0 |k〉〈k|E
pc
l 〉+ 〈Epc

l |k〉〈k|E
pc
0 〉

1/α− γk
,

(1.48)
where the latter two terms give

∆Vl = − q
2

πa

∫ π

0

dκ cos (κl)

(
Im Li2(eiκ)

)2

ζ(3)/α̃− Re (Li3(eiκ))
. (1.49)

Figure 1.5 shows the screening corrections for different distances as a function of α̃.
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Figure 1.5.: Screening energy ∆V of Coulomb matrix elements for point charges
on an infinitely long chain of polarizable point dipoles as a function of
polarizability α̃. The different curves denote on-site (l = 0) and different
neighbor (l > 0) Coulomb terms. We see that the on-site Coulomb term
(l = 0) as well as the interaction between charges of nearest-neighbors
are screened for all 0 ≤ α̃ < 1. For longer range interactions and α̃ not
too close to the instability we observe anti-screening.

1.2.3. Screening Peculiarities

1.2.3.1. Electric Field

To study the screening effects in a one-dimensional chain of polarizable point dipoles, we
define a dielectric-constant-like quantity εE with

εE =
Eext

Elocal
, (1.50)

which in contrast to the actual dielectric constant is only defined at the lattice sites. In
the presence of homogeneous external fields we find

εE = 1− α̃ , (1.51)

where we make use of equation (1.41). Since α̃ < 1, also εE < 1. Obviously, the effective
local field at the sites is stronger than the original external field Eext. Instead of screening



Screening in a One-Dimensional Chain 19

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 10  20  30  40  50  60  70  80  90  100

ab
so

lu
te

 v
al

ue
 o

f E
 fi

el
d 

in
 a

.u

l in a

!~=0.000
!~=0.500
!~=0.800
!~=0.900
!~=0.940
!~=0.980
!~=0.999

Figure 1.6.: Absolute value of the microscopic local electric field Elocal = p0n/α̃ of
a one-dimensional chain of polarizable point dipoles at the position of
the dipoles. The lowest red curve represents the Coulomb law without
screening due to α̃ = 0. With increasing α̃ the effective electric field
becomes stronger. We observe anti-screening.

we find anti-screening. Anti-screening does not only take place for homogeneous but also
for more general external fields. For the example of a point charge, the microscopic field
Elocal
n = p0n/α̃ with p0n from (1.47) is plotted in figure 1.6 for different polarizabilities

0 ≤ α̃ < 1. Compared to the unscreened bare field (red curve) we observe an enhancement
of the local field, which is the stronger the larger α̃. Moreover, close to the charge the
field can behave non-monotonously.

It is instructive to study the inverse of εE since it directly describes the screening. For
ε−1
E = 1 we retain the bare field, whereas for ε−1

E < 1 we have screening while ε−1
E > 1

implies anti-screening. Figure 1.7 gives examples of ε−1
E for different polarizabilities and

distances from the point charge.

Far away from the charge the field varies slowly as 1/r. Hence, is close to zero. The
asymptotic behavior of 1/εE is approximately given by the inverse of equation (1.51) for
homogeneous fields (horizontal lines). Close to the charge there is a strong deviation from
this asymptotic limit due to local-field effects caused by the dipoles nearby. This effect
gives rise to the non-monotonous behavior. The local-field effects become the stronger



20 Electrostatic Screening in Dielectrics

 1

 1.5

 2

 2.5

 3

 3.5

 10  20  30  40  50  60  70  80  90  100

1/
!

l in a

"~=0.0
"~=0.2
"~=0.4
"~=0.5
"~=0.6

 0

 20

 40

 60

 80

 100

 120

 10  20  30  40  50  60  70  80  90  100

1/
!

l in a

"~=0.800
"~=0.900
"~=0.940
"~=0.980
"~=0.999

Figure 1.7.: 1/εE = Elocal
l /Eext

l for an infinite one-dimensional chain of polarizable
point dipoles, where the external field is caused by a charge at site n = 0.
Close to the charge there are strong local-field effects, which are more
pronounced the larger α̃. Sufficiently far away the asymptotic limit of
ε−1
E is given by εE = 1− α̃ (equation (1.51)).

and more extended the higher the polarizability. Close to the ferroelectric instability
α̃ / 1 we find that ε−1

E almost diverges (light blue curve in second plot).

To understand how the anti-screening behavior (always ε−1
E > 1) comes about we

consider the field of a single dipole in a homogeneous external field of a capacitor. The
dipole is modelled as two particles of opposite charge fixed at a constant distance. Its
dipole moment is aligned with the direction of the external field lines. The resulting
dipole field within the dipole weakens the external field because it is opposed (plot (b) of
figure 1.8). This process is called depolarization. Outside the dipole but along its axis,
coinciding with the one-dimensional chain, the field is enhanced. This holds for both
sides of the dipole. In one dimension and for point dipoles, which by definition have no
extent, only these outside regions remain. Hence, we only find anti-screening.

It is also illustrative to look how the microscopic potential Φ reflects screening and
anti-screening. Figure 1.9 sketches Φ. We find a linear potential (from the homogeneous
external field), the two divergences of the dipole charges, and a relatively flat plateau
between the two charges. This plateau shows the reduction of the field within the dipole –
the depolarization – because of E = −∇Φ. Similarly, close to the charges along their
connection line we clearly identify the enhancement of the field due to an increased slope.

1.2.3.2. Coulomb Integrals

The energy correction ∆Vl for non-local Coulomb integrals Vl = q2/la + ∆Vl is given
by equation (1.49). Figure 1.10 shows the analytical solutions for Vl as a function of l
and α̃. We find that for short distances the Coulomb repulsion always is screened in
contrast to the field. The screening is the stronger the higher the polarizability. At a
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(a) (b)

(c)

Figure 1.8.: Illustration for a dipole in an external homogeneous field. Within the
dipole the electric field points in the opposite direction of the external field
which is thus effectively reduced. Outside the dipole on the connection
axis of both charges the external field is enhanced. For point dipoles only
the outer region counts, leading to an effective increase of the field.

Figure 1.9.: Potential of a dipole in a homogeneous external field. The linear potential
gives rise to the homogeneous field. The two divergences are due to the
charges of the dipole. In-between both charges there is a relatively flat
plateau. It leads to the depolarization. Similarly, close to the charges
along their connection line we see the enhancement of the field due to an
increased slope.
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Figure 1.10.: Screened Coulomb matrix elements Vl for an infinitely long chain of
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interaction decreases monotonously with the distance. Close to the
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Figure 1.11.: Log-log plot of the fully screened Coulomb matrix elements Vl for an
infinitely long chain of polarizable point dipoles. For large distances the
microscopic dielectric function ε→ 1 or equivalently Vl ∝ 1/l (red line).
The intersection of the curves with 1/l give the critical distance lc(α),
where the transition from screening to anti-screening takes place.
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critical distance lc(α), which depends on the polarizability, a transition from screening to
anti-screening takes place, where Vl is larger than the bare Coulomb matrix element q2/la.
This transition is particularly evident in the log-log plot of figure 1.11. For asymptotically
long distances the Coulomb interaction approaches the unscreened V ext

l → q2/l. Where
does this peculiar behavior stem from? With the energy correction (1.25) and the relation
for the self-consistent dipoles (1.19) we obtain

∆Vl = −〈p(0)|Epc
l 〉 = −

∑′

i

p
(0)
i Epc

i−l . (1.52)

|p(0)〉 denotes the dipole arrangement as induced by a point charge at the origin and |Epc
l 〉

the field of a point charge at site l. The prime shall indicate that the sites carrying the
charges are omitted in the summation. The right-hand-side shows that a dipole makes
a contribution to the screening if −p(0)

i Epc
i−l < 0, when the field Epc

i−l and dipole p
(0)
i are

aligned. In contrast, opposing directions lead to a positive contribution to the sum and
therefore to anti-screening. Hence, for a given l we may divide the lattice into two sets of
dipoles – the screening and the anti-screening dipoles. Depending on the dominating set
the Coulomb interaction is either screened or anti-screened.

In a one-dimensional chain with two charges the anti-screening contributions stem from
the region between both charges – the anti-screening volume. It is illustrated for l = 8
in figure 1.12 (red color). We observe that the dipoles in the anti-screening volume are
effectively reduced compared to the screening of a single charge. The ones of the screening
volume (black arrows) are amplified instead.

Figure 1.12.: One-dimensional arrangement of screening dipoles induced by two point
charges a distance l = 8 apart. Compared to the screening dipoles for
an individual point charge, the induced dipoles in the space between
the charges are strongly reduced since the fields of both charges weaken
each other. We call this area the anti-screening volume (red area). It
gives rise to the possibility of anti-screening.

Moderate Polarizabilities For polarizabilities up to α̃ / 0.88, the critical distance is
lc = 2. In this regime the main contributions to the screening are caused by the very close
neighbors of the charges because only these dipoles have an appreciable induced dipole
moment (see figure 1.6). For l = 2 the anti-screening volume consists of a single site.
Since it is the nearest-neighbor of both charges it has a strong induced dipole moment
from the first charge as well as a strong field of the second charge in opposite direction.
This gives the dominant anti-screening contribution according to (1.52). All remaining
dipoles in the chain cannot make up for this positive contribution and V2 is effectively
anti-screened. The net dipole moment of this site is, of course, zero.
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Figure 1.13.: Screened Coulomb matrix elements Vl for point charges on an infinitely
long chain of polarizable point dipoles. The screened interaction de-
creases monotonously with the distance. Close to the ferroelectric
instability the screened interaction becomes almost independent of the
distance l. In the Hamiltonian the Coulomb energy essentially becomes
a constant offset leading to a screening-induced loss of correlations.

The same explanation holds for longer-range Coulomb parameters. The dipoles inside
the anti-screening volume are the closest to both charges and thus dominate, leading to
anti-screening. However, the farther the charges are away from each other the more the
dipole moments and field strength of the point charges decay. The effect of anti-screening
becomes less pronounced. Asymptotically, the Coulomb interaction is unscreened.

The Coulomb integrals for l = 0 and for l = 1 are always screened (see figure 1.5). For
two charges on the same and on adjacent sites there is no anti-screening volume and,
therefore, no positive contribution to the sum (1.52). In addition, the strong induced
dipoles and the high field strength of the point charge coincide at the same lattice sites,
making this effect very pronounced.

Figure 1.5 shows the screening corrections for different distances as a function of α̃.
We find the strong screening for l = 0, 1 as well as the anti-screening for longer-ranges
with the smaller distances being more pronounced. We could imagine that the more
efficient screening for smaller distances l might lead to a confining potential. The distance-
dependence of the bare Coulomb interaction is, however, even stronger at this range such
that Vbare + ∆V remains a monotonously decaying function (cf. figure 1.11). It, however,
becomes less distance-dependent.
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High Polarizabilities and Ferroelectric Instability For higher polarizabilites the
induced dipoles become stronger and cover a larger area. Therefore, an increasing number
of dipoles has a sizable contribution to the screening. For α̃ ' 0.88 they compensate
and eventually overcompensate the anti-screening contribution for l = 2. Hence, lc(α)
increases. This is illustrated in the curves of figure 1.5. For even higher polarizabilities
α̃ lc(α) increases further until a maximal critical distance lmax

c is reached. For larger
l > lmax

c the anti-screening always prevails.
Very close to the ferroelectric instability (α̃ / 1) the strong screening for the short

range l < lmax
c and the strong anti-screening for the long-range l > lmax

c effectively flatten
the Coulomb interaction out (cf. black line in figure 1.10 and 1.11). This is because
the anti-screening correction actually increases with distance. The screened Coulomb
interaction becomes almost independent of the distance. This can be interpreted as a
polarization-induced loss of electronic correlations, since all electron pair-interactions
yield roughly the same Coulomb energy irrespective of their mutual distance. Hence, the
Coulomb term just gives rise to a constant energy-offset in the Hamiltonian.

Screening of very long-range Coulomb matrix elements Substituting the field
of a point charge in equation (1.52) we obtain

∆Vl =
∑′

i

pi(l − i)
a2|l − i|3

. (1.53)

With the self-consistent dipoles p0i this sum yields the exact result and therefore is a recast
of equation (1.49). The dipole moments are aligned with the local field and proportional
in magnitude. With the asymptotic expression for the Elocal

i = 1/εEE
ext
i we can thus

approximate

p0i ≈ pi =
α

εE

i

a2|i|3
, (1.54)

effectively neglecting the complication caused by the local-field effects. Their contribution
to the sum is small since finite-size effects are strongly localized to a small region around
the charges. Moreover, they decay with 1/l2 (assuming not too large polarizabilities).

With this approximation the summation can be performed analytically yielding

∆V̄l =
α

a4εE

{
2

l3

(
l−1∑

i=1

4

i
+

2

l

)
+

1

l2

(
l−1∑

i=1

4

i2
− 4ζ(2) +

2

l3

)}
. (1.55)

From this we infer the asymptotic limit ∆V̄l → O(ln(l)/l3). Figure 1.14 shows the results
(green line). We observe a posteriori that the approximation indeed is well justified.
For small l we find a deviation due to local-field effects when comparing to the analytic
solution. For large l, however, there is hardly any difference at all.

We briefly introduce the continuum approximation which can readily be generalized to
higher dimensions. To that end, we smear the dipoles out along the line and substitute
the summation with an integral which does not contain the line segments representing
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the unit cells of the two charges, i.e. [x− a/2, x+ a/2] where x is either 0 or l. Carrying
out the integration yields

∆Ṽl =
4α

a4εEl2

{
1

l
ln
l2 − a2/4

a2/4
− l

l2 − a2/4

}
. (1.56)

Inspection confirms that the same asymptotic behavior is retained (see blue curve in
figure 1.14).

Figure 1.14 shows that this continuum approximation essentially differs from the sum
only for short distances. Still it takes longer to converge to the analytic results than the
sum (1.55). This is more obvious in the difference plot shown in figure 1.15. However,
also this simple approximation yields good results and gives the proper asymptotics.

The Coulomb parameters decay with ∆Vl → O(ln(l)/l3) which is obviously faster than
1/l. This shows that the Coulomb potential is unscreened for large distances as already
observed in figure 1.11.

1.2.3.3. Relation between Electric Field and Screening Energy

In the previous section we used an approximation for the electric field to obtain the
dipoles for the derivation of the asymptotic behavior. The field obviously seems to have a
properly defined dielectric constant εE 6= 1, whereas for the Coulomb matrix element the
dielectric constant εV always eventually assumes the value 1. This mismatch is surprising.
From textbook continuum electrostatics we know that the electric field is

E(r) = −∇V (r)/q = −∇ q

ε|r|
, (1.57)

where obviously the constant 1/ε in V is the same for E. Hence, εE ≡ εV .
This is not true for the dielectric constants defined in our one-dimensional model: 1/εE

based on the electric field reads

1/εE = Elocal
n ·n2 , (1.58)

whereas
1/εV = Vl · l . (1.59)

Figure 1.16 illustrates an example for this discrepancy of the two different 1/ε constants.
From the analytic solution for the Coulomb matrix elements we can formally derive the
correction term relating both. Treating the discrete sites l as a continuous variable enables
us to use equation (1.57). With a complicated but exact expression for the 1/l2 power
law

q

l2
=

2q

π

∫ π

0

dκ sin (κn) Im
(
Li2(eiκ)

)
(1.60)

we obtain

En = −∇Vn
q

= −2qζ(3)
πα̃

∫ π

0
dκ

sin (κn) Im
(
Li2(eiκ)

)

ζ(3)/α̃− Re (Li3(eiκ))

(
1− α̃

ζ(3)

(
κ

4
d

dκ
+ 1
)

Re(Li3eiκ)
)
.

(1.61)
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We identify the first summand as

Elocal
n = −2qζ(3)

πα̃

∫ π

0

dκ
sin (κn) Im

(
Li2(eiκ)

)

ζ(3)/α̃− Re (Li3(eiκ))
, (1.62)

which includes εE. Consequently, the latter two summands give the correction terms
stemming from εV .

How does this seeming inconsistency come about? Neither 1/εE nor 1/εV are the usual
macroscopic dielectric constants. Instead both are microscopic quantities and only defined
at the lattice sites. In order to obtain the macroscopic dielectric constant ε and to put
the derivative of Vl onto firm grounds we need to perform a suitable averaging procedure
(see section 1.4.1).

Being a real physical system, the chain is embedded in three-dimensional space. Hence,
the averaging has to take all three spatial dimensions into account. This poses the problem
of finding the right averaging volume. It has to be chosen such that it is large compared
to the lattice constant but small w.r.t. macroscopic dimensions. It is therefore not sensible
to define a quasi-one-dimensional volume along the chain. Even though this would yield
a finite result for the screening, i.e. 1/ε > 1, it would directly depend on the extent of the



Screening in a One-Dimensional Chain 29

volume perpendicular to the chain. Consequently, it would not be well-defined. Using an
appropriately large averaging volume in all spatial dimensions, the result of averaging
inevitably leads to no screening, i.e. 1/ε = 1, hence, removing the ostensible inconsistency.

1.2.4. Comparison to Cluster Calculations using the Real-Space
MPDM Code

While we have an analytical solution for the one-dimensional case, in general, we need
to resort to numerical solutions. Here, we discuss a real-space approach based on finite
clusters. The analytical solution gives us the means to assess the convergence of this
method as a function of the polarizability or cluster size.

To that end, we evaluate the dielectric-constant-like ε−1 numerically and compare to the
analytic results. Figure 1.17 shows the results for a finite cluster of 201 sites. Agreement
is perfect for not too large polarizabilities and not too close to the cluster boundary, where
we can clearly identify finite-size effects. These stem from the missing dipoles outside the
cluster. For a large range of polarizabilities the finite-size effects remain rather small and
the real-space approach gives a very good approximation. We can even make the cluster
the smaller the lower the polarizability.

The upper plot of figure 1.18 shows the electric field. For already quite high polariz-
abilities but below α̃ < 0.99 hardly any difference is observable. The lower plot gives
the relative error to the exact solution. A noticeable error starts as far as l = 80 for the
already quite large α̃ = 0.90.

However, very close to the instability, for instance for α̃ = 0.999, deviations from the
analytical results are very pronounced and spread over the entire cluster. Of course we
could significantly increase the cluster. But very soon this real-space approach becomes
infeasible. Therefore, it is not suitable to study the instability. We will introduce a more
efficient method to tackle systems close to the instability in section 1.4.3.
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The results directly correspond to analytical calculations (dashed lines
in corresponding color) already shown in figure 1.7. Direct comparison
shows hardly any deviation apart from finite-size effects at the cluster
boundary. This effect becomes stronger for higher polarizabilities.
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1.3. Screening in a Two-Dimensional Square Lattice

In this section we turn our attention to a two-dimensional square lattice of point dipoles.
Instead of giving an analytical solution we treat the system numerically, finding again a
loss of screening for long distances similar to the one-dimensional case.

1.3.1. Confinement to Two Dimensions

Without loss of generality we define the coordinate system such that the two-dimensional
lattice extends in ex and ey direction. A lattice vector thus becomes Rij = a(iex + jey),
where a is the lattice constant. Similarly, the dipole at Rij shall be denoted by pij =
pixex + piyey, whose field is given by equation (1.11). At lattice site (m,n) the field due
to a dipole at (i, j) reads

Edip
ij (Rmn) =





3
(
Rmnij ·pij

)
·Rmnij −R2

mnijpij
|Rmnij|5

pij ⊥ ez in plane

− pijzez
|Rmn −Rij|3

pij ‖ ez out of plane

, (1.63)

where Rmnij = Rmn −Rij 6= 0.
The case of a homogeneous external fieldEext is solved easily. It leads to a translationally

invariant system, since all dipoles point in the same direction with the same magnitude,
i.e. pmn = p for all m,n. To obtain the total dipole field at a site it suffices to evaluate
the sum over all dipoles seen from position 0. The field at the origin of a single dipole at
Rij is

Edip
ij (0) =

a2

R5
ij

{
ex
((

2i2 − j2
)
px + 3ijpy

)
+ ey

((
2j2 − i2

)
py + 3ijpx

)}
− ez

pz
|Rij|3

,

(1.64)
where the first two terms give the in-plane and the last the out-of-plane contribution.

For p in the x-y-plane

Elocal(R) = Eext +
∑

ij 6=0,0

Edip
ij (0) , (1.65)

the cross terms ij vanish. For each fixed j the summations over i > 0 and i < 0 cancel.
Due to symmetry the summations over i2 and j2 yield the same result. Thus,

Elocal
ij = Eext + p

∑

i,j 6=0,0

a2i2

R5
ij

= Eext +
p

2

∑

i,j 6=0,0

1

R3
ij

= Eext + γ
p

2a3
, (1.66)

for p ⊥ ez. Similarly, the out-of-plane case may be evaluated giving a negative sign for
the dipole summation and a factor of 1/2. Hence,

Elocal
ij = Eext +

γ

2a3
(ex px + ey py − ez 2pz) , (1.67)
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where γ denotes the lattice sum γ = a3
∑

i,j 6=0,0 1/R3
ij. In 1927 Topping [15] evaluated

this lattice sum approximately using a modified Jones’ and Ingham procedure (see [16]).
Apparently, he was unaware of the fact that exactly this summation had already been
calculated exactly by Lorenz [17] more than 50 years earlier. The exact solution is

γ = 4ζ(3/2)β(3/2) ≈ 9.03362 , (1.68)

where ζ denotes Riemann’s zeta function and β is Dirichlet’s beta function

β(s) =
∞∑

n=0

(−1)n

(2n+ 1)s
. (1.69)

Assuming an isotropic polarizability and using p = αElocal the local field can be
rewritten as

Elocal =
exE

ext
x + ey E

ext
y

1− γα/2a3
+

ez E
ext
z

1 + γα/a3
. (1.70)

For the evaluation of the Coulomb matrix elements we place charges on lattice sites. Thus,
within the plane the only non-vanishing components are the in-plane components. Hence,
we will restrict our discussion to this case.

The in-plane epsilon ε reads

1/ε =
1

1− γα/2a3
. (1.71)

This equation also hints at a ferroelectric instability similar to the one-dimensional case.
The critical polarizability for the Γ-point instability is αCM = 2a3/γ ≈ 0.221a3; there
could, of course, be instabilities at lower polarizabilities if the maximal eigenvalue of the
dipole matrix is not at the Γ-point. Numerically we indeed find hints suggesting that the
instability occurs earlier.

1.3.2. Numerical Solution

We handle the two-dimensional square lattice numerically using the self-consistency loop
presented in scheme 1.2. For this real-space based method we again rely on finite clusters.
To assess the convergence with system size and to rule out finite-size effects we treat two
different cluster sizes: N = 20 with 1681 and N = 56 with 12769 sites.

From the self-consistent solution we plot the dipoles and study the fields and Coulomb
matrix elements.

1.3.2.1. Dipoles and Electric Fields

Figure 1.19 shows the self-consistent dipole arrangement in the two-dimensional plane for
a negative point charge in the center of the lattice. The polarizability is α = 0.05 (upper
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Figure 1.19.: Dipole arrangement induced by a negative point charge in the center
of a two-dimensional square lattice of polarizable point dipoles with
polarizability α = 0.05 (upper picture) far from and α = 0.195 (lower
picture) close to the ferroelectric instability. The magnitude of the
dipoles is proportional to the length of the corresponding arrows with
different proportionality constants in the two plots, as close to the
instability the dipole magnitudes are significantly larger.
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plot), a value quite far away from the ferroelectric instability. For this case the real-space
approach should yield reliable results – even for quite small clusters.

As expected the dipoles are aligned radially to the point charge, likewise are the local
fields at the lattice sites. In contrast, the lower plot of figure 1.19 shows the result of a
simulation for α = 0.195 being quite close to the ferro-electric instability. We observe a
strong deviation from the radial alignment. This is a strong hint that the ferroelectric
instability does not occur at the Γ-point for αCM = 2a3/γ but already for smaller values.
Instead, the k-point giving rise to the instability determines this strange screening pattern.

For the system with low polarizability we again study the dielectric constant-like
quantity ε−1

E = er ·Elocal|l|2 based on the electric field. Figure 1.20 shows the results for
two different system sizes to assess the convergence – a small system with 1681 dipoles
(N = 20, plotted in red) and a relatively large system with 12769 (N = 56, plotted in
green).
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We identify four distinct ranges in the larger cluster. The nearest-neighbor l = 1 of
the charge is always screened, it is smaller than the vacuum 1/εvac = 1 (magenta line),
whereas for all other distances we find anti-screening. This is very similar to the behavior
found in the one-dimensional chain. It has been discussed in the previous section, where
we also found anti-screening. The second range contains the dipoles close to the charge
except for the first neighbor. This is the local-field domain. The scattering of the values
is due to different crystallographic directions. This domain extends until about l = 20.
The next range l ≈ 20 to 40 shows constant behavior consistent with 1/ε (blue line) as
derived above for the homogeneous system

ε−1 =
(
1− γα/2a3

)−1 ≈ 1.2917 . (1.72)

Towards the boundary of the cluster l ≈ N we find finite-size effects. Fields and Coulomb
integrals up to this range can thus be considered converged. The final range is the domain
of finite-size effects which manifest themselves as a variation in the field towards weaker
anti-screening. The scattering again stems from different crystallographic directions.

In the smaller system with N = 20 the domains of local-field and finite-size effects
blend into each other seamlessly. We do not find the constant domain governed by ε−1.
Since we cannot separate the local-field from the finite-size regimes, this system is too
small to draw general conclusions.

1.3.2.2. Coulomb Parameters

The Coulomb parameters Vl obtained for the same system are presented in the upper
plot of figure 1.21 as a function of the distance between the two charges. Comparing to
the unscreened interaction (blue curve) we observe screening for short distances just like
in the one-dimensional chain. This is emphasized in the lower plot showing the screening
correction energy ∆Vl. The explanation for this behavior is a direct generalization of that
for the one-dimensional case (see section 1.2.3.2).

The screening correction of the Coulomb matrix element ∆Vl (generalization of (1.52))
is given by

∆Vl = −〈p(0)|Epc
l 〉 = −

∑′

i

p(0) (Ri) ·Epc (Ri − l)

= −
∑′

i

p(0) (Ri)E
pc (Ri − l) cos (β (Ri)) , (1.73)

where β (Ri) denotes the angle at site i between the field of the point charge at l and
the dipole moment induced by the charge at 0. While in the one-dimensional case the
relative sign determined whether the dipole at i contributes to the (anti-)screening the
contribution, in higher dimensions is given by cos (β(Ri)). If β < π/2, we therefore obtain
a screening and otherwise an anti-screening contribution to the sum (1.73). Obviously, if
the field vector is perpendicular to the dipole moment this dipole has no contribution at all.
Hence, for radially aligned dipoles as we have for small polarizability α the anti-screening
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Figure 1.21.: Screened Coulomb parameters Vl (upper) and screening correction ∆Vl
(lower) for a square lattice of polarizable point dipoles with polarizability
α = 0.05. Green crosses denote a system size of N = 20, red crosses a
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volume is given by a circle with a diameter determined by l. This is illustrated in figure
1.22, where the anti-screening volume is marked with red arrows.

The anti-screening contribution is the largest along the line between both charges,
since the cosine functions assumes its maximum for 0◦. This is why anti-screening is
most pronounced in one dimension, where this line actually coincides with the chain.
In two dimensions the anti-screening contributions do not seem to be strong enough to
eventually lead to (pronounced) anti-screening. There are simply too many neighbors in
the “screening” volume always outweighing the dipoles in the anti-screening volume.

For large α, where the dipoles are no longer radially aligned (cf. lower plot of figure
1.19), the shape of the anti-screening volume is no longer a circle. For α = 0.195 close
to the instability figure 1.23 provides an example of a non-trivial anti-screening volume
for l = 8. We will not further study this system due to its proximity to the ferroelectric
instability. A treatment in reciprocal space is more appropriate (see next section).

To check for finite-size effects we again plot 1/εV = Vl · l. The upper plot of figure 1.24
gives the results for the two sizes, N = 20 and N = 56, for all directions in the crystal.
Being an integrated quantity the scattering of the values for different crystallographic
directions is less pronounced than for the electric field. For simplicity we therefore restrict
ourselves to a high-symmetry direction along the crystal and study more system sizes
(lower plot).

As expected, the curves deviate from each other the larger l and the smaller the system.
Based on the size dependence for each l we can extrapolate to an infinitely large system.
Using a quadratic extrapolation we obtain the red curve in figure 1.24. This gives a good
approximation to the infinitely large crystal in this range.

We find that the Coulomb interaction is unscreened, i.e. 1/εV → 1. This behavior
is analogous to our findings in the one-dimensional chain for the same reason: since
the plane is embedded in three-dimensional space and therefore the three-dimensional
Coulomb law holds, the dipoles in the two-dimensional plane cannot make up for the loss
of the electric field strength proportional to r2.

For finite systems there are finite-size effects close to the cluster boundary which manifest
themselves as anti-screening. They stem from the substantially unequal treatment of the
screening and anti-screening volume. The latter is entirely accommodated within the
simulation cluster, whereas only small parts of the screening volume are included. The
loss of screening may also be calculated analytically using the continuum limit integral
method we used for the one-dimensional system.

All in all we have a situation similar to the one-dimensional case: for very short
distances both Coulomb interactions are screened due to local-field effects. For large
distances both are unscreened. The difference is, however, that in one dimension there is
a domain of anti-screening which is absent in the two-dimensional plane.
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Figure 1.22.: Two-dimensional arrangement of screening dipoles induced by two point
charges for a small polarizability (α = 0.02). Compared to the screening
dipoles for an individual point charge, the induced dipoles in the space
between the charges is strongly reduced, since the fields of both charges
shorten each other to a degree given by the angle β between the field
vectors. This anti-screening volume (red circle) contains the lattice sites
with β < π/2. On the line connecting the charges β = 0 and the anti-
screening is strongest. That is why anti-screening is most pronounced
in one-dimensional systems.

Figure 1.23.: Two-dimensional arrangement of screening dipoles induced by two point
charges for a polarizability α = 0.195 close to the instability. The anti-
screening volume (red arrows) is considerably more complicated due to
the complex dipole arrangement shown in the lower plot of figure 1.19.
While equation (1.73) still yields the screening correction its summands
do not solely determine the anti-screening volume. It is given by the
total contribution of ∆Vl = −1/2

(
〈p(0)|Epc

l 〉+ 〈p(l)|Epc
0 〉
)

at each lattice
site. For comparison the light red circle denotes the anti-screening
volume from figure 1.22.



40 Electrostatic Screening in Dielectrics

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 2  4  6  8  10  12  14  16  18  20

1/
!

l in a

N20
N56
!vac

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 2  4  6  8  10  12  14  16  18  20

1/

l in a

extrapolation
N20
N22
N24
N26
N30
N40
N50
N56

vac

Figure 1.24.: 1/εV calculated from all Coulomb matrix elements Vl for finite systems
with N = 20, 56 (red, green) (upper figure) and for more system sizes
along crystallographic a-axis (lower figure) for a two-dimensional square
lattice of polarizable point dipoles of polarizability α = 0.05. In the
domain of local-field effects (short distances) we observe screening in
contrast to the one-dimensional chain. Finite-size artifacts, apparent at
the cluster boundary, give rise to anti-screening. The reason is that the
finite simulation cluster comprises the entire anti-screening volume but
neglects most of the screening volume. With increasing system sizes the
effect diminishes (lower figure). Using the cluster size dependence we
can extrapolate to an infinitely large system (red curve). In analogy to
the one-dimensional case the Coulomb integrals are unscreened for large
distances in an infinite system.
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1.3.3. Microscopic Field and Averaging

The actual microscopic field is given by

Emicro(r) = Eext +
∑

Ri

Edip(p(Ri), r −Ri) , (1.74)

where r is a continuous coordinate in space. It has a considerably more complicated
structure compared to the microscopic field at the lattice sites. For example, it diverges
at the lattice sites because r → Ri. The same is true for the potential which is easier to
plot being a scalar field. The potential of a cutout of the planar system is depicted in
figure 1.25. We observe the radial potential of the point charge at (0, 0) and the radially
aligned (and diverging) dipole potentials at the different lattice sites.

Figure 1.25.: Potential Φ of a two-dimensional square lattice (a = 1) of polarizable
point dipoles (α = 0.05) with a negative charge q = −1 at the origin.
Divergencies have been cut at Φ = ±5.

Let us briefly come back to the ostensible inconsistency of 1/εE 6= 1/εV = 1. As in the
one-dimensional case, for a macroscopic average of the microscopic electric field we need
to use an averaging method which averages over regions large on the microscopic and
small on the macroscopic scale expanding in three dimensions. Since the third dimension
does not carry dipoles the average will eventually yield zero.
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1.4. Screening in a Three-Dimensional Simple Cubic

Lattice

In this section we study a three-dimensional simple cubic lattice of polarizable point
dipoles. We find that the field E and Coulomb matrix elements are consistent with
textbook electrostatics. Here, screening actually means a reduction in the strength of the
fields and interactions. We use the Clausius-Mossotti relation to connect the microscopic
polarizability and the macroscopic dielectric constant.

We start this section with a non-standard derivation of the Clausius-Mossotti relation,
which is more suitable to our needs. This part is followed by the results obtained with
the real-space code for a system with a relatively low polarizability. It is necessary to be
sufficiently far away from the ferroelectric instability in order for the real-space MPDM to
work properly – this is especially true for three dimensions where relatively small clusters
can be treated. To study systems with high polarizability or even close to the instability
we need to resort to the k-space MPDM method, which we introduce at the end of this
section.

1.4.1. Clausius-Mossotti Relation from the Microscopic Perspec-
tive

The Clausius-Mossotti relation, also known as Lorentz-Lorenz relation in refractivity,
serves to establish a connection between the microscopic perspective of a solid and
the macroscopic one. It is valid in the case of dielectrics in three dimensions without
permanent polarization and assumes that the dielectric function is homogeneous. The
standard derivation of the Clausius-Mossotti relation found in many standard textbooks
[18, 19, 20] starts out from the macroscopic view and then constructs the connection to
microscopic quantities of the lattice.

Since we gain results from a microscopic model, the opposite way seems more suitable.
Following Aspnes [21] we first obtain the microscopic solution and then, in a second step,
perform an appropriate averaging operation relating both perspectives.

Assume we have an infinitely large simple cubic lattice of polarizable point dipoles in a
homogeneous external field Eext as well as the microscopic solution. Due to translational
invariance all dipole moments are the same p(Ri) = pi = p for all sites i, as is the local
field Elocal(Ri) = Elocal, where

Elocal = Eext +
∑

Ri 6=0

Edip(p,−Ri) (1.75)

according to equation (1.12). For a simple cubic system it is easy to see that the dipole
summation term is identically zero due to symmetry [18]: the lattice vectors may be
written as xijk = (ia, ja, ka)t, where a denotes the lattice constant and i, j, k ∈ Z. Within
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this notation the x component of the dipole summation term in (1.75) becomes

ex ·Edip =
∑′

ijk

3 (i2p1 + ijp2 + ikp3)− (i2 + j2 + k2) p1

a3 (i2 + j2 + k2)5/2
. (1.76)

The cross terms ij and ik vanish since i (or j) runs over all positive and negative numbers.
In contrast the sums

∑′

ijk

i2

(i2 + j2 + k2)5/2
=
∑′

ijk

j2

(i2 + j2 + k2)5/2
=
∑′

ijk

k2

(i2 + j2 + k2)5/2
, (1.77)

are non-zero but all equal. Hence, ex ·
∑
Ri 6=0E

dip = 0. The same argument works for the

y and z component and therefore,
∑
Ri 6=0E

dip = 0 in a simple cubic crystal. Note that
for other geometries this is generally not the case! For instance, for both low-dimensional
systems treated above this does not hold (cf. equation (1.39) for one- and (1.67) for
two-dimensional systems). However, for the simple cubic lattice the local field at each
site is given by the external field applied to the system, i.e.

Elocal = Eext . (1.78)

To establish the connection between the microscopic quantities and the macroscopic
observable we perform a suitable averaging operation (see Kranendonk and Sipe [22]).
For the dipoles

p(r) =
∑

i

αEmicro(Ri) δ(r −Ri) . (1.79)

and the microscopic field

Emicro(r) = Eext +
∑

Ri

Edip(p(Ri), r −Ri) , (1.80)

this can be carried out straightforwardly since all unit cells are equivalent. Hence, we
define the macroscopic dipole moment as

P =
1

V

∫

V

d3r p(r) =
1

V

∑

i

pi = np = nαElocal . (1.81)

V denotes the volume of the crystal and n the number of dipoles per unit volume. In the
case of a simple cubic lattice we have n = 1. Similarly, we obtain the macroscopic electric
field. The average of the first term of equation (1.80) being a constant is the term itself.
To carry out the averaging operation on the second term we first calculate the average
field of a single dipole. It is practical to represent the field in terms of the potential (see
second term of equation (1.3)):

〈Edip(p)〉V = −
∫

V

d3r ∇
(p · r
r3

)
= −

∫

∂V

dra
(p · r
r3

)
=




−4π

3
p p inside V

0 p outside V
,

(1.82)
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here V denotes an arbitrary volume. Similar to Gauss’s theorem the integration does not
depend on the choice of the volume V or its surface ∂V as long as the dipole is within V .
For the averaging of equation (1.80) we again choose the entire crystal volume. With the
aid of equation (1.82) we obtain

Emacro = Eext − 4π

3
P =

(
1− 4π

3
nα

)
Eext (1.83)

for the macroscopic electric field.

In systems not exhibiting such a high level of symmetry we need to employ a more
general averaging procedure. Therefore, we define the averaged macroscopic field as

Emacro(r) = 〈Emicro(r)〉V (d) =
1

V (d)

∫

V (d)

d3ξ Emicro (r − ξ) , (1.84)

where d is a characteristic length of the averaging volume V (d) and satisfies a� d� λ. λ
characterizes the spatial variation of the macroscopic field. Thus, effectively the averaging
is done over a volume which is large on the microscopic but small on the macroscopic
scale – a mesoscopic volume. For the averaging to make sense, the enclosed number of
dipoles should be proportional to the volume. To fulfil this criterion we take a simply
connected convex volume V (d). Usually a sphere or cube is taken for simplicity.

We define the macroscopic dielectric displacement

D = εEmacro = Emacro + 4πP , (1.85)

where ε is the macroscopic dielectric constant ε. With the the latter two parts of this
definition and equation (1.83) we obtain the Clausius-Mossotti relation

nα =
3

4π

ε− 1

ε+ 2
, (1.86)

or equivalently,

ε =
1 + 8παn/3

1− 4παn/3
. (1.87)

It is important to note that the macroscopic external field Emacro is not equal to the
microscopic external field. The latter is larger by 4π/3P to compensate the field of the
induced dipoles. We will observe a manifestation of this difference in the next section.

In low-dimensional systems we have seen that we cannot define macroscopic averages
since at least one dimension does not carry dipoles and the three-dimensional average
inevitably yields zero. In low-dimensional nano-devices, however, when the dimensions are
large enough to properly accommodate an averaging volume the Clausius-Mossotti relation
holds again. Interestingly, Mahan showed in 2006 that even though the dipole summations
within this volume give rise to a generally non-vanishing term, ei ·

∑
Ri 6=0E

dip 6= 0 , i ∈
{x, y, z}, their effect is compensated by the surface charges of the nano-devices [23].
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1.4.2. Numerical Solution for Moderate Polarizability in Real
Space

With a = 1 for the lattice constant the Clausius-Mossotti relation predicts the ferro-
electric instability to occur at αCM = 3/4π ≈ 0.2387. From figure 1.3 in section 1.1.4 we
know that the lattice actually is unstable against spontaneous polarization for smaller
α < αCM. The largest eigenvalue is found at the M -point (π, π, 0). For the real-space
simulations it is crucial to be sufficiently far away from the instability, since we can only
treat small clusters. To that end, we choose ε = 2.4, which corresponds to a molecular
polarizability of α ≈ 0.076. In order to obtain the dipoles, fields and the energy correction,
we place a negative point charge q = −1 in the center of the cluster and employ the
self-consistency scheme of figure 1.2.

1.4.2.1. The Electric Field

Figure 1.26 shows the self-consistent dipoles in the x-y-plane. Again, we obtain a mainly
radial field. This reflects the fact that the system is indeed away from the instability.

Figure 1.26.: Dipole arrangement in the x-y-plane (z = 0) induced by a negative point
charge in the center of a three-dimensional cubic crystal of polarizable
point dipoles with polarizability α ≈ 0.076 (cf. remarks of figure 1.19).

To study the screening behavior we study the dielectric-constant-like quantity ε−1
E (l) =

er ·El|l2| as a function of the distance to the point charge. Figure 1.27 gives the results
for three different system sizes N = 16, 20, and 22. The actual number of sites in the
crystal is given by 35937, 68921, and 91125 (#sites = (2N + 1)3).



46 Electrostatic Screening in Dielectrics

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 4  6  8  10  12  14  16  18  20

1/
! =

 E
x x

2

x in a

N16
N20
N22
!16
!20
!22

Figure 1.27.: 1/εE = er ·Elocal
x x2 constructed from the radial component of the

electric field of a three-dimensional cubic crystal of polarizable point
dipoles with polarizability α ≈ 0.076. Red, green and blue denote system
sizes of N = 16, 20, and 22, respectively. The horizontal multi-color
line gives a weighted least-squares fit to obtain the “bulk” 1/εE (refer
to text).

Already in the two-dimensional case (see figure 1.20) we observed a variation of the
ε−1
E (|l|) values for a given distance interval |l± δl|, where δl denotes a small region around
l, due to different crystallographic directions in the square lattice. This is even more
pronounced in three dimensions. In order to make the plot easier to interpret we define a
binning for the results. The distances are discretized in bins of width w. For each bin we
evaluate average value (solid lines) and standard deviation (error bar).

Close to the charge we observe local-field effects. From a distance of about 8 lattice
constants the “bulk” domain starts, which gives an almost constant ε−1

E and quite a small
fluctuation. It is followed by a region towards the cluster boundary where finite-size
effects become dominant. To obtain a good estimate for the “bulk” ε−1

E , we perform a
least-squares fitting in the region [8, 16] weighted by the standard deviation. For all system
sizes we obtain essentially the same result. It is plotted as the horizontal three-colored
line in figure 1.27. The largest cluster of N = 22 yields ε−1

E = 0.61111± 6.076 · 10−5.

Obviously, the result does not agree with ε−1 = 1/2.4 ≈ 0.4167, the reason being that ε
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is a macroscopic, whereas εE by definition is a microscopic quantity. In the previous section
we discussed how to perform the averaging operation. In three dimensions this averaging
operation yields a result ε−1 6= 1 in contrast to low-dimensional systems, where we found
no screening at all for large distances seen from the macroscopic perspective. From (1.83)
we know the connection between both perspectives, which is just a proportionality factor

κ = 1− 4π

3
nα . (1.88)

Hence, for the actual macroscopic 1/ε we obtain

1

ε
= κ

1

εE
. (1.89)

For α ≈ 0.0760 we get κ ≈ 0.7614 and as a result 1/ε ≈ 0.4167 which is exactly the
inverse of the dielectric constant we started out with.

1.4.2.2. The Coulomb Parameters

For the evaluation of the Coulomb parameters we again use

∆Vl = −
∑′

Ri

p(Ri) ·E(Ri − l) , (1.90)

where E(r) is the field of a point charge given by equation (1.10) and p(Ri) denotes
the dipole at lattice site Ri induced by a charge at the origin. The prime at the sum
means that lattice sites R = 0 and R = l are skipped in the summation. This formula is
especially suitable for the actual numerical calculation since the dipoles p(Ri) can be
reused from the calculation of the energy correction of the local Hubbard term ∆U = ∆V0.
Consequently, we just need to have one computationally intensive run to obtain ∆U using
the self-consistency scheme shown in figure 1.2. The other Coulomb elements follow from
a cheap postprocessing step applying formula (1.90).

First, we plot the ε−1
V of the Coulomb parameters Vl along a high-symmetry crystal

axis, for instance l = lex, to understand the qualitative characteristics of this system.
Figure 1.28 shows the result for three different system sizes N = 16, 20, and, 22. The
self-consistency calculation is done for cubes of edge length 2N + 1. We then evaluate
the Coulomb matrix elements Vl according to equation (1.90) for a sphere cut out of the
cubes.

Instead of obtaining an almost horizontal line with approximately ε−1
bulk = ε−1

V = 1/2.4
we observe an almost linear behavior up until about |l| = R. At |l| > R the test charge
giving rise to E in (1.90) does not overlap with the dipole cluster anymore. We find
near-field effects which express themselves as a bend in the curve towards the far-field
limit, the vacuum ε−1

vac = 1. Here, the dipoles merely mediate the field of the point charge
within the crystal to the outside and we can effectively treat the cluster as a point charge.

Looking at the slopes of the linear error in the dielectric constant we find that they
decrease with system size. A more careful investigation shows that the slope decays
proportional to 1/λ, where λ is a characteristic length scale of the system, for instance,
the radius R. Hence, it is an effect of finite size.
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Figure 1.28.: 1/εV calculated from the Coulomb matrix elements Vl along a high-
symmetry crystallographic axis for a sphere with radius R = N em-
bedded in finite systems with cube length N = 16, 20, 22 (red, green,
blue). The crystal consists of polarizable point dipoles of polarizability
α ≈ 0.076. Instead of the constant behavior with 1/εbulk (magenta
line) we observe a linear error in 1/εV which is due to the finite size of
the system (see text). For |l| > R the test charge giving rise to E in
(1.90) does not overlap with the dipoles anymore. Outside but close to
the cluster we see near-field effects as a bend in the curve. The near
field decays to the far field yielding the familiar vacuum behavior 1/εvac

(light blue line).
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The Continuum Limit and the Finite-Size Error of the Real-Space Method
Neglecting local-field effects we can calculate the dipoles as

p (Ri) = −qα
εκ

Ri

|Ri|3
, (1.91)

where we used κ to obtain the microscopic local εE = εκ from the actual dielectric
constant as given by equation (1.89). Inserting equations (1.10) and (1.91) in (1.90) yields

∆Ṽl = −q
2α

εκ

∑′

Ri

Ri

|Ri|3
Ri − l
|Ri − l|3

. (1.92)

To actually evaluate equation (1.92) we use the continuum approximation introduced
in section 1.2.3.2 for the one-dimensional system. Ri becomes a continuous vector r ∈ R3

and we replace the sum with the integral

∆Ṽl = −q
2α

εκ

∫

S(R)

d3r
r

|r|3
r − l
|r − l|3

, (1.93)

where S(R) denotes a sphere with radius R encircling both charges. This integral may be
evaluated analytically. Rewriting as

∫

S(R)

d3r
r

|r|3
r − l
|r − l|3

=

∫

S(R)

d3r

(
−∇ 1

|r|

)(
−∇ 1

|r − l|

)
, (1.94)

enables us to use Green’s first identity

∫

V

dV (∇φ) (∇ψ) =

∫

∂V

dS ψ (∇φ ·n)−
∫

V

dV (ψ∆φ) , (1.95)

where φ, ψ ∈ C2 and n is the outward pointing surface-normal of dS. With the help of
Poisson’s equation, i.e. ∆1/r = 4π δ3(r), we finally obtain

∆Ṽl = −4πq2α

εκ

(
1

|l|
− 1

R

)
. (1.96)

For an infinitely large crystal, i.e. R→∞, the screening energy correction is

∆Ṽl = −4πq2α

εκ

1

|l|
. (1.97)

Therefore the full Coulomb interaction follows

Ṽl =
q2

|l|
− 4πq2α

εκ

1

|l|
=

q2

ε|l|
, (1.98)

which obviously is the expected statically screened Coulomb potential in a dielectric
medium.
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Figure 1.29.: 1/εV calculated from the Coulomb matrix elements Vl for all directions
within a sphere with radius R = N embedded in finite systems with
cube length N = 16, 20, 22 (red, green, blue). The crystal consists of
polarizable point dipoles of polarizability α ≈ 0.076. The correction
(1.99) fixes the linear error and we obtain the proper bulk behavior
1/εbulk = 1/2.4.

However, in our real space MPDM code we can only treat finite systems and therefore,
the second term in equation (1.96) has a non-vanishing contribution. Just as the linear
error in our numerical results, it decays with a characteristic length 1/R. Having done
the calculation for a sphere of radius R cut out of the lattice we can correct the Coulomb
parameter using

Vl = V num
l (R)− 4πq2α

εκ

1

R
, (1.99)

where V num
l (R) denotes the numerically derived Coulomb parameter for the sphere cluster

of radius R.

Figure 1.29 gives the result for all directions in the cluster. Just as in the case of electric
fields we plot the average of all directions for a bin at a given distance with the standard
deviations as the error bars (see previous section for details on the binning strategy).
Apparently, we successfully corrected the constant error in the potential thanks to the
correction term in equation (1.99). We again find local-field effects close to the charge
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giving rise to strong fluctuations in the deviation and the average value. From about
l = 8a we observe that the bulk dielectric constant ε−1

bulk = 1/2.4 is reproduced quite well.
Surprisingly this also holds for the potential at the boundary of the cluster in contrast to
the electric field shown in figure 1.27.

However, for more complicated crystal structures or higher polarizabilities th real-space
approach quickly meets its limits due to finite-size effects.

1.4.3. Numerical Solution in Reciprocal Space

Therefore, we turn to k-space (see section 1.1.4), where we effectively evade finite-size
effects and directly treat infinitely large systems. We begin with a short introduction to
the method and then evaluate the energy corrections for simple cubic systems of different
polarizabilities – even α quite close to the ferroelectric instability. For the moderate
α ≈ 0.076 we compare the k-space results to those derived in real-space.

1.4.3.1. The method

The method is analogous to the one-dimensional case (see section 1.2), except that the
diagonalization of the dipole-dipole matrix Γ is not as simple. We employ Ewald’s method
(see appendix A) to obtain the k-space representation Γ(k) that is directly diagonalizable.

With γkn being the eigenvalue and 〈kn|E0〉 the eigenvector we can write the energy
correction ∆Vl as

∆Vl = −
∑

n,k∈1.BZ

e−ikl |〈E0|kn〉|2
(
α−1 − γkn

)−1
. (1.100)

For the actual evaluation we need the transform of the field of a point charge on a
real-space grid to k-space, E(k). The direct evaluation of the Fourier transform

E(k) =
∑

i

e−ikri
q

|ri|2
r̂i (1.101)

converges but convergence slows down, when approaching the divergence at the Γ-point.
The continuous Fourier transform of the field of a point charge can be readily calculated

analytically instead, giving

Econt(k) = −4πi

|k|
ek , (1.102)

where ek is the unit vector in k direction.
The Poisson resummation (see appendix F) provides the connection between both, the

continuous and the discrete Fourier transform. It is essentially a periodic extension of the
continuous Fourier transform with respect to the reciprocal lattice vectors, i.e.

E(k) =
∑

G

Econt(k +G) = −4πi
∑

G

k +G

|k +G|2
. (1.103)
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Figure 1.30.: Continuous (green) and discrete (red) Fourier transform for a simple
cubic lattice of the field of a point charge. The Poisson resummation
establishes the connection between both and effectively is a periodic
extension of the continuous Fourier transform. Close to the Γ-point
both fields agree very well.

For the numerical evaluation of the Fourier transform we can only sum over a finite
number of Brillouin zones. Therefore, we insert an additional Gaussian convergence
factor, exp(−β(k +G)), to each term in the sum. β is chosen in such a way, that the
numerical contribution of the term with the largest Gmax is below a threshold value ε,
for instance ε = 10−14. Thus, we effectively obtain the discrete Fourier transform of the
Gaussian-shielded field,

Eβ(k) =
∑

G

Econt(k +G)e−β(k+G) . (1.104)

Performing this calculation for different values of small β and extrapolating to β = 0, we
finally get E(k).

Figure 1.30 compares both Fourier transforms – the continuous and the discrete for
a simple cubic lattice. We observe that close to the Γ-point both results match. They
deviate, however, significantly at the border of the Brillouin zone due to the periodic
extension.

Given the field E (k) we can now numerically evaluate the screening correction (1.100)
for differently dense grids of the first Brillouin zone. Finally, we extrapolate to the
infinitely dense k-grid.
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The Γ-point, if present in a sampling, needs special treatment. Since the Coulomb
interaction diverges for k → 0 due to its long-range nature, we cannot directly evaluate
the k = 0 point. This applies also to the electric field. Still, an integral containing the
Γ-point gives a finite value. We therefore replace the infinite contribution of k = 0 in
equation (1.100) by an integral over a sphere whose volume is equal to the volume of the
k-point in the sampling. For an equidistant grid with N3

k grid points in the Brillouin
zone we have Vk = VBZ/N

3
k . Since close to the Γ-point the continuous and discrete fields

are essentially equal we can safely use equation (1.102) as very good approximation for
E(k) and obtain for the contribution of the Γ-point

V
(Γ)
l = −8πKVc

3

∑

n

(
α−1 − γ0n

)−1
, (1.105)

where K is the radius of the sphere of volume Vk = 4π/3K3, i.e. K = (3Vk/4π)1/3. Vc
denotes the volume of the unit cell in real-space.

1.4.3.2. Results

Using this k-space approach we evaluate the Coulomb parameter Vl along a high-symmetry
axis for different polarizabilities. At first we chose α ≈ 0.076 (ε = 2.4) to compare to
the real-space results of the previous section. Figure 1.31 gives the extrapolation to the
infinitely dense k-space grid based on Nk = 3843, 1923, 963 (green line) as well as the
real-space extrapolation (red line) for l = 0, 1, 2, 3 along a high symmetry axis. The
results of both methods are in good agreement. However, we expect the k-space approach
to yield more accurate results. The real-space approach relies on small clusters and needs
a finite-size error treatment. The k-space code on the other hand just needs to handle
small matrices for each k-point in the Brillouin zone. Hence, we can easily afford very
dense k-grids yielding more reliable results.

For high polarizabilities the real-space approach is not applicable at all since finite-size
effects become dominant. The k-space approach avoids these problems by effectively
treating infinitely large crystals. Figure 1.32 gives some results for high polarizabilites up
to values very close to the instability (see magenta boxes). We see a very good agreement
of the Clausius-Mossotti derived 1/ε and 1/εV for distances larger than the region of
finite-size effects. Again we observe that these effects become more pronounced and
extended the higher polarizabilities.

1.5. Summary

In this chapter we discussed how to effectively describe a non-polar molecular crystal (with
localized charge distributions at the lattice sites) in terms of a microscopic (polarizable)
point-dipole model (MPDM). Within this model we show how to obtain the arrangement
of dipole moments and the energy corrections due to screening. We discuss two different
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Figure 1.31.: Vl extrapolation for a simple cubic crystal with α ≈ 0.076 (ε = 2.4).
The green lines represent the real-space extrapolation to infinitely large
grids based on the results for N = 16, 20, 22. The red lines provide
the extrapolation to the infinitely dense grid in k-space based on Nk =
3843, 1923, 963. The different plots denote different distances l along a
high-symmetry axis, namely l = 0, 1, 2, 3. We observe good agreement
for both methods. We expect the real-space approach to be less accurate
due to small system sizes and the explicit finite-size correction.
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size effects.

treatments – a real-space and a k-space approach. Except for the one-dimensional case,
which is solvable analytically, we have to rely on numerical calculations for either method.

In one- and two-dimensional systems we find exotic screening and anti-screening effects,
which we can understand in terms of an anti-screening volume argument. Asymptotically,
the interaction is unscreened leading to results seemingly in contradiction with macroscopic
electrostatics. This contradiction is, however, resolved by noting that the averaging
procedures leading to macroscopic electrostatics are not appropriate for dipoles restricted
to lower-dimensional manifolds.

For three-dimensional lattices the usual screening behavior is recovered. We can
properly describe the screening for distances larger than the local-field effects with the
Clausius-Mossotti relation relating the microscopic α to the macroscopic world. Still,
unusual screening patterns appear for high-polarizabilities when the largest eigenvalue of
the dipole-matrix is not situated at the Γ-point. In the asymptotic limit Coulomb matrix
elements are screened with 1/ε.

Our numerical codes to solve the MPDM provide us with means to study the inter-
molecular screening corrections to Coulomb integrals in real organic crystals. Actual
calculations for two compounds, TTF-TCNQ and (BEDT-TTF)2I3, will be presented in
chapter 2. We find that the inter-molecular screening gives sizable contributions to the
model parameters, which turn out to be important for a realistic description.
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Molecules are the basic building blocks of organic crystals. Within those crystals molecules
are held together by weak van der Waals or electrostatic interactions. We study two
compounds, TTF-TCNQ and (BEDT-TTF)2I3. The constituents of both are non-polar
molecules. Taken by themselves the molecules have closed shells and are quite stable.
This suggests a two-step approach. We first deal with the constituents and study their
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properties. Afterwards, we assemble the molecules into a solid and tackle the additional
complications imposed by the full crystal. Interestingly, this approach is quite similar to
the actual synthesis. For chemists these systems are of paramount importance since they
allow for relatively easy molecular and crystal engineering. Hence, organic solids already
bring us close to designing materials with desired physical properties – the common goal
of chemists and physicists.

Both systems studied here are binary systems, i.e. the crystal is built from two different
molecules. Constructing the crystal out of TTF and TCNQ or BEDT-TTF and I3,
respectively, leads to a charge-transfer, similar to salts – hence the name: charge-transfer
salts. Unlike in ordinary salts the transfer of electrons leads to incompletely filled bands
and might give rise to metallic behavior. Remarkably, TTF-TCNQ, for instance, is a good
metal albeit containing not a single metal-atom – it is a metal-free metal. Due to their
crystal structure the conductance of many organic solids is highly anisotropic. It can vary
by several orders of magnitudes for different crystallographic directions. Hence, we have
effectively low-dimensional metals, where TTF-TCNQ is a quasi one- and (BEDT-TTF)2I3

a quasi two-dimensional system.
Being weakly bound, the overlap between the molecular orbitals of adjacent molecules

is rather small and so are the hopping-matrix elements relative to the Coulomb integrals.
Hence, we deal with strongly correlated materials in low dimensions. This is a combination
which potentially leads to striking many-body effects. A particularly exotic example is
the spin-charge separation found in TTF-TCNQ.

In strongly correlated systems electrons loose their individuality. Consequently, standard
methods based on single-particle mean-field pictures break down – even for qualitative
statements. Instead, we have to deal with a full quantum-many body problem, whose
solution is intractable. To that end, we replace the full Hamiltonian with an effective- or
model-Hamiltonian, which only contains dominant effects and important single-particle
orbitals. In this chapter we will show how to extract the model parameters for a realistic
description of organic solids in terms of the Hubbard model using the examples of
TTF-TCNQ and (BEDT-TTF)2I3.

Even though we cannot use density-functional theory (DFT) to describe the entire
organic crystal, we can employ it for the building blocks. From DFT we obtain the
hopping-matrix elements as well as the bare and intra-molecularly screened Coulomb
parameters. With the crystal structure taken from X-ray scattering experiments we
construct the full crystal and obtain the screening contributions caused by the electrons
of all molecules using the distributed dipole approach. For its solution we employ the
methods developed in chapter 1.

This chapter is structured in five parts. We start with a general introduction to
density-functional theory. While the underlying theory is the same for all DFT codes,
they differ significantly in their approaches. We therefore dedicate the second section to
the code we employ: FHI-aims (Fritz-Haber Institut’s Ab Initio Molecular Simulations).
Afterwards, we sent how to actually extract the model parameters from DFT and our
screening code presented in the previous chapter. In the final two sections we apply these
methods to two organic systems – TTF-TCNQ and (BEDT-TTF)2I3.
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2.1. Electronic Structure Theory

2.1.1. Density-Functional Theory

The most successful approach to electronic structure calculations so far is density-
functional theory (DFT). In the Kohn-Sham framework with the current approximation
to the exchange-correlation functional it is applicable to systems where a single-particle
picture for the electrons can appropriately describe the electronic structure. This is the
case when electronic correlations are not too strong.

Quantum chemical methods beyond Hartree-Fock theory [24, 25] such as Configuration
Interaction [26], Coupled Cluster [27], Møller and Plesset [28] are wavefunction-based.
They can give quite accurate results for the correlation energy. However, for large systems
they are computationally very demanding.

In contrast, DFT offers a tremendous reduction in complexity since its fundamental
variable is the electron density ρ, which is a function of three coordinates, whereas the
wavefunction depends on 3Ne coordinates. The original idea to use the density instead of
the wavefunction stems from 1927. Thomas [29] and Fermi [30] devised a method that
considered (classically) interacting electrons in an external potential v(r). The kinetic
energy is approximated by the kinetic energy functional of the homogeneous electron
gas. This theory, though giving some qualitative trends for total energies of atoms, did
not even capture chemical bonding due to the overly simplistic kinetic energy lacking
shell effects. However, it inspired Hohenberg and Kohn in the 1960s to think about the
possibility of having a complete and exact description of the electronic structure based
on the density alone. In 1964 they published their seminal Hohenberg-Kohn theorem [31],
which forms the basis of DFT.

Hohenberg-Kohn Theorem It actually comes in two statements. The first being
that the ground-state density ρ(r) of a bound system of interacting electrons uniquely
(up to some additive constant) determines the external potential Vext giving rise to the
ground-state density. The external potential Vext determines the Hamiltonian, therewith
the many-body wavefunction of the ground state and consequently all properties of the
system.

In wavefunction based methods the ground-state energy is accessible by solving the
eigenvalue problem HΨ = εΨ or minimizing the energy expectation value

E = minΨ̃〈Ψ̃|H|Ψ̃〉 , (2.1)

where Ψ̃ is a normalized trial function for a given number of electrons. To generalize this
concept to densities we define the set S(ρ) of different trial wavefunctions, all giving the
same density ρ. This leads to

E [ρ, Vext] = F [ρ] +

∫
d3r Vext(r)ρ(r) , (2.2)

where F [ρ] is determined by the constrained minimization

F [ρ] = minΨ̃∈S(ρ)〈Ψ̃|T + U |Ψ̃〉 . (2.3)
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F [ρ] is a universal functional of the density – in the sense, that it does not depend on
Vext, i.e. on the specific system. It contains the kinetic energy T as well as the interaction
energy U of the electrons among each other.

Hence, minimizing (2.2) over all densities ρ yields the ground-state density ρ0 as well as
the ground-state energy E0 = E [ρ, Vext] for a given Vext(r). This is the second statement
of the Hohenberg-Kohn theorem. A succinct proof of both has been given by Levy [32]
and Lieb [33].

Conceptually, we thus have means to exactly evaluate ground-state properties from the
density as basic quantity alone. This is a significant formal progress. However, implicitly
we still have a minimization with respect to the full Hilbert space in equation (2.3) and
we do not know the universal functional F [ρ] explicitly.

Kohn-Sham Density-Functional Theory The most common ansatz to find a good
approximate functional is the Kohn-Sham method published in 1965 [34]. It maps the
system of interacting electrons onto a system of independent particles Tind in a mean-field
Hartree potential plus the exchange-correlation potential under the constraint that the
ground-state density of both the interacting and the non-interacting system is the same.
The exchange-correlation term Exc describes the difference between the true F [ρ] and
the fictitious kinetic Tind+ Hartree energy, i.e.

F [ρ] = Tind [ρ] +
e2

2

∫
d3r d3r′

ρ(r)ρ(r′)

|r − r′|
+ Exc [ρ] . (2.4)

Of course, the exact Exc is not known either. However, it is usually relatively small and
therefore a good quantity to be approximated.

To minimize the Kohn-Sham functional

EKS [ρ] =

∫
d3r Vext(r)ρ(r) + Tind [ρ] +

e2

2

∫
d3r d3r′

ρ(r)ρ(r′)

|r − r′|
+ Exc [ρ] + Eions (2.5)

the density needs to satisfy the variational equation

0 =

∫
d3r δρ (r)

{
V (r) + e2

∫
d3r′

ρ (r)

|r − r′|
+
δTind [ρ]

δρ (r)
+
δExc [ρ]

δρ (r)

}
, (2.6)

under the constraint that the number of electrons is conserved∫
d3r δρ (r) = 0 . (2.7)

Equation (2.6) has the form of a non-interacting electron system whose electrons move in
an effective external potential

Veff (r) = V (r) + e2

∫
d3r′

ρ (r′)

|r − r′|
+ Vxc (r) , (2.8)

where the exchange-correlation potential is given by

Vxc =
δExc [ρ]

δρ (r)
. (2.9)
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Hence, we can obtain the ground-state density by first solving a single-particle Schrödinger
equation (

− 1

2m
∇2 + Veff (r)

)
ϕα (r) = εαϕα (r) (2.10)

and then evaluating the density by

ρ (r) =
∑

α:occ

|ϕα (r) |2 , (2.11)

where the sum runs over the N lowest eigenvalues respecting the Pauli exclusion principle.
Equations (2.10) and (2.11) are the Kohn-Sham equations, which have to be solved
self-consistently since the effective potential Veff depends on the density via (2.8).

A summation of the Kohn-Sham energies εα gives

2
∑

α:occ

εα = Tind [ρ] +

∫
d3r Veff (r) ρ (r) (2.12)

by construction, where the factor 2 stems from the spin degeneracy in a paramagnetic
system. Using (2.13), (2.8) and, (2.12) we obtain the total energy

EKS [ρ] = 2
∑

α:occ

εα −
e2

2

∫
d3r d3r′

ρ(r)ρ(r′)

|r − r′|
−
∫

d3r Vxc (r) ρ (r) + Exc [ρ] . (2.13)

Local Density Approximation A simple yet very successful approximation to Exc is
the local density approximation (LDA). It approximates Exc by

Exc [ρ] =

∫
d3r ρ(r)εxc(ρ(r)) , (2.14)

where εxc(ρ(r)) is the exchange and correlation energy per electron of the homogeneous
electron gas of density ρ(r). It can be split into two parts

εxc(ρ(r)) = εx(ρ(r)) + εc(ρ(r)) , (2.15)

the exchange εx(ρ(r)) and the correlation energy εc(ρ(r)). For the homogeneous electron
gas we can express the former analytically [35]

εx(ρ(r)) = −3

4

(
3ρ (r)

π

)1/3

. (2.16)

For the correlation energy no analytical form aside from its low- and high-density limit is
known. Instead, it has been evaluated numerically by Ceperley and Alder with quantum
Monte Carlo calculations [36]. These discrete results then have been interpolated by,
for instance, Perdew and Wang, giving the PW-LDA (PW91) [37] exchange correlation
potential.

In chemistry and solid state physics there is a plethora of exchange-correlation func-
tionals. The LDA has been used extensively until the 1990s. Nowadays, functionals
within the Generalized-Gradient Approximation (GGA) are preferred. In this work we
will mainly use the popular GGA-functional PBE [38] proposed by Perdew, Burke and
Ernzerhof in 1996.
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Shortcomings In contrast, to the Thomas-Fermi method Kohn-Sham-DFT with the
LDA and its generalizations describes the shell structure of bound electrons, which is e.g.
at the heart of chemical bonding. Even though the LDA is a crude approximation to the
real many-body correlation effects, it gives astonishingly good results for many material
classes where it is meaningful to speak of single electrons.

However, LDA fails even qualitatively for systems with strongly correlated electrons,
where the single-electron picture is lost. Mott insulators are, for instance, metallic within
LDA. To treat these system we will have to resort to a model Hamiltonian description.

Standard DFT also fails [39] to properly describe long-range van der Waals interactions,
in particular, the leading R−6 term originating from correlated spontaneous dipole
fluctuations. This is, however, not entirely surprising since the Kohn-Sham ansatz is built
around a static mean-field treatment and does not explicitly account for dynamic charge
fluctuations. Interestingly, PBE seems to provide reasonable estimates for weakly bound
systems. However, they actually are due to favorable errors or cancellations[40].

2.1.2. Density-Functional Practice with FHI-aims

While all DFT codes share the underlying principles, there are pronounced differences in
the actual strategies chosen to tackle the Kohn-Sham problem.

2.1.2.1. Basis set

The most notable is the choice of the basis set {|φi〉}i for the Kohn-Sham orbitals {|ϕα〉}α.
The expansion

|ϕα〉 =
∑

j

cαj|φj〉 (2.17)

transforms the Kohn-Sham problem from a continuous differential equation into a tractable
linear algebra problem. Since we can only use a finite number of basis functions this
expansion introduces an approximation. Different physical settings suggest different
choices for the basis sets. In solid-state physics planewave-based basis sets are often used
since they naturally accommodate the periodicity requirements of crystals. In contrast,
localized basis functions, such as Slater-type orbitals or Gaussians, are a natural choice
for finite systems such as molecules. The FHI-aims [41] code, we use in our studies of
molecules, belongs to the latter group. It has been developed at the Fritz-Haber-Institute
in Berlin under the supervision of Volker Blum. To obtain a highly efficient code without
sacrificing accuracy FHI-aims relies on numeric atom-centered orbitals (NAO) basis
functions of the form

φi(r) =
ui (r)

r
Ylm (Θ,Φ) , (2.18)

where (r,Θ,Φ) are the spherical coordinates of r and Ylm (Θ,Φ) denote the spherical
harmonics. The radial function ui(r) is numerically tabulated allowing for maximum
flexibility. Exploiting this flexibility to obtain a compact, but still accurate set, is key
to an efficient DFT code. FHI-aims comes with a highly optimized element-dependent



Electronic Structure Theory 63

-2078.66

-2078.64

-2078.62

-2078.6

-2078.58

-2078.56

-2078.54

-2078.52

Tier 1 Tier 2 Tier 3 Tier 4
 15

 20

 25

 30

 35

 40

 45

E t
ot

(T
ie

r) 
in

 e
V

w
al

lc
lo

ck
 ti

m
e

Figure 2.1.: Total energy (in eV) and wallclock time (in s) for a water molecule as a
function of the tier. We observe that the energy converges at the expense
of the runtime. Tier 4 only adds basis functions to the oxygen atom (see
table 2.1). Time has been measured with the serial version on a 2.53 GHz
Intel Core 2 Duo.

basis set which retains a high and transferable accuracy up to meV-level total energy
convergence [42]. The radial functions are numerical solutions to the Schrödinger-like
radial equation

[
−1

2

d2

dr2
+
l (l + 1)

r2
+ vi (r) + vcut(r)

]
ui (r) = εi ui(r) , (2.19)

where r is discretized on a logarithmic grid. vi (r) denotes the physical potential and
vcut(r) is the cutoff potential. It ensures that each radial function is strictly localized
within a sphere of given radius, i.e. ui(r) = 0 outside the sphere. Hence, different non-
overlapping spatial regions are separated from each other allowing for an almost linear
scaling with the system size for sufficiently large clusters.

The basis sets per species are structured in a hierarchy of tiers. The minimal tier
is constructed by setting vi (r) to the self-consistent radial potential of the free atom
and taking the solutions for the core and valence electrons. Since the core electron
wavefunctions hardly change in the case of chemical bonds and remain almost exactly
described, this method significantly facilitates the all-electron treatment. To treat chemical
bonds the minimal tier is, however, not sufficient. The construction and choice of the
basis functions for the tiers beyond the minimal are given in [42].
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Table 2.1.: Radial basis functions beyond the minimal tier used by FHI-aims for the
water molecule (aims standard.pre-CPC). H(nl, Z) denotes a hydrogen-
like radial function for the bare Coulomb potential Z/r for quantum
numbers n and l. ionic(nl, r) adds a free-ion like radial function, where
n and l also give the quantum numbers and r the onset radius of the
confining potential.

H O
tier 1 H(2s, 2.1) H(2p, 1.8)

H(2p, 3.5) H(3d, 7.6)
H(3s, 6.4)

H(4f , 11.6)
tier 2 H(1s, 0.85) H(3p, 6.2)

H(2p, 3.70) H(3d, 5.6)
H(2s, 1.20) H(5g, 17.6)
H(3d, 7.00) H(1s, 0.75)

tier 3 H(4f , 11.20) ionic(2p, 9.4486)
H(3p, 4.80) H(4f , 10.8)
H(4d, 9.00) H(4d, 4.7)
H(3s, 3.20) H(2s, 6.8)

tier 4 H(3p, 5.0)
H(3s, 3.3)
H(5g, 15.6)
H(4f , 17.6)
H(4d, 14.0)
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Figure 2.2.: 1b1 (HOMO) and 4a1 (LUMO) with isovalue 0.08 Å−
3
2 and total-electron

density with isovalue 0.08 Å−3 of an H2O molecule.

Obviously, low tiers mean fewer basis functions and therefore fast calculations at the
expense of a loss in accuracy. This tier is practical for relaxation calculations. High tiers
demand higher computational effort but provide more accurate results. It remains the
task of the user to determine how many basis functions or tiers are actually needed. For
the example of a water molecule the wallclock runtime and the energy as a function of
the tier are plotted in figure 2.1. The basis set is compiled in table 2.1. The basis sets for
all the atom species used in our work are given in appendix C.

2.1.2.2. Kohn-Sham Generalized Eigenvalue Problem

In each iteration of the self-consistency loop we need to solve the single-particle Kohn-
Sham equations (2.10). Since the basis functions are not orthogonal, expanding the
Hamiltonian with (2.17) gives the generalized Kohn-Sham eigenvalue problem

∑

j

hij clj = εl
∑

j

clj sij , (2.20)

where

hij = 〈φi|hKS|φj〉 =

∫

R3

d3r φ∗i (r)hKSφj(r) (2.21)

and sij denotes the overlap matrix elements

sij = 〈φi|φj〉 =

∫

R3

d3r φ∗i (r)φj(r) . (2.22)

Usually the numerical integrals for the overlap and Hamiltonian matrix are the dominant
part of the computational effort. Formally, both scale as O(N3) with the system size N .
However, the locality of the basis functions allows for an almost O(N) scaling when the
systems become large.

To solve the generalized eigenvalue problem a Cholesky decomposition is performed on
the overlap matrix, yielding

sij = LilL
t
lj . (2.23)
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Figure 2.3.: Molecular energy levels of an isolated water molecule H2O. The first
molecular orbital is not plotted for it has an eigenenergy of −510 eV.

The eigenvalues of (2.20) are those of the standard eigenvalue problem

(
L−1hKSL−t

) (
L−tc

)
= ε

(
L−tc

)
. (2.24)

Its solution gives the Kohn-Sham orbitals and energies which we identify with the
molecular orbitals and energy levels. As an example figure 2.2 shows the molecular
orbitals for a H2O molecule while figure 2.3 gives the molecular levels.

2.1.2.3. Dipole Moments

To treat organic crystals using the approach outlined in the introduction we need the
polarizabilites of their constituents. Within DFT codes with local basis sets such as
FHI-aims this is straightforward to do. We calculate the polarizability by extracting
the dipole moment as the self-consistent response of the electrons on the molecule to a
homogeneous external electric field Ehom.

To that end, we add a linear potential V hom to the external potential Vext such that
E = −∇V hom. Figure 2.4 gives an example for a linear potential with the radial potential
of a single atom. We see that the eigenvalue problem is now unbounded. The eigenstates
are superpositions of the continuum states and the bound states. This is, however, not
useful for our purpose. An electron fixed in a (metastable) bound state will eventually
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Figure 2.4.: Potential of an atom in an external homogeneous electric field. The real
eigenstates are superpositions of the bound states and the continuum
states. To evaluate polarizabilities we are, however, only interested in
the response of the bound states to a linear potential. If the continuum
states are spatially sufficiently far separated from the bound states we
can fix the bound states by using a local basis.

(but after an astronomically large time) tunnel into the continuum states. The locality of
the basis functions, however, confines the electrons to the region close to the molecule, i.e.
to the bound states.

For non-polar systems the center of mass of the electrons and nuclii coincide. In the
presence of the field they are, however, shifted with respect to each other and we obtain
a non-vanishing dipole moment as response of the system

D =

∫
d3r rρion(r)−

∫
d3r rρel(r) , (2.25)

where ρion and ρel denote the ionic and electronic charge density, respectively. From D
and Ehom for sufficiently small fields and three directions we can directly obtain the
polarizability tensor α

D = αEhom (2.26)

of the system.

2.1.2.4. Total-Energy Derivatives and Forces

Structure relaxations, vibrational properties, or ab-initio molecular dynamics require the
derivatives of the total energy with respect to the atom positions Ri – the forces.

The simplest method to obtain the energy derivatives is to use the finite difference
scheme which approximates the gradient by displacing the atomic positions. Even though
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arbitrarily high accuracy is possible, this requires full total-energy calculations for each
new displaced configuration and consequently leads to a high computational demand.

Using the Hellmann-Feynman theorem, i.e.

F i = −∇Ri〈Etot〉 = −〈∇RiEtot〉 , (2.27)

it suffices to perform only a single total-energy calculation. Once self-consistency is
reached, we can directly evaluate the Hellmann-Feynman forces

F HF
i = e2

∑

j,j 6=i

ZiZj
|Ri −Rj|3

(Ri −Rj)− e
∫

d3r ρ(r)
Zi

|r −Ri|3
(r −Ri) . (2.28)

However, in the case of FHI-aims we have to consider two additional contributions to the
force [42]. The Pulay forces stem from the basis dependence on the atom positions and
vanish only in the limit of a complete basis set. An additional force originates from a
multipole expansion of the density that is used within the Hartree potential evaluation.
For an exact expansion up to infinite multipole order this contribution would be zero.

2.1.3. Hubbard model

Although there is a wide class of materials which can be sufficiently well described by
Kohn-Sham DFT, it fails to capture the physics of systems with strong correlations. This
is because no useful exchange-correlation functionals for these systems are known – let
alone the exact one. Fortunately, there are other means of simplifying the full Schrödinger
equation which lead to an understanding of these more exotic materials.

In organic solids the molecular orbitals are well localized at the molecules giving rise to
narrow bands and thus small hopping parameters. Due to this weak hybridization we can
use the molecular orbitals as basis set for a tight-binding description. The complexity
of the many-body problem grows exponentially with increasing number of sites and
basis functions. Hence, we restrict our calculation to the relevant electrons in the partly
occupied molecular orbitals. In charge-transfer crystals this is the highest-occupied or
lowest-unoccupied molecular orbital for electron donors or acceptors, respectively. The
effect of the remaining occupied orbitals is a renormalization of the parameters of the
model Hamiltonian.

The simplest model describing itinerant electrons with Coulomb repulsion among them
is the Hubbard model. In this study we use the (extended) Hubbard model whose
Hamiltonian in real space reads

H = −
∑

〈i,j〉,σ
(tijc

†
iσcjσ +H.c.) + U

∑

i

ni↑ni↓ + V
∑

〈i,j〉
ninj . (2.29)

The first term denotes the kinetic energy in the tight-binding approximation. c†i creates
and c†i annihilates an electron in the molecular orbital i. The first term thus describes
the hopping of a single electron from site i to j and vice versa with the probability
amplitude tij . tij is also called intermolecular-transfer integral or hopping parameter. The
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second and third term represent the Coulomb energy, where niσ = c†iσciσ is the occupation
number of the molecular orbital at i with spin σ and ni =

∑
σ niσ. Hence, the second

term describes the local Coulomb repulsion of two electrons with opposite spin in one
orbital and the third one the repulsion in neighboring orbitals.

This chapter deals with the evaluation of the Hubbard model parameters tij, U and V
to define a Hubbard model which gives realistic results.
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2.2. Organics

2.2.1. Building Blocks – Organic Molecules

Figure 2.5 gives an overview of some of the most important building blocks of organic
crystals, showing the chemical structure formula along with the most commonly used
names. It is remarkable that crystals built from these molecules can show metallic,
superconducting, and magnetic behavior even though their electronic structure only stems
from s- and p-electrons. These molecules have a mainly planar structure originating from
the sp2-hybridization between the atoms – most often carbon but also sulfur and oxygen.
The σ-bonding orbitals are low in energy. Hence, they give a large contribution to the
bonding.
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the sp2-hybridization between the atoms – most often carbon but also sulfur and oxygen.
The σ bonds are quite low in energy and therefore dominate the low energy molecular
orbitals. They therefore give the foremost contribution to the bonding.

Figure 1.6 shows the highest few occupied and the lowest few unoccupied molecular
levels. These orbitals have π character. Figure 1.7 gives the highest-occupied molecular
orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO) of TCNQ. Being
π orbitals we observe a node in the molecular plane. Moreover, as the node theorem
states we have the more nodes the higher the molecular level in energy.
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the sp2-hybridization between the atoms – most often carbon but also sulfur and oxygen.
The σ bonds are quite low in energy and therefore dominate the low energy molecular
orbitals. They therefore give the foremost contribution to the bonding.

Figure 1.6 shows the highest few occupied and the lowest few unoccupied molecular
levels. These orbitals have π character. Figure 1.7 gives the highest-occupied molecular
orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO) of TCNQ. Being
π orbitals we observe a node in the molecular plane. Moreover, as the node theorem
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Figure 2.5.: Typical building blocks of organic crystals

The left part of figure 2.6 shows the highest few occupied and the lowest few unoccupied
molecular levels of TCNQ. These orbitals have π-character. On the right side we see the
highest-occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital
(LUMO). Being π-orbitals, they have a node in the molecular plane. There are the more
nodes the higher the molecular level in energy.
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Figure 2.6.: Molecular levels (left) and wavefunctions (right) of the highest occu-
pied/lowest unoccupied molecular orbital (HOMO/LUMO) of TCNQ.
The π-character of both orbitals is evident from the node in the molecular
plane. Moreover, we see that the higher orbital has an additional node.

Each molecular orbital |ϕν〉 comes with its Hartree or bare Coulomb integral

U ν
bare =

∫
d3r d3r′

ρν(r)ρν(r
′)

|r − r′|
, (2.30)

where ρν (r) = |〈r|ϕν〉|2. Figure 2.7 gives the Uν
bare for TCNQ (C12N4H4). For the 1s core

states of carbon and nitrogen (ν ≤ 16) the Coulomb integral is large and close to the
atomic bare Coulomb integrals. The delocalized π-bonds, however, spread throughout
the entire molecule so that their bare Coulomb parameter are much smaller.

The polarizability of these molecules is highly anisotropic. This is due to the combination
of their essentially linear shape and the π-bonds. Along the long molecular axis the
polarizability is the largest, since the electrons can almost freely move within the extended
π-orbitals. Perpendicular to this direction the extent of the molecules is significantly
smaller. In general the smaller the extent in a direction the lower its polarizability, since
the charges cannot move as far.

2.2.2. Molecular Crystals

The molecular packing of the building blocks results from a subtle balance between several
intermolecular interactions with a typically close cohesive energy. That is why crystal
engineering works so well in these compounds. Slightly different synthesis paths can lead
to quite different crystal structures.

The interactions found between the molecules are of monopole-monopole, dipole-dipole,
and π-overlap types. If there are molecules of different type within the system and the
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Figure 2.7.: Uνbare for the molecular orbitals of TCNQ. For the 1s core states of carbon
and nitrogen (ν ≤ 16) the Coulomb integral is large and close to the
atomic bare Coulomb integrals. The delocalized π-bonds, however, spread
throughout the entire molecule so that their bare Coulomb parameters
are much smaller.

HOMO energy of one is higher in energy than the LUMO of the other, a charge transfer
takes place. This leads to a net charge difference on the molecules and therefore to ionic-
like bonds. These compounds are known as charge-transfer salts. In TTF-TCNQ, for
instance, on average 0.6 electrons are transferred from the HOMO of TTF to the LUMO
of TCNQ. Dipole-Dipole interactions between two permanent dipoles are called Keeson
forces and their energies are typically of the order of 0.5 eV/molecule. Van der Waals-
London dispersion forces describe the weak attractive interaction between a molecule with
either a permanent dipole moment or a charge fluctuation with a polarizable non-polar
molecule. The energies involved are usually smaller than 0.2 eV/molecule. Finally, the
overlap between pπ orbitals leads to cohesion energies of often less then 0.4 eV/molecule.

To determine the crystal structure X-ray diffraction experiments are employed. In
principle, they provide the complete crystal structure in terms of the unit cell and the
structure factor. While the former determines the periodicity of the crystal, the latter
provides the atom positions and types within the unit cell. The problem is, however,
that the organics usually have very many atoms in a large single unit cell. In the case of
(BEDT-TTF)2I3 there are, for example, 590 atoms of 4 different types (see figure 2.8).
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Figure 2.8.: (BEDT-TTF)2I3 unit cell which comprises 590 atoms of 4 different types
making an analysis of the structure factor hard or impossible to do.

Therefore, the structure factor is very complicated. Consequently, it is hard to perform
accurate experiments and get reliable results. Moreover, the position of the hydrogen
atoms, 176 in the (BEDT-TTF)2I3 unit cell, is quite uncertain since having only a partial
charge of less than an electron, they scatter very weakly.

Alternatively, we could perform DFT relaxation computations on the entire crystal
to obtain a reliable crystal structure for our calculations. However, this approach is
problematic since current DFT exchange-correlation potentials cannot reliably capture
van der Waals bonding.

Instead, we strike a compromise. First, we relax the isolated molecules using DFT.
Then we put these molecules into the crystal at positions and with orientations determined
by X-ray diffraction experiments. That way we obtain a well-defined crystal structure.

2.2.2.1. Practical Approach

Crystal Construction Given the experimental data the first step is to isolate and
identify the molecules within the unit cell. In a second step we calculate the center of
mass

SG =

∑
imir

G
i∑

imi

(2.31)

for each molecule, where atom i has a mass mi and is at position rGi . G denotes the
geometry. In order to determine the orientation we move the coordinate system such that
it resides in the center of mass of the molecule and evaluate the moment-of-inertia tensor

ΘG
αβ =

∑

i

mi

[
(rGi )2δαβ − xGiαxGiβ

]
, (2.32)
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Figure 2.9.: Crystal Construction: Having the orientations and positions of the

molecules in the experimental unit cell we replace these building blocks by
DFT relaxed structures. The experimental molecules are not well-defined
due to the inaccuracy of X-ray diffraction experiments while the DFT
pendants are.

where the position of atom i is further decomposed in rGi = (xGi0, x
G
i1, x

G
i2)t. Diagonalizing

ΘG
αβ yields the principal moments as eigenvalues {Θ̂G

α}α of ΘG
αβ and the principal axes as

eigenvectors {eGα}. Usually, all eigenvalues are distinct and thus the principal axes are
unambiguously defined. Without loss of generality, we choose {eGα}α to be a right-handed
system.

For the DFT relaxed structures we follow the same procedure. Within the coordinate
system of their principal axes both structures should agree quite well. As quantitative
measure for their similarity we evaluate the root-mean-square deviation of the atomic
coordinates

√∑
i(r

DFT
i − rexp

i )2/N and compare the principal moments.

Having the orthogonal transformation matrices TG = (eG1 , e
G
2 , e

G
3 ) of DFT-relaxed

and experimental molecules as well as their orientation we can easily exchange the
“experimental” molecules inside the unit cell by the DFT relaxed pendants (see figure 2.9).
Hence, obtaining a well-defined structure.

Crystal Modification The transformation matrices TG = (eG1 , e
G
2 , e

G
3 ) are inconvenient

to handle. While it is easy to obtain distances between two molecules by their center-of-
mass vectors, the relative orientation is hard to see directly from the matrices. But as
they describe an orientation in three dimensional space, there are only three independent
degrees of freedom. To parametrize the orientation we use Euler angles. From the 12
equivalent definitions of the Euler angles we choose the (Z, Y ′, Z ′′) convention which is
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commonly used in quantum mechanics. It is introduced in appendix B and depicted in
figure B.1.

What we actually need here is to extract the Euler angles (α, β, γ) from a general
rotation matrix – in our case the TG matrices. The algorithm we use is given in listing
B.1 of appendix B.

Having a description in terms of Euler angles and center-of-mass vectors we cannot
only quantify the relative position and orientation but we can also easily modify the
crystals. This provides us with the means to study for instance the effect of pressure on
the crystals or reorientation of molecules close to the surface. We can do full theoretical
crystal engineering.
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2.3. Evaluation of Model Parameters

Having a well-defined crystal structure we can start evaluating the model parameters for
a treatment in terms of generalized Hubbard models. They only explicitly consider the
“relevant” valence electrons in the system. The effect of the others is a renormalization of
the parameters. We start with the hopping parameters, which we can evaluate from DFT
calculations alone.

We continue with the calculation of the bare and intra-molecularly screened Coulomb
integrals also from DFT. With the electrostatic approach introduced in chapter 1 we
obtain the additional inter-molecular screening contribution from all other molecules in
the system.

2.3.1. Hopping Parameters

In the previous subsection we have already discussed the dominant form of interactions in
organics. Compared to ordinary solids the overlap between adjacent molecules is relatively
weak leading to a weak bonding and a small hybridization. This suggests to treat the
kinetic energy in terms of a tight-binding description, where we assume that the molecular
orbitals (MO) remain unchanged when forming bonds. Bonding is achieved by a linear
combination of the MOs giving bonding and anti-bonding orbitals.

The tight-binding hopping parameters tνν
′

ij between molecular levels ν and ν ′ of molecules
at Ri and Rj respectively, are defined as

−tνν′ij =
〈
φiν

∣∣∣vj
∣∣∣φjν′

〉
, (2.33)

where vj denotes the molecular potential of the molecule at Rj. We can interpret the
hopping as a perturbative correction to a single molecule placed within a crystal. Usually,
only very close neighbors have to be treated. For the systems treated here we have only
single-band models and hybridization between like molecules. Therefore, we have tνij = tννij
where ν is either the highest occupied or lowest unoccupied molecular orbital. From these
tight-binding parameters we can readily infer the band-structure

εkν = εν −
∑

ij

tνije
ik · (Ri−Rj) . (2.34)

To actually evaluate the hopping parameters we use a dimer approach [43]. Similar to
the splitting of atomic energy levels in bonding and anti-bonding orbitals when forming
diatomic homonuclear molecules, the molecular energy levels split when two molecules
approach one another. From this bonding and anti-bonding splitting the modulus of the
hopping integral is directly accessible.

To see this, let ν denote the molecular level and εν its molecular energy. For a specific
dimer with states |φxν〉, where x = A,B distinguishes the two molecules, the tight-binding
Hamiltonian reads

HTBA
ν =

(
εν −tν
−tν εν

)
. (2.35)
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HOMO LUMO

Thursday, May 6, 2010

Figure 2.10.: HOMO (left) and LUMO (right) of pentacene: side and top view. We
observe the node in the molecular plane and the additional node in the
LUMO compared to the HOMO.

Diagonalization yields the symmetric/anti-symmetric state, i.e.

|ϕs/aν 〉 =
1√
2

(
|φAν 〉 ± |φBν 〉

)
(2.36)

with their corresponding eigenenergies, i.e.

|εs/aν 〉 = εν ∓ tν . (2.37)

We perform DFT calculations for a dimer built from molecules a distance l apart and
with a specified relative orientation determined by the rotation matrix T taken from the
crystal data. The dimer energy levels of the HOMO and LUMO directly give the absolute
value of the splitting |∆εν | = 2|tν |. The sign of tν cannot directly be deduced from this
method. It can, however, be inferred from the symmetry of the dimer wavefunction. If
the bonding orbital, the lower one in energy, is symmetric (|ϕs/aν 〉) then tν is positive. To
have this physically intuitive sign convention, we added the minus signs in front of the
hopping parameters in the tight-binding Hamiltonian (2.35).

Correspondingly, if the lower molecular orbital is antisymmetric, tν is negative. Figure
2.11 gives an example for these symmetries of a pentacene crystal. We find that in this
configuration the hopping parameter of the HOMOs is negative while it is positive for
the LUMOs.

Doing theoretical molecular engineering we can modify the configuration, for instance,
by changing the distance and the relative orientation. Or in a more physical picture we
can assess the crystals response to a change of pressure. Since we chose a tight-binding
description we have to make sure that its prerequisites are not violated. It is crucial to
check that the molecular orbitals do not mix considerably and that the HOMO-LUMO
gap is still larger than the splitting of the molecular levels.
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Figure 2.11.: Schematic bonding/anti-bonding splitting to derive the absolute value
of the hopping-matrix elements tν . Their signs can be derived from the
symmetry of the dimer wavefunction. The bonding dimer orbitals are
an antisymmetric and a symmetric linear combination of the molecular
orbitals for HOMO and LUMO of pentacene (cf. figure 2.10), respectively.
Hence, tHOMO < 0, while tLUMO > 0. The dimer configuration is the
a-direction of pentacene at 293 K as published in [44, 45].

The tight-binding approach works the better the larger the distance between the
molecules. Figure 2.11 shows the dimer model with the distance and orientation realized
in the crystal. We observe that the molecular orbitals are hardly changed with respect
to the isolated molecule. When we, however, move the molecules closer to one another
they will eventually come too close and the tight-binding picture breaks down. The
total energy as a function of the configuration, be it distance or orientation, is a very
good indicator for this break down. When it shows a steep change, physics beyond the
tight-binding description becomes relevant.

Figure 2.12 gives the distance dependence along the cyrstallographic a-direction of the
total energy for pentacene (see [44, 45]). We find a Lennard-Jones-like behavior. For short
distances the total energy increases steeply indicating the break down of the tight-binding
ansatz. The molecular orbitals distort and we observe a strong increase in energy due
to the repulsion of the electrons and nuclei confined to a small spatial area. At large
distances we obtain the energy of two isolated molecules. In between, there is a bonding
region, where the mininum yields the equilibrium distance for a pure dimer. The distance
realized in a-direction of the crystal is slightly smaller due to the long-range tails of the
other molecules in the crystal. Moreover, van-der Waals bonds are not accurately treated
within PBE. The corresponding hopping parameters for HOMO and LUMO are shown in
figure 2.13. We observe that the second-nearest neighbors along this direction have hardly
any hopping amplitude left. Consequently, it is sufficient to treat only nearest-neighbors.

The hopping-matrix elements as a function of orientation have more structure. As an
example we give them and the total energy for a rotation of both molecules about their
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Figure 2.12.: Total energy difference between a dimer of two pentacene molecules at
a distance d and two isolated molecules. For small distances there is
a strong repulsion leading to a steep increase in the energy. For large
distances the total energy is twice the energy of an isolated molecule.
In between, there is a shallow “bonding” range. The square denotes the
distance realized in the crystal. It is at a slightly smaller distance than
for the dimer.
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Figure 2.13.: Hopping-matrix element of HOMO and LUMO for pentacene as a
function of the distance d along the crystallographic a-direction. The
signs are consistent with figure 2.11.
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Figure 2.14.: Total energy difference between a dimer of two pentacene molecules at
different angles and two isolated molecules. We observe a significant
increase in the total energy at about 30◦ to 70◦ indicating that the
tight-binding ansatz breaks down. The square denotes the relative
orientation found in the molecular crystal.
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Figure 2.15.: Hopping-matrix elements at different angles for the HOMO and LUMO
of a pentacene crystal along the a-direction. The crystal configuration
is marked by the squares (∠γ ≈ 76◦). Between 30◦ and 70◦ the tight-
binding ansatz may not be well defined (see 2.14). For a discussion of
the zeros see text.
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116.25˚ 140.00˚ 157.50˚

Tuesday, May 11, 2010Figure 2.16.: Dimer wavefunctions for pentacene at different angles. First/Second
row gives the HOMO/LUMO-based dimer. The node along the long
molecular axis in the HOMO gives rise to the sign changes in the
hopping-matrix elements.

long molecular axis at the distance realized within the crystal. Figure 2.14 shows the total
energy which is periodic with periodicity π due to the symmetry of the configuration.
Between 30◦ and 70◦ we observe a sharp increase in total energy, which indicates that the
tight-binding approach breaks down. These configurations correspond to the molecules
almost lying in the same plane. At about 50◦ their effective distance is minimized and
their orbitals overlap and distort one another the most.

Figure 2.15 provides the hopping-matrix elements. At first we notice that the general
shape of both functions for HOMO- and LUMO-based hopping is quite similar, however,
flipped. At about 76◦ the configuration of the molecular crystal is assumed and we obtain
the matrix elements tHOMO ≈ −0.03 eV and tLUMO ≈ 0.04 eV.

A more detailed study, however, reveals some important differences. For about 136◦

the molecules are oriented such that the molecular planes of the molecules face each other
(see 140◦ configuration in figure 2.16). In the LUMO-based hopping (green line) we see
that the hopping-matrix elements increase in size when tilting around that angle. This is
because the molecules effectively come closer to one another increasing the overlap. In
contrast, the HOMO-based matrix elements become smaller. They even become zero at
angles 116.5◦ and 155.0◦ and change sign. The reason for the different behavior becomes
apparent when we take the shape of the molecular orbitals into consideration (cf. figure
2.10). The configuration and the dimer orbitals are shown in figure 2.16. The LUMOs
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have lobes along the middle molecular axis and therefore do not change sign when tilting
along the long axis. The HOMOs have an additional node along the long axis. Even
though the molecules effectively come closer, the lobes on one molecule hybridize with
lobes of different sign, leading first to a diminishing of the matrix elements, eventually to
zero, and even a sign change.

2.3.2. Coulomb Parameters

Compared to the hopping-matrix elements the Coulomb parameters are significantly
harder to determine. If we could treat all electrons in our Hubbard model Hamiltonian,
the correct Coulomb parameter would be given by the bare Hartree integrals. They are
readily evaluated. The complexity comes from the screening that describes the effect
of all the electrons that we have not explicitly included in the Hubbard model. Thus,
we start by evaluating the bare Coulomb integrals. Then we take the screening of the
electrons on the molecules themselves into account – the intra-molecular screening. In the
final step we also include the effect of all other lattice molecules using the electrostatic
approach described in the previous chapter.

2.3.2.1. Bare Coulomb integrals

The bare Coulomb integral for the molecular orbital ν on two molecules a relative distance
of l apart and rotated relative to each other by matrix T is given by

V ν,l,T
bare =

∫
d3r d3r′

ρ0,1
ν (r)ρl,Tν (r′)

|r − r′|
, (2.38)

where ρl,Tν (r) = |ϕl,Tν (r)|2 and ϕl,Tν (r) is the densities of orbital ν. The local Coulomb
integral, the Hubbard-Ubare, is given by V ν,0,1

bare = Ubare. Technically, we perform the
integrations over the wavefunctions evaluated on real-space grids. For grids of different
step sizes we extrapolate to an infinitely dense grid (cf. figure 2.17).

For distances larger than 2R, where R denotes the radius of the sphere which encom-
passes all nuclei, we can, to a very good approximation, regard the electron densities at
both molecules as point charges and obtain the standard Coulomb law V νlT

bare = 1/|l|. Small
deviations for |l| ≈ 2R are due to the near field, where higher-order terms also contribute.
Figure 2.18 shows the bare Coulomb integrals for two TTF (blue), TCNQ (magenta) and
BEDT-TTF (red) molecules a distance d apart. We observe that for d ' 2R (colored
thin lines per molecule) the bare matrix elements are indeed well described by the 1/d
Coulomb law (green curve).

2.3.2.2. Intra-molecular screening

As a first step towards renormalized parameters for realistic simulations we consider
the effect of the additional electrons within the charged molecule – the intra-molecular
screening. We again employ all-electron Kohn-Sham DFT.
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Figure 2.17.: Extrapolation of the bare Coulomb integral U for BEDT-TTF. Inte-
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Figure 2.18.: Bare Coulomb integrals for different distances between two TTF (blue),
TCNQ (magenta) or BEDT-TTF (red) molecules. For large distances
|l| > 2R, where R denotes the geometric radius (radius of sphere en-
compassing all nuclei), the Coulomb integral is given by the standard
Coulomb law (green line) between two point charges (apart from negli-
gible near-field effects for |l| ' 2R). These radii for TTF (blue), TCNQ
(magenta) and BEDT-TTF (red) are shown as thin perpendicular lines.
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Janak’s theorem [46] states that the derivative of the total energy with respect to the
occupation number nν of state ν directly relates via

∂Etot

∂nν
= εν (2.39)

to the corresponding eigenvalue εν . Here, Etot is the total Kohn-Sham energy given by

Etot[ρ] = T [ρ] +

∫
d3r Vextρ(r) +

e2

2

∫
d3r d3r′

ρ(r)ρ(r′)

|r − r′|
+ Exc[ρ] + Eions , (2.40)

where T [ρ] denotes the kinetic energy, Eions the ion-ion Coulomb energy and Exc[ρ] the
exchange-correlation functional. Starting from this theorem, von Barth [47], Springer and
Aryasetiawan [48] showed that

∂εν
∂nµ

=
∂2Etot[ρ]

∂nν ∂nµ
= 〈µν| (V + fxc) ε

−1|µν〉 (2.41)

=

∫
d3r d3r′ |ϕν(r)|2|ϕµ(r′)|2 (V (r, r′) + fxc(r, r

′)) ε−1(r, r′) (2.42)

holds, where V (r, r′) is the bare Coulomb interaction and ε−1 (r, r′) the inverse dielectric
function, which describes the screening effect. fxc(r, r

′) is defined by

fxc(r, r
′) =

∂2Exc[ρ]

∂ρ(r) ∂ρ(r′)
=
∂Vxc (r)

∂ρ(r′)
. (2.43)

It is much smaller than V (r, r′). Hence, to a good approximation we may assume that
fxc = 0 giving the screened Coulomb interaction W = ε−1V only, i.e.

∂2Etot[ρ]

∂nν ∂nµ
≈ 〈µν|W |µν〉 . (2.44)

Hence, we theoretically obtain the intra-molecularly screened Coulomb integrals by the
second derivative of the Kohn-Sham total energy with respect to the orbital occupation.

In practice, we vary the orbital occupation by artificially changing the charge of the
molecule. Let us first discuss the evaluation of the local Hubbard-U0. If we want to
calculate the screening of the LUMO we add fractional charges q from q = 0 to q = 2
electrons to the molecule. In the case of the HOMO we obviously need to take electrons
out.

For these systems we perform Kohn-Sham DFT total energy calculations, where the
self-consistency leads to a relaxation of the orbitals – the screening. The total energy
(2.40) can be fitted very well by a parabola (cf. figure 2.19)

EUν0 (q) = a0 + a1q + Uν
0

q2

2
, (2.45)

from which according to (2.44) we obtain the intra-molecularly screened Hubbard U0.



Evaluation of Model Parameters 85

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

-2 -1.5 -1 -0.5  0

en
er

gy
 in

 e
V

charge in |e|

Figure 2.19.: Determination of the intra-molecularly screened Coulomb parameter U0

of TCNQ (for data see table 2.3 on page 98) with the tier 2 basis set.
The parabolic fit agrees perfectly with the data points giving a reliable
U0 according to (2.45).

The evaluation of V ν,l
0 is done similarly. We consider two molecules with an additional

charge of q/2 put on each. Now, q can range from zero to 4 electrons. The total energy
for different q is fitted to

EV ν,l,T0
(q) = 2EUν0 (q/2) + b0 + b1q + V ν,l,T

0

(q
2

)2

, (2.46)

yielding V ν,l,T
0 . The first term accounts for the screening effects for individual molecules

not to be captured in V0.

2.3.2.3. Inter-molecular screening or full screening

In the previous section we merely treated the electrons within the molecules themselves.
For the determination of the inter-molecular screening we have to take the entire crystal
built from infinitely many molecules into account. We obtain their contribution to the
Coulomb integrals ∆Vl by constraining charges q to single molecules a distance l apart
and calculating the reduction in energy due to polarization.
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Figure 2.20.: Example fits for TCNQ to obtain polarizabilities along the principal
moment of inertia axes. x/y/z represents the long/middle/short axis.
The fitting is based on the first three fields. For too large fields the
response is no longer linear.

In principle, we could do these calculations within constrained-DFT, which is however
infeasible even for relatively small systems. Instead, we resort to the electrostatic approach
developed in chapter 1 to reach the infinite-system size limit. To this end, we need the
polarizability tensor of each molecule in the crystal. According to section 2.1.2.3 we take
an isolated molecule and apply a weak homogeneous external field along the principal
axes. The linear response along all three principal directions determines the polarizability
tensor, which we obtain by linear fits. An example is shown in figure 2.20. We follow the
convention that the x-, y-, z-axis denotes the long, middle, and short axis of the molecule.
Therefore, the z-axis is perpendicular to the molecular plane for planar molecules.

The simplest approach for an electrostatic treatment is to represent each molecule by
a single polarizable point dipole. This approach works well, e.g. in the case of C60 as
shown by Pederson and Quong [49]. In general, however, it is too crude – especially
for closely packed stacks of planar molecules with high polarizabilities. Let us assess
why. In TTF-TCNQ, for instance, we find stacks of TCNQ which show a mainly quasi
one-dimensional behavior. The direction of minimal polarizability αzz = 82 a3

0 roughly
points along the stack. From chapter 1 we know that the critical polarizability for a
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Figure 2.21.: Illustration of the Distributed Dipole Approach using a TTF molecule.
Within the DDA all non-hydrogen atoms are replaced by polarizable
point dipoles.

one-dimensional system is

αc =
b3

4ζ(3)
, (2.47)

where b is the distance between the center-of-masses of two adjacent TCNQ molecules,
here: 7.21 a0. Thus, we find the critical polarizability αc ≈ 77.95 a3

0 which is obviously
smaller than αzz of an isolated TCNQ molecule rendering this ansatz too crude. Moreover,
the approximation by a single polarizable dipole is also problematic since the molecules
inside the stack are so close to one another that they are inside the convergence radius of
the dipole expansion making near-field effects important.

As a remedy we use the distributed dipole approach (DDA) where we distribute the
molecular polarizability over all non-hydrogen atoms [50, 51] – effectively describing
a molecule by a set of polarizable point dipoles (cf. figure 2.21). There are several
distribution recipes. We can, for instance, use a weighted distribution over the atoms
by Mulliken [52] or Hirshfeld [53] charges or use bonds instead of atoms. For the results
presented in this work we use a uniform distribution over all non-hydrogen atoms and
solve the system in real space.

Figure 2.22 gives an example calculation for the inter-molecular screening contribution
∆U for a charged TCNQ molecule. Even though the energy range on the y-axis is quite
large, the extrapolation works well and we obtain reliable results.
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Figure 2.22.: Inter-molecular screening contribution ∆U for a charged TCNQ molecule.
The energy range is rather large (black arrowed line). The extrapolation,
however, works fine (red line) and we obtain a quite reliable result of
about ∆U = −2.68 (green circle) for the infinitely large crystal.
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2.4. Application to TTF-TCNQ

In 1973 Alan Heeger and colleagues at the University of Pennsylvania synthesized the first
organic conductor. It shows such unusual properties that even today it is still extensively
studied [57, 58]. It is a charge-transfer salt consisting of two organic compounds –
tetrathiafulvalene C6S4H4 (TTF) and tetracyanoquinodimethane C12N4H4 (TCNQ). Their
chemical structure is shown in figure 2.23.
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Figure 2.23.: Structural formulæ of TTF (left) and TCNQ (right).

Containing only carbon, hydrogen, sulfur, and nitrogen the salt made out of those two
compounds has at −220◦C a conductivity comparable to copper at room temperature.
Hence, it is a metal that does not contain a single metal atom. Moreover, it turns out that
electron hopping in these materials happens only along stacks of like molecules giving
rise to nearly one-dimensional bands. This low dimensionality in tandem with strong
Coulomb repulsion compared to the kinetic energy leads to many-body effects, which
can be observed in angular-resolved photoemission spectroscopy experiments (ARPES)
[59, 60] and lead to an enhancement of the magnetic susceptibility [61]. TTF-TCNQ
is one of the very few systems where signatures of exotic physics such as spin-charge
separation has been clearly seen experimentally [62, 63, 64].

In order to interpret these experimental results, realistic estimates for the Coulomb
integrals are necessary. Until recently, attempts to understand the exotic physics shown by
TTF-TCNQ relied on the t-U Hubbard model. This description, however, runs into severe
problems. To map the solution for the t-U model on ARPES data the hopping-matrix
element along the molecular stacks has to be about twice of what has been estimated
from band structure calculations [65] and experiment [66]. Using these ad-hoc parameters
it is, however, impossible to understand the temperature dependence of the spectra. The
reason for these shortcomings is the neglect of the inter-molecular Coulomb integrals [67].
This had already been suspected by Hubbard and others [68, 69].

With the methods described in the previous section we derive realistic model parameters.
We find that the effect of the next-neighbor interaction V , being approximately U/2,
indeed is to broaden the spectrum similar to enlarging t. Solving the corresponding
generalized t-U -V Hubbard model we find that the addition of V does not lead to a
Hubbard-Wigner-lattice as anticipated by Hubbard [68, 67].
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2.4.1. The Crystal

Isolated TTF and TCNQ molecules are neutral, closed-shell systems and therefore stable.
Figure 2.24 shows the energy levels in the vicinity of the HOMO and LUMO for both
molecules.

TTF & TCNQ
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Figure 2.24.: Molecular-energy levels of isolated TTF with its HOMO (left) and
TCNQ with its LUMO (right). The HOMO of TTF is significantly
higher in energy than the LUMO of TCNQ. Hence, a charge transfer
takes place. Due to the interplay between the HOMO-LUMO energy
difference and charging energy about 0.6 electrons move from TTF to
TCNQ. Isovalues for isosurfaces of wavefunctions are d = ±0.08Å−3/2.

When forming a crystal out of TTF and TCNQ molecules a charge transfer takes place,
since the HOMO of TTF is significantly higher in energy than the LUMO of TCNQ. The
interplay between the HOMO-LUMO gap and the charging energy leads to a transfer of
on average about 0.6 electrons from TTF to TCNQ.

TTF-TCNQ crystallizes in a monoclinic structure of space group symmetry P21/c.
Figure 2.25 shows this structure for views along the [010] and [100] direction. The lattice
parameters are a = 12.298(6) Å, b = 3.819(2) Å, c = 18.468(8) Å and β = 104.46◦ [70].
Within the crystal there are stacks of like molecules, either the TTF cations or TCNQ
anions, which run along the short crystallographic b axis through the entire crystal. The
π-type HOMOs and LUMOs of adjacent molecules in the stacks overlap, hence forming a
quasi one-dimensional band since the overlap between different stacks is negligible (the
orbitals are shown in figure 2.24). Due to the charge transfer these quasi one-dimensional
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Figure 2.25.: Monoclinic crystal structure of TTF-TCNQ, with P21/c symmetry and
lattice parameters a = 12.298(6) Å, b = 3.819(2) Å, c = 18.468(8) Å
and β = 104.46◦ [70]. Left/right figure provides the view along the
[010]/[100] direction.

bands are partially filled and the system is metallic.
Assuming rigid molecules they can be described by their relative position and orientation

of two molecules and thus a stack, i.e. the distance of the centers of gravity and the
relative tilting angle. Obviously, these parameters are chosen in such a way as to minimize
the total energy. There are two competing effects to be balanced. A gain in van der
Waals-like bonding energy for approaching molecules and a strong repulsion when the
molecules come too close. Figure 2.27 depicts this behavior.

Another aspect to consider is the packing density. To achieve high packing densities it is
practical for the molecules to have a very similar footprint and commensurate inter-planar
stacking distances within the stacks. When allowing the molecules to tilt, we can achieve
both goals. Tilting changes the effective distance between the molecules for fixed center

b

b
dTTF

dTCNQ

Figure 2.26.: Two adjacent molecules of a TTF (left) and TCNQ (right) stack. b =
3.819(2) Å denotes the lattice vector. The tilting of the molecules
effectively reduces the inter-planar distance dTTF = 3.48 Å, dTCNQ =
3.17 Å (for comparison: graphite dgraphite = 3.35 Å).



92 Organics

of mass distances (see figure 2.26) and can also lead to a similar footprint. The latter can
be observed in the unit cell shown in figure 2.25. The left figure shows different stacks
along the a-direction which have the same projection on the c-axis. Along the c- and
b-axes there are only stacks of like molecules.

In TTF and TCNQ the molecules are tilted about the a-axis by an angle of θ±TTF = ±24.5◦

and θ±TCNQ = ±34.0◦, respectively. Between adjacent stacks the angle changes sign. This

is shown in figure 2.26. The inter-planar distance di = b cos(θ±i ) between adjacent
TTF cations is dTTF = 3.48 Å, whereas the one between TCNQ anions is given by
dTCNQ = 3.17 Å. For comparison the inter-planar distance in graphite of 3.32 Å lies in
between.

2.4.2. Model Parameters

2.4.2.1. Hopping parameters tTTF, tTCNQ

We study the hopping parameters as a function of the center-of-mass distance and the
stacking angle as described in section 2.3.1.

Hopping for different angles First we fix the center-of-mass distance to the exper-
imental value of b and evaluate the dependence on the relative angle about the axis a
of the crystal. Figure 2.27 gives the total energy for TTF- (blue) and TCNQ-dimers
(magenta). The circles indicate the experimentally observed angles. The configuration
for 0◦ describes a parallel alignment of the two molecules, where their center-of-mass
difference vector is perpendicular to the molecular plane. At this position the molecules
have the largest effective distance from one another.

For larger angles starting at about 30◦ the inter-planar distances become so small
that there is a steep increase in energy indicating a breakdown of the tight-binding
description. Therefore, we restrict our discussion of the hopping-matrix elements to the
interval [0◦, 50◦].

Figure 2.28 presents the corresponding hopping integrals t. From the symmetry of the
dimer wavefunction (figure 2.29) we infer that the hopping-matrix elements are negative
for TTF. At parallel alignment (θ = 0◦) the molecular lobes directly face their counterpart
of the opposite molecule. Therefore, we find a relatively large overlap and hence a large
absolute value for the hopping-matrix element. An increase of the angle up to about 30◦

reduces |tTTF| even though the effective distance of the molecules becomes smaller. This
is due to the nodal structure of the HOMO of TTF. We find mainly two kinds of lobes –
the central double bond between the carbon atoms and the localized lobes of the sulfur
atoms. It is the loss in overlap of the sulfur lobes that leads to the diminishing, while the
hopping contribution due to the central lobe remains relatively stable. From θ = 30◦ on
we observe a steep increase in |tTTF| arising from the central bond and the diminishing
inter-planar distance. This gain in energy is, however, overcompensated by the Coulomb



Application to TTF-TCNQ 93

!0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  10  20  30  40  50

!
 E

to
t i

n 
eV

" in degrees

TTF  (AIMS Tier2)
TCNQ (AIMS Tier2)

Figure 2.27.: Total energies for pairs of adjacent molecules relative to the total energy
of angle 0◦ for different angles at the distance realized in the crystal.
The inter-planar distance and therefore the effective distance of two
molecules decreases with increasing θ as cos θ. Calculations were per-
formed with the tier 2 basis set and the PBE functional. Circles denote
the experimentally observed configuration.
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Figure 2.28.: Hopping-matrix elements for different angles at the distance realized in
the crystal. Calculations were performed with the tier 2 basis set and
with the PBE functional. Circles denote the experimentally observed
structure.
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Figure 2.29.: TTF molecule ’dimer’ to deduce the sign of the hopping parameter. It
is negative since the bonding wavefunction is anti-symmetric. Since the
main lobes run parallel to the long axis we do not expect a sign change
in the hopping-matrix element when rotating about the middle axis.
Isovalues for isosurfaces of wavefunctions are d = ±0.08Å−3/2.

repulsion as seen in the total energy plot.
The hopping integrals for TCNQ show an even more interesting behavior. Again, for

θ = 0◦ the hopping-matrix element is negative and relatively strong. The lobes of the
LUMO of TCNQ run along the y-axis, parallel to the rotation axis. Therefore, when
leaving the parallel alignment, the overlap of the lobes with their partner ones decreases
while the overlap with the neighboring lobes (of opposite sign) increases. Hence, |tTCNQ|
decreases. Examples for some angles are shown in figure 2.30. At about 21◦ the lobes
face the nodes of the partner molecule overlapping with lobes of both sign with equal
weight. The matrix element becomes tTCNQ = 0. For larger angles the hopping becomes
positive. It increases further and reaches its maximum |tTCNQ| = tTCNQ at about 41◦ due
to a decrease in the effective distance and the more direct overlap. For even larger angles
the overlap decreases again leading to a diminishing of tTCNQ as before.

Hopping Parameters For Different Distances To study the distance dependence
we fix the angle to the experimental values. Since we know the sign of the hopping
parameters at the experimental settings and there are no zeros in the hopping function
for different distances we can directly take the sign from the previous section.

For small distances we find strong hopping; here, the application of the tight-binding
ansatz is, however, not appropriate as indicated by the total energy (right plot of
figure 2.31). For the experimental distance we recover the hopping-matrix elements
calculated before. Further increasing the dimer distance leads to a rapid decay in the
hopping amplitudes. For the second-nearest neighbor distance we find hardly any hopping
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Figure 2.30.: TCNQ molecule ’dimer’ to deduce the sign of the hopping integral for
different angles. The first row shows molecules at experimental distance
but rotated by an relative angle of 10◦. Since the wavefunction of the
bonding orbital is anti-symmetric, tTCNQ < 0. For an angle of 34◦ it is
symmetric and thus tTCNQ > 0. For 21◦ we are very close to tTCNQ = 0.
Isovalues for isosurfaces of wavefunctions are d = ±0.08Å−3/2.
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Figure 2.31.: Hopping-matrix elements for different distances at the relative angle
realized in the crystal. Calculations were performed with the tier 2 basis
set and the PBE exchange-correlation functional. Circles denote the
distance from the experimental structure. The hopping-matrix elements
decay fast. There is no long-range hopping and we thus obtain simple
cosine bands.

anymore. For even larger distances we asymptotically get the results of two isolated
molecules. Therefore, we can restrict the description to nearest-neighbor hopping only.

Thus, for TTF and TCNQ stacks we find effectively one-dimensional single-orbital
bands, well described a nearest-neighbor tight-binding ansatz. Hence, the dispersion
relation (2.34) becomes

εkν = εν − 2tν cos (ka) , (2.48)

where tTTF = −0.15 eV and tTCNQ = 0.17 eV.

2.4.2.2. Coulomb parameter

Bare Coulomb integrals From the molecular orbitals of an isolated molecule we
evaluate the bare Coulomb integrals (2.38) according to the method given in section
2.3.2.1. The results for the LUMO of TCNQ and HOMO of TTF are summarized in table

Table 2.2.: Bare Coulomb parameters of TCNQ and TTF for near neighbors in the
stacks derived by the method given in section 2.3.2.1. All-electron DFT
calculations were performed with PBE and the tier 2 basis set. All energies
are given in eV.

Ubare Vbare V ′bare V ′′bare

TTF 5.98 3.10 1.79 1.23
TCNQ 5.36 2.88 1.73 1.20
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Figure 2.32.: Bare Coulomb integrals for the HOMO of TTF (blue) and the LUMO
of TCNQ (magenta). For large distances the bare Coulomb integrals
seamlessly pass into the 1/r Coulomb repulsion (green).

2.2 and visualized in figure 2.32.
For large distances we find the 1/r Coulomb law (green) as discussed in section 2.3.2.1.

In this regime the Coulomb integrals for the HOMO of TTF and the LUMO of TCNQ are
the same. For the onsite Ubare and next-neighbor matrix element Vbare there are, however,
pronounced differences. The main charge density of the HOMO of TTF resides on the
four sulfur atoms and is therefore quite localized. A compact charge density obviously
leads to a large Ubare. These sulfur lobes also significantly protrude from the molecular
plane explaining the strong effect on Vbare.

The LUMO of TCNQ, in contrast, is more extended giving a smaller Ubare. Since there
are no lobes sticking as far out of the molecular plane, this is also true for Vbare.

Intra-Molecularly Screened Coulomb Integrals For the intra-molecularly screened
Coulomb integrals we follow the recipe of section 2.3.2.2.

Starting with the local Hubbard-U we add electrons to TCNQ which will occupy the
LUMO. From the change in the total energy we gain the Coulomb parameters via fitting.
The results are collected in table 2.3 and plotted in figure 2.33.

For comparison, we give the results for different tiers and the PW-LDA exchange-
correlation functional in tier 3. The total energies with LDA are about 140 eV higher in
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Table 2.3.: U0 of TCNQ with different functionals and basis sets. All energies are
given in eV. The LDA and PBE exchange-correlation functionals and the
basis sets give roughly similar results for U0, although the total energies
differ significantly between LDA and PBE with an offset of about 140 eV.
The difference is mainly due to different energies of the core levels and
therefore irrelevant for the charging energy. Some results are shown in
figure 2.33.

Etot in eV
charge q/|e| PBE tier 1 PBE tier 2 PBE tier 3 LDA tier 3

0.00 -18450.79 -18451.17 -18451.22 -18311.90
-0.25 -18452.07 -18452.45 -18452.48 -18313.23
-0.50 -18453.07 -18453.43 -18453.48 -18314.30
-0.75 -18453.81 -18454.16 -18454.22 -18315.08
-1.00 -18454.30 -18454.65 -18454.71 -18315.60
-1.50 -18454.46 -18454.82 -18454.87 -18315.87
-2.00 -18453.56 -18453.94 -18454.00 -18315.11

U0/eV 4.240 4.180 4.161 4.196
∆Ufit

0 /eV ±0.003 ±0.007 ±0.009 ±0.004

Table 2.4.: U0 of TTF with different basis sets. The results for both basis sets agree
very well. All energies are given in eV.

Etot in eV
charge q/|e| PBE tier 2 PBE tier 3

0.00 -49606.82 -49606.84
0.25 -49605.67 -49605.70
0.50 -49604.26 -49604.29
0.75 -49602.54 -49602.57
1.00 -49600.53 -49600.59
1.50 -49595.66 -49595.69
2.00 -49589.56 -49589.62

U0/eV 4.709 4.703
∆Ufit

0 /eV ±0.003 ±0.003

Table 2.5.: Intra-molecularly screened Coulomb integrals for near-neighbor distances.
Calculations performed with the PBE functional and the tier 2 basis set.
The results from tables 2.4 and 2.3 have been fitted to function (2.46) to
gain the parameters (cf. figure 2.35). All energies are given in eV.

V0 V ′0 V ′′0
TTF 2.91 1.69 1.20
TCNQ 2.73 1.63 1.19
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Figure 2.33.: Determination of the intra-molecularly screened Coulomb parameter
U0 of TCNQ from the data shown in table 2.3. Tier 2 (blue) and tier
3 (red) basis sets for the PBE functional show hardly any difference.
LDA energies change slightly faster with increasing numbers of electrons
(green).

energy. This difference is mainly due to the different energies of the core levels. Therefore,
we obtain quite similar results which are just slightly larger than the ones from the
corresponding PBE tier 3 calculation.

Within PBE and different basis sets we also find consistent results. The difference
between the first and second tier are about 60 meV, while between second and third it is
about 20 meV. Hence, for these quantities tier 1 would already suffice.

We evaluate the local Hubbard U0 for TTF, accordingly. Table 2.4 provides the results
for tier 2 and tier 3. Both agree very well.

The near-neighbor Coulomb matrix elements Vbare are accessible by charging molecular
dimers. Figure 2.34 gives our findings for both types of molecules and shows the least-
squares fit to actually obtain the parameters. Table 2.5 gives the final results.

Comparing the intra-molecularly screened and bare Coulomb matrix elements we can
study the effect of screening within the molecules. Figure 2.35 provides this comparison of
both integrals. For the local Hubbard-U the screening is pronounced. For both molecules
the value of Ubare is reduced by more than 1 eV, i.e. more than 20%. For near-neighbors
we hardly find any screening. Intra-molecular screening mainly acts locally.
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Figure 2.36.: TCNQ polarizabilities along the principal moment of inertia axes. x/y
represents the long/short axis. Results are shown in table 2.6. The fit is
based on the four weakest fields. For larger fields the response becomes
non-linear.

Inter-Molecular Screening As an ingredient for the DDA we need the polarizabilities
of the molecules. Figure 2.36 shows the dipole response of the molecules to a small
external electric field along with the fit to determine the polarizability tensor α. x, y,
and z represent the (red) long, middle (green) and short (blue) axis of the molecules.

The numerical results are compiled in table 2.6 for both molecules. Comparing PBE
tier 1 calculations with the corresponding higher tiers (only TCNQ case) shows that
the polarization is significantly more sensitive to the basis set than the intra-molecular
screening parameters. An electric field distorts and shifts the orbitals making more
basis functions necessary. The second last column of table 2.6 gives the result for a
calculation with the LDA exchange-correlation functional using the tier 3 basis set. Both
polarizabilities agree within a few percent.

We use the polarizabilities obtained from the tier 2 PBE DFT runs to perform the
DDA calculations using our electrostatic real-space screening code to evaluate the inter-
molecular screening contribution. The results are summarized in table 2.7.

We notice that for TTF-TCNQ the screening is very efficient. U = U0 + ∆U , for
instance, is reduced by more than 2.5 eV. V = V0 + ∆V is still reduced by almost 2 eV.
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Table 2.6.: Polarizabilities of TTF and TCNQ with different functionals and basis
sets. x/y represent the long/short axis of the molecules. Polarizabilites
are in atomic units, i.e. a3

B.
TTF TCNQ

direction PBE tier 2 PBE tier 3 PBE tier 1 PBE tier 2 PBE tier 3 LDA tier 3
αxx 227.74 231.71 427.81 435.85 437.95 424.48
αyy 159.69 161.58 177.33 183.65 186.22 184.23
αzz 86.29 90.04 67.94 78.38 84.56 83.61

Table 2.7.: Inter-molecularly screened Coulomb contributions. We use the real-space
distributed dipole approach (DDA) up to 5324 molecules and extrapolate
to infinitely many (cf. 2.22). All energies are given in eV.

∆U ∆V ∆V ′ ∆V ′′

TTF -2.83 -1.80 -1.30 -0.94
TCNQ -2.68 -1.73 -1.34 -0.95

And even the second-nearest neighbor Coulomb matrix elements are diminished by more
than 1 eV.

2.4.2.3. Parameter Summary

For quick reference we summarize the parameters for constructing a realistic generalized
Hubbard model for TTF-TCNQ. All relevant values are compiled in table 2.8.

Table 2.8.: All relevant results for TTF-TCNQ obtained by FHI-aims (PBE, tier 2)
and the DDA solved with our real-space code. All results in eV.

t U V V ′ V ′′

TTF bare 0.15 5.98 3.10 1.79 1.23
TTF intra-mol. scr. 4.71 2.91 1.69 1.20
TTF full screening 1.87 1.11 0.39 0.26

TCNQ bare 0.17 5.36 2.88 1.73 1.20
TCNQ intra-mol. scr. 4.18 2.73 1.63 1.19
TCNQ full screening 1.50 1.00 0.29 0.24

We find that indeed the on-site and longer-range Coulomb matrix elements are important
in TTF-TCNQ. Compared to the band-width W of about 0.6 eV and 0.7 eV for TTF and
TCNQ, respectively, the ratio U/W is larger than 2. The nearest-neighbor interaction V
is still about U/3. Hence, it must be included in a realistic model. In principle, even the
third-nearest neighbors should be included.

We also find a sizable coupling between neighboring stacks, which after taking screening
into account is about 0.4 eV.
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2.4.3. Realistic Description

Hence, in principle for a realistic description of TTF-TCNQ we require a three-dimensional
generalized Hubbard model, where we take both inter-stack as well as long-range Coulomb
interactions into account. Previous calculations used simple t-U Hubbard models [64].
To make contact to these calculations we also restrict ourselves to a single stack of TTF
or TCNQ. First, we study the t-U model. In a second step, we analyze what happens
when including V .

2.4.3.1. t-U Model

We use a 20 sites system with 6 electrons of either spin to model a stack of TCNQ. To
match angular-resolved photo emission experiments (ARPES) with a simple t-U Hubbard
model, we have to choose U = 1.96 eV and tfit = 0.4 eV, a hopping value twice as large
as our result from the previous section. With our massively parallel Lanczos solver (see
appendix E) and Cluster Perturbation Theory [71] we obtain the spectral function plotted
in figure 2.37. We observe that the tight-binding cosine band (green line) is mainly
retained in the many-body picture with the bandwidth being slightly reduced. However,
the Coulomb interaction leads to striking changes due to correlation effects. In the interval

Figure 2.37.: Angular-resolved spectral function obtained by CPT for a 20 sites TCNQ
system with 6 electrons of either spin (U = 1.96 eV, t = 0.4 eV). The
white line shows the chemical potential, the green cosine represents the
independent-particle band. Signatures of spin-charge separation can be
observed around the Γ-point. For a discussion refer to text.
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Figure 2.38.: Magnification of Ak(ω) in interval 0 < k < kF of the TCNQ calculation
shown in figure 2.37.

−kF < k < kF , with kF/π = 0.3 we find three dispersing features. Figure 2.38 shows a
blowup of this region. Exploiting A−k(ω) = Ak(ω) we only present the spectral function
for kF > 0.

Close to the Fermi level (white line) at ω − µ = 0 there are peaks with high weight
ranging from ω ≈ −0.5t at k = 0 to ω ≈ 0t at k = kF , showing a rather narrow dispersion.
According to Luttinger liquid theory these spectral weights correspond to the spinon
branch. In figure 2.37 we see that there is only a single spinon branch, since the partial
branches for k < 0 and k > 0 join at the Γ-point with zero slope. At higher binding
energies, i.e. lower values of ω, there seem to start two branches. Figure 2.37 suggests
that the lower branch, labelled shadow branch, is the continuation of the upper branch for
k < 0. This is known from the Bethe ansatz solution [72]. This shadow band runs from
k = 0 and ω ≈ −1.5t to k = kF from ω ≈ −2.2t quickly losing weight with increasing
|k|. The actual holon band extends from k = 0 and ω ≈ −1.5t to ω ≈ −0t at k = kF . It
appears to join the spinon branch at kF . The holon and spinon branches have almost
constant weight in this region with the spinon branch being considerably more pronounced.
These results indeed agree very well with experimental data.



Application to TTF-TCNQ 105

2.4.3.2. t-U-V Model

While the t-U Hubbard model derived spectral function agrees well with ARPES ex-
periments, the temperature dependence does not agree at all. Moreover, doubling the
hopping parameter in this ad-hoc manner is very unsatisfactory.

Hubbard-Wigner Lattice Hence, we resort to a t-U -V Hubbard model description.
From table 2.8 we see that U and V are larger than the bandwidth W = 4t. As a first
approximation Hubbard [68] suggested to use the zero-bandwidth limit (t = 0) and to
assume U →∞ for U > V . In the following we only consider TCNQ. The argument also
holds for TTF when regarding holes instead of electrons.

The filling of a TCNQ stack is 0.6. With U →∞ all double occupancies are suppressed.
Due to V the electrons also try not to be next neighbors. The corresponding many-body
ground state can be described in terms of a generalized Wigner lattice [35] with periodicity
of 5 sites. The electrons arrange in a pattern [68]
· · · • ◦| • • ◦ • ◦ | • • ◦ • ◦ | • • ◦ • ◦ | • • ◦ · · · , where • or ◦ denote an occupied or
unoccupied orbital, respectively. The spectral function for this state is easy to interpret.
Even when including t [71]. This approach, however, fails to properly describe the ex-
perimental results. Clearly, the approximation U →∞ and therefore double-occupancy
d = 0 is not approximate.

The Effect of V Evidently, double-occupancies are essential for explaining the failure
of the Hubbard-Wigner lattice approach. In an uncorrelated system the probability of
double occupations is given by d = n↑ ·n↓ – hence, d = 0.09 for TCNQ filling. Using
U = 1.7 eV, t = 0.18 eV in a 20 site model and the Lanczos method we already find about
d = 0.01. Increasing V leads to an increase in d. For V = 0.9 eV we find d = 0.027.

In order to obtain the same concentration of doubly occupied sites d in a t-U model
we have to increase the hopping parameter to t = 0.37, close to tfit. Hence, increasing
V seems to encourage hopping which leads to a broadening of the spectrum. Consider
two electrons passing each other. When being neighbors they pay V . Then, occupying
the same orbital costs U but they “gain” V . After passing each other they again pay V .
Thus, this process requires the energy U − V , instead of U to happen.

Figure 2.39 shows the spectral function for TCNQ with U = 1.7 eV, t = 0.18 eV and
varying values of V . We see that the main effect of V is to broaden the spectrum
around the Fermi level. Remarkably, we can understand the broadening in first-order
Rayleigh-Schrödinger perturbation theory [67, 71] (red lines). Surprisingly, perturbation
theory gives a remarkably good description for the effect of V up to U/2, the area of
interest.

Spectral Functions Using CPT to evaluate the spectral function for the t-U -V model
is not straightforward, as we have to decide how to deal with the V -term between different
clusters. We can, e.g., include the next-neighbor interaction V in periodic boundary
conditions. Figure 2.40 shows the high-resolution spectral function. Figure 2.41 presents
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Figure 2.39.: Density plot of spectral function for TCNQ (U = 1.7, t = 0.18) as a
function of V of a 10 sites chain, with 3 electrons of either spin type.
The green curve denotes the chemical potential. The four blue lines
show the shift in the peaks with the largest spectral weight in first-order
perturbation theory.

the results for an alternative method, kCPT: Performing Lanczos calculations for a
periodic cluster of L sites where the next neighbor hopping is renormalized by a factor
of sin(π/L)/(π/L) we evaluate the cluster Green’s function Gc(K,ω). In a CPT-like
calculation we obtain the full Green’s function by

G−1(K + k̃, ω) = G−1
c (K,ω)− Σ(K, k̃, ω) α , (2.49)

where
Σ(K, k̃, ω) = ε(K + k̃)− ε̄(K) . (2.50)

ε is the usual tight-binding energy ε(k) = −2t cos(k) and ε̄(K) is defined as

ε̄(K) =
L

2π

K+π/L∫

K−π/L

dk̃ ε(k̃) = −tL
π

sin(k)

∣∣∣∣∣

K+π/L

K−π/L
. (2.51)

It can be regarded as a coarse grained version of ε.
Unfortunately both methods show strange finite-size effects making a detailed analysis

hard. The two quasi-particle branches split below the Fermi level which originates mainly
from the approximate treatment of the long-range interaction across the cluster boundary.
For an accurate study we would need larger clusters.
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Figure 2.40.: CPT calculation of spectral function Ak(ω) with next-neighbor interac-
tion V = 0.9 in PBC (t = 0.18, U = 1.7) for TCNQ filling (n = 0.6) on
20 sites.
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Figure 2.41.: kCPT calculation of spectral function Ak(ω) with next-neighbor inter-
action V = 0.9 (t = 0.18, U = 1.7) for TCNQ filling (n = 0.6) on 10
sites.
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2.5. Application to (BEDT-TTF)2I3

Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF), often abbreviated as ET, is a very
good electron donor with an extended π-electron system. With oxidants such as iodine
it forms charge transfer compounds which have been shown to exhibit a wide range of
properties. They can be insulators, semiconductors, metals, or even superconductors. It
is characteristic of BEDT-TTF that it forms a variety of different phases with various
oxidants.

Organic molecular crystals of (BEDT-TTF)2X, where X denotes a tri-halide anion, are
effectively low-dimensional systems. Here, we will study ET with the linear anion tri-
iodide I3, giving rise to the crystal (BEDT-TTF)2I3. There exist several crystal structures
of this compound with identical stoichiometry. When synthesizing the predominant
structures are the α- and β-phases. The α-phase is metallic at room temperature but
exhibits a metal-to-insulator transition when cooled below 135 K [73, 74]. The β-phase,
on the other hand, was the first quasi two-dimensional organic superconductor found at
ambient pressure [75, 76]. In addition, the molecules can also condense in the κ- and Θ-
phase. These two phases are only formed with iodine anions unlike the α- and β-phases
where X denotes several possible tri-halide anions. Originally κ- and Θ-phases were first
synthesized in 1986 as mixed-anion salts. Among them was, for instance, Θ-(BEDT-
TTF)2(I3)1−x(AuI2)x, where x < 0.02. Recently neat crystals of Θ-(BEDT-TTF)2I3 have
been discovered [77]. 30% of these as well as the mixed-anion salts become superconducting
below 3.6 K. There exist two slightly modified unit cells of Θ-(BEDT-TTF)2I3. The main
difference is the positions of the I2 anions which can be shifted by half the short lattice
vector. In the crystal both unit cells are statistically distributed. After tempering only a
single configuration occurs. The rest of the structure hardly changes. This structure is
called ΘT phase and has a slightly higher transition temperature of Tc ≈ 5K.

Having several different phases allows for systematic investigations of the relation
between structure and physical properties in these organic materials. A genealogy of the
BEDT-TTF-based organic conductors was compiled by Mori [78, 79, 80]. An analysis of
experimental results is given in the review [81] by Shibaeva and Yagubskii. We will study
the ΘT -(BEDT-TTF)2I3 structure.

2.5.1. The Crystal

2.5.1.1. The Building Blocks

As the name suggests BEDT-TTF [bis-(ethylenedithio)tetrathiafulvalene] is related to
TTF by replacing the four hydrogen atoms with an additional sulphur atom and a
methylene group. The chemical structure formula is shown in figure 2.42.

Figure 2.43 shows different conformation isomers, i.e. symmetry constrained minima
of the total energy, of ET along with their HOMOs sorted by their total energy. The
upper-most structure is obtained when imposing D2h symmetry. It is planar (p) and has
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Bisethylenedithiotetrathiafulvalene

(ET or BEDT-TTF):
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Figure 2.42.: Structure formula of bis-(ethylenedithio)tetrathiafulvalene (BEDT-TTF)

the highest total energy of −97141.796 eV (tier 2, PBE). When allowing the methylene-
groups along with their accompanying sulphur atoms to move out of the molecular plane,
the energy can be reduced significantly. There are two configurations. Nearest-neighbor
methylene-groups at the respective long end of the molecule always point in opposite
direction along the short axis. Their relative position across the molecule can be either
eclipsed (ep) with symmetry D2h or staggered (sp) with symmetry D2. Both conformers
have essentially the same total energy.

These planar structures are still unstable. It is energetically more favourable to allow for
a further reduction in symmetry. This leads to a z-shape structure with either staggered or
eclipsed methylene groups or a slightly lower w-shaped structure. The energy differences
and their symmetry group are compiled in table 2.9. The subgroup relations between the
different symmetry groups originating from D2h are shown in figure 2.44.

Figure 2.45 gives the energy levels of the molecular orbitals for the different conformers
sorted with decreasing energy from left to right. Going to the right we find an increase in
the HOMO-LUMO gap. The occupied energy levels are shifted to lower energies, whereas
the unoccupied ones are shifted to higher energies.

Table 2.9.: Energies relative to the lowest structure w eclipsed (E = −97142.945 eV)
of different conformers of ET obtained by DFT calculations with the PBE
exchange correlations functional and the tier 2 basis set. Second last
column gives the results of DFT calculations using NRLMOL by Brake
and coworkers [82]. There is a significant difference in the results. We
repeated the calculations with NRLMOL obtaining the last column. It
agrees much better with our FHI-aims results.

conformer symmetry group ∆Etot/eV ∆Etot/eV [82] ∆Etot/eV
planar D2h 1.150 1.76 1.215
planar eclipsed C2h 0.145 0.175
planar staggered D2 0.145 0.175
z eclipsed C2 0.113 0.07 0.115
z staggered Ci 0.116 0.07 0.105
w eclipsed Cs 0.000 0.00 0.000
w staggered C2 0.001 0.00 0.000
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eclipsed planar (ep), C2h staggered planar (sp), D2

strictly planar (p), D2h

∆E = 1.150 eV

∆E = 0.145 eV ∆E = 0.145 eV

eclipsed Z (ez), C2

∆E = 0.113 eV

staggered Z (sz), Ci

∆E = 0.116 eV

staggered W (sw), C2eclipsed W (ew), Cs

∆E = 0.001 eV∆E = 0.000 eV

Friday, May 14, 2010

Figure 2.43.: Different conformers of ET with their HOMOs. The most stable struc-
tures are the W-shape conformers (last row). The eclipsed and staggered
structures essentially have the same energy. Going upwards the energy
increases. ∆E is defined as the energy difference with respect to the
ground-state conformer. Isovalues for isosurfaces of wavefunctions are
d = ±0.08Å−3/2.

D2h

D2 C2

C2h

C2v Cs

Ci C1

Figure 2.44.: Symmetry subgroups of D2h.
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V

(p) (ep) (sp) (ez) (sz) (ew) (sw)

Friday, May 14, 2010

Figure 2.45.: Molecular energy levels for different conformers. From left to right:
strictly planar (p), eclipsed planar (ep), staggered planar (sp), eclipsed
(z), staggered (z), eclipsed (w), and, staggered (w). We observe that
with decreasing total energy, HOMO/LUMO gap increases.

For these calculations we used the PBE exchange correlation functional and the tier
2 basis set in FHI-aims. Demiralp and Goddard [83] performed similar calculations
using Hartree-Fock. Brake and coworkers [82] studied the energy differences of different
conformers with DFT using the NRLMOL code, presumably with the PBE exchange
correlation functional. The second last column in table 2.9 gives their results which differ
from ours significantly. To check the reliability of our data we also performed NRLMOL
calculations with the largest basis set available and obtained results (last column) very
close to ours.

Figure 2.46 gives the ground-state conformer (ew) for different exchange-correlation
functionals calculated in Gaussian03 with the 6-31G basis set. Interestingly, we find a
visible change in the structure. While the W -shape conformers still remain the ground-
state structures the banana-shape becomes flatter the higher the amount of exact exchange
in comparison to correlation energy. For Hartree-Fock we thus get the straightest – an
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almost planar structure. For PBE and LSDA we find a quite pronounced w-shape.

LSDA

PBE

B3LYP

HF

Figure 2.46.: Ground-state structures of ET for different exchange-correlation poten-
tials in Gaussian03 using the 6-31G basis set. Interestingly, increasing
the amount of exact exchange leads to flatter molecules.
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2.5.1.2. The Crystal Structure ΘT -(BEDT-TTF)2I3

Within the ΘT -(BEDT-TTF)2I3 crystal the planar eclipsed and staggered structures are
realized. Due to the similarity of their energies and the shape of their HOMOs we choose
one of them, the eclipsed conformer, for our calculations. Figure 2.47 shows the HOMOs
of ET and iodine. For the former we see that there is hardly any amplitude on the
methylen groups.

When synthesizing a crystal out of ET and iodine molecules, a charge transfer takes
place. The HOMO of ET is more than 3 eV higher than the partially filled iodine HOMO
(cf. figure 2.47). On average, half an electron is therefore transferred from BEDT-TTF to
iodine giving rise to a quarter-filled band derived from the HOMOs of BEDT-TTF.

The crystal structure of this charge-transfer salt belongs to the monoclinic space group
with P21/c symmetry. The experimentally determined lattice parameters are a = 9.964 Å,
b = 10.088 Å, and c = 34.419 Å with the angle β = 97.98◦ [84]. Figure 2.48 gives different
views on the unit cell of ΘT -(BEDT-TTF)2I3.

I3 BEDT-TTF

ch
ar

ge
 tr

an
sf

er
! 

1/
2 

e-

!"
!#
$
%
&'
"
&!
(

!)*+

!,

!,*+

!+

!+*+

!-

!-*+

!.

!.*+

I3 BEDT-TTF

Friday, June 18, 2010Figure 2.47.: Molecular energy levels of ET and I3 center of figure and the correspond-
ing HOMOs at the left and right side, respectively. The energy of the
HOMO of ET is higher in energy than the partially filled HOMO of
I3. On average, half an electron is transferred from ET to I3 giving a
quarter-filled band derived from the HOMOs of ET. Isovalue 0.06 Å−3/2.
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a

c

b

c

a

b

Friday, May 14, 2010

Figure 2.48.: Different views on the unit cell of ΘT -(BEDT-TTF)2I3: along the c-axis
we find a sandwich structure of donor and acceptor layers. In the a-b
planes we find the acceptor iodine molecules and the highly-conducting
BEDT-TTF planes.

We observe a sandwich like structure (two outer-left views). The donor layers of BEDT-
TTF alternate with the acceptor iodine layers along the c-axis. The a-b BEDT-TTF
planes show metallic behavior from room- down to low temperatures. The experimentally
observed ratio of the resistivity in these planes and perpendicular to them is ρ⊥/ρ‖ ≈ 500
[84], i.e. we find a quasi two-dimensional metal. The right-most column of figure 2.48
shows two different perspectives on these planes. Within the BEDT-TTF a-b-planes the
molecules are tilted such that the sulfur atoms show a staggered arrangement.

The key to understanding the ΘT -(BEDT-TTF)2I3 molecular crystal are the highly-
conducting planes. We model these planes in terms of a two-dimensional Hubbard model.
To fix the notation we provide a view on the plane parallel to the long axis of the
molecules in figure 2.49. We label the two important direction: the a-direction along the
nearest-neighbors and the diagonal d-direction. In the former, the center-of-mass distance
between the molecules is 4.96 Å, while in the latter it is 5.61 Å.
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Figure 2.49.: Structure of ΘT -(BEDT-TTF)2I3: the highly conducting a-b-plane built
from BEDT-TTF. We define the a-bond along the a-direction where
we find the nearest neighbors. The d-bond runs along the diagonal
direction.

2.5.2. Model Parameters

2.5.2.1. Hopping parameter

The a-bond We start with the a-bond and its hopping parameter ta evaluated for
different angles using FHI-aims with PBE and the tier 2 basis set. Figure 2.50 gives
the results for ta as well as the total energy. We deduce the sign of the hopping-matrix
element from figure 2.51. For the angle of 49.36◦, being realized in the crystal, we find
the hopping-matrix element ta = −0.04 eV.

Interestingly, we observe quite a strong dependence on the angle. In the interval
[40.0◦, 60.0◦], an interval of only 20◦, ta ranges from −0.18 eV to practically zero. This
strong sensitivity is due to the pronounced lobes at the sulfur atoms (cf. figure 2.52).
Their overlap with the partner sulfur lobes on the opposite molecule changes strongly as
illustrated in figure 2.51. Moreover, we deduce from the total energy as well as the dimer
wavefunction at 40◦ that already at this angle the tight-binding approach is no longer
applicable.

The distance dependence shows a sign change in the hopping-matrix element at about
4.2 Å. This is again an effect of the complex structure of the HOMOs. The sign-change,
however, occurs at a distance, where the molecular orbitals are already distorted.
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Figure 2.50.: Hopping (upper) and total energy (lower) for different angles along the
a-bond for (BEDT-TTF)2I3. The energy increases steeply for angles
smaller than 45◦, the HOMOs start to distort (see figure 2.51), and the
tight-binding ansatz breaks down. The larger red circle shows the angle
realized in the crystal.
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Figure 2.51.: Dimer bonding wavefunction for the a-bond at different angles (isovalue
0.08 Å−3/2). The hopping-matrix element ta < 0 is negative due to
the anti-symmetry of the wavefunction. For 40◦ we already observe a
distortion of the molecular orbital. The tight-binding ansatz breaks
down.
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Figure 2.52.: HOMO wavefunction of BEDT-TTF. The pronounced lobes at the
sulfur atoms (yellow) are responsible for the strong sensitivity of the
hopping-matrix element ta in a-direction (isovalue 0.04 Å−3/2).
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Figure 2.53.: Hopping and total energy for different distances of the a-bond for
(BEDT-TTF)2I3. There is an appreciable hopping amplitude only for
the first neighbor.
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From the distance-dependence we see that similar to the TTF-TCNQ crystal we need
not consider second-nearest neighbor hopping as the hopping amplitude is almost zero
for this distance.

The d-bond When performing the dimer calculation for the d-bond a charge transfer
takes place. Figure 2.54 shows the two molecular orbitals where the lower one has
obviously more amplitude than the upper one. A Mullikan analysis provides a quantitative
perspective. Whereas the a-bond dimer has an exactly equal distribution of electrons on
both molecules, we find that for the d-bond about 5% of an electron is transferred from
one to the other molecule – more precisely about 195.952 electrons are on the upper and
consequently 196.048 are on the lower molecule.

To understand how this charge transfer comes about, we construct a simple tight-
binding model, where the molecules are represented by two sites with a relatively strong
bond t. The inter-molecular bond is described by a smaller hopping parameter t′ � t.

Figure 2.54.: d-bond dimer with bonding wavefunction for (BEDT-TTF)2I3 for the
distance and configuration realized in the crystal. In contrast, to the
crystal a charge transfer of about 5% of an electron takes place. It shows
in a reduced amplitude on the upper molecule. The charge transfer can
already be understood in second order perturbation theory.
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Figure 2.56: Tight-binding model to study charge transfer found for the non-parallel
dimer. Due to symmetry the first two site will carry the same charge.

ratio t�/t. The solid lines in figure 2.57 show the lower two eigenenergies of the system.
More important for the charge transfer is the occupation per site. Figure 2.58 provides
it for the half-filled system. For t� = 0 we observe a uniform occupation due to the
symmetry of the system. From symmetry we can also directly infer that sites 1 and 2
carry the same charge for all values of t�. This molecule represents the lower one in figure
2.55.

For finite ratios t�/t, however, there is less charge on site 4. It is distributed to site 3 on
the same molecule and on sites 1 and 1. This distribution gives rise to the intermolecular
charge transfer. Interestingly site 3 has almost the same charge as sites 1 and 2 for small
ratios of t�/t.

This behavior can already be understood in second order perturbation theory (points
in plots 2.57 and 2.58) which yields quite a good approximation up about t�/t < 1/4.

TODO: hopping ok when not constrained?

2.5.2.2 Coulomb parameter

The bare Coulomb integrals for the a-bond are given in table 2.11 along with the corre-
sponding intra-molecularly screened pendants. For U0 we also provide the intermediate
data in table 2.12 for the tier 1 and tier 2 basis set. We find good agreement just like in
the case of TTF-TCNQ.

Also in analogy to the previous compound we find that intra-molecular screening
mostly affects U and to a smaller extend V . For larger distances the effect is negligible.
The larges contribution of the local Hubbard-U is about 1.6 eV.

Since the hopping matrix elements along this this bond are very sensitive to small
rotations we also study their effect on V0 and find hardly any change (see figure 2.59).
Since the ratio changes drastically upon pressure this would be an interesting experiment

Figure 2.55.: Tight-binding model to study charge transfer found for the non-parallel
dimer. By symmetry the first two sites will carry the same charge.

Figure 2.55 shows a sketch of the system and labels the sites.
The associated Hamiltonian for this model reads

H =




0 t t′ 0
t 0 t′ 0
t′ t′ 0 t
0 0 t 0


 . (2.52)

By diagonalization we obtain the eigenenergies and wavefunctions as function of the ratio
t′/t. The solid lines in figure 2.56 show the lowest two eigenenergies for the half-filled
system. To study the charge transfer we plot the occupation per site in figure 2.57. For
t′/t = 0 we observe a uniform occupation as both molecules are isolated. Symmetry
dictates that sites 1 and 2 always carry the same charge. For finite ratios t′/t, there is
less charge on site 4. It is redistributed to site 3 on the same molecule and equally to
sites 1 and 2 on the other. This redistribution corresponds to the inter-molecular charge
transfer. We can already understand it in second-order Brillouin-Wigner perturbation
theory as shown in figures 2.56 and 2.57.

Among all the dimer configurations studied in this work this T -shape dimer is the only
one which exhibits a charge transfer. The other dimers have an inversion center, i.e. a
point group symmetry, which maps both molecules onto each other. Hence, no charge
transfer can occur.

From experimental data [84] we know that there are three inequivalent BEDT-TTF
molecules per unit cell and inside a highly-conducting plane. A charge transfer between
those might therefore occur in the crystal. A close look at 2.49 shows, however, that
the highly-conducting a-b plane itself is almost inversion symmetric about the center of
a molecule, i.e. it is an almost-symmetry. Therefore there should be hardly any charge
transfer, if there was an almost-symmetry operation which maps the two molecules of the
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d-bond onto each other. Indeed, we find a glide-mirror-rotation symmetry that practically
maps both molecules onto each other. Its mirror plane is parallel to the a-bond and
cutting the d-bond in half. The mirror operation is followed by a 1/4a shift and a 180◦

rotation about the z-axis (parallel to the long molecular axis).
To see whether this practical symmetry is “strong” enough we perform periodic DFT

calculations (tier 1, PBE) for a two-dimensional a-b-plane. A unit cell of this a-b-plane
comprises four BEDT-TTF molecules. For the self-consistent solution we perform a
Mulliken analysis [52]. Indeed, we find that all molecules carry the same Mulliken-
integrated charge (accuracy ≈ 0.1% electrons).

Since we cannot construct a finite cluster exhibiting the same symmetry, we need to
resort to the two-dimensional calculations to obtain the diagonal hopping-matrix elements.

2.5.2.2. Coulomb parameters

The bare Coulomb integrals for the a-bond are given in table 2.10 along with the
corresponding intra-molecularly screened values. For U0, we also provide the intermediate
data in table 2.11 for tiers 2 and 2 basis set. We find good agreement for both basis sets
just like in the TTF-TCNQ case. Intra-molecular screening mostly affects U and to a
smaller extend V . For larger distances the effect is negligible. The largest contribution of
the local Hubbard-U amounts to about 1.6 eV.

Table 2.10.: BEDT-TTF results for bare and intra-molecularly screened Coulomb
integrals (along the a-bond). We again find that only U and V are
appreciably screened by the molecules inside the molecule. For U , the
contribution is about 1.6 eV. All energies are given in eV.

U V V ′ V ′′

bare 5.3 2.5 1.4 0.9
intra-mol. 3.7 2.0 1.3 0.9

Since small rotations of the molecule strangely affect the hopping-matrix elements
along this bond, we also study their effect on V0. We hardly find any change (see figure
2.58). This means that the ratio t over U and V can change drastically upon pressure.
This would therefore be an interesting experiment to perform.

The comparable distance between the molecules in the dimer of the a- and the d-bond
leads to similar results for the bare Coulomb integral. Since the distance for the d-bond
is a bit larger, the Coulomb integral is reduced by about 0.1 eV to V d

bare = 2.4 eV.
To overcome the charge transfer in the d-bond, we rely on constraint-DFT calculations

where we fix the number of electrons on each molecule of the d-dimer to keep their
respective charges equal. We obtain V d

0 = 2.1 eV which is a bit larger than V a
0 despite

V d
bare being smaller. Hence, the intra-molecular screening is not as efficient as in the
a-bond. We find two competing effects. The first being the higher polarizability along the
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Table 2.11.: U0 of planar eclipsed BEDT with the tier 1 and tier 2 basis set. All
geometries are relaxed with respect to their basis set. Energies are given
in eV.

Etot/eV
charge q/|e| PBE tier 2 PBE tier 3

0.00 -3569.932 -3569.935
0.25 -3569.893 -3569.895
0.50 -3569.844 -3569.846
0.75 -3569.787 -3569.789
1.00 -3569.721 -3569.723
1.50 -3569.564 -3569.566
2.00 -3569.373 -3569.375

U0/eV 4.214 4.250

middle axis which tends to make the screening more efficient, i.e. decreases V d
0 . This effect

is, however, overcompensated by the reduction in screening due to the larger distance.

Inter-Molecular Screening In contrast, to TTF and TCNQ we find small but finite
off-diagonal elements in the polarizability tensor for electric fields in the principal directions
of the inertia tensor of BEDT-TTF. For the two compounds of the crystal the calculation
outlined in section 2.3.2.3 give the polarizability tensors

αET =




170 0 0
0 286 3
0 3 512


 /a3

0 αI−3
=




80 0 0
0 80 0
0 0 316


 /a3

0 . (2.53)

Using the DDA we obtain the screening correction for the Hubbard-U and the first
neighbors along the a- and d-bond. All relevant Coulomb integrals are given in table 2.12.

Table 2.12.: BEDT-TTF results for the relevant Coulomb integrals. By almost-
symmetry all local Coulomb parameters U are essentially identical (see
2.5.2.1). The V s along different directions give slightly different results.

U Va Vd
bare 5.3 2.5 2.4

intra-mol. 3.7 2.0 2.1
∆V - inter-mol. −2.2 −1.5 −1.4

full screening 1.5 0.5 0.7



Summary 123

-100

-50

 0

 50

 100

 46  48  50  52  54

ch
an

ge
 in

 %

angle in deg

V0’ t

-100

-50

 0

 50

 100

 46  48  50  52  54

ch
an

ge
 in

 %

angle in deg

V0’ t

Friday, June 18, 2010

Figure 2.58.: Sensitivity comparison of hopping-matrix element ta (green triangles) to
intra-molecularly screened V0 (red squares). Whereas the V0 = −2.04 eV
remains very stable the ta vary strongly even for small angles ±4◦.

2.6. Summary

In this chapter we devised a technique to reliably calculate realistic parameters to treat
organic crystals in terms of an extended Hubbard model. To that end, we construct a
model crystal from unit cells determined by X-ray diffraction experiments. Replacing the
molecules in the experimental unit cell by well-defined DFT relaxed structures we obtain
an idealized clean crystal. Using FHI-aims, a density-function theory code package based
on numerically tabulated atom-centered orbitals, we evaluate the hopping parameters,
bare- and intra-molecularly screened Hubbard parameters.

Using a dimer approach the hopping-matrix elements can be directly evaluated from
the bonding/anti-bonding splitting of the highest-occupied (donor molecule) or lowest-
unoccupied (acceptor molecule) molecular orbital. The bare Coulomb integrals readily
follow from density integrations of the molecular orbital. To take the Coulomb parameter
renormalization due to the electrons inside the molecules into account we charge a system
of a single molecule (for U0) or a dimer (for V0), where the energetic response due to the
relaxation of the orbitals gives the screening.

In order to also include the screening contribution of all the other molecules in the
system we have to take a different approach. Quantum mechanical calculations for large
enough systems are not feasible, even with the largest supercomputers at hand. Therefore,
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we resort to the classical electrostatic approach developed in chapter 1. We find that
it does not suffice to replace each molecule by a single polarizability, as the molecules
are too close to each other. As a remedy, we describe a molecule as a set of point
polarizabilities that are derived from uniform distribution of the DFT polarizability tensor
of the molecule.

We apply this procedure to two compounds, TTF-TCNQ and (BEDT-TTF)2I3 obtaining
a realistic set of model parameters for a Hubbard model description. Typical of organics,
we find relatively small hopping matrix elements in comparison to the screened Coulomb
integrals. For the local Hubbard-U screening is most pronounced, reducing the value to
about 30% of the bare integral. Our results for TTF-TCNQ put early estimates given by
Hubbard on a solid footing. For both materials we find that the next-neighbor interaction,
which is usually neglected in Hubbard model calculations, has a sizable contribution.
In (BEDT-TTF)2I3 its values are roughly 40% of the effective Hubbard-U , whereas in
TTF-TCNQ it even is about 65%. Evidently, for both, but especially for the latter, their
contribution should not be neglected.

As an example we show that the inclusion of V in TTF-TCNQ reveals important physics.
It is key to solving a long-standing questions in the understanding of this interesting
exotic material. In former treatments of TTF-TCNQ in terms of the t-U Hubbard model
the estimated hopping matrix element t had to be doubled in order to match experiments.
Including V , we showed that its effect is a simple broadening of the spectrum, mimicking
the doubling of 2t. We could also exclude the presence of Hubbard-Wigner-type states
suggested by Hubbard. Moreover, using the correct t puts the temperature scale TJ ,
below which signatures of spin-charge separation are found, into ranges consistent with
experiment.

For both systems, (BEDT-TTF)2I3 and TTF-TCNQ, we find that sufficient pressure
should lead to interesting phenomena. In the former uniaxial pressure might significantly
change the t/V -ratio due to its strong dependence on molecular orientations. In TTF-
TCNQ hydrostatic pressure should drive the system even closer or over ferroelectric
instability.
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3.1. Dynamical Correlation and Green’s functions

There is a broad variety of experimental techniques in condensed matter physics. Almost
all of them can be classified into one of the three categories: spectroscopy, responses
to external fields and probing of thermodynamical coefficients. We will focus on the
former two categories only, since they allow for an analysis of the dynamical features
of the system. These dynamics depend on the dominant intrinsic excitations. Even
though there is a huge diversity in experimental techniques the general idea of the setup is
almost always the same. A specimen is subjected to a (usually electromagnetic) external
perturbation, for instance photons impinging on the surface or an influx of neutrons with
their magnetic moments or – for transport – a voltage drop. From the theoretical point
of view this perturbation manifests itself as an additional time-dependent term Hpert(t)
to the Hamiltonian H0

Hpert =

∫

Rd
ddrFX(r, t)X(r) , (3.1)

where FX and X are conjugate fields in terms of Legendre transforms. As an example
FX could be the magnetic field H and X the conjugated magnetization M . Intuitively
FX denotes the force that couples to the system via the operator X. The effect of the
perturbation is that expectation values of some operators, 〈O〉, show a finite response
〈δO〉. It is our goal to understand and predict the behavior of this change 〈δO〉 under
changes of FX , i.e. the functional dependence 〈δO〉 [FX ].

Usually the generalized ’force’ FX is very weak in comparison to the internal forces in
the system. Hence, we can expand the response 〈δO〉 [FX ] to first order. This gives

〈δOLR
i (r, t)〉 =

∫

Rd

∫

R
ddr dt′ χLR

ij (r, r′; t, t′)FXj(r
′, t′) , (3.2)

where χLR denotes the linear response function (or correlation function), which is the
aim of this chapter. The components of O and FX are given by either the experimental
or theoretical setup (external parameter). To shorten the notation we will drop the
superscript LR (linear response) and additionally assume that the expectation values
〈O〉 and 〈X〉 vanish in the absence of the perturbation, i.e. they become 〈δO〉, 〈δX〉,
respectively.

In the following we will describe the response functions microscopically making them
accessible to actual calculations. To that end, we start by briefly introducing some
important concepts.

3.1.1. Concepts For A Microscopic Description

The physical models, we describe, are governed by a time-independent, particle-conserving
Hamiltonian H with [H,N ] = 0 in the Grand Canonical Ensemble. As an abbreviation
we define

H = H − µN , (3.3)

with µ being the chemical potential and N the total particle number operator.
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The (thermal) expectation value 〈O〉 of any operator O can be evaluated by tracing
over the entire Fock space

〈O〉 =
1

Z
Tr
(
e−βHO

)
, (3.4)

where Z = Tr (exp (−βH)) defines the partition function. In this notation a general
operator O in the Schrödinger picture is transformed to the Heisenberg picture by

O (t) = exp(iHt)O exp(−iHt) (3.5a)

O†(t) = exp(iHt)O† exp(−iHt) . (3.5b)

Most often O is either an annihilator c or creator c†, or a single particle Hermitian
operator, an observable, of the form

O =
∑

ij

c†iOijcj . (3.6)

Then both equations (3.5) are identical.
For calculations at finite temperature it is beneficial to treat time and temperature

on equal footing. To that end, we introduce the fictitious imaginary time τ [86]. We
consider t as a complex variable and restrict it along the imaginary axis −it→ τ . This
rotation in the complex plane is called Wick rotation. For imaginary times analytical
continuation of the transforms from Schrödinger to Heisenberg picture (3.5) gives

O(τ) = exp(Hτ)O exp(−Hτ) , (3.7a)

Ō(τ) = exp(Hτ)O† exp(−Hτ) . (3.7b)

It is important to note that unlike in the real-time case, O(τ) and Ō(τ) are not Hermitian
conjugates. As we will discuss in section 3.1.6, τ can be restricted to the interval τ ∈ [0, β].
We can think of the partition function as the time evolution operator in imaginary time
evaluated at the end of the interval τ = β or t = −iβ showing the formal equivalence of
time and temperature.

Within the field integral formalism, which also holds for time-dependent Hamiltonians,
we rewrite the expectation value (3.4) of a single-particle operator like (3.6) in the
Heisenberg picture as

〈O (τ)〉 =
〈∑

ij

φ∗i (τ)Oijφj (τ)
〉

(3.8)

=
1

ZS

∫
D [φ] D [φ∗]

(∑

ij

φ∗iOijφj

)
exp (−S [φ, φ∗]) , (3.9)

with the partition function

ZS =

∫
D [φ] D [φ∗] exp (−S [φ, φ∗]) , (3.10)

and the action

S [φ, φ∗] =

∫ β

0

dτ [φ∗∂τφ+H] . (3.11)
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3.1.2. Microscopic Response Theory

To relate (3.2) to the microscopic theory (for an extensive discussion see [87] or [88]) we
define the action S0 of the unperturbed Hamiltonian H0. The action

δS [φ, φ∗,FX ] =

∫ β

0

dτHpert =

∫ β

0

dτ

∫

Rd
ddr FX(r, t)X(r) (3.12)

shall denote the perturbation effect on S0. In addition, we formally couple the response
operator O to the action via its conjugate pair FO giving

δS ′ [φ, φ∗,FO] =

∫ β

0

dτ FO (τ)O (τ) (3.13)

such that

S [φ, φ∗,FX ,FO] = S0 [φ, φ∗] + δS [φ, φ∗,FX ] + δS ′ [φ, φ∗,FO] . (3.14)

Then, 〈O (τ)〉 (3.8) is accessible by the functional derivative

〈O (τ)〉 =
δ

δFO (τ)

∣∣∣∣∣
FO=0

lnZS =
1

ZS
δ

δFO

∣∣∣∣∣
FO=0

ZS . (3.15)

In the absence of the perturbation 〈O (τ)〉 vanishes according to the assumption above
(otherwise we could replace O by (O − 〈O〉)). When the driving force FX of the
perturbation is weak enough we replace the right-hand-side of (3.15) with its first-order
expansion in FX giving

〈O (τ)〉 ≈
∫ β

0

dτ ′
(

δ2

δFO (τ) δFX (τ ′)

∣∣∣∣∣
FX=FO=0

lnZS

)
FX (τ) . (3.16)

Comparing to (3.2) yields

χ (τ, τ ′) =
δ2

δFO (τ) δFX (τ ′)

∣∣∣∣∣
FX=FO=0

lnZS . (3.17)

With the product rule we can readily perform the functional derivatives

χ (τ, τ ′) =−

(
1

ZS
δ

δFO

∣∣∣∣∣
FO=0

ZS
∣∣∣
FX=0

)(
1

ZS
δ

δFX

∣∣∣∣∣
FX=0

ZS
∣∣∣
FO=0

)
(3.18)

+
1

ZS
δ2

δFO (τ) δFX (τ ′)

∣∣∣∣∣
FX=FO=0

ZS . (3.19)
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According to equation (3.15) the two functional derivatives in the parentheses give the
expectation values of the unperturbed system 〈X〉S0 and 〈O〉S0 which we assumed to be
zero. Hence,

χ (τ, τ ′) =
1

ZS
δ2

δFO (τ) δFX (τ ′)

∣∣∣∣∣
FX=FO=0

ZS . (3.20)

It now has the form of an expectation value (3.15) of a product of operators

χO,X(τ, τ ′) = 〈O(τ ′)X(τ)〉 . (3.21)

For O = X, we obtain a relation between two apparently different physical phenomena.
In this case the response function is equal to the expectation value of O2. For the general
case of 〈O(t)〉 6= 0 we obtain

χO,O(t, t′) = 〈(O(t′)− 〈O(t′)〉) (O(t)− 〈O(t)〉)〉 . (3.22)

This relation is the fluctuation-dissipation theorem. On the left hand side we see the
response function, which describes the dissipation in a system. If, for instance, X = j, χ
gives the conductivity, that describes how the kinetic energy of charge carriers is distributed
among the excitations of the sample. The right hand side represents quantum-thermal
fluctuations.

Operators The operator O is some single particle operator of the form (3.6) where
in general c, c†, can be either bosonic or fermionic. We will use Greek, Latin indices
as subscripts on operators that act on eigenstates or real space sites, respectively. An
exception to this rule are the indices q, k and Q,K which shall denote operators acting in
reciprocal space. To better distinguish the corresponding particle operators we denote
them by the letter a instead of c, i.e.

akσ =
1√
N

∑

i

eikriciσ (3.23)

a†kσ =
1√
N

∑

i

e−ikric†iσ . (3.24)

Common single-particle operators are the charge operator

C(Ri) =
∑

σ

c†iσciσ (3.25)

for the charge susceptibility χC,C and the spin operators

Sa(Ri) =
1

2

∑

σσ′

c†iσσ
a
σσ′ciσ′ (3.26)

for the spin susceptibilities χSa,Sb = χab, where a, b = {x, y, z} and σa is the corresponding
Pauli matrix.
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In a translation-invariant system these expressions can be Fourier transformed to yield

O (Q) =
∑

σ

∫

BZ

ddk

VBZ

vkσa
†
kσak+Qσ , (3.27)

where vkσ = 1 for the charge-charge and vkσ = sgn(σ) for the spin-spin response function.
Inserting O into equation (3.21) we obtain a four-point correlation function which can

readily be expanded in two-body Green’s functions

χO′,O(t′, t) =

〈(∑

ij

c†i (t
′)O′ijcj(t

′)

)(∑

lm

c†l (t)Olmcm(t)

)〉
(3.28)

=
∑

ijlm

O′ijOlm

〈
c†i (t

′)cj(t
′)c†l (t)cm(t)

〉
. (3.29)

For the translation invariant system in k-space we obtain with (3.27)

χO′,O(Q, t′, t) =
∑

σσ′

∫

BZ

ddk

VBZ

∫

BZ

ddk′

VBZ

vO
′

k′σ′v
O
kσ

〈
a†
k′σ′

(t′)a
k′+Qσ′

(t′)a†kσ(t)ak+Qσ(t)
〉
.

(3.30)
If vkσ is independent of k as it is for the aforementioned examples, this simplifies to

χO′,O(Q, t′, t) =
∑

σσ′

vO
′

σ′ v
O
σ

∫

BZ

ddk

VBZ

∫

BZ

ddk′

VBZ

〈
a†
k′σ′

(t′)a
k′+Qσ′

(t′)a†kσ(t)ak+Qσ(t)
〉
.

(3.31)

3.1.3. n-body Green’s Function

In the following we generalize the correlation functions and introduce the concept of
Green’s functions. We define the n-body real-time Green’s function as the expectation
value

G(n)(α1t1, . . . , αntn|α′1t′1, . . . , α′nt′n) =

(−i)n
〈
Tt
[
cα1

(t1) . . . cαn(tn)c†α′n(t′n) . . . c†α′1
(t′1)
]〉

, (3.32)

where Tt denotes the time-ordering operator, that arranges the particle operators according
to time. The operator with the largest t is positioned at the very left. For Fermions
each permutation yields a minus sign. Real-time Green’s functions have an obvious
interpretation. They describe the propagation of a perturbation caused by injecting
particles at space-time-spin points (αi, ti) and removing them at (α′i, t

′
i).

The zero-temperature Green’s function follows from the real-time Green’s function
by replacing the thermal trace over all states in Fock space with just the ground-state
expectation value |Ψ0〉, i.e. 〈x〉 → 〈Ψ0|x|Ψ0〉 giving

G(n)(α1t1, . . . , αntn|α′1t′1, . . . , α′nt′n) =

(−i)n
〈

Ψ0

∣∣∣Tt
[
cα1

(t1) . . . cαn(tn)c†α′n(t′n) . . . c†α′1
(t′1)
] ∣∣∣Ψ0

〉
(3.33)
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for the real-time Green’s function.
The imaginary time Green’s function is defined in a similarly manner. It follows from

a Wick rotation as described in section 3.1.1. We also need to define the imaginary
time-ordering operator Tτ which just like Tt arranges the imaginary times in ascending
order from right to left. Hence,

G(n)(α1τ1, . . . , αnτn|α′1τ ′1, . . . , α′nτ ′n) =

−
〈
Tτ
[
cα1(τ1) . . . cαn(τn)c̄α′n(τ ′n) . . . c̄α′1(τ

′
1)
]〉

. (3.34)

Note, that the prefactors also differ in both definitions. They are a matter of convention
and different authors make different choices. In our case the factors stem from the
construction of Green’s functions in terms of generating functions. Our convention agrees,
for instance, with the textbooks of Abrikosov, Gorkov, Dzyaloshinski [89] and Fetter and
Walecka [90] as well as many others. It, however, differs from Negele and Orland [87]
where there is no minus sign in the definition of the imaginary-time Green’s function.

3.1.4. Single-Particle Green’s Function

The Green’s function most often encountered is the single-particle Green’s function.
Specializing equations (3.34) and (3.32) to the single-particle case gives

Gαβ(t, t′) = −i
〈
Tt cα(t)c†β(t′)

〉
(3.35)

and

Gαβ(τ, τ ′) = −
〈
Tτ cα(τ)c̄β(τ ′)

〉
, (3.36)

respectively. For t > t′ it describes the propagation of an additional particle and for t < t′

of an additional hole in the system.
Having these Green’s function gives us direct access to the single-particle expectation

values (simple case of equation (3.29)) when choosing the time arguments appropriately,

〈O〉 = −i
∫

Rd
ddr ddr′O(r, r′)G(r, t; r, t+ 0+) (3.37)

〈O〉 = −
∫

Rd
ddr ddr′O(r, r′)G(r, τ ; r′, τ + 0+) , (3.38)

where t± = t ± η with η > 0 and η → 0. For imaginary times we have the analogous
definition.

3.1.5. Two-Particle Green’s Function

For the response functions the two-particle Green’s functions play a crucial role. They
are given by

G(2)
α (τ1, τ2, τ3, τ4) =

〈
Tτ cα1(τ1)c̄α2(τ2)cα3(τ3)c̄α4(τ4)

〉
(3.39)
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or in real time

G(2)
α (t1, t2, t3, t4) =

〈
Tt cα1

(t1)c†α2
(t2)cα3

(t3)c†α4
(t4)
〉
, (3.40)

where we slightly deviate from the notation in (3.32) and (3.34) by renaming times 2↔ 3
to be consistent with the implementation part below. For the standard notation for
real-frequency two-particle Green’s functions see [91].

Here we exclusively treat Fermions. The Greek letters denote multi-indices comprising
at least a spin index σi and an orbital index. In a system where the total spin is a
conserved quantity

σ1 + σ3 = σ2 + σ4 (3.41)

is obviously fulfilled, otherwise the Green’s function would be zero. In addition, if the
system is paramagnetic, i.e. the system is invariant under a flip of all spins, we only
need to treat two different spin-components of the two-particle Green’s function. Namely,
σ1 = ±σ3 (also see section 3.3). Taking the spin quantum numbers out of the multi-index
we thus can write

G
(2)
ασσ′ (τ1, τ2, τ3, τ4) = 〈Tτ cα1σ(τ1)c̄α2σ(τ2)cα3σ′(τ3)c̄α4σ′(τ4)〉 (3.42)

and similarly for the real-time case.
In the following we will treat real times to make the discussion more concrete, but the

relations can be easily generalized to imaginary times. There are only three independent
time orderings with distinct physical interpretations. For instance, if the two creators
act first, i.e. t2, t4 < t1, t3, we describe the propagation of two additional particles in
the system and therefore probe the energy spectrum of two-particle excitations (N + 2
or particle-particle spectrum). For t2, t4 > t1, t3 we study the analogous situation for
two holes (N − 2 or hole-hole spectrum). For the other cases we study the particle-hole
propagation which describes the excitation energies for an N -particle system. All other
possible time orderings follow by permutation just giving a factor of ±1, since

G(2) (1, 2, 3, 4) = −G(2) (2, 1, 3, 4) = G(2) (2, 1, 4, 3) = −G(2) (1, 2, 4, 3) , (3.43)

where an integer i denotes (αi, ti).
The two-particle Green’s function has discontinuities for equal times, which originate

from the single-particle Green’s function. Let, for instance, t4 = t−3 = 0. We obtain

G(2)
α

(
t1, t2, 0

+, 0
)
−G(2)

α

(
t1, t2, 0

−, 0
)

= 〈Tt cα1
(t1)c†α2

(t2)
[
cα3
, c†α4

]
+
〉 = iGα1α2 (t1, t2) δα3α4 , (3.44)

where [ · , · ]+ denotes the anticommutator.

It is therefore practical to decompose G
(2)
α in a “free” or unconnected part G

0 (2)
α and

an interaction part G
int (2)
α , such that

G(2)(1, 2, 3, 4) = G0 (2)(1, 2, 3, 4) +Gint (2)(1, 2, 3, 4) . (3.45)
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The free part describes the propagation of a pair of excitations totally independent of one
another. It gives rise to the discontinuities and is given by

G0 (2)(1, 2, 3, 4) = G(1, 2)G(3, 4)−G(1, 4)G(3, 2) . (3.46)

These single-particle Green’s functions are, of course, usually fully dressed propagators,
i.e. they have a non-vanishing self-energy.

The interaction part Gint (2)(1, 2, 3, 4) represents the interaction of these two excitations
and contains the additional information of the two-particle Green’s function. It is
continuous (cf. (3.44)).

3.1.6. Analytical Structure and Properties of Correlation Func-
tions

Comparing the single-particle Green’s functions (3.35) with the dynamical correlation
functions from the introduction (see for instance (3.21)) we see that both are two-point
functions, i.e. depend on two points in space-time (among other possible dependencies like
orbitals, spins). Both have the same analytical structure and we can treat them formally
on equal footing. In fact, the single particle Green’s function is nothing but the response
function for removing a single particle at time t/τ and adding a particle at time t′/τ ′. In
this part we therefore treat a general correlation function, i.e.

CO1O2(τ1, τ2) = −〈Tτ O1(τ1)O2(τ2)〉 . (3.47)

For O1 = c and O2 = c† it obviously gives the single particle Green’s function. Exploiting
that the Hamiltonian is time-independent we find, using the cyclic invariance of the trace,
that the correlation functions do only depend on (real and imaginary) time differences
τ = τ1 − τ2, i.e. C(τ1, τ2) = C(τ1 − τ2, 0) = C(0, τ2 − τ1) = C(τ).

With Heaviside functions we can make the time-ordering operator explicit

CO1O2(τ) = −Θ(τ) 〈O1(τ)O2(0)〉 − ξOΘ(−τ) 〈O2(0)O1(τ)〉 . (3.48)

The sign factor ξO = ±1 depends on the statistics of O: for fermionic operators it is
ξO = 1, for bosonic ξO = −1. Evaluating the trace in an exact eigenbasis {|Ψn〉}n of the
generalized Hamiltonian H = H−µN and inserting a partition of unity in the Fock space
{|Ψm〉}m between the two operators we obtain the Lehmann or spectral representation

CO1O2(τ) = − 1

Z
∑

mn

Onm1 Omn2 eEnmτ
(
Θ(τ)e−βEn − ξOΘ(−τ)e−βEm

)
. (3.49)

Here, we introduced the abbreviating notation En = En − µNn with En being the
eigenenergy ofH, Nn the number of particles in that state (note [H,N ] = 0), Enm = En−Em
and Omn the matrix elements Omn = 〈Ψm|O|Ψn〉 .

For τ > 0, (3.49) has the following τ -dependence: exp (En(τ − β)) exp (−τEm). In
infinite systems the spectrum of H is not bounded from above. Hence, the energies En
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Figure 3.1.: τ -dependent impurity Green’s function for a 5-dimensional Periodic An-
derson Model (t = 1/

√
2d, V = 0.2, U = 4, εf = −0.3 µ = −0.15) at

β = 50. From G(0−) = 〈nσ〉 we read off the impurity density 〈nσ〉 = 0.44.
To 0+ G(τ) undergoes a jump of size 1 to 〈nσ〉−1 due to the commutation
relation. The fermionic anti-periodicity is apparent.

can and will become infinitely large. We therefore need to make sure that the factor τ −β
in the former exponential remains negative. Therefore, τ < β. Analogously for the τ < 0
we get τ > −β. Hence, −β ≤ τ ≤ β.1 Since the regions outside are clearly unphysical
we restrict τ to the 2β interval and periodically extend the correlation function C. That
makes a Fourier expansion possible which yields only a discrete set of frequencies. A
tremendous reduction in complexity and another advantage of the Matsubara method
[92, 93]. Further inspection of equation (3.49) for −β < τ < 0 shows

C(τ) = −ξOC(τ + β) . (3.50)

Consequently, the range τ ∈ [0, β] already contains all information. That justifies the
integration boundaries we used in the introduction.

Figure 3.1 shows a typical fermionic imaginary time Green’s function. The symmetry/anti-
symmetry (3.50) implies that the Fourier components of C (τ) are only nonzero for

1Also for finite systems this restriction of τ is crucial. Even though En remains finite for |τ | > β, the
system would be highly unstable under an increase in system size: practically all weight is put in the
high-energy states.
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“even”/“odd” frequencies in the case of Bosons/Fermions, i.e.

ωn =

{
π
β

2 ·n for Bosons ,
π
β

(2 ·n+ 1) for Fermions .
(3.51)

For the Fourier series we have

CO1O2(iωn) =

∫ β

0

dτ eiωnτ CO1O2(τ) (3.52)

and

CO1O2(τ) =
1

β

∑

iωn

e−iωnτ CO1O2(iωn) . (3.53)

Expanding the series for (3.49) yields

CO1O2(iωn) =

∫ β

0

dτ CO1O2(τ)eiωnτ =
1

Z
∑

mn

Onm1 Omn2

iωn + Enm
[
e−βEn + ξOe

−βEm] . (3.54)

The characteristic denominator which we will often encounter stems from the Θ (τ)
functions.

Note that
C(iω) = C∗(−iω) (3.55)

follows from equation (3.54). For numerical calculations it is useful to recast equation
(3.54). Separating both summands in the brackets and renaming m↔ n in one of them
we can rewrite (3.54) as a sum over (partial) correlation functions CO1O2(n, z), i.e.

CO1O2(z) =
1

Z
∑

n

e−βEnCO1O2(n, z) , (3.56)

where the partial correlation functions are defined as

CO1O1(n, z) =
∑

m

Onm1 Omn2

z + (Em − En)
+ ξO

∑

m

Onm2 Omn1

z − (Em − En)
. (3.57)

CO1O1(n = 0, z) obviously gives the zero temperature correlation function. The finite-T
function can thus be interpreted as the sum of T = 0 correlation functions based on
the excited states weighted by their Boltzmann factor. As we will see later in this
chapter the correlation functions satisfy sum rules. The contribution to these sum rules
and consequently to the full correlation functions depends on the Boltzmann factor.
Hence, in numerical calculations we can impose a Boltzmann cutoff to neglect these small
contributions, leading to a significant reduction in computational cost. This evidently
works the better the lower the temperature.

In the real-time domain things are similar but a little more involved. We employ
the same prefactor convention we already used for the Green’s functions. To go from
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imaginary to real time we therefore replace τ → it and multiply with i and obtain the
causal or time-ordered response function

Cc
O1O2

(t) = −i 〈Tt O1(t)O2(0)〉 (3.58)

= −i Θ(t) 〈O1(t)O2(0)〉 − iξOΘ(−t) 〈O2(0)O1(t)〉 (3.59)

= − i

Z
∑

mn

Onm1 Omn2 eiEnmt (Θ(t)e−βEn + ξOΘ(−t)e−βEm
)
. (3.60)

According to (3.21) the right operator at time 0 is connected to the cause whereas the
left operator describes the response of the system. Therefore, the latter term in (3.60)
describes a response for (real) times t < 0 , i.e. there is an (un)physical response prior
to the cause. Therefore, we also define the physically more sensible retarded correlation
function, which is non-zero only for t > 0,

Cret
O1O2

(t) = −iΘ (t)
〈

[O1(t)O2(0)]ξO

〉
(3.61)

and the complementary advanced correlation function

Cadv
O1O2

(t) = +iΘ (−t)
〈

[O1(t)O2(0)]ξO

〉
, (3.62)

also containing both orderings of the two operators.
It is practical to study these functions in Fourier space. In the transform the Θ functions

restrict the integration domain to positive or negative times. For t > 0, we have integrals
of the type

∫∞
0

dt exp(i(ω + ∆E)t), which are not well-defined, since they oscillate at the
integration boundary t→∞. We therefore introduce a convergence generating factor iη
such that the resulting integral

∫ ∞

0

dω ei(ω+iη+∆E)t =
i

ω + iη + ∆E
, (3.63)

is well-defined and can be readily evaluated. η effectively shifts the pole at −∆E away
from the real-frequency axis to −∆E − iη into the lower complex half plane and damps
the oscillatory behavior at t → ∞. For the Fourier expansion of the imaginary time
correlation functions in (3.54) η was not neccessary since τ already absorbs the i at the
energy difference and therefore ∆E accounts for the damping. Similarly, to make the
integral for negative times well-defined, η changes its sign and we obtain the complex
conjugate of the right hand side of (3.63). A straightforward calculation gives

CX (ω) =
1

Z
∑

mn

Onm1 Omn2

[
e−βEn

ω + isX1 η + Enm
+ ξO

e−βEm

ω + sX2 iη + Enm

]
, (3.64)

where η = 0+ and X can either be the causal, retarded or advanced correlation function
with sc

1 = −sc
2 = 1, sret

1 = sret
2 = +1 and sadv

1 = sadv
2 = −1, respectively.

The poles of (3.64) carry physical meaning. They are at differences of eigenenergies of
the system. In the case of single-particle Green’s functions the energy differences stem
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Gc(ω) Gadv(ω)Gret(ω)

µ

Figure 3.2.: Poles of the real-frequency Green’s functions Gc(ω), Gret(ω), and Gadv(ω)
in the complex plane.

from Hilbert spaces with one particle more or less, i.e. giving the single-particle spectrum.
Similarly for two-particle operators (creator and annihilator) the energy spectrum for two
particle excitations at fixed particle number is analyzed. In the absence of interactions
we obtain the exact single/two particle energies.

The term ±iη in the retarded/advanced correlation function shifts the poles to z =
−Enm ∓ iη slightly below/above the real axis. Both functions are related by complex
conjugation, i.e. Cret(ω) =

[
Cadv(ω)

]∗
. The retarded/advanced correlation function is

analytic in the entire upper/lower half plane. Hence, we can obtain the Matsubara
correlation functions for positive/negative frequencies by analytical continuation.

Formally, we write the analytic continuation as

CO1O2(z) =
1

Z
∑

mn

Onm1 Omn2

z + Enm
[
e−βEn + ξOe

−βEm] , (3.65)

where for z = iωn we obtain the Matsubara and for z = ω ± iη the retarded/advanced
Green’s function. However, the causal correlation function is obviously not accessible
from this generalized function.

The causal correlation function has poles above and below the axis and therewith
carries explicit information about the chemical potential µ. This makes it considerably
harder to analyze. An analytical continuation is, for instance, not possible. The situation
for all three real-frequency Green’s functions is depicted in figure 3.2. Still, introducing
the spectral function

ρO1O2(ω) = − 1

π
Im Cret

O1O2
(ω) = +

1

π
Im Cadv

O1O2
(ω) , (3.66)

the three correlation functions can be related to one another. Using Dirac’s identity

lim
η→0

1

x± iη
= ∓iπδ(x) + P 1

x
, (3.67)

where P denotes taking the principal part of an integral we obtain

ρO1O2(ω) =
1

Z
∑

mn

Onm1 Omn2 e−βEn
(
1 + ξOe

βω
)
δ (ω + Enm) . (3.68)
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Using the spectral representation and the identity

tanh

(
βω

2

)ξO
=

1 + ξO exp (−βω)

1− ξO exp (−βω)
(3.69)

we get the following relations

Re




Cc

Cret

Cadv



 (ω) = P

∫ ∞

−∞
dω′

ρ(ω′)

ω − ω′
(3.70)

Im




Cc

Cret

Cadv



 (ω) =




− tanh

(
βω
2

)ξO
−
+



 πρ(ω) . (3.71)

Hence, the real part is the same for the three real frequency correlation functions whereas
the imaginary parts differ due to the different positions of the poles.

Equation (3.70) is one of the two Kramers-Kronig relations which relate the imaginary
part to the real part for functions which are analytic in either the upper or lower complex
half-plane and decay faster than 1/|z| for |z| → ∞. This is the case for Cret and Cadv but
not for Cc.

The spectral function obeys the following sum rule
∫ ∞

−∞
dωρO1O2(ω) =

1

Z
∑

mn

Onm1 Omn2

(
e−βEn + ξOe

−βEm) (3.72)

=
1

Z
∑

n

e−βEn〈Ψn| [O1,O2]ξO |Ψn〉 = 〈[O1,O2]ξO〉 . (3.73)

Thus, for the important example of the (diagonal) single-particle Green’s function (O1 = c

and O2 = c†) with
[
cα, c

†
β

]
ξ

= δαβ, the spectral function is normalized to unity, irrespective

of Bosons or Fermions. Similarly it can be shown that
∫ ∞

−∞
dωρcα,c†α(ω)fξc(ω) = 〈nα〉 , (3.74)

where fξc(ω) is the Fermi-Dirac or Bose function depending on the statistics of the particle
operators and 〈nα〉 is the occupation number of state α.

Using the sum rule we can approximate equation (3.65) for large z by

CO1O2(z)→
〈[O1,O2]ξO〉

z
+O (1/z2) , (3.75)

since the spectrum of H is bounded from below and above for the systems we treat
here. For infinite systems the system is just bounded from below, however, high energy
contributions are suppressed by Boltzmann factors.

Hence, the Green’s functions asymptotically behaves according to G(z) = 1/z. Correla-
tion functions with [O,O]ξO = 0 decay faster.
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3.1.7. (Non-)Interacting Green’s Functions and Self-Energy

3.1.7.1. Single-Particle Green’s Function

The most important example for a correlation function is the single-particle Green’s
function. It provides the single-particle energy spectrum which describes the energy
and lifetime of the perturbation caused by adding or removing a particle and reads
G(z) = Ccα,c†α .

In this section we mainly focus on non-interacting particles. Let {|ϕα〉}α denote the
eigenbasis of the single-particle Hamiltonian with the corresponding eigenvalues εα. The
eigenstates of the many-body Hamiltonian are Slater determinants Ψµ = |ϕµ1ϕµ2 · · · 〉
with the energy Eµ =

∑
occα εµα .

We start from expression (3.56) with the sign-factors sXi as in (3.64) giving

Gα(z) =
1

Z
∑

n

e−βEn

{∑

m

|〈m|c†α|n〉|2

z + isX1 η − (EN+1
m − EN

n )
+
∑

m

|〈m|cα|n〉|2

z + isX2 η + (EN−1
m − EN

n )

}
.

(3.76)
For arbitrary complex z and especially Matsubara frequencies we use sM

1 = sM
2 = 0.

For a fixed n the matrix element in the numerator of the first fraction is only non-zero
if |m〉 = c†α|n〉. In that case the energy difference in the denominator is the single-particle
energy εα. The second fraction is only non-zero if |m〉 = cα|n〉 with energy difference −εα.
Hence, we have

Gα(z) =
1

Z
∑

n

e−βEn
{

1− 〈n|c†αcα|n〉
z + isX1 η − εα

+
〈n|c†αcα|n〉

z + isX2 η − εα

}
(3.77)

=
1− fF (εα)

z + isX1 η − εα
+

fF (εα)

z + isX2 η − εα
, (3.78)

where fF denotes the Fermi-Dirac distribution.
For the Green’s functions with sX1 = sX2 , i.e. Matsubara, advanced, and retarded, this

can be further simplified to

G0
α(z) =

1

z − εα
. (3.79)

While for the Matsubara Green’s function the temperature information is retained
in the choice of the frequencies ωn, the temperature dependence cancels in the real-
frequency Green’s functions. This is not the case for the causal Green’s function, where
sadv

1 = +1 = −sadv
2 , i.e.

G0
α(ω) =

1− fF (εα)

ω + iη − εα
+

fF (εα)

ω − iη − εα
. (3.80)

Comparing with the real-frequency version of (3.79) we see that each pole is split into two,
one above and one below the real frequency axis with their weight given by fF , 1− fF ,
respectively. The weight distribution of the poles captures the temperature effects.
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Generalizations In general, single-particle Green’s functions are matrices in some
orbital basis. The non-interacting Green’s function, for instance, is

G0(z) =
(
z −H0

)−1
, (3.81)

where H0 is the non-interacting single-particle Hamiltonian. In its eigenbasis G0(z) is
obviously also diagonal with the eigenvalues being the z-dependent Green’s functions
G0
α(z) from above.
In the case of interactions we can bring the full-interacting Green’s function in a similar

form introducing a (complex) electronic self-energy Σ which captures all many-body
effects,

G(z) =
(
z −H0 − Σ(z)

)−1
. (3.82)

An alternative form of (3.82) is the Dyson equation

Σα(z) =
[
G0
α(z)

]−1 −G−1
α (z) . (3.83)

Many-body effects cause an energy dependent shift in the poles (real parts of Σ) and
thus in the excitation energies as well as finite lifetimes which are inversely proportional
to the imaginary parts of Σ.

3.1.7.2. Two-particle Green’s Function

In the non-interacting case all higher-order Green’s functions can be solely expressed in
single-particle Green’s functions by using using Wick’s theorem. For the two-particle
Green’s function we find

G
0 (2)
σσ′ (τ1, τ2, τ3, 0) = 〈Tτ cσ(τ1)c̄σ(τ2)cσ′(τ3)c̄σ′(0)〉

= 〈Tτ cσ(τ1)c̄σ(τ2)〉〈Tτ cσ(τ3)c̄σ(0)〉 − 〈Tτ cσ(τ1)c̄σ′(0)〉〈Tτ cσ′(τ3)c̄σ(τ2)〉
= G0 (1)(τ1, τ2)G0 (1)(τ3, 0)− δσσ′G0 (1)(τ1, 0)G0 (1)(τ3, τ2) ,

(3.84)

where we again exploit (imaginary) time translation invariance. Obviously this is a special
case of (3.45) where (a) the interaction part Gint (2) vanishes and (b) the propagators in
the unconnected part (3.46) are the bare non-interacting particle propagators.

Fourier transforming of (3.84) to Matsubara frequencies yields

G
0 (2)
σσ′ (ω1, ω2, ω3) =

∫ β

0

dτ1 dτ2 dτ3 ei(ω1τ1−ω2τ2+ω3τ3) G
0 (2)
σσ′ (τ1, τ2, τ3, 0)

= β (δω1,ω2 − δω3,ω2δσσ′)G
0 (1)(iω1)G0 (1)(iω3) .

(3.85)

3.1.8. From Green’s to Dynamical Correlations Functions

General dynamical correlation functions based on single-particle operators and one-body
Green’s functions can be formally treated on equal footing. In this section we discuss how
to obtain dynamical correlation functions from Green’s functions. For non-interacting
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particles only the single-particle Green’s function is needed due to Wick’s theorem. In
general, however, the two-body Green’s function is necessary.

As an example we calculate the imaginary time CSzSz correlation function of the
spin-operator

Sz =
1

2
(n↑ − n↓) =

1

2

(
c†↑c↑ − c

†
↓c↓

)
. (3.86)

According to equation (3.47) CSzSz(τ) is given by

CSzSz(τ) =
〈
Tτ Sz(τ)Sz(0)

〉
=

1

4

〈
Tτ (n↑(τ)− n↓(τ)) (n↑(0)− n↓(0))

〉
. (3.87)

Expanding (3.87) in particle operators c, c† and taking into account that the system
is paramagnetic, which means that the terms are invariant under a flip of all spins, we
obtain

CSzSz(τ) =
1

2

(〈
Tτ c̄↑(τ+)c↑(τ)c̄↑(0

+)c↑(0)
〉
−
〈
Tτ c̄↑(τ+)c↑(τ)c̄↓(0

+)c↓(0)
〉)

, (3.88)

or in terms of the two-particle Green’s functions from section 3.1.5

CSzSz(τ) =
1

2

(
G

(2)
↑↑
(
τ, τ+, 0, 0+

)
−G(2)

↑↓
(
τ, τ+, 0, 0+

))
. (3.89)

Two-Particle Green’s function Hence, with the two-particle Green’s function we
have direct access to the susceptibility. Numerically, we usually have G

(2)
σσ′(ω1, ω2, ω3) in

Matsubara space which follows from a Fourier transform

G
(2)
σσ′(iω1, iω2, iω3) =

∫ β

0

dτ1 dτ2 dτ3 ei(ω1τ1−ω2τ2+ω3τ3) G
(2)
σσ′ (τ1, τ2, τ3, 0) . (3.90)

The fourth frequency ω4 follows implicitly by energy conservation. In order to calculate
the Fourier transform of equation (3.89) using G

(2)
σσ′(iω1, iω2, iω3), we need a partial Fourier

transform. Since τ4 = 0 we need an adjusted time ordering where τ3 = 0− to ensure the
correct ordering, i.e.

CSzSz(τ) =
1

2

(
G

(2)
↑↑
(
τ, τ+, 0−, 0

)
−G(2)

↑↓
(
τ, τ+, 0−, 0

))
. (3.91)

Carrying out the transform we get

GpFT
σσ′ (iΩn) =

∫ β

0

dτ eiΩnτ
1

β3

∑

iω1 iω2 iω3

G
(2)
σσ′(iω1 iω2 iω3)e−iω1τe+iω2τ+

e−iω30− (3.92)

=
1

β2

∑

iω1 iω2 iω3

δΩn,ω1−ω2G
(2)
σσ′(iω1, iω2, iω3) (3.93)

=
1

β2

∑

iω2 iω3

G
(2)
σσ′(iΩn + iω2, iω2, iω3) , (3.94)

since δΩn,ω1−ω2 , Ωn must be a bosonic Matsubara frequency.
All dynamical correlation functions based on single-particle operators are thus accessible

in a similar way. All we have to adjust is the time ordering and the matrix elements vOkσ.
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Non-Interacting Case Exploiting Wick’s theorem we can decompose equation (3.94)
into single-particle Green’s functions for non-interacting particles. Using equation (3.85)
only the term with −δσσ′ = −1 survives giving

CSzSz(iΩn) = − 1

2β

∑

iω2 iω3

δω2,ω3 G (iΩn + iω2)G (iω3) (3.95)

= − 1

2β

∑

iωm

G(iωm + iΩn)G(iωm) . (3.96)

Equivalently, we can also start from (3.88) and use Wick’s theorem in imaginary time

CSzSz(τ) =
1

2

{(
G(1)(τ, τ+)G(1)(0−, 0)−G(1)(τ, 0)G(1)(0, τ+)

)

−G(1)(τ, τ+)G(1)(0−, 0)

}
(3.97)

= −1

2
G(τ, 0)G(0, τ) = −1

2
G(τ)G(−τ) . (3.98)

With a convolution/autocorrelation-like theorem (see appendix F) we can readily perform
the Fourier transform of this expression to Matsubara frequencies iΩn also yielding
equation (3.96).

This calculation can also be done in the real-time case when using the causal Green’s
function, i.e.

Cc
SzSz(t) = −1

2
Gc(t)Gc(−t) . (3.99)

That is no surprise, since we could have also used Wick’s rotation (and time ordering
operator redefinition) for the continuation.

With an autocorrelation-like theorem (see appendix F) we now perform a frequency
integral instead of the summation, i.e.

Cc
SzSz(Ω) = −1

2

∫ ∞

−∞
dω Gc(ω + Ω)Gc(ω) . (3.100)

For reasons which we will discuss below we need to take the causal Green’s functions.

3.1.8.1. Matsubara Summation

Summations of the type (3.96) often occur in condensed matter physics, e.g. for polarization
bubbles. We briefly review their evaluation.

Let g(z) be some function of the complex variable z ∈ C and ωn bosonic or fermionic
Matsubara frequencies. To calculate S =

∑
ωn
g(iωn) we introduce a complex auxiliary

pole-generating function fx(z) with simple poles at z = iωn. Any function with such poles
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C1 C2

g1 g1

g2 g2

Sunday, February 7, 2010

Figure 3.3.: Integration contours in complex plane: (left) straightforward contour
to calculate Matsubara summation, when poles not on imaginary axis;
(right) inflated contour excluding the poles of F which are encircled in
clockwise manner.

could be used. However, it is practical to use the Fermi-Dirac or Bose-Einstein functions,
i.e.

fF (z) =
1

exp(βz) + 1
(3.101)

or

fB(z) =
1

exp(βz)− 1
, (3.102)

since their singularities have the same residues −ξβ−1 for all poles, where ξ = 1 for
Fermions and ξ = −1 for Bosons. To evaluate the sum we reformulate the expression
in terms of a contour integral encircling the poles of fx only. The situation is depicted
in the left plot of figure 3.3, where the crosses on the imaginary axis denote the (here
fermionic) Matsubara frequencies and the other two poles stem from g(z). Integration
over the contour C1 yields

β

2πi

∮

C1

dz fx(z) g(z) = β
∑

iωn

res
z=iωn

(fx(z)g(z)) = −ξS , (3.103)

as long as there is no pole of g on the imaginary axis.
However, we are free to vary the contour as long as we do not include any pole of g(z).

If the integrand |fx(z) g(z)| decays faster than 1/z for |z| → ∞ we can inflate the contour



144 Dynamical Lattice Susceptibilities from DMFT

to an infinitely large circle but excluding the poles of g(z) as shown in the right plot of
figure 3.3. The perimeter part of C2 vanishes and we only retain gi, the poles of g(z),
which are encircled in clockwise manner. Thus,

S =
ξβ

2πi

∮

C2

dz fx(z) g(z) = βξ
∑

i

res
z=gi

fx(z) g(z) . (3.104)

Effectively, we replaced the summation over infinitely many Matsubara frequencies by a
sum over a finite number of poles.

The product of two Green’s functions obviously fulfills the decay requirement for the
deformation. Hence, we can evaluate summation (3.96) using (3.104). To that end,
we transform the particle operators in the Green’s function into the eigenbasis of the
Hamiltonian, i.e.

c
(†)
i =

∑

α

ϕα(Ri)c
(†)
α . (3.105)

Inserting this expansion into (3.56) and proceeding like in section 3.1.7, we obtain

G(z) =
∑

α

|ϕα (Ri) |2

z − εα
. (3.106)

For the correlation function CSzSz(iΩn) follows

CSzSz(iΩn) =
1

2

∑

αα′

|ϕα|2|ϕα′|2χα,α′(iΩn), (3.107)

where a typical form of χαα′(iΩn) is

χαα′(iΩn) = − 1

β

∑

iωm

1

iωm + iΩn − εα
1

iωm − εα′
. (3.108)

To evaluate χαα′(iΩn) we apply (3.104) and get

χαα′(iΩn) =
fF (εα − iΩn)− fF (εα′)

iΩn + εα′ − εα
. (3.109)

With Ωn being a bosonic Matsubara frequency, i.e. exp(βiΩ) = 1, the iΩ-dependence
in the Fermi function can be dropped, fF (z + iΩ) = fF (z) (see also below for a more
detailed discussion). Hence, we obtain

χαα′(iΩn) =
fF (εα)− fF (εα′)

iΩn + εα′ − εα
, (3.110)

which is identical to (3.109) on the Matsubara axis. Its analytical continuation to real Ω
gives the correct non-interacting susceptibility. Note, that this is not true for (3.109).
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Thursday, February 25, 2010

Figure 3.4.: To evaluate integrals of type (3.100) we close the contour in the upper or
lower half-plane and use the residue theorem. If both poles are on the
same half-plane the integral is zero.

3.1.8.2. The Real Frequency Integral for the Susceptibility

The autocorrelation-like real frequency integral (3.100) is built from expressions corre-
sponding to (3.108) but requires the causal Green’s function, i.e.

χc
αα′(Ω) = − 1

2π

∫
dω

(
1− fF (εα)

ω + Ω + iη − εα
1− fF (εα′)

ω + iη − εα′
+

1− fF (εα)

ω + Ω + iη − εα
fF (εα′)

ω − iη − εα′

+
fF (εα)

ω + Ω− iη − εα
fF (εα′)

ω − iη − εα′
+

fF (εα)

ω + Ω− iη − εα
1− fF (εα′)

ω + iη − εα′

)
.

(3.111)

These integrals may be evaluated by closing the integrals with an additional semi-circle
contour in the upper or lower complex plane and then exploiting the residue theorem
(see figure 3.4). The semi-circle itself vanishes for the same reason the perimeter of the
inflated contour vanishes above. Thus, if two poles are situated in the same half-plane we
can close the contour in the other obtaining zero. Thus, only the terms with poles in both
planes contribute. This is the reason why we need to take the causal Green’s function to
obtain a non-zero real-frequency susceptibility. Physically we can interpret the terms as
the scattering of particles (poles in upper plane) with holes (poles in lower plane).

A simple calculation yields,

χc
αα′(Ω) = −i

{
(1− fF (εα)) fF (εα′)

Ω + 2iη − (εα − εα′)
− (1− fF (εα′)) fF (εα)

Ω− 2iη − (εα − εα′)

}
. (3.112)

This is a causal susceptibility. If we flip the sign in front of η = 0+ in the second/first
term we obtain the retarded/advanced susceptibility

χ
ret/adv
αα′ (Ω) = i

fF (εα)− fF (εα′)

Ω± iη − (εα − εα′)
, (3.113)
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which is directly related to (3.110) via analytic continuation (except for the prefactor
convention). Inserting (3.112) into (3.107) for real frequencies we obtain the causal z-spin
susceptibility.

3.1.9. Analytic Continuation and Padé Approximants

We would like to briefly dwell on the topic of analytic continuation. Formally, dealing
with the Matsubara formalism is easier and considerably more convenient compared to
directly dealing with real-frequency quantities. In the end, however, experiments describe
dynamics in real time and real frequencies and we therefore need to extract the real- from
the Matsubara frequency-dependent functions.

Let us suppose we have a correlation function CM (iωn) for all positive Matsubara
frequencies. How do we obtain the corresponding real-frequency retarded correlation
function Cret (ω)? From complex analysis we know that if we succeed in constructing a
function F(iωn) which is analytic in the upper half-plane and satisfies

CM (iωn) = F(iωn) ∀ Im (iωn) > 0 , (3.114)

i.e. coincides with CM on infinitely many points (limit point is infinity), both functions
are identical in the upper half-plane

Cret (ω) = F (ω) . (3.115)

In particular they coincide on the real-frequency axis.
With this in mind let us revisit the different forms of the bubble (3.109), (3.110), and,

the retarded (3.113). Obviously (3.110) is connected to (3.113) via analytic continuation,
whereas (3.109)

− 1

β

∑

iωn

1

iωn + z − εα
1

iωn − εα′
=
fF (εα − z)− fF (εα′)

z + εα′ − εα
, (3.116)

being the direct result of our calculation is not. This function has simple poles at z = εα−
εα′ , denoting the physical excitations, as well as spurious poles at z = εα − iπ (2n+ 1) /β.
These additional poles are encoded in the z-dependent Fermi function on the right-hand
side. This cannot be a proper candidate for F(z).

With z restricted to bosonic Matsubara frequencies fF (εα − z) = fF (εα) holds. Now
(3.110) coincides with (3.109) on all bosonic frequencies but, in addition, has no poles in
the upper half-plane. Hence, it is the proper F(z) for analytic continuation. Therewith
the problem is formally solved.

However, suppose we have Green’s functions as black boxes and would like to perform
the Matsubara summation to obtain dynamical correlation functions. This is exactly
the problem we face in numerical calculations. Let us first perform a partial fraction
decomposition on the left hand side of (3.116). In general, we have

1

(z − α) (z − β)
=

1/α− β
z − α

+
1/β − α
z − β

=
1

α− β

(
1

z − α
− 1

z − β

)
(3.117)
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and in our non-interacting case

− 1

β

∑

iωm

1

iωm + iΩn − εα
1

iωm − εα′

= − 1

εα − εβ − iΩn

1

β

∑

iωm

(Gα (iωm + iΩn)−Gβ (iωm)) (3.118)

= − 1

εα − εβ − iΩn

1

β

∑

iωm

(Gα (iωm)−Gβ (iωm)) , (3.119)

where in the last line we shifted the summation index of the first Green’s function.
Evidently, this gives (3.113). In this form the calculation can be evaluated numerically
and yields the desired results on the real axis.

For general Green’s functions that suggests the ansatz

− 1

β

∑

iωm

1

G−1
α (iωm)G−1

β (iωm + iΩn)
= − 1

β

∑

iωm

Gβ (iωm + iΩn)−Gα (iωm)

G−1
α (iωm)−G−1

β (iωm + iΩn)
(3.120)

=
1

β

∑

iωm

Gα (iωm)

G−1
α (iωm)−G−1

β (iωm + iΩn)
− 1

β

∑

iωm

Gβ (iωm)

G−1
α (iωm − iΩn)−G−1

β (iωm)
.

(3.121)

The first Green’s function in the numerator in (3.120) gives rise to the spurious poles.
We can remove them by shifting the summation just like in (3.119). The denominator
of the result (3.121) still depends on iωm – albeit only via self-energy and hybridization.
Numerical tests for the shifted expressions, however, still show poles in the upper complex
plane. Therefore, we have to resort to the Padé approximant method.

3.1.9.1. Padé Approximants

Instead of trying to repair the expressions to make them analytic in the upper half-plane
we construct a function FPN (z) which is analytic in this half-plane and coincides with
CM (iωn) = cn on a finite set of N Matsubara frequencies. We define the corresponding
set of tuples M = {(iωn, cn)}N−1

n=0 . For N → ∞ we would obtain the exact result F(z)
according to the aforementioned theorem.

To construct FPN (z) we use the Padé method. It is based on the assumption that we
can express FPN (z) as a rational polynomial or a terminating continued fraction. For the
technical realization there exist several classes of Padé schemes. The probably most often
used Padé method is Thiele’s Reciprocal Difference Method [94, 95]. It represents a class
where given the N tuples we directly evaluate FPN (z) for each z individually in terms of
continued fractions.

We rely on another method, representing a second class of Padé schemes, which give
the coefficients of the continued fractions or rational polynomials instead of implicitly
constructing and directly evaluating them. Thus, we obtain FPN (z) as a function. More
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specifically, we employ a method by Beach, Gooding and Marsiglio [96] which uses ratios
of polynomials. Therefore, we cast FPN (z) as

FPN (z) =
PN(z)

QN(z)
. (3.122)

Usually we know the asymptotic behavior of CM (iωn) and can directly adjust the
orders of the polynomials (PN , QN) accordingly. In this work we have Green’s functions
decaying as 1/z and dynamical correlation functions of single-body operators which decay
as 1/z2. Consequently, we make the ansatz with polynomials (PN , QN ) of order (s− 1, s),
(s− 1, s+ 1), respectively. s is given by the integer division s = bN/2c. In the following
we will first present the method for the 1/z Green’s function case and then extend it to
susceptibilities.

For Green’s functions we need an even number N = 2s and expand (3.122) as

FPN (z) =
p0 + p1z + · · ·+ ps−1z

s−1

q0 + q1z + · · ·+ qs−1zs−1 + zs
. (3.123)

To determine the N coefficients pi and qi we set

FPs (iωn) = cn ∀ 2s tuples (iωn, cn) . (3.124)

With the definition

= =

[
p
q

]
and Z =




z0

z1

...
zs−1


 , (3.125)

where p and q are s dimensional column vectors of the coefficients qi, pi, respectively,
and Z is a vector of powers of some complex number z, we can rephrase (3.124) as a
system of N = 2s linear equations. For each z = iωn we have

(q ·Z + zs)FPs (z) = p ·Z . (3.126)

In matrix form (3.126) reads
F̃ = M= , (3.127)

where

F̃ =




c0(iω1)s

c1(iω2)s

...
c2s−1(iω2s)

s


 (3.128)

and

M =




1 (iω1) (iω1)2 . . . (iω1)s−1 −c0 −c0 (iω1) . . . −c0 (iω1)s−1

1 (iω2) (iω2)2 . . . (iω2)s−1 −c1 −c1 (iω2) . . . −c1 (iω2)s−1

...
...

1 (iω2s) (iω2s)
2 . . . (iω2s)

s−1 −c2s−1 −c2s−1 (iω2s) . . . −c2s−1 (iω2s)
s−1


 .

(3.129)
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Hence, we obtain the coefficients qi, pi by matrix inversion

= = M−1F̃ (3.130)

and finally

FPs (z) =
pZ

qZ + zs
. (3.131)

The Padé kernel M consists of elements with very different moduli which usually
becomes a problem in numerical calculations. To see this, we consider functions CM (iωn)
which asymptotically decay with 1/(iωn). Assume that their behaviour roughly resembles
1/(iωn) for all iωn. In that case the ratio of the largest to the smallest element of M is of
the order

ζ = ωs2s =

[
π

β
(4s− 1)

]s
. (3.132)

For the matrix inversion to work reliably we need a numerical range of about ζ2 which
amounts to

dps = 2 log10 (ζ) = 2s log10 ((4s− 1)π/β) (3.133)

decimal places (the binary precision is roughly given by 3.33 · dps). Hence, double
precision is clearly not enough providing only 15 decimal places. Therefore, we perform
the calculations with arbitrary precision usually using dps = 250.

Green’s functions As an example let us apply the Padé method to a Green’s function
of the two-dimensional Hubbard model. The calculations have been performed with an
exact diagonalization impurity solver in DMFT (see next section), which gives direct
access to the Lehmann representation. Therefore, we can easily calculate the exact results
on both, the Matsubara and real axis. To perform the convergence tests we evaluate the
exact expression on the Matsubara frequencies and perform a Padé analytic continuation
on the real axis for different number of tuples (iωn, cn), where for the 2s tuples we choose
the first 2s fermionic Matsubara frequencies. Figure 3.5 gives the results. The black curve
denotes the exact result from exact diagonalization, the colored the Padé approximants.
Overall, the Padé approximants work well. Convergence is best for the region around
the Fermi level. Already for 2s = 8 this region is reproduced well. For features at higher
frequencies more tuples are needed. For a good approximation FPs (z) and CM (z) should
have the same number of poles. If the denominator polynomial QN has more roots than
there are poles in CM (iωn), the additional ones need to be compensated by roots of the
numerator PN . This compensation is, however, not ensured by the method and may lead
to spurious poles. If these poles are close enough to the real axis they show as erroneous
features in the spectral functions. An example of this behavior is seen for N = 32 where
the Green’s function seems to violate causality, i.e. there is a region of negative spectral
weight or positive imaginary part of the Green’s function.

For values of N ≥ 128 the approximation can be deemed converged. Small but stable
deviations between the converged Padé and the exact curve are, however, clearly evident.
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Figure 3.5.: Padé approximants convergence study for the DMFT-impurity Green’s
function of a 2-dimensional Hubbard model (U = 4.2, half-filling, t = 0.43,
t′ = 0.3t, Nb = 4) for increasing numbers of Matsubara frequencies
(η = 0.08). The real parts are in the left, the imaginary parts in the
right column. The black line denotes the exact, the colored lines the
Padé approximants. The low energy region around ω = 0 converges first.
Already for N = 8 the first peak is well resolved. For N = 32 we have
a region with unphysical negative spectral weight (pos. imaginary part)
which however vanishes for higher N . The second row gives the results
for higher N which are quite well converged.
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Figure 3.6.: Padé approximants (2s = 128) dependence on the accuracy of the input
data (η = 0.08). Example data for an impurity Green’s function (upper
plot) of a 2-dimensional Hubbard model (U = 4.2, half-filling, t = 0.43,
t′ = 0.3t, Nb = 4) truncated after 4, 8, 12 digits and for double precision
(red). The lower plot gives the integral over the imaginary part of the
Green’s function, showing that the spectral weights are conserved despite
the deviations.
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While the Padé code operates at arbitrarily high precision this is not true for the exact
diagonalization solver which only provides double precision accuracy. Hence, the input
data for Padé is inaccurate – in the best case starting from the 15th digit. By artificially
truncating the data we can study the effect. The upper plot of figure 3.6 shows the
results. For only 4 decimal places (magenta curve) again only the peak at the Fermi
energy converges. With 8 we get roughly the correct result, however, we clearly miss
peaks. Increasing to 12 decimal places gives more structure but also an unphysical peak
with negative spectral weight. Comparing the three curves with dps > 4 and neglecting
the lack of poles, we see that the peaks for smaller accuracy are not as high. To check
if the spectral weight of the peaks, which captures the physics, is the same, we provide
the integrated negative spectral function in the lower plot of figure 3.6. Apart from the
negative spectral weight all the curves describe the same physics.

Hence, we conclude that the deviation of the Padé analytically continued curve from
the exact result in 3.5 stems from inaccurate input data. Still the spectral weights are
essentially converged, i.e. the peaks just might not quite have the correct width.

Susceptibilities To account for the 1/z2 asymptotics we adjust the Padé ansatz

FPN (z) =
p0 + p1z + · · ·+ ps−1z

s−1

q0 + q1z + · · ·+ qs−1zs−1 + qszs + zs+1
, (3.134)

obviously needing an additional parameter qs, i.e. an odd number of tuples N . q now
becomes a vector of the dimension s+ 1 and the matrix (3.129) also gains an additional
row for z = iω2s+1 and an additional column with matrix elements (−ci (iωi+1)s)i,2s ∀i =
[0, 2s].

With these adjustments2 we perform the analytic continuation of a spin-z correlation
function. Figure 3.7 presents the outcome. The black line denotes the result from exact
diagonalization and the colored lines the analytically continued Padé approximants. Two
curves of like color denote the two branches Imχ (ω) and −Imχ (−ω). In theory both
are identical since retarded/advanced susceptibilities are symmetric and anti-symmetric
in the real and imaginary part, respectively.

In fact, for N = 17 this symmetry is respected. However, apart from the first pronounced
peak no additional structure is resolved and we definitely need more tuples for the analytic
continuation. For N = 65 and N = 129 we obtain more structure. The high-energy peak
at about ω ≈ 4.5 is reproduced at least qualitatively. We also resolve more information
in the intermediate energy range. This additional structure comes at a price of a loss in
symmetry.

On the Matsubara axis χ (iω) is a real-valued function. The imaginary part is theoreti-
cally zero by construction. Numerically, we, however, always find a finite value usually

2 Without these adjustments using the Padé method for Green’s functions we can also obtain sensible
results. For small number of tuples N the correct version tends to give better results. For sufficiently
large N , there is little difference in the continuation quality on the frequency range of interest.
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Figure 3.7.: Padé approximants based analytic continuation for the DMFT-impurity
spin-z susceptibility of a 2-dimensional Hubbard model (U = 4.2, half-
filling, t = 0.43, t′ = 0.3t, Nb = 4) for N = 17, 65, 129 tuples (η =
0.08). The black line denotes the exact, the colored lines the Padé
approximants. Two curves of like color denote Imχ (ω) and −Imχ (−ω)
which theoretically should be identical. For N = 17 the identity is
satisfied, however, no peaks apart from the first one are resolved. For
higher N we observe more structure at the expense of symmetry violation
(see text). The high-frequency peak (ω ≈ 4.5) converges relatively well.

being of the order of 10−15. For a small number N of tuples (using the first N Matsubara
frequencies) the “zeros” in matrix M and vector F̃ remain practical zeros. When N
becomes larger, higher frequencies iωn are exponentiated with higher values of s. The
former practical “zeros” start to have an increasing influence in the inversion (3.130).
This leads to a loss in symmetry and to blurred peaks – especially in the less pronounced,
intermediate-energy peaks.

The double precision floating-point format (IEEE 754) as well as the arbitrary precision
format can encode zero exactly. Since Imχ (iω) = 0 strictly, we exploit this knowledge
and set the imaginary part of the input data to zero. Figure 3.8 shows the corresponding
susceptibilities. Indeed, we find the symmetry retained and a higher-quality resolution
of the intermediate-energy peak structure. We also observe that N = 65 gives superior
results to N = 129. Hence, using more tuples does not generally make the results better
as error propagation of the inaccurate input data increasingly takes place.

As long as the input data is sufficiently accurate the Padé method can provide a
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Figure 3.8.: Padé approximants based analytic continuation with Imχ (iωn) explicitly
set to zero for the DMFT-impurity spin-z susceptibility of a 2-dimensional
Hubbard model (U = 4.2, half-filling, t = 0.43, t′ = 0.3t, Nb = 4) for N =
17, 65, 129 tuples (η = 0.08). The black line denotes the exact, the colored
lines the Padé approximants. The symmetry Imχ (ω) = −Imχ (−ω) is
restored. Its violation (cf. 3.7) was caused by numerical zeros (≈ 10−17)
in Imχ (iωn). Moreover, we also observe an improved convergence in for
the intermediate energy peak structures with N = 65 being superior to
N = 129.

surprisingly good approximation FPN (z) to CM (iωn). FPN (z) being analytic in the upper
half-plane can be readily evaluated along the real axis providing access to real-frequency
susceptibilities. Exploiting additional pieces of information about the input data and
therewith increasing their accuracy can significantly improve the continuation.

For an application and further discussion of the method see section 3.3.4.
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3.2. DMFT

The models used to treat strongly correlated systems are usually drastically simplified
but still hard to solve due to their inherent many-body nature. One of the most powerful
techniques to make the models solvable is Dynamical Mean-Field Theory (DMFT). It has
been used extensively in the last approximately 20 years and gave rise to new insights in
the field of strong correlations. In particular the paramagnetic metal-insulator transition
within the Hubbard Model has been studied but also interesting correlation effects such
as orbital ordering and the interplay between correlations and electron-phonon coupling.

The general idea of DMFT is to map the lattice model to an effective single impurity
Anderson model (SIAM). That is a huge decrease in complexity. Even though there are
still infinitely many degrees of freedom, the correlations that make the the solution of
these systems infeasible, are only present on the impurity with a finite number of local
degrees of freedom. The mapping is done self-consistently until the local properties of the
original model and the auxiliary SIAM coincide. The situation is very similar to classical
mean-field theories. Only now, the mean-field is frequency dependent.

For the sake of brevity we just give a brief introduction and derivation here. For a full
review of the DMFT formalism refer to [97] or [98].

3.2.1. Derivation

To motivate DMFT we first consider the classical translationally invariant Ising model

H IM = −J
∑

〈ij〉
SiSj −B

∑

i

Si , (3.135)

where J > 0 is the ferromagnetic coupling constant and B denotes an external magnetic
field. In a mean-field treatment [99] all the equivalent sites are decoupled from one another
and are subjected to an effective field BWeiss, i.e.

HMFIM = −
∑

i

BWeissSi . (3.136)

The Weiss field contains the external field as well as the mean-field caused by the magnetic
moment of all spins on other sites, i.e.

BWeiss
i = BWeiss = B + J

∑

〈ij〉
neighbors

〈Sj〉 = B + JZm , (3.137)

and due to the translation invariance it is independent of the site BWeiss
i = BWeiss. In

the last term we introduced the coordination number Z and the expectation value of
the magnetization m = 〈Si〉 ∀i. A simple calculation evaluating the thermal-expectation
value 〈Si〉 gives

m = tanh(βB + βJZm) , (3.138)
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which is an implicit equation for m that has to be solved self-consistently. Hence, we
replaced the lattice problem with an effective single-site problem.

It has been known for a long time that the results obtained using the Weiss mean-field
theory become exact in the limit of Z →∞ [100]. For the energy and entropy per site
to remain finite J has to be rescaled according to J = J∗/Z, where J∗ is a constant
independent of Z.

These ideas can be generalized to quantum many-body systems. The Hubbard model,

HHM = −t
∑

〈ij〉σ

(
c†iσcjσ + h.c.

)
+ U

∑

i

ni↑ni↓ , (3.139)

which we will take as an example, describes the interplay between kinetic and interaction
energy. In the limit of Z →∞ (for a lattice this is equivalent to increasing the dimension-
ality) U remains constant since it only acts locally. For the kinetic term, however, this is
not true and we have to scale the hopping in the kinetic energy to retain a still non-trivial
model. For a hypercubic lattice with nearest neighbor hopping only, for instance, we have
the dispersion relation

εk = −2t
d−1∑

i=0

cos(ki) . (3.140)

The bandwidth W = 4dt increases proportionally with Z = 2d. For a generic k in the limit
of infinite dimensions (3.140) represents an infinite sum over statistically independently
distributed values. According to the central limit theorem the corresponding density of
states becomes a Gaussian,

D (ε) =
1√

2πZt2
exp

(
− ε2

2Zt2

)
. (3.141)

Thus, the hopping has to be scaled as t = t∗/
√
Z in order to have a finite and fixed

second moment or variance of the spectrum 〈ε2〉 = t∗2, which takes the part of the infinite
bandwidth W . This scaling applies also to other lattices and was the key insight of
Metzner and Vollhardt [101].

In 1989 Müller-Hartmann [102] showed that the self-energy Σ(ω,k) loses its k-dependence
in this limit. It becomes a purely local but still dynamical quantity Σ(ω). Hence, the
local Green’s function may be stated as

Gloc (ω) =
1

VBZ

∫

BZ

ddk
1

ω + µ− εk − Σ(ω)
. (3.142)

Introducing the density of states of the non-interacting system

D (ε) =
1

VBZ

∫

BZ

ddk δ (ε− εk) (3.143)

we can write the Brillouin zone integral into a one-dimensional integral over energies.
Equation (3.142) becomes

Gloc (ω) =

∫
dε

D (ε)

ω + µ− ε− Σ(ω)
. (3.144)
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Introducing the Hilbert transform and its inverse

D̃(ζ) =

∫
dε

D(ε)

ζ − ε
(3.145)

R
[
D̃(ζ)

]
= ζ (3.146)

we can rewrite Gloc as
Gloc (ω) = D̃(ω + µ− Σ(ω)) . (3.147)

From these ingredients Georges and Kotliar [103], Janǐs and Vollhardt [104] and Jarrell
[105] developed the “dynamical mean-field theory” in 1992. Following this theory it is
possible to single out one lattice site and simulate the effect of the neighbors by coupling
it to a dynamic bath, i.e. the model is mapped onto a single impurity Anderson Model
(SIAM). In finite dimensions we can use this procedure as an approximation.

The SIAM – or more precisely the bath – has to be chosen such that the (Anderson)
impurity Green’s function Gimp matches the local Green’s function of the original lattice
Gloc. To that end, we write the Green’s function in terms of a functional integral over
Grassmann variables φ and φ∗ giving

G =
1

ZS

∫
D [φ] D [φ∗] φφ∗ exp (−S [φ, φ∗, Gb]) , (3.148)

where S is the action on the impurity

S [φ, φ∗, Gb] = −
∫ β

0

∫ β′

0

dτdτ ′
∑

σ

φ∗(τ)G−1
b (τ − τ ′)φ(τ ′)−U

∫
dτφ∗↑(τ)φ↑(τ)φ∗↓(τ)φ↓(τ)

(3.149)
and ZS is the partition function

ZS =

∫
D [φ] D [φ∗] exp (−S [φ, φ∗, Gb]) . (3.150)

Here Gb plays the role of the Weiss field. It is the non-interacting Green’s function of the
SIAM. Hence, it completely determines the bath. Intuitively, it describes the creation
of a particle on the impurity at time τ and its annihilation at time τ ′. Creation and
annihilation here should be interpreted as hopping from the bath to the impurity and
back.

In analogy to (3.138) equation (3.148) needs to be solved self-consistently.

3.2.2. Self-Consistency Loop in the Hamiltonian Formalism

Equation (3.148) is given in the path integral formalism. For actual calculations us-
ing Hamiltonian based methods such as exact diagonalization (ED), dynamical matrix
renormalization group (DMRG) [106, 107], Lanczos, or numerical renormalization group
(NRG) [108] we need to rewrite (3.148)ff. in a Hamiltonian formalism. To account for
the dynamics of the bath we introduce auxiliary degrees of freedom – the bath sites. For
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practical calculations in this formalism we are obviously restricted to a finite number of
bath sites, whereas in path integral-based methods implicitly infinitely many bath sites
are treated.

The general single impurity Anderson model (SIAM) Hamiltonian reads

HgSIAM(µ) =
∑

ij σ

tbij σc
†
iσcjσ +

∑

i σ

Ṽiσ

(
f †σci σ + c†i σfσ

)
+H imp(µ) , (3.151)

where the first term denotes the kinetic energy within the (infinite) bath with hopping

matrix tbij σ and c
(†)
lσ being the particle operators of the bath electrons. The second term

describes the hybridization of the impurity and the bath with Vlσ being the hybridization
amplitude and f

(†)
σ the impurity particle operators. The (many-body) physics of the

impurity is captured in the last term

H imp(µ) = (εf↑ − µ)nf↑ + (εf↓ − µ)nf↓ + Unf↑n
f
↓ . (3.152)

U denotes the Hubbard-U for the impurity. It coincides with the U of the lattice model.
µ is adjusted to reproduce the lattice occupation of a site on the impurity.

This form of the SIAM can be further simplified when diagonalizing the bath-hopping
matrix tbijσ. Let εlσ be the eigenenergies of tbij σ and ζlσ the corresponding eigenvectors.
When transforming the hybridization amplitudes to the eigenbasis of the bath, i.e.

Vlσ =
∑

i

Ṽiσζlσ i , (3.153)

we have effectively diagonalized the bath. The former inter-site hopping within the bath
is now contained in the new hybridization parameters. Consequently, we can rewrite
(3.151) w.l.o.g. as

HSIAM(µ) =
∑

lσ

εlσc
†
lσclσ +

∑

lσ

Vlσ

(
f †σclσ + c†lσfσ

)
+H imp(µ) , (3.154)

which describes a star geometry, i.e. each bath site is connected only to the impurity.
From now on we drop the spin-index and focus on paramagnetic systems.

Having diagonalized the bath we use the inversion-by-partitioning method (see appendix
G) on

Ĝb =
1

ω −HSIAM0
(3.155)

with the single particle part of the SIAM Hamiltonian,

HSIAM0 =




εf − µ V1 V2 V3 . . .
V1 ε1

V2 ε2

V3 ε3
...

. . .




, (3.156)
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Figure 3.9.: DMFT flow diagram: We start from an arbitrary self-energy Σ; evaluate
the lattice Gloc, from which we infer the bath Green’s function Gb. It
defines the associated impurity model, whose solution gives a new self-
energy. We iterate until self-consistency is reached.

to directly obtain the free Green’s function. It is the bath Green’s function Gb from above
and reads,

G−1
b (ω) = ω + µ− εf −

∑

l

|Vlσ|2

ω − εlσ
. (3.157)

The last term is called hybridization function

∆ (ω) =
∑ |Vl|2

ω − εl
. (3.158)

It contains all bath parameters.
Now we have all ingredients for solving the problem iteratively. Figure 3.9 gives the flow

diagram of the DMFT self-consistency loop. Conceptually we start from some arbitrarily
chosen self-energy, for instance Σ = 0, and evaluate the local Green’s function of the
lattice, equation (3.142). With Dyson’s equation

G−1
b (ω) = Σ(ω) +

[
Gloc(ω)

]−1
, (3.159)
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we obtain the new bath Green’s function Gb (Weiss field) which determines the SIAM
Hamiltonian. With a Hamiltonian-based impurity solver we diagonalize the Hamiltonian
and evaluate the impurity Green’s function Gimp. Using Dyson’s equation again

Σ(ω) = G−1
b (ω)−

[
Gimp(ω)

]−1
, (3.160)

we obtain a new self-energy. The loop restarts unless self-consistency is reached, i.e.
Gimp = Gloc. Technically, however, we usually start from some bath parameters instead
of a special choice of the self-energy.

In the self-consistency loop the information about the physical system we want to
study enters via the local Green’s function Gloc. For the Hubbard model the input that
characterizes the system is the dispersion relation εk or, in the many-band case, the
single-particle tight-binding Hamiltonian.

Using the inverse Hilbert transform instead of the Brillouin zone integrals we have a
formal shortcut in the self-consistency loop. From the impurity Green’s function we can
directly obtain the Weiss field using

G−1
b (ω) = ω + µ+G−1 (ω)−R [G (ω)] . (3.161)

This equation becomes practical in cases where the inverse of the Hilbert transform
is known analytically. As we will see this is the case for the Bethe lattice in infinite
dimensions.

3.2.3. Exact Diagonalization as Impurity Solver

For this project we use an exact diagonalization (ED) impurity solver. ED provides exact
solutions with full information on clusters of a finite and in practice quite small number
of sites – one of them being the impurity. Since there are only Nb bath sites we have to
truncate the sum in (3.158). This restricts the accuracy of the hybridization and hence
the bath Green’s function. It is practical to think of this restriction as a projection of
the real hybridization function on a function subspace spanned by finite sums of the
form (3.158). In the limit of Nb → ∞ we recover the correct Gb. For a finite number
of bath sites it is in general impossible to strictly satisfy the self-consistency condition
Gimp = Gloc. In practice we therefore consider the system converged, when the finite
number of bath (or Anderson) parameters, i.e. the on-site energies εlσ and hybridization
amplitudes Vl, no longer change from iteration to iteration. Figures 3.10 and 3.11 show a
comparison of Gimp to Gloc of a 2-dimensional half-filled Hubbard model (see captions
for details). On the real axis we clearly see the differences (first row of 3.10) between
both Green’s functions. We can think of Gloc as a broadened version of Gimp where
the mollifier is roughly the density of states. On the Matsubara axis agreement seems
to be very good (second row). However, the difference plot ∆G = Gimp − Gloc reveals
the differences (see figure 3.11). We clearly observe that the larger Nb the better the
(theoretical) self-consistency condition Gimp = Gloc is satisfied. A finite number of bath
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Figure 3.10.: Impurity (red) and lattice (green) Green’s function on real (upper row)
and Matsubara frequencies (lower row) for 2-dimensional half-filled
Hubbard model with next-neighbor hopping only (εimp = 0.0, U = 10.6,
µ = U/2, t = 1, β = 50, numk = 64) mapped on a SIAM with
Nb = 2 (left column) and Nb = 6 (right column). The impurity Green’s
functions on the real-frequency axis have been scaled for clarity by a
factor 6. Roughly speaking we can regard the local Green’s function
as an impurity Green’s function broadened with the density of states.
We observe that the self-consistency condition is violated but is better
fulfilled the larger Nb. On the Matsubara axis agreement appears to be
better. The differences show, however, when looking at the difference
∆G = Gimp −Gloc plotted in figure 3.11.
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Figure 3.11.: Difference of local and impurity Green’s function ∆G = Gimp − Gloc

for Nb = 2 (blue) and Nb = 6 (magenta) for a 2-dimensional half-filled
Hubbard model with next-neighbor hopping only (εimp = 0.0, U = 10.6,
µ = U/2, t = 1, β = 50, numk = 64). This plot reveals the differences
apparent in the real frequency representation (see 3.10) but hidden
when comparing the Green’s functions on the Matsubara frequencies.
Obviously, the larger the bath the better the agreement.

sites Nb is the only additional approximation of ED to the DMFT scheme. For small Nb

it is therefore of utmost importance to choose the bath parameters well.
After having obtained Gb in each iteration (second step in figure 3.9) we extract the

bath parameters. To that end, we isolate the hybridization function ∆ (iω) from Gb (iω)

∆ (iω) = iω + µ−G−1
b (iω) (3.162)

and fit the result to finite bath version of equation (3.158)

∆p (iω) =

Nb∑

l=1

V 2
l

iω − εl
. (3.163)

This determines the bath parameters p = {Vl, εl}Nbl=1 and therefore the SIAM.
We perform the fit along the Matsubara axis. The hybridization function obviously

has its poles along the real axis which renders the function very spiky and hard to fit
along this axis. Using the Matsubara representation instead the hybridization ∆ (iω)
behaves very smoothly which is favourable for the fit. For illustration figure 3.12 shows
the Matsubara in contrast to the real frequency ∆.
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Figure 3.12.: Hybridization function ∆(z) for 2-dimensional Hubbard model with
next-neighbor hopping only (εimp, U = 10.6, µ = U/2, t = 1, β = 50,
numk = 64) on Matsubara (left plot) and real axis (right plot) for 7
(red) an 3 sites (green). Obviously the Matsubara version is smoother
and favourable to fitting. For larger baths there is significantly more
structure to ∆.

Technically the fitting is done employing the conjugate gradients method to find the
minimum of the function

fp =
1

Niω

iωmax∑

iωn

W (iωn) |∆ (iω)−∆p (iω) | , (3.164)

where Niω denotes the number of Matsubara frequencies we use for the fit [ω1, ωmax].
W is a weight function – usually W(iω) = 1/(iωn)α. It determines which part of the
hybridization function we prefer to fit. For the low/high energy domain we choose higher,
lower values of α.

Mainly fitting large ωn enforces a sum rule [109] which relates the hybridization of the
impurity to the bath and the hopping in the physical lattice. To see this, we start from
(3.160)

G−1
b (iω) = Σ (iω) +

{
1

Nk

∑

k

[iω + µ− εk − Σ (iω)]−1

}−1

(3.165)

and expand it for ω → ∞ up to third order in 1/iω. In so doing we neglect the ω
dependency of Σ, which for high frequencies goes to zero. Comparing the result to (3.157)
and neglecting the εl, since ωn � εl, in the denominator of the hybridization function we
obtain the sum rule ∑

l

V 2
l =

1

Nk

∑

k

ε2k =
∑

n

Znt
2
n , (3.166)
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where n denotes the nth-nearest neighbor and Zn and tn give the coordination number
and hopping amplitude, respectively. Intuitively that means that the overall hybridization
strength of the impurity to the bath (

∑
l V

2
l ) has to be consistent with the coupling of

the sites among each other in the physical lattice (
∑

n Znt
2
n). Hence, essentially a single

parameter is fixed. The low energy domain on the other hand puts more stress on the
on-site energies of the bath. This is because the low energy domain is closer to the poles
on the real axis. Thus, it gives the details of the SIAM. Especially for for small Nb this is
important.

Table 3.1.: Sum rules for 2-dimensional Hubbard model with next-neighbor hopping
only (εimp = 0, U = 10.6, µ = U/2, t = 1, β = 50, numk = 64) for different
values of α and Nb for otherwise fixed convergence criteria. For α = 1
more weight is put on the hybridization parameters Vl when fitting. Hence,
the Vl are consistently better compared to the results for α = 2. For the εi
the opposite is true. Their sum should be 0 due to particle-hole symmetry
and half-filling (see figure 3.12). The larger the bath, however, the smaller
the differences become. For stricter targets the results improve. α merely
puts more weight on a certain energy domain.

sum rule
∑

l V
2
l

!
= 4

∑
i εi

!
= 0

α 1 2 1 2
Nb = 2 3.4 2.8 1.4× 10−4 −2.2× 10−6

Nb = 4 3.9 3.8 9.6× 10−3 4.2× 10−4

Nb = 6 4.0 3.9 1.8× 10−4 1.7× 10−4

Table 3.1 gives example results for the sum rule in a 2-dimensional half-filled Hubbard
model with next-neighbor hopping. According to (3.166) we expect

∑
l V

2
l = 4. Half-

filling and particle hole symmetry means that the energy spectrum of the bath sites should
be symmetric around the chemical potential µ. Thus,

∑
l εl = 0 should hold. Hence, we

have a means to directly compare the effect of α on the energy and hybridization accuracy
for otherwise fixed convergence criteria. From the table we indeed see that small α prefer
the sum rule whereas larger α the bath on-site energies. The larger the bath the less
important the choice of α becomes.

The difference fp is a measure for the quality of the fit of ∆ (iω) with the Anderson
parameters and thus of the ED approximation to DMFT. For an infinite bath the fit
would be perfect, giving fp = 0.

An alternative way to obtain the Anderson parameters is to use the Padé method
described in section 3.1.9.1. Instead of applying the method to a Green’s function we can
also apply it to the hybridization function ∆(iω) obtain the polynomials PN , QN whose
coefficients determine the coefficients of the equivalent continued fraction (see e.g. [94]).
If these coefficients are real, which they should be when converged, then the continued
fraction is positive definite. These kind of continued fractions are named J-fraction. They
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Figure 3.13.: 4-site SIAM spectrum of a 5-dimensional Periodic Anderson Model
(V = 0.2, t = 1/

√
10, U = 4, µ = −0.14, εf = 0.3) in different

sectors N↑, N↓ (x-axis). The black line gives the Boltzmann factor (see
upper x-axis for tics and labels) for a given energy at β = 50. In the
calculation for the Green’s function only ’green’ levels are taken into
account (Boltzmann factor > 10−4).

can be expressed as sums over simple poles [110, 111]

∆p (z) =

Nb∑

l=0

V 2
l

z − εl
, (3.167)

giving, in principle, direct access to the parameters.
Having determined the parameters we build the SIAM Hamiltonian. Since it is particle

conserving,
[
HSIAM, Nσ

]
= 0, we can divide its diagonalization in sectors of fixed N↑, N↓.

For all possible combinations (often we can however exploit symmetries) of Nx ∈ [0, Ns]
we derive the Hamiltonian of the sector in matrix form and diagonalize it using standard
means yielding the eigenvectors and eigenstates. From here we can directly evaluate the
thermal impurity Green’s function according to (3.56) and the new self-energy Σ. Often
the sector ground states are energetically quite far from each other and we can reduce
the computational demand by neglecting terms with low Boltzmann weight (see figures
3.13, 3.14).
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√
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3.2.4. Exact DMFT Limits

In general, DMFT gives an approximation to the local Green’s function of the real lattice.
However, in the free case, U = 0, and in the atomic limit the local Green’s functions
coincide with the impurity Green’s functions and DMFT yields the exact, albeit trivial
result.

Free limit In the free limit, U = 0, the self-energy Σ is zero. Hence, the impurity
Green’s function coincides with the bath Green’s function Gb, i.e. Gimp = Gb. G

loc is just
the non-interacting Green’s function of the lattice Gloc 0 and independent of the bath.

Atomic limit In the atomic limit, t = 0, there is no hopping in the lattice. From the
sum rule (3.166) we see that this translates to no hybridization with the bath in the
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SIAM. Hence, all physics is purely local. The integrand in Gloc does not depend on k and

Gloc (ω) =
1

VBZ

∫

BZ

ddk
1

ω + µ− εk − Σ(ω)
=

1

ω + µ− ε− Σ(ω)
= Gimp . (3.168)

This model is easily solved since we just need to treat a single impurity Hamiltonian in a
four dimensional Fock space. We choose (|〉, | ↑〉, | ↓〉, | ↑↓〉) as the basis and obtain the
finite-temperature Hubbard-I Green’s function

G (iωn) =
1− f

iωn + µ
+

f

iωn + µ− U
(3.169)

with

f =
eβµ + eβ(2µ−U)

1 + 2eβµ + eβ(µ−U)
. (3.170)

3.2.5. Models

Hypercubic lattice The DMFT method can be applied to different quantum many-
body models. Each model is defined on a lattice in a certain dimension. Before we
describe two of the most important models we briefly introduce two types of lattices, the
hypercubic and the Bethe lattice. It is often advantageous to employ the density of states
when calculating Gloc because an evaluation in terms of Brillouin zone integrals can be
very costly. This is especially true for lattices in high-dimensions.

For a hyper-cubic lattice with next-neighbor hopping only (dispersion relation (3.140))
figure 3.15 gives the density of states for increasing dimension. We can easily identify
van-Hove singularities up to about d = 4. For higher dimensions these, however, become
quite weak. In the limit of infinite dimension the density of states becomes a Gaussian
function due to the central limit theorem

D (ε) =
1√

2πt∗2
exp

(
− ε2

2t2∗

)
, (3.171)

where t∗ is defined as above (t∗ = t/
√
Z) while for any finite d the density of states

vanishes outside the bandwidth. In d→∞ there obviously is no well-defined bandwidth.
This shows in the limit of small to zero filling where the kinetic energy per electron
diverges. However, for every finite density the kinetic energy remains finite.

Bethe lattice The second type of lattice is the Bethe lattice, also known as Cayley
tree. It was introduced by Hans Bethe in 1935. Such a lattice is a cycle-free tree where
each site is connected to Z neighbors. Figure 3.16 shows the Bethe lattices for Z = 3
(left) and for Z = 5 (right). For Z = 2 the Bethe lattice is a linear chain. This is the only
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Figure 3.15.: Density of states for a hypercubic lattice from 1 to 6 dimensions with
next-neighbor hopping only (dispersion relation: εk = −2t
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i=0 cos(ki)).

For d = 1, 2, 3, 4 the van-Hove singularities are clearly identifiable. For
comparison d→∞ is plotted in green.
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Figure 3.16.: Bethe lattice for Z = 3 (left) and Z = 5 (right) dimensions. For all
values of Z a Bethe lattice is bipartite.

case where there is a simple Fourier transform of the lattice. The density of states for a
general Bethe lattice is given by

D(ε) =

√
4(Z − 1)t2/Z − ε2
2π (t2 − ε2/Z)

. (3.172)

In the DMFT limit Z →∞ this simplifies to the semicircular density of states

DBetheZ→∞(ε) =

√
4t2 − ε2
2πt2

. (3.173)

Moreover, in this limit the Hilbert transform, equation (3.145), assumes a simple and
practical form

D̃ (ζ) =

(
ζ −

√
ζ2 − 4t2

)

2t2
, (3.174)

as does the reciprocal transform

R(D) = t2G+G−1 . (3.175)

A näıve computer implementation using (3.174) leads to surprising results. Numerically
the complex square root function is generally given by the principal square root. For a
complex number z = a+ ib it is

√
a+ ib =

1√
2

{√
r + a+ i sign (b)

√
r − a

}
, (3.176)

where r =
√
a2 + b2 is the modulus of z. From this we can see the branch cut along the

negative real axis a < 0.
The term

√
z2 − 1 understood as principal square root has two branch cuts; one along

the imaginary axis and the other between ±1. This apparently leads to non-continuous,
non-differentiable behavior of (3.174) in the physically relevant region. An especially
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Figure 3.17.: Gcc of Bethe lattice in infinite dimensions for µ = 0.3. Näıvly evaluating
expression (3.174) numerically gives wrong results due to a branch
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DOS (green function upper left plot)). With (3.177) (second row)
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to have a non-vanishing Matsubara real part.
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striking consequence is the sign change in its imaginary part for real-frequencies, the
density of states, as shown in the first plot of figure 3.17.

To maintain the symmetry for Matsubara- and fix the discontinuity for real frequencies
a single branch cut needs to reside on the real axis between [−1, 1]. Using the previous
definition of the principal square root this can be readily achieved using

D̃ (ζ) =

(
ζ −
√
ζ − 2t

√
ζ + 2t

)

2t2
(3.177)

instead of (3.174). The second row of figure 3.17 gives the result. Indeed we observe
the semi-circular density of states for real frequencies and that the Matsubara part is
retained.

3.2.5.1. Hubbard Model

We already introduced the Hubbard model in the derivation of the DMFT. It is the
simplest model to study the effect of strong correlations. It reads

HHM = −t
∑

〈ij〉σ

(
c†iσcjσ + h.c.

)
+ U

∑

i

ni↑ni↓ . (3.178)

Bethe lattice The simple reciprocal Hilbert transform allows for a shortcut in the
self-consistency loop. Inserting (3.175) in (3.161) the bath Green’s function simplifies to

G−1
b = iω + µ− t2G (iω) . (3.179)

Hence, having the solution of the impurity model we can directly proceed to the fitting
function without explicitly calculating Σ and Gloc. Usually we set the hopping parameter
to t = 1 fixing the energy units of the system. Another common convention is to set half
the bandwidth to unity, i.e. W = 2.

Hypercubic lattice For hypercubic lattices we do not have such a simple form for
the reciprocal Hilbert transform. Hence, we use the full self-consistency loop. Since the
derivation was based on the Hubbard model all formulæ given in figure 3.9 apply. We
just need to choose how to evaluate the local Green’s function Gloc: using the density of
states form, which is numerically less costly, or the Brillouin zone integral which works
for every dispersion relation.

Figure 3.10 shows the impurity and local Green’s function of a two-dimensional Hubbard
model with next-neighbor hopping at β = 50 and Hubbard model parameters t = 1, i.e.
the bandwidth W = 8t, and U/W = 4/3. With µ = U/2 the system is half-filled. For
the calculation we used a SIAM with Nb = 6 bath sites. The green curve in the plot
shows the impurity Green’s function of the self-consistent solution. It has a rather spiky
appearance due to the small bath. The local lattice Green’s function is readily accessible
using equation (3.142). We see that the peak positions coincide with the peaks of Gimp

but are broadened (see discussion in section 3.2.3).
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3.2.5.2. Periodic Anderson Model

Systems with f -electrons stemming from lanthanide and actinide ions (open f -shells)
often show physics of strong electronic correlations. Some of these compounds are called
heavy-fermions, since they have quasiparticle bands with extremely high effective masses
m∗. This particularly shows in large values for the specific-heat coefficient. Taking the
Fermi liquid expression

γ = C/T =
m∗kF

3
(3.180)

where kF is the Fermi wave vector (note that kB = 1) we see that γ is proportional to
m∗, therewith establishing the relation.

The small hybridization of the localized f -electrons with the itinerant conduction
electrons of the metallic ions causes these extraordinarily high effective masses. At low
temperature the magnetic f -moments are screened by the conduction electrons giving
rise to a combined quasiparticle band of either character. The simplest Hamiltonian
modelling such systems is the Periodic Anderson Model (PAM),

HPAM = H0
PAM +Hint , (3.181)

where

H0
PAM =

∑

kσ

εkσa
†
kσakσ + V

∑

lσ

(
f †lσclσ + c†lσflσ

)
+ εf

∑

lσ

f †lσflσ , (3.182)

and
Hint = U

∑

l

nfl↑n
f
l↓ . (3.183)

The f (†) and c(†), a(†) operators act on the f -orbitals with energy εf and conduction
electrons with dispersion relation εk, respectively. V denotes the hybridization parameter
which adjusts the strength of the hybridization. H0

PAM is given in a mixed-representation
of k- and real space. Fourier transform of the real-space part yields the full k-space
Hamiltonian,

H0
PAM =

∑

kσ

εkσa
†
kσakσ + V

∑

kσ

(
f †kσakσ + a†kσfkσ

)
+ εf

∑

kσ

f †kσfkσ . (3.184)

We can formally write H0
PAM in this representation as a block matrix of diagonal blocks

where the upper left block gives the non-dispersive impurity on-site energies (infinitely
narrow band), the lower right block the dispersion of the conduction electrons and the
off-diagonal blocks give the constant hybridization. Schematically, the matrix looks like

Ĥ0
PAM =




εf V
εf V

. . . . . .

V εk0
V εk1

. . . . . .




(3.185)
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or alternatively in block form

Ĥ0
PAM =

(
εf V
V εk

)
. (3.186)

Formally, we can write the resolvent of the free H0
PAM

Ĝ0(z) =
1

z − Ĥ0
PAM

. (3.187)

Dyson’s equation (3.83) gives the relation between the interacting and the non-interacting
resolvent. It reads

Ĝ−1(z) =
[
Ĝ0(z)

]
− Σ̂(z) = z − Ĥ0

PAM − Σ̂(z) . (3.188)

We have seen that within single-site DMFT there is no k-dependence in the self-energy Σ.
Moreover, we only treat the correlations in the f -orbitals while the conduction electrons
are considered as non-interacting. Thus, we effectively assume that Σ is non-zero only in
the upper left block , i.e.

Σ̂DMFT = Σ̂ =

(
Σ1 0
0 0

)
. (3.189)

Hence, the interacting Green’s function reads,

Ĝ (k, z) =

(
Gff Gfc

Gcf Gcc

)
=

(
z − εf − Σ −V
−V z − εk

)−1

. (3.190)

Using inversion-by-partitioning (see appendix G) we obtain the inverse matrix elements
giving the Green’s functions on the different subspaces,

Gff (k, z) =

(
z + µ− εf − Σ(z)− V 2

z + µ− εk

)−1

(3.191)

Gcc (k, z) =

(
z + µ− εk −

V 2

z + µ− εf − Σ (z)

)−1

(3.192)

Gfc (k, z) = Gcf (k, z) =

(
1

V
(z + µ− εk)G−1

ff (k, z)

)−1

. (3.193)

An analogous derivation to the one sketched above for the DMFT of the Hubbard
model can be carried out for the Periodic Anderson Model [97]. The effective action for
the SIAM reads,

S
[
φf , φ

∗
f , Gb

]
= −

∫ β

0

∫ β′

0

dτdτ ′
∑

σ

φ∗f (τ)G−1
b (τ − τ ′)φf (τ ′)

−U
∫

dτφ∗f↑(τ)φf↑(τ)φ∗f↓(τ)φf↓(τ) .

(3.194)
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where again G−1
b plays the role of the Weiss field and defines the impurity model.

Σ = G−1
b (ω)−Gimp−1(ω) (3.195)

is still valid. Self-consistency is reached when the impurity Green’s function Gimp coincides
with the local Green’s function of the f -electrons

Gff (iω) =
1

VBZ

∫

BZ

dk Gff (k, iω) (3.196)

=
1

VBZ

∫

BZ

dk
1

iω + µ− εf − Σ(iω)− V 2

iω+µ−εk
. (3.197)

Using (3.157) in (3.195) we can eliminate Σ from (3.191) giving an alternative form

Gff (k, z) =

(
Gimp−1 (z) + ∆ (z)− V 2

z + µ− εk

)−1

, (3.198)

where we use the hybridization function ∆ as defined in (3.158).
Equation (3.197) is directly related to the local conduction electron Green’s function

Gcc (iω) =
1

VBZ

∫

BZ

dk
1

iω + µ− V 2

iω+µ−εf−Σ(iω)
− εk

. (3.199)

To see this, we rewrite the integrand of (3.197) by multiplying numerator and denominator
with iω + µ− εk and factoring ρ = iω + µ− εf − Σ (iω) out. We get

1

iω + µ− εf − Σ(iω)− V 2

iω+µ−εk
=

iω + µ− εk
iω + µ− εf − Σ (iω)

1

iω + µ− εk − V 2

iω+µ−εf−Σ(iω)

.

Adding −V 2/ (iω + µ− εf − Σ (iω)) +V 2/ (iω + µ− εf − Σ (iω)) to the numerator of the
first fraction gives

1

iω + µ− εf − Σ(iω)− V 2

iω+µ−εk
=

1

ρ
+
V 2

ρ2

1

iω + µ− V 2

ρ
− εk

(3.200)

Exploiting
∫

dk 1 = VBZ we can thus rephrase (3.197)

Gff (iω) =
1

ρ
+
V 2

ρ2
Gcc(iω) . (3.201)

Hence, all k-dependence is captured in the conduction electron Green’s function.
In terms of the non-interacting density of states of the conduction electrons we can

reformulate equation (3.197) in the same way by exploiting
∫

dD(ε) = 1 and get

Gff (iω) =

∫

R
dε

D(ε)

iω − εf − Σ(iω)− V 2

iω−ε
(3.202)

=
1

ρ
+
V 2

ρ2
D̃

(
iω + µ− V 2

ρ

)
, (3.203)

where D̃ (z) denotes the Hilbert transform (3.146).
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Bethe lattice For the Bethe lattice in the infinite connectivity limit Z →∞ we again
obtain a shortcut by exploiting your knowledge of the Hilbert transform. We get from
(3.203)

Gff (iω) =
1

ρ
+
V 2

ρ2

iω + µ− εc − V 2

ρ
−
√

(iω + µ− εc − V 2/ρ)2 − 4t2

2t2
. (3.204)

For a numerical evaluation and the proper choice of the branch cut see section 3.2.5.

Hypercubic lattice The calculation is exactly the one used for the Hubbard model
except for the self-consistency condition, i.e. the choice of Gloc. Here, Gimp has to coincide
with the local f -electron Green’s function Gff which we can either state in terms of a
Brillouin zone integral, see (3.201) and (3.199), or the density of states, see (3.202).

In the following we will briefly cover two example calculations for a 5-dimensional
Periodic Anderson Model. In both calculations we scale the hopping matrix element
t = 1/

√
2 · d = 1/

√
10 and choose U = 4 and εf = −0.3. All calculations have been

performed with Nb = 6.
In the first calculation we used the hybridization V = 0.2 and the chemical potential

µ = −0.14 giving an impurity occupation of 〈nσ〉 ≈ 0.44. Figure 3.18 gives the Green’s
functions for the conduction electrons (upper plot) and a comparison of the local f -electron
with the impurity Green’s function (lower plot). We observe that the imaginary part of
Gcc roughly gives the density of states of the non-interacting electrons. There only is a
significant deviation for around ω = 0 and a very small one at ω ≈ U . This is due to the
relatively small hybridization V , which appears as V 2 in (3.199) and gives the only term
deviating from the free case. In the lower plot we see that the agreement of the local
f -electron and impurity Green’s function is very good. The impurity physics of the PAM
almost being in the atomic limit better match the impurity physics of the SIAM. If we
increase the hybridization to V = 0.8 and keep the impurity occupation fixed 〈nσ〉 ≈ 0.45
(µ = 1) we obtain the Green’s functions shown in figure 3.19. This probably overly strong
hybridization leads to a pronounced deviation from the free behavior in the conduction
band and a stronger disagreement between Gimp and the local Gff . The almost atomic
limit character of the impurity is lost.
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Figure 3.18.: Gcc (upper plot) and Gff /Gimp (lower plot) of a 5-dimensional PAM
with next-neighbor hopping in a hypercubic lattice and parameters
t = 1/

√
2 · d = 1/

√
10, U = 4, εf = −0.3, V = 0.2, and µ = −0.14. We

observe that the imaginary part of Gcc is very similar to the free DOS
(black curve). This is due to the small value of V which always appears
as V 2. A similar consequence is the very good agreement of Gimp and
Gff .
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Figure 3.19.: Gcc (upper plot) and Gff /Gimp (lower plot) of a 5-dimensional PAM
with next-neighbor hopping in a hypercubic lattice and parameters
t = 1/

√
2 · d = 1/

√
10, U = 4, εf = −0.3, V = 0.8, and µ = 1.0. We

observe a strong deviation from the free behaviour in the imaginary
part of Gcc. It stems from the strong hybridization with the impurity
physics on the impurity. In this case also the good agreement of Gimp

and Gff found in figure 3.18 for V = 0.2 is strongly reduced.
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3.3. DMFT Dynamical Susceptibilities and Vertex Func-

tions

Even though DMFT works by treating correlations only locally, it is also possible to
evaluate lattice response functions with full Q-dependence. As we will see in the following
chapter the knowledge of the self-energy Σ and the impurity two-particle Green’s function
suffices to obtain the Q-dependent lattice response function (Falicov-Kimball model
[112]; Hubbard Model [105, 113, 114, 115]). In principle this makes it possible to
study instabilities which are associated with certain Q-vectors. The self-energy, within
DMFT, on the other hand just contains local information and thus gives only insights
into instabilities which occur instantaneously at all wave vectors. The Metal-Insulator
Transition (MIT) is the prime example of this kind of instability.

3.3.1. General Formalism and DMFT Approximation

This part is based on the review of Georges, Kotliar, Krauth and Rozenberg [97]. According
to equation (3.47) we write the Matsubara response function in a crystal for the operator
O1 = O2 = O in Q-space as

χ (Q, iΩn) =
∑

i

eiQRi

∫ β

0

dτ eiΩnτ
〈
Tτ O (Ri, τ)O (0, 0)

〉
. (3.205)

As discussed in section 3.1.2 we can rewrite this expression in terms of two-particle Green’s
functions (3.30), yielding

χ(Q, iΩn) =
∑

kk′

σσ′

vOk′σ′v
O
kσ χ

σσ′

kk′(Q, iΩn) (3.206)

with

χσσ
′

kk′(Q, iΩn) =

∫ β

0

dτ eiΩnτχσσ
′

kk′(Q, τ) (3.207)

and
χσσ

′

kk′(Q, τ) =
〈
Tτa†k′σ′(τ)a

k′+Qσ′
(τ)a†kσ(0)ak+Qσ(0)

〉
. (3.208)

Equivalently, we can directly use the Matsubara representation of the four-point two-
particle Green’s function to evaluate (3.207) as shown in section 3.1.8.

If we had the two-particle Green’s function χσσ
′

kk′ , we could evaluate all possible dynamical
correlation functions (for single particle operators) by the choice of the correct matrix
elements vOkσ. Here, we are interested in the spin-spin and charge-charge correlation
function of paramagnetic systems, whose matrix elements are k-independent and given
by vSσ = sgn(σ) and vCσ = 1, respectively.

The two-particle Green’s functions are very complicated objects that in general cannot
be calculated exactly. Our goal is to derive an approximation to χ(Q, iΩn) within DMFT
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k +Q, iν + iΩ k′ +Q, iµ+ iΩ

k, iν k′, iµ

Γ

Figure 3.20.: Two-particle vertex function

which allows for their evaluation. To that end, we define a two-particle vertex function
Γkk′Q which is irreducible in the particle-hole channel. Its diagram is depicted in figure
3.20. It is chosen such that

χkk′ (Q, iΩn) =− 1

β

∑

iν

G (k, iν)G (k +Q, iν + iΩ)

+
1

β2

∑

iνiµ

G (k, iν)G (k +Q, iν + iΩ)

× Γkk′Q (iν, iµ, iΩ)G (k′, iµ)G (k′ +Q, iµ+ iΩn) + · · · ,

(3.209)

where the Green’s functions are the full interacting single-particle Green’s functions. We
can think of (3.209) as a ladder sum as shown in figure 3.21.

χ(Q, iΩn) = + Γ

+ Γ Γ + · · ·

Figure 3.21.: Ladder sum of the dynamical correlation function χ(Q, iΩn) with vertices
Γ.

It is notationally convenient to introduce a matrix formalism. We rewrite equation
(3.209) without the summation over the outermost two internal Matsubara frequencies iµ
and iν and regard all quantities in (3.209) as matrices in these two indices. Using [ · ] as
notation for those matrices we have the

χkk′ (Q, iΩn) =
1

β2

∑

iµ iν

[χkk′ (Q, iΩn)]iµ iν (3.210)
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with

[χkk′ (Q, iΩn)]iµ iν =
[
χ0
kk′ (Q, iΩn)

]
iµ iν

+
[
χ0
kk′′ (Q, iΩn)

]
iµ iν′

[Γk′′k′′′ (Q, iΩn)]iν′ iµ′ [χk′′′k′ (Q, iΩn)]iµ′ iν ,

(3.211)

where

[
χ0
kk′ (Q, iΩn)

]
iµ iν

= −G (k, iν)G (k +Q, iν + iΩn) βδiν iµδkk′ (3.212)

is a diagonal matrix describing a particle-hole propagator. In this notation we understand
the matrix product as a summation/integration over internal indices appearing twice
(Einstein-like convention), i.e.

[Xkk′ ]iν iµ [Yk′k′′ ]iµ iν′ =
1

β

∑

iµ

1

VBZ

∫

BZ

ddk′ [Xkk′ ]iν iµ [Yk′k′′ ]iµ iν′ . (3.213)

Almost all of the complexity is now hidden in the two-particle vertex function Γkk′Q,
which can be expressed in a Dyson-like way as

[Γ] =
[
χ0
]−1 − [χ]−1 . (3.214)

In general, the evaluation of Γ is still intractable. However, in the DMFT limit of infinite
dimension Γkk′Q becomes a purely local quantity Γ similar to the self-energy [113]3.

Hence, the k-integrals in the matrix product decouple and with the matrix elements
vσ being independent of k, we can can perform the integrations over pairs of Green’s
functions (particle-hole bubbles, see 3.1.8.1). This is a enormous reduction in complexity.
Still, the vertex remains a complicated function of three frequencies. Equation (3.211)
becomes [

χQ,iΩn
]

=
[
χ0
Q,iΩn

]
+
[
χ0
Q,iΩn

] [
ΓiΩn

] [
χQ,iΩn

]
, (3.215)

where

[
χ0
Q,iΩn

]
iµ iν

= − 1

VBZ

∫

BZ

ddk G (k, iν)G (k +Q, iν + iΩn) βδiν iµ . (3.216)

From (3.215) we see that the momentum dependence of the final quantity
[
χQ iΩn

]

stems entirely from
[
χ0
Q,iΩn

]
, i.e. from the single-particle Green’s function.

For a hypercubic lattice with dispersion relation given by equation (3.140) it has been
shown [102, 112] that the Q-dependence of

[
χ0
Q,iΩn

]
and

[
χQ,iΩn

]
is solely given through

Q (Q) =
1

d

d−1∑

i=0

cos(Qi) . (3.217)

3In fact, Γ does retain some momentum dependence. However, only its local components contribute to
to the sum (3.209) [97]. Thus, we can neglect the residual k-dependence.
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For a generic vector Q the sum is over terms whose signs are random. Thus, they scale
like Q (Q)→ 1/

√
d yielding Q (Q) = 0 for infinite dimension. Here, generic means for

all vectors but a set of measure zero (for instance, containing Q (0) = 1).

Hence, for generic values of Q both functions
[
χ

(0)
Q,iΩn

]
coincide with their local version

[
χ

loc (0)
iΩn

]
, i.e.

[
χ

(0)
Q,iΩn

]
generic Q

=
1

VBZ

∫

BZ

ddQ
[
χ

(0)
Q,iΩn

]
=
[
χ

loc (0)
iΩn

]
. (3.218)

Exploiting this equality in equation (3.215) we can express the vertex function as

ΓiΩn =
[
χloc 0

iΩn

]−1 −
[
χloc

iΩn

]−1
, (3.219)

which is now fully k/Q-independent. Consequently, we can obtain our target matrix
function with [113, 105],

[
χQ,iΩn

]−1
=
[
χ0
Q,iΩn

]−1 − ΓiΩn

=
[
χ0
Q,iΩn

]−1 −
[
χloc 0

iΩn

]−1
+
[
χloc

iΩn

]−1
.

(3.220)

It is important to note that with this equation we have a relation between the lattice χQ
(LHS) and quantities which are accessible from the impurity alone. For

[
χ0
Q,iΩn

]
all we

need is the lattice Green’s function which in DMFT is determined by the local self-energy
Σ. The other two quantities are local by construction. They are response functions of the
impurity model’s effective action.

The final result thus follows from (3.220) by inversion and summation, i.e.

χQ (iΩn) =
∑

iν iµ

[
χQ,iΩn

]
iν iµ

. (3.221)

As a reminder, these equations are only valid in the limit of infinite dimensions.
Ultimately we, however, like to treat finite-dimensional lattices. Strictly speaking we

cannot identify
[
χ

(0)
Q,iΩn

]
with their local versions

[
χ

loc (0)
iΩn

]
for generic vectors, i.e. the

equation (3.219) does not hold anymore.
Nevertheless, neglecting the Q-dependence in ΓiΩn

is a natural approximation. It is
similar in spirit to neglecting the momentum dependence in the self-energy. Hence, the
DMFT approximation is to retain the formalism of infinite dimensions and apply it to
finite dimensional systems. We start with the vertex and therefore need the full and the
’unconnected’ two-particle Green’s function of the impurity.

For actual calculations of the spin-spin or charge-charge correlation function we see

from (3.211) that the matrix elements vσ only act on the vertex. This is because
[
χ

(0)σσ′

Q,iΩn

]

is diagonal in the spin indices and v2
σ = 1. Thus, for χzz we have, for instance,

χimp
iµ,iν (iΩn) =

1

4

∫ β

0

dτ1

∫ β

0

dτ2

∫ β

0

dτ3

∫ β

0

dτ4 e
iµ(τ1−τ2)eiν(τ3−τ4)eiΩn(τ1−τ4)

∑

σσ′

(−1)σ+σ′〈Tτ cσ(τ1)c†σ(τ2)cσ′(τ3)c†σ′(τ4)〉S .
(3.222)
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In the next section we will give the formulæ to evaluate the two-particle Green’s
function within the ED method and briefly discuss the unconnected part. With these
two quantities we can directly obtain the vertex function according to equation (3.219).
Finally, we evaluate

[
χ0
Q,iΩn

]
employing (3.216), where we use the Green’s functions for

the model under investigation making use of the local Σ.

3.3.2. Explicit Derivation in the ED Framework

The basic building block for the vertex function is the two particle Green’s function .
We will consider only single-band models, so we drop additional orbital and site indices.
Moreover, to shorten the notation we drop the superscript imp. In Matsubara space the
two-particle Green’s function reads,

χσσ
′
(ω1, ω2, ω3) =

β∫

0

dτ1

β∫

0

dτ2

β∫

0

dτ3 ei(ω1τ1+ω2τ2+ω3τ3) 〈Tτ cσ(τ1)c†σ(τ2)cσ′(τ3)c†σ′(0)〉 .

(3.223)
In principle each particle operator could carry its own spin-index. However, for the trace
to be finite it is easy to see that only 6 combinations remain, i.e. ↑↑↑↑, ↑↑↓↓, ↑↓↓↑ and
the flipped version. The latter two are related by reordering of the operators. Hence,
if we have χσσ′ defined as χσσ′ = χσσσ′σ′ we can evaluate all non-vanishing two-particle
Green’s functions.

Due to (imaginary) time translation invariance we have set τ4 = 0, effectively fixing
the right-most operator to c†. At first it might look like we are missing terms since we
always start with putting an electron into the system. However, as we will see later in this
section the summations over the entire Fock space (explicitly in the trace and implicitly
in between the operators) give all permutations.

To carry out the integrations in equation (3.223) we transform the imaginary time-
ordering operator into its Θ-function representation. That makes the time-order explicit
in the integration boundaries. We obtain 3! = 6 terms since there are 6 permutations of
the three operators at times τ4 = 0 ≤ τi ≤ β with i = 1, 2, 3. In each of the permutations
we need to keep track of the Fermi sign.

It turns out to be practical not to use the standard definition of Fourier transforms for
the particle operators (see equation (3.222) above). Instead we use the same sign in the
Fourier phase factors for annihilators and creators. In addition, we redefine the frequencies
such that each imaginary time τi corresponds to a frequency iωi. These frequencies are
fermionic, a property they inherit from the particle operators. This is in contrast to the
more physical definition where iΩ is bosonic and represents an energy transfer. Energy
conservation in this notation requires ω1 +ω2 +ω3 +ω4 = 0. With this definition all these
terms can be brought in the same form when we permute the operators along with their
frequencies. Using standard Fourier convention we would also have had to permute the
minus sign along with frequency ω2 cluttering the notation and the code.
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This unified form of expression (3.223) is given by

χσσ
′

ω1,ω2,ω3
=

1

Z

∑

ijkl

∑

Π

Φ (Ei, Ej, Ek, El;ωΠ1 , ωΠ2 , ωΠ3) sign(Π)

〈i|OΠ1|j〉〈j|OΠ2|k〉〈k|OΠ3|l〉〈l|c
†
σ′|i〉 , (3.224)

where we introduced several energy eigenstate closure relations and defined O1 = cσ,
O2 = c†σ and O3 = cσ′ . Φ denotes the Fourier transform with explicit time ordering

Φ (Ei, Ej, Ek, El;ω1, ω2, ω3) =

β∫

0

dτ1

τ1∫

0

dτ2

τ2∫

0

dτ3 e−βEieEijτ1eEjkτ2eEklτ3ei(ω1τ1+ω2τ2+ω3τ3) .

(3.225)
Numerically we need to pay attention to degenerate energies which may give rise to
vanishing denominators. We treat these terms explicitly and substitute these terms
with their proper limit. As a notational abbreviation we define /δ(x) = 1 − δ(x) and
Eij = Ei − Ej. Straightforward calculation yields

Φ ( Ei, Ej, Ek, El;ω1, ω2, ω3) = e−βEi

{
/δ (iω3 + Ekl)

iω3 + Ekl

[
/δ (iω2 + iω3 + Ejl)

iω2 + iω3 + Ejl

× (C (iω1 + iω2 + iω3 + Eil)− C (iω1 + Eij)) + δ (iω2 + iω3 + Ejl)A (iω1 + Eij)

−
/δ (iω2 + Ejk)

iω2 + Ejk
(C (iω1 + iω2 + Eik)− C (iω1 + Eij))− δ (iω2 + Ejk)A (iω1 + Eij)

]

+ δ (iω3 + Ekl)

[
/δ (iω2 + Ejk)

(
A (iω1 + iω2 + Eik)

iω2 + Ejk
− C (iω1 + iω2 + Eij)− C (iω1 + Eij)

(iω2 + Ejk)
2

)

+ δ (iω2 + Ejk)B (iω1 + Eij)

]}
,

(3.226)

where

A(c) =

∫ β

0

dτ τecτ = /δ (c)

{
βecβ

c
− ecβ − 1

c2

}
+ δ (c)

β2

2
(3.227a)

B(c) =
1

2

∫ β

0

dτ τ 2ecτ = /δ (c)
1

c3

{
ecβ
(

1− cβ +
1

2
(cβ)2

)
− 1

}
+ δ (c)

β3

6
(3.227b)

C(c) =

∫ β

0

dτ ecτ = /δ (c)
ecβ − 1

c
+ δ (c) β . (3.227c)

The actual evaluation of equation (3.224) is computationally very expensive – hence the
need for optimization. At first we can use the trick already encountered for the single-
particle Green’s function (see section 3.1.6). We multiply each term in equation (3.226)
with the exp (−βEi) Boltzmann factor. Identifying the terms having an exponential
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factor with Ex where x = j, k, l and substituting x by i, gives equations (3.228) (see
next page) where the superscripts denote the renaming. In this form the full 4! = 24
permutations of the 4 particle operators are explicit. All terms are now multiplied
by the single Boltzmann factor exp (−βEi) which we factorize out. To speed up the
calculation we define a Boltzmann cutoff εBoltz which becomes the more efficient the lower
the temperature. Often only a few states have to be taken into account (cf. for example
figure 3.13). Of course, in general the details depend on the spectrum and its gaps.
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Equations (3.228) have ωi dependent exponential functions emphasized in red. For ωi’s
being fermionic Matsubara frequencies these exponentials give −1/+1 for an odd/even
number of them. For real frequencies after an implicit analytic continuation, however,
these exponentials pose a problem. Similar to the Matsubara summation for the particle-
hole bubble (see section 3.1.8.1) we have to use our knowledge of ω to bring (3.226) into
a form which then can be analytically continued to the desired real-frequency result.

For fermionic Matsubara frequencies, (3.226) simplifies to

Φ (Ei, Ej, Ek, El;ω1, ω2, ω3) =

e−βEi

iω3 + Ekl

{
/δ (i(ω2 + ω3) + Ejl)

i (ω2 + ω3) + Ejl

[
e−βEji + 1

iω1 + Eij
− e−βEli + 1

i(ω1 + ω2 + ω3) + Eil

]

+δ(i(ω2 + ω3) + Ejl)

[
e−βEji + 1

(iω1 + Eij)2
− β e−βEji

(iω1 + Eij)

]
− 1

iω2 + Ejk
×

[
e−βEji + 1

iω1 + Eij
+ /δ (i(ω1 + ω2) + Eik)

e−βEki − 1

i(ω1 + ω2) + Eik
+ βδ(i(ω1 + ω2) + Eik)

]}
.

(3.229)

Again factorizing the Boltzmann factor exp (−βEi) out gives equations (3.230a-3.230d)[116,
117], which are the simplified versions of equations (3.228a-3.228d).
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3.3.2.1. Unconnected Diagrams

To obtain the irreducible vertex using (3.219) we still need the ’unconnected’ χimp0 (iΩ).
For χzz we have already given the result in equation (3.96). In the general case, we proceed
according to the free case given in section 3.1.7, albeit using fully dressed propagators.
Hence, we evaluate

χimp0,σσ′ (τ1, τ2, τ3) =〈Tτ cσ(τ1)c̄σ(τ2)〉〈Tτ cσ(τ3)c̄σ(0)〉
− 〈Tτ cσ(τ1)c̄σ′(0)〉〈Tτ cσ′(τ3)c̄σ(τ2)〉 .

(3.231)

Fourier transforming χσσ′ and using the sign convention yields

χimp0,σσ′(ω1, ω2, ω3) =

∫ β

0

dτ1 dτ2 dτ3 ei(ω1τ1+ω2τ2+ω3τ3) χ0
σσ′ (τ1, τ2, τ3, 0)

= β (δω1,−ω2 − δω3,−ω2δσσ′)G(iω1)G(iω3) .

(3.232)

3.3.2.2. Translation to Standard Notation

The Fourier transform convention, we used, is practical for derivation within the exact
diagonalization framework. The standard convention, on the other hand, describes the
scattering of two particles with energy µ+ Ω, ν and spin σ, σ′, respectively. After this
process the energy Ω is transferred from the first to the second particle. Figure 3.22 shows
the scattering process.

The relations, connecting our (LHS) to the standard (RHS) convention, are

ω1 = µ+ Ω (3.233a)

ω2 = −µ (3.233b)

ω3 = ν , (3.233c)

ω1 = µ+ Ω

σ

σ

ω2 = −µ

ω4 = −(ν + Ω)

σ′

σ′

ω3 = ν

Figure 3.22.: Translation of the Fourier transform definitions for an evaluation with
exact diagonalization to the standard definition.
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where the minus sign is due to the creation operator. The energy conservation in standard
convention is

(µ+ Ω) + ν = µ+ (ν + Ω) . (3.234)

Hence, for the translation of the expressions from exact diagonalization we have

χimp,σσ′

iµ,iµ (iΩ) = χσσ
′
(iµ+ iΩ,−iµ, iν) (3.235)

and

χimp0,σσ′

iµ,iµ (iΩ) = β (δΩ0 − δiµ,iνδσσ′)G(iµ+ iΩ)G(iν) . (3.236)

The first term only contributes for Ω = 0 while the other demands σ = σ′.

3.3.3. Properties of the Two-Particle Green’s Function and the
Vertex

Since the vertex inherits all symmetries from the two-particle Green’s function we will only
discuss the latter in this section. Its numerical calculation is the most time consuming
part of the entire simulation. By exploiting symmetries we can significantly reduce the
number of matrix elements that have to be calculated and hence, significantly speed up
the entire simulation. For instance, in a paramagnetic system obviously χ↑↑ = χ↓↓ holds,
as does χ↑↓ = χ↓↑.

From

χσσ
′

iµ,iν (iΩn) =

∫ β

0

dτ1

∫ β

0

dτ2

∫ β

0

dτ3

∫ β

0

dτ4 e
iµ(τ1−τ2)eiν(τ3−τ4)eiΩn(τ1−τ4)

〈Tτ cσ(τ1)c†σ(τ2)cσ′(τ3)c†σ′(τ4)〉S
(3.237)

we infer [
χσσ

′

iµ,iν (iΩn)
]∗

= χσσ
′

(iµ)∗,(iν)∗ ((iΩn)∗) . (3.238)

As a consequence for iΩ being a Matsubara frequency we just need to evaluate the Green’s
functions for iΩn with n ≥ 0. For real Ω, (3.237) still holds. We can use this additional
symmetry to reduce the computational demand for a fixed Ω.

Another practical symmetry from the exchange of the two particles is

χσσ
′

iµ,iν (iΩn) = χσ
′σ

iν,iµ ((iΩn)) . (3.239)

For the paramagnetic case we have in addition

χσσ
′

iµ,iν (iΩn) = χσσ
′

iν,iµ (iΩn) . (3.240)

Figure 3.23 visualizes this paramagnetic case for a fixed Ω. While the symmetry due to
equation (3.240) holds for all Ω ∈ C (red line) the one represented by the green line only
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Figure 3.23.: Symmetries of vertex and two-particle Green’s function for a fixed Ω. All
matrices obey the symmetry shown by the red line where the green line
only applies to the Ω ∈ R case. Hence, for Ω ∈ R only the light-orange
triangle needs to be calculated whereas in the general case the upper
half (yellow + orange triangle) is needed.

applies to real Ω (see equation (3.238)). Thus, for real Ω all we need to calculate is one
of the triangles spanned by a red and green line (for instance the light orange one).

Figure 3.24 contains exemplary matrix plots for the two-particle Green’s function

χzziµ,iν (Ω) =
1

2

(
χ↑↑iµ,iν (Ω)− χ↑↓iµ,iν (Ω)

)
, (3.241)

for bosonic Matsubara (left column) and real frequencies (right column). The colors
encode the logarithm of the modulus. Comparing with figure 3.23 we see that the
symmetries are indeed satisfied.

The region of largest modulus is concentrated around µ ≈ ν ≈ 0 for Ω ≈ 0. Increasing
Ω along the imaginary axis we find that the weight splits into two parts. One remains
at µ ≈ ν ≈ 0 while the other moves along the diagonal in negative direction. These two
strong areas along the diagonal define a cross of less pronounced features, whose bars
become the broader the larger n. Formally, the vertices are infinitely large matrices and
this shift does not cause problems. Technically, however, we can only treat finite matrix
which should be only as large as necessary due to the computational cost of evaluating a
matrix element. To capture more of the important part of the vertex we use “roaming
vertices”. These are vertices moved by a bosonic Matsubara frequency such that the
region of largest modulus remains in the center of the matrix. This is done by shifting
with −Ωbn/2c restoring the symmetry Mi,j = M∗

−i,−j exactly for even n.
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Ω = iΩ1

Ω = iΩ10

Ω = 1

Ω = 4

Figure 3.24.: Log plot of the modulus of χzziµ,iν (Ω) for bosonic Matsubara (left) and
real frequencies (right). Example system is a 2-dimensional Hubbard
Model (U = 4.2, half-filling, t = 0.43, t′ = 0.3t, Nb = 4). Obviously
the symmetries from figure 3.23 are respected. For real frequencies the
region where the modulus is the largest remains in the center, whereas
it splits and moves in the case of Matsubara frequencies breaking the
symmetry Mi,j = M∗−i,−j .
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3.3.4. Overview of the Actual Calculation & Tests

Having the two-particle Green’s function χlocσσ′
iΩn

, the generalized Q-dependent lattice
χ0
Q,iΩn

, and local bubble χloc 0
iΩn

we can evaluate the spin-spin and charge-charge dynamical
lattice correlation function

χ
zz/cc
Q (iΩn) =

∑

iν iµ

[
χ
zz/cc
Q,iΩn

]
iν iµ

, (3.242)

where [
χ
zz/cc
Q,iΩn

]−1

=
[
χ

0
Q,iΩn

]−1

−
[
χ

loc 0
iΩn

]−1

+
[
χ

loc zz/cc
iΩn

]−1

, (3.243)

and [
χ

loc zz/cc
iΩn

]
=

1

2

{[
χloc ↑↑

iΩn

]
∓
[
χloc ↑↓

iΩn

]}
. (3.244)

Since we have the general analytic formulæ for all ingredients we could imagine that a
direct evaluation on the real axis was possible. However, it turns out we run into similar
problems already encountered for continuing the bubble in section 3.1.9.

While the ingredients are properly defined in the entire complex plane the summation
in equation (3.242) impedes the continuation. Hence, we again have to resort to the Padé
method introduced in section 3.1.9.1.

From our previous work on Padé we know that the accuracy of the input data is crucial
for a reliable analytic continuation. Therefore, we need means to assess the quality of
our simulation and a well-defined test system where we can directly compare to correct
results. Obviously such a procedure also tests the correctness of the implementation for
the two-particle Green’s functions.

Test Procedure To that end, we calculate the local spin-z susceptibility. Its real- and
Matsubara frequency version are directly accessible from the exact diagonalization solver
using equation (3.65) with operators O1 = O2 = Szimp. These results are labelled “exact”
from here on. The local spin-z susceptibility can also be calculated by summing over the
fermionic Matsubara frequencies in (3.244). Using the trivial identity

[
χ

loc zz/cc
iΩn

]−1

=
[
χ

loc 0
iΩn

]−1

−
[
χ

loc 0
iΩn

]−1

+
[
χ

loc zz/cc
iΩn

]−1

, (3.245)

we can test the framework and all ingredients: the two-particle Green’s function (3.230a-
3.230d), its evaluation (3.224), the unconnected local bubble, and the Matsubara sum-
mation (3.242) over the finite roaming matrices. Thus, we check the entire simulation
except for the lattice propagator part χ0

Q,iΩn
.

Direct Analytic Continuation Evaluating (3.242) for z = Ω + iη indeed verifies that
the mixed representation with Ω being real and iν, iµ Matsubara frequencies does not
give proper physical results. The problem is caused by the summation over Matsubara
frequencies, where spurious additional poles in complex plane are generated (cf. section
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Figure 3.25.: Mixed approach for local spin-z susceptibility in a 3-dimensional periodic
Anderson model with (V = 0.3, U = 1.0, t = 1.0, β = 100, Nb = 3 and
filling 〈nimp〉 = 0.88). We indeed find that the summation in (3.242)
impedes the analytic continuation, since it implicitly generates spurious
poles in the complex plane (cf. 3.1.9). These manifest themselves as
poles with negative weight. Surprisingly, the general peak structure is
restored regardless.

3.1.9). Figure 3.25 shows the outcome of this mixed approach (green curve) in comparison
to the exact result (red curve).

Surprisingly, the peaks are reproduced quite well at first glance. However, a closer anal-
ysis shows stable negative and therefore unphysical spectral weight (see inset). Moreover,
we cannot systematically improve the results.

Evaluation Technique To use the Padé method we need the Matsubara susceptibility
as accurately as possible. The main and foremost accuracy problem arises from the finite
matrix size. To overcome this problem we employ the roaming vertex scheme introduced
in section 3.3.3. Since the shift is only exact for even Matsubara frequencies we only
take those into account. In addition, we perform the calculation of equation (3.242) for
different matrix sizes and extrapolate to infinite matrix dimensions. For a fixed Matsubara
frequency, an example extrapolation is shown in figure 3.26 for a 5-dimensional periodic



194 Dynamical Lattice Susceptibilities from DMFT

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035

C
hi

lo
c (i 

10
)

inverse matrix dimension

cubic fit
exact

Figure 3.26.: Extrapolation to infinite matrix dimension for the tenth Matsubara
frequency of the local spin-z susceptibility in a 5-dimensional periodic
Anderson model with V = 0.8, t = 1.0 and U = 4.2 and 〈nimp〉 = 0.88.
The green dot denotes the exact result from ED. For matrix dimensions
32-256 we find a deviation from the exact result of about 1.4%; For
32-2048 it is 0.4%.

Anderson model with V = 0.8, t = 1.0 and U = 4.2 and 〈nimp〉 = 0.88. The green dot
denotes the exact result as derived from an exact diagonalization. We fit the data of
different matrix sizes with a cubic function and extrapolate. For matrix dimensions 32-256
we find a deviation from the exact result of about 1.4%. For dimensions 32-2048 the
extrapolation improves giving a deviation of about 0.4%. For smaller U smaller matrices
suffice. For instance, when U = 0.5 we find for the same range of matrix dimension a
deviation of about 0.02%. For U = 0 the matrix is diagonal.

In our production implementation we evaluate (3.242) for matrix sizes Dmax − n ·Dstep,
where Dmax gives the maximal matrix size (e.g. Dmax = 2048), n usually runs from
n = 0→ 10 and Dstep denotes the step size (e.g. Dstep = 32).

Since the extrapolations work so well, we also consider higher than cubic fits. Figure
3.27 shows the relative deviation for higher-order polynomial extrapolation from the
exact result. The colors red/green/blue/magenta encode third-/forth-/fifth-/sixth-order
polynomials. Indeed we find that the higher the order the better the extrapolation. This
is quite a remarkable result, as the accuracy improves by about 3 orders of magnitude
when going from Dmax = 512 (squares) to Dmax = 2048 (triangles). For Dmax = 2048
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Figure 3.27.: Relative deviation of different extrapolation orders to the exact result
for the local spin-z susceptibility in a 3-dimensional periodic Anderson
model (model S) with V = 0.25, t = 1.0 and U = 1.2, εimp = −0.4
and 〈nimp〉 = 0.95. The colors red/green/blue/magenta encode third-
/forth-/fifth-/sixth-order polynomials. Squares and triangles denote
matrices with Dmax = 512 and Dmax = 2048, respectively. For the
squares higher-order extrapolations clearly lead to smaller deviations.
For cubic polynomials the larger vertices give results better by about 3
orders of magnitude.

higher-order extrapolations, however, seem to become problematic. For these matrices we
obtain the best results for a forth-order extrapolation.

Padé and Stability Analysis Using only even bosonic Matsubara frequencies and
setting the imaginary part of the input data to exactly zero (cf. the discussion in section
3.1.9.1) we perform the Padé analytic continuations and compare with the exact results.
From figure 3.27 we know that the error in the Matsubara correlation functions increases
with iΩ. We therefore have to find a trade-off between the error introduced and information
gained by using more frequencies. Technically we employ the Padé method for many
different tuples and then take a robust representative curve. For our tests here we choose
N = 17 and N = 19.

The plots in figure 3.28 present our findings for matrices of dimension 2048 (upper
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Figure 3.28.: Analytically continued local spin-z susceptibility based on equation
(3.242) for a 3-dimensional periodic Anderson model (model S) with
V = 0.25, t = 1.0 and U = 1.2, εimp = −0.4 and 〈nimp〉 = 0.95. The color
codes are consistent with figure 3.27. The matrix sizes are Dmax = 2048
(upper plot) and Dmax = 512 (lower plot). Even though the absolute
deviation for the higher-order polynomials is smaller, the results from
an extrapolation based on cubic polynomials give consistently better
results (see text).
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Figure 3.29.: Analytically continued local spin-z susceptibility from figure 3.28 for the
cubic polynomial extrapolation with artificially noisy data (uniform noise
with amplitude 5 · 10−8) to assess the stability of the peaks. We find that
the low-energy peak is very stable. The second peak is stable enough to
determine its position roughly, whereas extracting the Q-dependence
reliably requires calculations at higher accuracy.

plot) and 512 (lower plot). The colors of the curves coincide with the definitions used in
figure 3.27.

Interestingly, we find that the extrapolation using cubic polynomials consistently gives
the best results, even though their relative error (cf. figure 3.27) is significantly larger
compared to all the other extrapolations. Obviously, an improvement in the absolute
deviation itself does not automatically lead to better results after the Padé method’s
black magic. We also see that the continuation for both matrix sizes agrees very well
with the exact result. Interestingly, the continuation based on the smaller vertex gives
slightly more accurate data. Both capture the two predominant peaks well but miss the
small high-energy feature at about Ω = 1.1. Higher-order extrapolations only describe
the low-energy peak except for the sixth-order vertex of dimension 2048. It even fails to
reproduce this peak. This is, however, not surprising when we take its strongly fluctuating
relative error in figure 3.27 into consideration. Hence, we will use cubic polynomials for
the extrapolation from here on.

In order to assess the stability of the analytic continuation we add a small noise on
top of the Matsubara input data. The noise is an additive uniformly distributed random
variable fluctuating between ±5 · 10−8. Figure 3.29 gives the results where curves of



198 Dynamical Lattice Susceptibilities from DMFT

like color denote random numbers from different seeds. Under this perturbation the
low-energy peak remains stable and therefore can be considered a reliable result even if
we had no exact (black) result to compare to. The robustness of this feature stems from
the large weight of the peak and, more importantly, its proximity to the real axis. The
peak at Ω ≈ 0.27 is significantly less stable as mentioned before. While its position can
be roughly determined, the weights and consequently the Q-dependence is not resolved
reliably.

To actually discriminate the good and stable from the bad unstable peaks we need a
lot of tests and a thorough stability analysis. The Padé method can give surprisingly
accurate results. However, constant vigilance against this magical method is important.

Lattice Susceptibility We apply the aforementioned evaluation and stability assessing
techniques also to the dynamical lattice susceptibility. For the necessary Brillouin zone
integrations we employ a Monkhorst and Pack [118] k-grid yielding more accurate data.
Since absolute errors alone do not necessarily improve the analytic continuation we also
try to minimize systematic and fluctuating errors. To that end, we choose all vectors in
the lattice bubble to be commensurate with the k-grid.
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3.4. Application to the 3-dimensional Periodic Ander-

son Model

As an application of our method we evaluate the lattice response functions for the 3-
dimensional periodic Anderson model with next-neighbor hopping. The dispersion relation
for the conduction electron reads

εk = −2t
∑

i=x,y,z

cos(ki) , (3.246)

where we set t = 1. Consequently, their bandwidth is 12. For the Brillouin zone integral
we employ a Monkhorst-Pack (1/2, 1/2, 1/2)-shift in units of the k-mesh.

Table 3.2 provides all periodic Anderson model parameters as well as the self-consistent
DMFT results for the associated Anderson impurity model. The corresponding impurity

Table 3.2.: PAM and self-consistent AIM bath parameters
model S
t 1.000
U 1.200
V 0.245
εp 0.000
εf −0.400
β 500
µ −0.241
boltz 10−6

α 2.0
#k 48
V1 / ε1 0.0409/−0.0548
V2 / ε2 0.0117/ 0.0003
V3 / ε3 0.0430/ 0.0616
〈n〉 0.95

and PAM Green’s functions are presented in figure 3.30.
We see that the self-consistency condition Gimp = Gff is satisfied quite well. Moreover,

the c-electron Green’s function closely resembles the 3-dimensional density of states. Only
at the excitation energies of the f -electrons we find significant dips originating from the
relatively small hybridization V .

Dynamical Local Susceptibilities From this self-consistent solution for the associ-
ated Anderson Impurity Model we calculated the local two-particle Green’s function and
perform the stability tests already presented in the previous section. We find that the
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Figure 3.30.: Impurity (blue curve), f -electron (green curve), and c-electron (red
curve) Green’s functions for the model of table 3.2. We find hardly
any deviation between the f -electron and impurity Green’s function
(self-consistency condition). The c-electron Green’s function is close to
the 3-dimensional DOS and significantly deviates only at the pronounced
excitation energies of the f -electrons. The impurity/local quantities
have been scale by a factor of 4 for display purposes.

first pronounced feature (at about Ω = 0.1) in the local spin-z susceptibility is reliable.
The existence of a second feature is also confirmed. However, neither its weight nor its
exact position can be reliably determined with the current accuracy. With larger and
more accurate vertices we could also converge this feature requiring, however, even higher
computational efforts.

Due to the small hybridization we expect the vertex correction to the lattice bubble to
be similar to the vertex correction to the impurity bubble. A comparison of both impurity
functions is given in figure 3.31. We see that the impurity bubble being evaluated on the
Matsubara axis can be reliably continued (red curves). This is even true for the high-
energy feature at about Ω = 1.25. We observe a strong effect of the vertex correction. The
high-energy feature is completely suppressed in the local susceptibility. In the low-energy
range we find a redistribution from the second peak at about Ω = 0.27 to the first when
correcting χloc

0 obtaining χloc.
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Figure 3.31.: Local susceptibility χloc
0 (red curves denote different number of Mat-

subara frequencies) and χloc (black, ED data) for the model of table
3.2. We find that the Padé analytic continuation for χloc

0 works reliably
even for the high energy peak. The effect of the vertex correction is
to (a) suppress this high-energy peak and to redistribute weight in the
low-energy range (inset). There weight from the second peak at about
Ω = 0.27 is shifted to the first one. For the lattice susceptibility we
expect a similar process to happen due to the small V .

Dynamical Lattice Susceptibilities The only difference that puts the simulation for
different models apart from one another is the self-consistency condition of DMFT and
the Q-dependent lattice bubble χ0

QiΩ (iν) given by equation (3.216)

χ0
Q iΩn (iν) = − 1

Nk

∑

k

G (k, iν)G (k +Q, iν + iΩn) . (3.247)

For the periodic Anderson model we use the lattice f - electron Green’s function

G (k, iν) = Gff (k, iν) =

(
Gimp (iν) + ∆ (iν) +

V 2

iν + µ− εk

)−1

. (3.248)

Figure 3.32 gives the stability analysis from the bubble with respect to different number
of tuples. We observe the usual picture: The low-energy peaks are resolved well, whereas
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Figure 3.32.: Lattice bubble for the f -electrons of different Q = q · (π, π, π)t vectors
for the model of table 3.2, where the colors denote approximants for
differentN . We find good agreement with the local bubble χloc

0 . However,
here the high-energy peak is not as stable. The lower one is reliably
reproduced.

the high-energy peak shows quite a bit of fluctuation. Agreement with the local bubble
χloc

0 is good, as we have already expected due to the small hybridization.

From these building blocks we obtain the charge-charge and spin-spin lattice susceptibil-
ity. Figure 3.33 shows the stability analysis with respect to different tuples for these two
susceptibilities, where the charge susceptibility is in the upper and the spin in the lower
plot. We find that the most pronounced feature is stable in both susceptibilities. The
small peak in the charge susceptibility, albeit at lower energies, is not so well-converged.
The general structure is similar to the local susceptibility. Also for these two lattice
correlation functions the peak at 1.25 is suppressed and weight is redistributed in the
low-energy region.

To better assess the stability in this region we choose theN = 29 tuple Padé approximant
and add uniformly distributed noise of amplitude 5 · 10−8 (see figure 3.34). We find that
the first peak of the SzSz-correlation function remains stable. It is a reliable result. For
the dominant (second) peak in the charge response function we observe small fluctuations.
For the q = 7/8 k-vector the deviation can be quite strong. Moreover, the first peak is
hardly converged at all.

Finally, figure 3.35 presents the unperturbed results with N = 29 for the low-energy
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Figure 3.33.: Stability analysis w.r.t. the number of tuples N for the charge (upper
plot) and spin (lower plot) dynamical lattice susceptibility of the f -
electrons at different Q = q · (π, π, π)t vectors for the model of table 3.2.
We find that for both functions the dominant feature is well-converged.
For the charge susceptibility this is the second peak, while the first
one still shows some fluctuation. For the spin susceptibility the first
coincides with the one carrying the largest weight. At higher Ω the
continuation becomes unreliable.
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Figure 3.34.: Stability analysis w.r.t. additional uniform noise (amplitude 5 · 10−8)
for the charge (upper plot) and spin (lower plot) dynamical lattice
susceptibility (model of table 3.2) in the low-energy region. While the
first peak of the spin susceptibility remains stable and can be considered
a reliable result, this is not true for the charge susceptibility. The
dominant (second) feature is relatively stable except for q = 7/8.
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Figure 3.35.: Stable dispersion of dynamical lattice susceptibility for charge (upper
plot) and spin (lower plot) of the f -electrons at differentQ = q · (π, π, π)t

vectors for the model of table 3.2. For χzz we find that the first peak
gains weight for higher Q. The second peak is not stable enough for
reliably extracting the Q-dependence. For χcc we can merely determine
a rough estimation for the peaks position, while the weights are not
sufficiently well converged.
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region. Different colors denote different Q vectors. For the charge correlation functions we
merely obtain the rough positions of the excitation energies. As seen in the previous tests
their weight is also not sufficiently well converged at the current level of accuracy. The
spin susceptibility, on the other hand, not only gives accurate positions but also stable
weights. We observe a reliable Q-dependence in the pronounced first peak. Located at
about Ω = 0.05 it becomes the more pronounced the larger q.

3.5. Summary

We now have means to obtain lattice susceptibilities for strongly correlated model systems
within the DMFT framework. Even tough we studied the periodic Anderson model as
an application, the method is directly generalizable to other models – for instance the
Hubbard model. The computations are challenging from the computing perspective and
can put thousands of processors to good use. The current bottleneck of the simulation is,
however, the analytic continuation. Using the Padé method requires plenty of checks and
tests to assess whether its results are reliable or not. We found that even higher accuracy
data does not necessarily improve the results. The calculations still have to be tested
carefully using the stability analysis we have introduced. In so doing, we are able to tell
reliable structures from unstable artefacts of the Padé method.



Summary

Seeking an understanding of one of the most challenging classes of matter, strongly-
correlated systems, we try to simulate and predict the interesting processes found in
experiments for these compounds. As strongly correlated systems are very sensitive to
perturbations, it is of key importance to reliably calculate the corresponding response
functions. In this thesis we tackled the problem from two different perspectives: the
construction of appropriate models (chapters 1 and 2) and the actual evaluation of lattice
response functions (chapter 3).

We devised a method for deriving realistic material-specific parameters for a description
of organic molecular crystals in terms of a generalized Hubbard model. The main problem
is to properly evaluate the screening of the bare Coulomb integrals. For this we take
a three-step route. In the first chapter we deal with the screening contributions of all
molecules. Clearly, an approach based on quantum mechanics is infeasible – even for the
most powerful supercomputers. Hence, we develop a classical electrostatic method which
effectively describes a non-polar molecular crystal (with localized charge distributions
at the lattice sites) in terms of a microscopic (polarizable) point-dipole model (MPDM).
Within this model we show how to obtain the arrangement of dipole moments and the
energy corrections due to screening. In one- and two-dimensional systems we find exotic
screening and anti-screening effects, which we can understand in terms of an anti-screening
volume argument.

In chapter 2 we discuss the actual method for the derivation of the realistic parameters.
We start by constructing a model crystal from unit cells determined by X-ray diffraction
experiments. Replacing the molecules in the experimental unit cell by DFT relaxed
structures we obtain a well-defined crystal structure. Using FHI-aims we evaluate
the hopping parameters as well as the bare- and intra-molecularly screened Hubbard
parameters. With a dimer approach the hopping-matrix elements can be directly evaluated
from the bonding/anti-bonding splitting of the highest-occupied (donor molecule) or
lowest-unoccupied (acceptor molecule) molecular orbital. The bare Coulomb integrals
readily follow from density integrations of the molecular orbital. This is the conceptually
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first step in our three-step renormalization procedure. Second, to take the Coulomb
parameter renormalization due to the electrons inside the molecules into account, we
charge a single molecule (for U0) or a dimer (for V0), where the energetic response due to
the relaxation of the orbitals gives the screening. In the third step we use the MPDM
developed in chapter 1.

Applying this procedure to two compounds, TTF-TCNQ and (BEDT-TTF)2I3, we
obtain a realistic set of model parameters. Typical of organic crystals, we find relatively
small hopping-matrix elements in comparison to the screened Coulomb integrals. For the
local Hubbard-U screening is most pronounced, reducing the value to about 30% of the
bare integral. Our results for TTF-TCNQ put early estimates given by Hubbard on a solid
footing. For both materials we find that the next-neighbor interaction, which is usually
neglected in Hubbard model calculations, has a sizable contribution. In (BEDT-TTF)2I3

its values are roughly 40% of the effective Hubbard-U , whereas in TTF-TCNQ it even
is about 65%. Evidently, for both longer-range Coulomb interactions should not be
neglected.

For TTF-TCNQ we show that the inclusion of V is key to solving a long-standing
problem: In former treatments of TTF-TCNQ using the t-U Hubbard model the hopping-
matrix element t had to be twice as large as the calculated value in order to match
experiments. Including V , we show that its effect is a simple broadening of the spectrum,
mimicking the doubling of 2t. We could also exclude the presence of Hubbard-Wigner-
type states suggested by Hubbard. Moreover, using the correct hopping t puts the
temperature scale TJ , below which signatures of spin-charge separation are found, into
ranges consistent with experiment. For both systems, (BEDT-TTF)2I3 and TTF-TCNQ,
we find that sufficient pressure should lead to interesting phenomena. In the former
uniaxial pressure might significantly change the t/V -ratio due to its strong dependence
on molecular orientations. In TTF-TCNQ hydrostatic pressure should drive the system
even closer or across the ferroelectric instability.

Having determined the parameters of the model Hamiltonians we now strive for an
understanding of the processes inside these systems. We therefore need a solution to
the Hamiltonian and, for comparison with experiment, dynamical lattice susceptibilities.
Both problems prove to be difficult.

One of the most successful techniques to tackle these models is dynamical mean-field
theory (DMFT), where the lattice Hamiltonian is self-consistently mapped onto an artificial
single-impurity Anderson model. By construction this gives a good approximation to local
correlations and direct access to local quantities such as the self-energy and susceptibilities.
With the self-energy we can readily obtain the lattice Green’s function employing the
Dyson equation. Lattice susceptibilties are, however, more complicated and cannot be
built from the knowledge of the self-energy alone.

We solve this problem by deriving the local vertex function, which is based on the
two-particle Green’s function of the impurity. From this function and the impurity
and lattice particle-hole bubbles we can then, in a Dyson-like way, evaluate the lattice
susceptiblities. However, the two-particle Green’s function is a very complex quantity
which is cumbersome to evaluate. It is constructed by four field-operators acting at, in
general, four different times. Assuming time translation invariance and paramagnetism it
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is a quantity of three frequency and two spin arguments – still, a challence to evaluate
and process. Even with small numbers of bath sites we can easily make efficient use of
thousands of processors of the latest supercomputers.

An advantage of the procedure is that it easily generalizes to other model Hamiltoninans,
since it only relies on the solution of the DMFT Anderson impurity model and lattice
Green’s function.

A direct analytical continuation of lattice susceptibilities to the real-frequency axis
was not possible. Hence, we resort to the Padé approximants to continue the Matsubara
susceptibilities to the real axis. For this to work reliably we need these functions as
accurate as possible. Since in numeric calculations the vertices need to be finite matrices
we perform the calculations for different matrix dimensions and extrapolate to the infinite-
size limit. Moreover, noticing that the region of largest modulus moves within the
complex frequency plane we introduced a ”roaming vertex” scheme, to capture this most
pronounced region. This enables us to reliably use the Padé method and extract robust
susceptibilities on the real axis. As an application we choose a three-dimensional periodic
Anderson model, where we resolve the low-energy Q-dependence of the spin-spin and
charge susceptibility.
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In 1921 Peter Ewald published a fast and flexible summation procedure for calculating
the total electrostatic energy of a lattice which works for arbitrary crystal structures [7].
The slowly converging sum is recast into two rapidly converging parts, one in real space
and one in reciprocal space, and additional terms.

In this appendix we will derive a generalized version of the Ewald summation due to
Bertraut for the total electrostatic energy of a lattice. For more information on extensions
and further generalizations of this method refer to the work of Toukmaji and Board [119].

A.1. Generalized Derivation of the Ewald Summation

Thirty years after Ewald’s publication Bertraut [120] derived a generalization of the method
elegantly expounded in [16]. We start with the calculation of the total electrostatic energy
Etot of a lattice of point charges qj located at rj = Ri +xh, where the Ri form a Bravais
lattice and the xh denote the vectors to the basis in the unit cell. Hence, j = (i, h) is a
multi-index. We can write the electrostatic energy as

Etot = Einter + Eself , (A.1)

where we also included the (infinite) self-energy for reasons becoming clear later.
As a consequence of Gauss’s theorem we can replace the point charges with non-

overlapping spherical charge densities σj, which only need to obey the normalization
condition ∫

d3x σ(|x|) = 1 . (A.2)
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Thus, the total charge density is

%(x) =
∑

j

qjσ(x− rj) . (A.3)

Due to the translational invariance with respect to the lattice vectors Ri, it is practical
to transform the charge density in reciprocal space. We obtain

%(r) =
∑

g

%g exp (ig · r) , (A.4)

where

%g =
1

Vcell

∫

Vcell

d3r %(r) exp (−ig · r) = SgΦg (A.5)

and

Sg =
∑

h∈cell

qk exp (−ig ·xh) (A.6)

Φg =
1

Vcell

∫

Vcell

d3r σ(r − rj) exp (−ig · (r − rj)) . (A.7)

Sg takes the role of the structure factor, whereas Φg is similar to the atomic form factor
from the basic theory of diffraction. Hence, we can rewrite

Etot =
1

2

∫

R3

d3r d3r′
% (r) % (r + r′)

|r′|
(A.8)

as a sum in reciprocal space:

Etot = 2πVcell

∑

g

|%g|2

g2
= 2πVcell

∑

g

|Sg|2 |Φg|2

g2
. (A.9)

Inserting the σ-representation of %(r), equation (A.4), we obtain the equivalent description

Etot =
1

2

∑

ij

qiqj

∫

R3

d3x d3y
σ(x− rj)σ(x+ y − ri)

y
. (A.10)

Using the convolution theorem in the form f ∗ g = F−1 (F(f) · F(g)) we get

Etot =
V 2

cell

π

∑

ij

qiqj
rij

∫ ∞

0

dk
|Φk|2

k
sin (krij) , (A.11)

where rij = ri − rj. To get the electrostatic self-energy we set rij → 0 and obtain

Eself =
V 2

cell

π

∑

i

q2
i

∫ ∞

0

dk |Φk|2 . (A.12)
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Obviously the interaction energy evaluates to

Einter = Etot − Eself (A.13)

=
V 2

cell

π

∑

ij

qiqj
rij

∫ ∞

0

dk
|Φk|2

k
sin (krij)−

V 2
cell

π

∑

i

q2
i

∫ ∞

0

dk |Φk|2 , (A.14)

or equivalently with equation (A.9)

Einter = 2πVcell

∑

g

|Sg|2 |Φg|2

g2
− V 2

cell

π

∑

i

q2
i

∫ ∞

0

dk |Φk|2 . (A.15)

Next we allow the spherical charge densities σ(x) to overlap. As a result we need to add
a correction term C to the interaction energy formula (A.15). Equation (A.14) enables
us to evaluate this correction

C =
1

2

∑

ij

qiqj
rij

[
1− 2V 2

cell

π

∫ ∞

0

dk
|Φk|2

k
sin (krij)

]
. (A.16)

For the interaction energy we therefore obtain

Einter =
1

2

∑

ij

qiqj
rij

(A.17)

= 2πVcell

∑

g

|Sg|2 |Φg|2

g2
− V 2

cell

π

∑

i

q2
i

∫ ∞

0

dk |Φk|2 + C . (A.18)

Hence, the potential of atom h at xh in the unit cell is

V (xh) =
∂

∂qh
Einter

= 4πVcell

∑

g

S̃g |Φg|2

g2
− 2qhV

2
cell

π

∫ ∞

0

dk |Φk|2

+2
∑

s

qs
|Rs − xh|

[
1− 2V 2

cell

π

∫ ∞

0

dk
|Φk|2

k
sin (k|Rs − xh|)

]
, (A.19)

where

S̃g =
∑

s∈cell

qs exp (ig(xs − xh)) . (A.20)

The actual choice of the charge distribution Φ(k) is arbitrary. If we take the Gaussian
charge distribution Φ(|k|) = exp (−k2/4π2η2) /Vcell, we obtain Ewald’s method.
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A.2. Ewald Summation for the Dipole Matrix

A general derivation of Ewald’s method applied to lattices of point-dipoles in arbitrary
dimensions is given in [121]. Cohen and Keffer applied this technique to three dimensions
[122]. It has been extended for systems with non-trivial unit cells in a work of Bowden
and Clark [123].

The general ansatz is to calculate the series in

Γµν(k) = ∇µ∇ν
1

N

∑

j 6=i
e−ik · rij 1

|rij|
(A.21)

analytically by the Ewald method and then perform the derivatives. With τmn = xm−xn,
i.e. the vector from atom m to atom n in the unit cell, this gives for the µ-ν components

Γmnµν (k) =− 4π

Vcell

kµkν

k2
exp

(
− k2

4η2

)

− 4π

Vcell

∑′

g

(gµ + kµ) (gµ + kν)

|g + k|2
exp

(
−|g + k|2

4η2
− g · τmn

)

+
∑′

i

exp (ik · (Ri + τmn)) Eη
µν (Ri + τmn) +

4η3

3
√
π
δµνδmn ,

(A.22)

where

Eη
µν (ri) =

2η exp (−η2r2
i )√

πr2
i

((
3 + 2η2r2

i

) rµi rνi
r2
i

− δµν
)

+

(
3
rµi r

ν
i

|ri|5
− δµν
|ri|3

)
erfc (η|ri|) ,

(A.23)

erfc denotes the complementary error function

erfc(x) = 1− erf(x) = 1− 2√
π

∫ x

0

dζ exp(−ζ2) , (A.24)

and η is the Ewald parameter. It determines the pace of convergence. η ≈ 2/λ usually is
a good choice, where λ is a characteristic length of the unit cell.

A close look at the first term in equation (A.22) shows that it is non-analytical at
k→ 0. Let us assume a simple cubic structure. If we approach the Γ point from different
directions in the k1k2-plane, i.e. k → 0 for k = k(cosφk1 + sinφk2), we obtain for the
k1, k1-component of the first term in (A.22)

I11(φ)
|k|→0

= −4π

Vc
cos2 φ . (A.25)

Thus, by changing the direction this term assumes all values in the interval [−4π/Vc, 0].
However, diagonalization of the full I matrix yields eigenvalues −4π/Vc and 0 for all
values of φ, leading to a continuous “band structure” as in figure 1.3.
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Likewise, the second term is non-analytical when k approaches a reciprocal lattice
vector g. We also like to mention that the terms converge indeed rapidly due to the
Gaussians and the complementary error functions.

Note that for the distributed dipole approach (DDA) used to treat the organics in
chapter 2 the dipoles within a molecule do not polarize each other. Equation A.22
treats all dipoles on equal footing. Hence, for the DDA we need a correction term which
subtracts the dipole-dipole interaction within the molecules. Introducing the notation Mi

where M denotes the molecule and i enumerates its atoms and likewise for Nj we obtain

DDAΓMiNj
µν (k) = ΓMiNj

µν (k)− exp (ik · τ ij) δMN

3 τijµτijν − δµντ 2
ij

τ 5
ij

. (A.26)

For Coulomb matrix elements in systems with non-isotropic polarizability it is more
practical to diagonalize

DDAΓ̃MiNj
µν (k) = [α−1]MiNj

µν δMNδij − DDAΓMiNj
µν (k) (A.27)

instead of DDAΓ
MiNj
µν (k). In this formulation the zeros of the eigenvalues give rise to the

instabilities. α
MiNj
µν denotes the components of the polarizability tensor for atom i of

molecule M .

A.3. Results for Body- and Face-Centered Cubic Lat-

tices

Here, we give some example results for simple lattices with a single dipole per unit cell.
The “band structure” of the dipole-dipole matrix in a simple cubic crystal is plotted in
figure 1.3 of section 1.1.4. The eigenvalues for the body centered cubic (bcc) crystal and
the face centered cubic (fcc) crystal are shown in figures A.1 and A.2, respectively.
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Figure A.1.: γk as a function of k of the dipole-dipole interaction matrix Γ for a body
centered cubic (bcc) lattice of polarizable point dipoles. The largest
eigenvalue resides at the Γ-point. It is also given by the Clausius-Mossotti
relation (green lines).
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Figure A.2.: γk as a function of k of the dipole-dipole interaction matrix Γ for a
face centered cubic (fcc) lattice of polarizable point dipoles. The largest
eigenvalue resides at the Γ-point as predicted by the Clausius-Mossotti
relation (green lines). For the definition of the high-symmetry points
see, for instance, [11, page 703].
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Euler Angles

B.1 General Introduction . . . . . . . . . . . . . . . . . . . . . . .217

B.2 Extracting Euler angles . . . . . . . . . . . . . . . . . . . . . .219

B.1. General Introduction

In order to determine the orientation of a rigid body in three-dimensional space relative
to a standard orientation, we need three angles, the Euler angles. A general rotation
R can be split into three distinct elemental rotations determined by the three angles
R(α, β, γ) about three different axes, i.e.

R(α, β, γ) = Ra(α)Rb(β)Rc(γ) , (B.1)

where the greek symbols denote the Euler angles and the latin vectors the rotation axes.
For the three Cartesian axes the rotation matrices read

Rx(ξ) =




1 0 0
0 cos (ξ) sin (ξ)
0 − sin (ξ) cos (ξ)


 , (B.2)

Ry(ξ) =




cos (ξ) 0 − sin (ξ)
0 1 0

sin (ξ) 0 cos (ξ)


 , (B.3)

Rz(ξ) =




cos (ξ) sin (ξ) 0
− sin (ξ) cos (ξ) 0

0 0 1


 . (B.4)

For a given orientation the Euler angles obviously depend on the choice of the rotation
axes. There is no unique choice and one can choose from 12 different conventions. In this
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Figure B.1.: Visualization of Euler angles following the (Z, Y ′, Z ′′) convention. The
original coordinate system is plotted in blue, the final in red.

work we use the (Z, Y ′, Z ′′) convention (see for instance Tinkham [124]), since it is the
most common in quantum physics of atoms and molecules. It states

R(α, β, γ) = RZ′′(γ)RY ′(β)RZ(α) . (B.5)

We start from an initial coordinate system which is space-fixed. It is plotted in blue
color in figure B.1. First, we rotate the object about the z axis by an angle 0 ≤ α < 2π
described by matrix (B.4). In a coordinate system fixed to the body the Y -axis is thereby
transformed to eY = Rz(α)ey which is plotted in green. It serves as the second axis of
rotation with the second Euler angle 0 ≤ β < π. We obtain a new body-Z axis Z ′′, i.e.
eZ′′ = RY ′(β)Rz(α)ez, which with 0 ≤ γ < 2π determines the final rotation into the final
orientation (see red coordinate system in figure B.1).

Since we know the rotation matrices for the space-fix axes it is desirable to express
RZ′′(γ) and RY ′(β) in terms of these. This is simple because

RY ′(β) = Rz(α)Ry(β)R−1
z (α) (B.6)

and similarly
RZ′′(γ) = RY ′(β)Rz(γ)R−1

Y ′(β) . (B.7)

Using equations (B.6), (B.7) and RZ(α) = Rz(α) we may rewrite equation (B.5)
yielding

R(α, β, γ) = RZ′′(γ)RY ′(β)RZ(α) = Rz(α)Ry(β)Rz(γ) . (B.8)
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In the most right-hand term all rotations refer to fixed-axes. Inserting the matrices we
obtain R(α, β, γ) =




cos (α) cos (β) cos (γ)− sin (α) sin (γ) cos (α) cos (β) sin (γ) + sin (α) cos (γ) − sin (β) cos (α)

− sin (α) cos (β) cos (γ)− cos (α) sin (γ) − sin (α) cos (β) sin (γ) + cos (α) cos (γ) sin (α) sin (β)

sin (β) cos (γ) sin (β) sin (γ) cos (β)


 .

With the restrictions for the angles the Euler angles are uniquely determined in general.
There is, however, an exception for β = nπ, where n = 0, 1, 2, · · · , which describes a pure
rotation about the z axis with angle α + γ. This situation is referred to as gimbal lock.

B.2. Extracting Euler angles

Imagine we have a general rotation matrix and we would like to extract the Euler angles –
For instance to obtain the relative orientations of two objects in space.

From the element R2,2 = R2,2(α, β, γ) 1 we directly obtain the angle β = arccos(R22).
If β = 0, the gimbal lock occurs and thus (α, β, γ)→ T is not locally invertible. We solve
this ambiguity by setting γ = 0. The matrix elements R01, R00 simplify to cos(α), sin(α),
respectively. Thus, alpha is uniquely given by α = arctan2(R01, R00). If β > 0, we obtain
α = arctan2(R12,−R02) and γ = arctan2(R21, R20), where arctan2(y, x) denotes the
arctangent of y/x – similar to arctan – but within the range of (−π, π]. It thus determines
the angle between the positive x axis and the vector (x, y)T . It gives, for instance, the
argument of a complex number, i.e. z = x+ iy = r exp (iφ) with φ = arctan2(y, x).

Finally the angles are folded back into the range of [0, 2π) for α and γ and [0, π) for β.
A Python script providing this operation is printed in listing B.1.

1 def RotMat2Euler(T):
”””

3 T : input rotation matrix (numpy or compatible array)

5 Returns the tuple of the three Euler angles determined by rotation
matrix T and the (Z, Y’, Z’’) convention. In the gimbal lock case

7 the third Euler angle about Z’’ is set to zero to obtain uniqueness.
”””

9

# sanity check: Is T a three by three matrix?
11 if T.shape != (3,3):

raise "T parameter must be a 3x3 matrix"

13

beta = arccos(T[2,2])
15 alpha = gamma = 0.

1For compatibility with the appended Python script we start counting the rows and columns by 0. The
first matrix element thus is R00.
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17 if abs(beta) > 0.000001:
alpha = arctan2(T[1,2],−T[0,2])

19 gamma = arctan2(T[2,1],T [2,0])
else : # gimbal lock

21 gamma = 0.
alpha = arctan2(T[0,1],T [0,0])

23

if alpha < 0: alpha += 2∗pi
25 if beta < 0: beta += 2∗pi

if gamma < 0: gamma += 2∗pi
27

return (alpha,beta,gamma)

Listing B.1: RotMat2Euler(T) python function. See comments in the docstring. This
code requires the numpy library [125].
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FHI-aims: Basis Sets

Table C.1.: Radial basis functions beyond the minimal tier used by FHI-aims for
hydrogen, carbon, nitrogen, and oxygen (aims standard.pre-CPC). H(nl,
Z) denotes a hydrogen-like radial function for the bare Coulomb potential
Z/r for quantum numbers n and l. ionic(nl, r) adds a free-ion like radial
function where n and l also give the quantum numbers and r the onset
radius of the confining potential.

H C N O
tier 1 H(2s, 2.1) H(2p,1.7) H(2p,1.8) H(2p, 1.8)

H(2p, 3.5) H(3d,6.0) H(3d,6.8) H(3d, 7.6)
H(2s,4.9) H(3s,5.8) H(3s, 6.4)
H(4f ,9.8) H(4f ,10.8) H(4f , 11.6)

tier 2 H(1s, 0.85) H(3p,5.20) H(3p,5.8) H(3p, 6.2)
H(2p, 3.70) H(3s,4.30) H(1s,0.8) H(3d, 5.6)
H(2s, 1.20) H(5g,14.4) H(5g,16.0) H(5g, 17.6)
H(3d, 7.00) H(3p,6.20) H(3d,4.9) H(1s, 0.75)

tier 3 H(4f , 11.20) H(2p,5.6) H(3s,16) ionic(2p, 9.4486)
H(3p, 4.80) H(2s,1.4) ionic(2p,9.4486) H(4f , 10.8)
H(4d, 9.00) H(3d,4.9) H(3d,6.6) H(4d, 4.7)
H(3s, 3.20) H(4f ,11.2) H(4f ,11.6) H(2s, 6.8)

tier 4 H(2p,2.1) H(2p,4.5) H(3p, 5.0)
H(5g,16.4) H(2s,2.4) H(3s, 3.3)
H(4d,13.2) H(5g,14.4) H(5g, 15.6)
H(3s,13.6) H(4d,14.4) H(4f , 17.6)
H(4f ,17.6) H(4f ,16.8) H(4d, 14.0)
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Table C.2.: Radial basis functions beyond the minimal tier used by FHI-aims for sulfur
and iodine (aims standard.pre-CPC). H(nl, Z) denotes a hydrogen-like
radial function for the bare Coulomb potential Z/r for quantum numbers
n and l. ionic(nl, r) adds a free-ion like radial function where n and l
also give the quantum numbers and r the onset radius of the confining
potential.

S I
tier 1 ionic(3d,9.4486) H(3d,4)

H(2p,1.8) H(4f ,6.4)
H(4f ,7) H(2p,1.6)

ionic(3s,9.4486) ionic(5s,9.4486)
tier 2 H(4d,6.2) H(5g,9.4)

H(5g,10.8) H(4f ,18.4)
H(4p,4.9) H(6h,12.4)
H(5f ,10) H(4p,4.4)
H(1s,0.8) H(4d,5.4)

H(3s,3.0)
tier 3 H(3d,3.9) H(5f ,15.2)

H(3d,2.7) H(5d,15.2)
H(5g,12) H(5g,12)

H(4p,10.4) H(6h,14.4)
H(5f ,12.4) ionic(5p,9.4486)
H(2s,1.9) H(1s,6.6)

tier 4 H(4d,10.4)
H(4p,7.2)
H(4d,10)

H(5g,19.2)
H(4s,12)
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Atomic units

Practical electronic structure calculations are usually done in atomic units, a. u. for short.
The motivation for introducing atomic units is to simplify the equations. For example, in
SI units the Hamiltonian of a hydrogen atom is

H = − ~2

2me

∇2 − e2

4πε0 r
. (D.1)

To avoid having to keep track of the constants, we would like to simplify this to

H = −1

2
∇2 − 1

r
. (D.2)

To this end we invent units in which the numerical values of the electron mass me, the
elementary charge e, the Planck-constant ~, and the dielectric constant 4πε0 are all equal
to one. This immediately tells us: 1 a.u. mass = me and 1 a.u. charge = e. To complete
the set of basis units we still need the atomic unit of length, which we call a0, and time, t0.
To find the values of a0 and t0 we write ~ and 4πε0 (using simple dimensional analysis) in
atomic units: ~ = 1mea

2
0/t0 and 4πε0 = 1 t20e

2/(mea
3
0). Solving this system of equations,

we find

1 a.u. length = a0 = 4πε0~2/mee
2 ≈ 5.2918 · 10−11 m

1 a.u. mass = me = ≈ 9.1095 · 10−31 kg
1 a.u. time = t0 = (4πε0)2~3/mee

4 ≈ 2.4189 · 10−17 s
1 a.u. charge = e = ≈ 1.6022 · 10−19 C

1 a.u. energy = mee4

(4πε0)2~2 = 4.3598 ≈ 10−18 · J

As the unit of energy in the Système International (SI) is given by kg m2/s2, in atomic
units it is mea

2
0/t

2
0 = mee

4/(4πε0)2~2. Because of its importance the atomic unit of energy
has a name, the Hartree. One Hartree is minus twice the groundstate energy of the
hydrogen atom (D.1), about 27.211 eV.
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The SI unit of the electrical dipole moment charge · length is C ·m. In these units atomic
polarizabilites are inconveniently small. A more practical unit is the Debye D, named
after Peter Debye. It is often used in atomic and molecular physics and chemistry. A
Debye is defined as D = 1018 stratcoulomb centimeter = 1010 · 0.1 Am/c ≈ 3.3 · 10−30 Cm.
The dipole moment unit in a.u. is e a0 which relates to Debye as 1 a.u. ≈ 2.54 D. The
polarizability is also often given in terms of atomic units, i.e. in e a2

0/Ha = a3
0.
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Massively Parallel Lanczos Solver

The key ingredient of the Lanczos algorithm is the sparse matrix vector multiplication.
Already for quite small systems this operation takes most of the execution time, and
increasing the size of the many-body vector, it dominates ever more. Thus, this is the focus
our parallelization efforts. On shared memory systems this matrix-vector multiplication
is embarrassingly simple but we are restricted to relatively small memories. To use the
memory that is needed to reduce finite-size effects, we have to find an efficient distributed
memory implementation.

The kinetic energy term of the Hamiltonian of the Hubbard model

H = −
∑

i 6=j σ
tijc
†
iσ cjσ + U

∑

i

ni↑ni↓ + V
∑

<ij>

ninj . (E.1)

has non-diagonal terms and therefore leads to non-local memory access patterns. To obtain
an efficient distributed memory implementation we use a simple yet important observation:
As pointed out above, the kinetic energy term conserves spin. Thus, performing the
up-electron hopping takes only different up-hopping configurations into account while
the down-electron configuration remains unchanged. If we group all up configurations
for a fixed down configuration together in a single process, this hopping can thus be
carried out locally: for a fixed index i↓, all i↑ configurations follow and can be stored
in a process. We see that this basis can be naturally indexed by a tuple (i↓, i↑) instead
of a single index. We can therefore equivalently regard the vectors as matrices v(i↓, i↑)
with indices i↓ and i↑. Now it is easy to see that a matrix transpose reshuffles the data
elements such that the down configurations are sequentially in memory and local to the
process. Therefore, the efficiency of the sparse matrix-vector multiplication rests on the
performance of the matrix transpose operation. We implement it with MPI Alltoall.
This routine expects, however, the data packages which will be sent to a given process to
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(1,1) (1,2)
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(6,5) (6,6)

thread 0 thread 1 thread 2

Figure E.1.: Transpose operation that makes memory access thread-local when cal-
culating the operation of the Hamiltonian on the state-vector. The
communication (red arrows) is realized by a call to MPI alltoall, which
is very efficiently implemented on BlueGene/P. The small pink arrows
indicate the local operations needed to complete the matrix-transpose.

be stored contiguously in memory. This does not apply to our case, since we would like to
store the spin-down electron configurations sequentially in memory. Thus, the matrix is
stored column wise. For MPI Alltoall to work properly, we would have to bring the data
elements in row-major order. This could be done by performing a local matrix transpose.
The involved matrices are, however, in general rectangular, leading to expensive local-copy
and reordering operations. We can avoid this by calling MPI Alltoall for each column
separately. After calling MPI Alltoall for each column (red arrows in figure E.1) only a
local strided transposition has to be performed (small pink arrows) to obtain the fully
transposed matrix or Lanczos vector [71, 126]. The speed up (figure E.2) shows that
collective communication is indeed very efficient on Jugene, a BlueGene/P supercomputer.
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Figure E.2.: ParLa (Parallel Lanczos) speed up on JUGENE (BlueGene/P) in virtual
node mode (VN); state vectors for the half-filled Hubbard model with 16,
18, and 20 are 1.23, 17.61, and 254.32 GB in double precision, respectively.
When the message size becomes too small latency cannot be neglected
and the speed up levels off.
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Fourier transforms & Friends

F.1 Infinite Continuous Fourier Transform . . . . . . . . . . . . . . .229
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We give a brief review of different Fourier-related transforms. We focus on one dimension
since generalizations to higher dimension follows trivially.

F.1. Infinite Continuous Fourier Transform

Let f(x) be a sufficiently well behaved integrable function. The Fourier transform of f(x)
reads

F [f(x)](k) = F (k) = κk

∫ ∞

−∞
dx f(x)e−ikx . (F.1)

Its inverse is

F−1[F (k)](x) = f(x) = κx

∫ ∞

−∞
dk F (k)eikx . (F.2)

κx ·κk = 1/(2π) needs to be satisfied. The exact choice depends on convention. For
κx = κk = 1/

√
2π the Fourier transform becomes a unitary transformation. This is the

natural choice for quantum mechanics. In classical mechanics we often use κk = 1 and
therefore κx = 1/(2π).
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F.2. Infinite Discrete Fourier Transform

Assume an infinite discrete one-dimensional lattice with sites xm = ma, m ∈ Z. The first
Brillouin zone in reciprocal space is consequently given by (−π/a, π/a] with the volume
VBZ = 2π/a. A function f with values fm at the lattice sites m has the Fourier transform

f(k) =
∑

m

e−ikxmfm , (F.3)

where k ∈ (−π/a, π/a]. The inverse Fourier transform reads

fm =
1

2π/a

∫ π/a

−π/a
dk eikxmf(k) . (F.4)

From the orthogonality relation we obtain the Kronecker delta for the real space

δmn =
1

2π/a

∫ π/a

−π/a
dk eik(xm−xn) , (F.5)

and the Laue function ∆(k) =
∑

j δ(k − 2πj/a) in reciprocal space

∆(k − k′) =
∑

m

e−i(k−k′)xm , . (F.6)

F.3. Relationship between Continuous and Discrete

Fourier Transforms

Instead of a lattice we can also regard the discrete Fourier transform of the preceding
section as a sampling in real space. Let f(x) be a continuous function with Fourier
transform F (k) and fm = f(ma) the sampling of f(x). The Poisson summation enables
us to relate F (k) with the discrete Fourier transformation f(k) of fm. A generalized
Poisson summation formula is

∞∑

m=−∞
f(ma) e−ikma =

1

a

∞∑

g=−∞
F

(
k +

2π

a
g

)
, (F.7)

where k ∈ (−π/a, π/a]. We note that the LHS is f(k) (see (F.3)) and the RHS gives a
periodization of the continuous Fourier transform F (k) with periodicity 2π/a, the extent
of the first BZ.



Convolution Theorem and Autocorrelation function 231

F.4. Convolution Theorem and Autocorrelation func-

tion

Let f and g be complex functions of some real variable ω. We define the convolution as
the integral of the product of these functions where one is reversed and shifted, i.e.

(f ∗ g) (Ω) =

∫ ∞

−∞
dω f(ω)g(Ω− ω) . (F.8)

The cross-correlation function is defined in a similar way without reversing one function
and an additional complex conjugation.

(f ? g) (Ω) =

∫ ∞

−∞
dω f ∗(ω)g(Ω + ω) . (F.9)

Obviously, (f ? g) =
(
f̄ ∗ g

)
with f̄(ω) = f ∗(−ω). Thus, if either f or g is Hermitian

then convolution and cross-correlation function are identical (f ? g) = (f ∗ g).
A special case is the autocorrelation function, the cross-correlation of a function with

itself (f ? f) (Ω).

F [f ∗ g] = F [f ] · F [g] (F.10)

is the convolution theorem which relates the Fourier transformation of a convolution of
two functions with the product of their Fourier transforms. Analogous to the convolution
theorem the cross-correlation function satisfies

F [f ? g] = F [f ]∗ · F [g] . (F.11)

F.4.1. Similar relations used in Condensed Matter Physics

The autocorrelation-like function we encountered in section 3.1.8 when deriving expressions
for the particle-hole bubble can be considered as a cross-correlation function of (G∗ ?G) –
hence, it almost is the autocorrelation function. From the viewpoint of the convolution it
is (G̃ ∗ G) with G̃(ω) = G(−ω).

From this it is straightforward to show

F [G(t)G(−t)] (Ω) =
(
G̃ ∗ G

)
(Ω) =

∫
dΩG(ω)G (ω + Ω) . (F.12)

G(τ) in imaginary time is pseudo-periodic in τ allowing for a Fourier series expansion

G(τ) =
1

β

∑

iω

exp (−iωτ)G(iω) (F.13)

instead of the full integration. Hence,

F [G(τ)G(−τ)](iΩ) = (G∗ ? G) (iΩ) =
1

β

∑

iω

G(iω)G (iω + iΩ) . (F.14)
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Inversion by Partitioning

The inversion by partitioning technique is commonly used in condensed matter physics.
Here we employ it to derive the Weiss function in DMFT for the Anderson Impurity
Model (see 3.2.2) and in the derivation for the Green’s functions of the f - and conduction
electrons in the Periodic Anderson Model (see 3.2.5.2).

We start with a partitioning of the Hilbert space into two subspaces, e.g. f - and c-states,
and format the Hamiltonian in block matrices accordingly, i.e.

H =

(
F Vfc
Vcf C

)
. (G.1)

F , C denote the blocks of interest (here the f -, c-electrons) and Vfc, Vcf the transitions
(hybridization) between both subspaces. The Green’s function is partitioned likewise

G (ω) =

(
Gff Gfc

Gcf Gcc

)
= (ω −H)−1 =

(
ω − F −Vfc
−Vcf ω − C

)−1

. (G.2)

Evaluating the inverse of this 2× 2 block matrix can be done straightforwardly taking
into account that the submatrices do not commute. The situation in 3.2.5.2 is a special
case with the submatrices being numbers.

We obtain

Gff =
(
(ω − F )− Vfc(ω − C)−1Vcf

)−1
(G.3)

Gfc =Gff ·
(
Vfc(ω − C)−1

)
, (G.4)

Gcf =
(
C−1Vcf

)
·Gff , (G.5)

Gff =(ω − C)−1 +
(
(ω − C)−1Vcf

)
·Gff ·

(
Vfc(ω − C)−1

)
. (G.6)

For more information and alternative forms refer to chapter 2.7.4 of [127].
Inversion by partitioning is also the basis of the downfolding technique. It is used

to integrate out high-energy degrees of freedom for effective low-energy models. For a
discussion of this important method refer to appendix B of [128].
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[94] G. A. Baker, Essentials of Padé Approximants (Academic Press, New York, 1975).
(cited in 3.1.9.1, 3.2.3.)

[95] H. J. Vidberg and J. W. Serene, Solving the Eliashberg equations by means ofN-point
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