
MultiscaleConsulting Contact Mechanics & Friction

Your Partner on Contact Mechanics

Seminar

Contact Mechanics with Applications: New Approaches and Software Tools

18. AND 19. June 2012

MARITIM HOTEL

Content

Contact Mechanics is the central topic for many engineering applications. This involves such as contact stiffness, heat and electric contact resistance, leakage of static and dynamic seals, rubber friction, adhesion, and mixed lubrication. The influence of surface roughness on Contact Mechanics is usually described either by over-simplified analytical models, which are known to fail even qualitatively, or by numerical approaches such as the Finite Element Method (FEM), which can handle roughness on just two or at most three decades in length scales. Real surfaces of engineering interest, however, may have roughness over many decades in length scale starting from cm and going down to nm. It is not possible to handle these surfaces using purely numerical approaches such as FEM.

Recently a new multi-scale approach to Contact Mechanics has been developed taking accurately into account all relevant length scales. This approach is very flexible and general and it can be applied to describe the Contact Mechanics of elastic, viscoelastic, elastoplastic as well as layered materials. The theory predicts the area of real contact (and how it depends on the resolution of the instrument used to detect it) and the distribution of contact stresses and interfacial separations (in the non-contact region). This approach gives a new and very powerful way of how to understand problems in Contact Mechanics involving surface roughness on many length scales, and it informs the user about the most important scales involved in a particular application.

The lectures will be given by Dr. B.N.J. Persson, who has developed the multi-scale approach to Contact Mechanics, and by Dr. B. Lorenz who has performed many simple model experiments to test the theory. The seminar will be held in English and a compendium of lecture notes will be handed out. 09:00 till 18:00

Program

Contact Mechancis			Rubber Friction		
09:00		Registration			
09:15 to 09:30	1	Welcome	09:00 to 10:00	1	Leak Rate of Seals
		Introduction - Scope of the Seminar	10.00		Critical Junction Theory, Effective Medium Theory, Experimental Validation
09:30 to 10:30	2	Surface Roughness	10:00 to	2	Squeezing Out of Fluids
		Surface Roughness Power Spectra, Top and Bottom Power Spectra, Characterization of Surface Anisotropy, Generation of Randomly Rough Surfaces, Experimental Methods and Limitations	10:30		Relation between Squeeze-Out and Friction, Role of Contact Area Percolation, Application to Tires, Syringes and Bio Applications
10:30 to 11:00			10:30 to 11:00		Coffee Break
		Coffee Break	11:00 to 12:00	3	Mixed Lubrication and Fluid Flow Factors
11:00 to 13:00	3	Contact Mechanics: Stress Distribution Hertz Theory, Multi-Asperity Contact Theories, Multi-Scale	12.00		Effective Fluid Flow Equation, Fluid Flow Factors, Friction Factors, Numerical Illustrations, Experimental Verification
		Theory by Persson, Stress Probability Distribution, Elastoplastic contact, Contact Mechanics for Layered Materials and for Viscoelastic Materials, Experimental Validation	12:00 to 13:00	4	Rubber Friction
					Different Contribution to Rubber Friction, The Role of Different Length Scales, Flash Temperature
13:00 to 14:00		Lunch	13:00 to 14:00		Lunch
14:00 to 15:00	4	Contact Mechanics: Interfacial Separation	14:00 to 14:45	5	Tyre Dynamics
		Average Interfacial Separation, Probability Distribution of Interfacial Separation, Experimental Validation			Simple Tire Model with Realistic Description of the Rubber Friction, µ-Slip and Slip-Angle Curves, Self Aligning Moment
15:00 to 16:00	5	Contact Mechanics with Adhesion			and ABS Breaking Simulations
		Dry Adhesion, Capillary Adhesion, Bioadhesion	14:45 to 15:30	6	Contact Mechanics Software
16:00 to 16:30		Coffee Break			Introduction and Overview of Different Software Tools, Surface Generator, Power Spectrum, Contact Mechanics, Rubber Friction and Tire Dynamics, etc.
16:30 to 17:00	6	Contact Stiffness	15:30 to 16:00		Coffee Break / End of Seminar
		Normal Stiffness, Tangential Stiffness, Ultrasound Wave Interaction			
17:00 to 18:00	7	Heat and Electric Contact Resistance			
		Heat Transfer via the Area of Real Contact and the Area of Non-Contact, Experimental Validation			
20:00		Dinner at Peters Brauhaus			