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Summary

As microelectronics turns into nanoelectronics, academic and industrial research aims
at the exploration of new concepts and materials such as complex tunnel junctions
for spintronics, quantum transport in molecular devices or nanowires and carbon-
nanotubes based electronics. Very often, theoretical understanding of these innova-
tive devices and materials is lacking as the calculation of electronic transport on the
nanoscale is a very challenging problem. This is due to the complicated interplay of
the large number of electrons and to the special geometry of the scattering setup.
While ab initio transport calculations became possible recently, the conventional
mean-field approach might underestimate the influence of the electron-electron inter-
action in these systems, which is exclusively included in an effective potential. In this
thesis I focus on the effects of this interaction, investigating simple three-dimensional
infinite model systems with a potential which varies in one direction of space only.
They model the physical situation of a thin layer of vacuum, an isolating material or
a metal with another electron density sandwiched between two metallic leads.
In the first part of this work I calculate the conductance in the single-particle picture,
tackling the problem of the scattering setup. The typical scattering geometry con-
sists of a finite scattering volume, attached to semi-infinite leads at two sides. The
special scattering boundary conditions needed in this situation prevent a simple im-
plementation in reciprocal space. One of the possibilities to overcome this challenge
is given by the Green-function embedding method developed by Inglesfield [Jour-
nal of Physics C, 14:3795 (1981)] for arbitrary, three-dimensional potentials: The
addition of a supplementary term to the Hamiltonian ensures the correct boundary
conditions.
The Green-function embedding method is tailored to the setup investigated in this
thesis and here implemented in a plane-wave basis set to calculate the Green function
for non-interacting electrons. For one-dimensional piecewise constant potentials like
quantum wells and potential barriers the Green function can be calculated analyti-
cally as well, enabling a comparison of the numerical and the analytical results.
In order to include the electron-electron interaction beyond the contribution already
contained in the effective potential, the irreducible polarization is calculated. It is re-
lated to the non-interacting polarization function via a Dyson-type equation derived
in time-dependent density-functional theory, including dynamic electronic interac-
tion effects in the exchange-correlation kernel. The latter is not known exactly and
here approximated in the adiabatic local-density approximation. Finally, the con-
ductance is calculated using a relation between the polarization function and the
conductance derived by P. Bokes and R. Godby [Physical Review B, 69(24):245420
(2004)]. As this method is based on the linear-response approach, the investigations
are restricted to zero-bias conductance.
It is shown that in the case of non-interacting electrons the conductance agrees very
well with the analytical result of the Landauer formula. When exchange and corre-
lation are taken into account, an enhancement of the conductance can be observed.
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Zusammenfassung

Aufgrund der vielversprechenden Entwicklung von der Mikro- zur Nanoelektronik
werden in der universitären und industriellen Forschung größte Anstrengungen unter-
nommen, um neuartige Konzepte und Materialien wie zum Beispiel komplexe Tun-
nelkontakte für die Spintronik, Quantentransport in molekularen Bauteilen sowie
eine auf Nanodrähten und Nanoröhren basierte Elektronik zu erschließen. Häufig
fehlt das theoretische Verständnis dieser innovativen Bauteile und Materialien, da
die Berechnung von elektronischem Transport in Nanostrukturen sehr kompliziert ist.
Die Gründe dafür sind zum einen in der großen Anzahl der miteinander wechselwirk-
enden Elektronen und zum anderen in der Streugeometrie zu finden. Auch die seit
jüngster Zeit möglichen ab initio Transportrechnungen lassen die Elektron-Elektron
Wechselwirkung nur durch ein effektives Potential in die Rechnungen einfließen.
In dieser Arbeit konzentriere ich mich auf die Auswirkungen der Elektron-Elektron
Wechselwirkung und betrachte einfache dreidimensionale, unendliche Modellsysteme
mit einem Stufenpotential, welches nur in einer Raumrichtung variiert. Diese Sys-
teme modelieren eine dünne Schicht, die von zwei Metallen eingeschlossen ist und
aus Vakuum, einem Isolator oder einem Metall mit einer anderen Elektronendichte
besteht. Im ersten Teil der Arbeit werde ich die Leitfähigkeit im Einteilchenbild
berechnen. Die typische Streugeometrie besteht aus einer endlichen Streuregion, die
von zwei halbunendlichen Leitern umgeben ist. Die in dieser Situation benötigten
speziellen Randbedingungen verhindern eine einfache Implementierung im reziproken
Raum, können jedoch mit Hilfe der Greenfunktions-embedding Methode [Journal
of Physics C, 14:3795 (1981)] integriert werden, die auf beliebige dreidimensionale
Potentiale anwendbar ist. Zur Berechnung der Greenfunktion für nichtwechselwirk-
ende Elektronen wird die Embedding Methode auf die zu untersuchenden Systeme
zugeschnitten und in einer Basis aus ebenen Wellen implementiert. Die nur in einer
Raumrichtung variierenden Stufenpotentiale ermöglichen ebenfalls eine analytische
Berechnung der Greenfunktion und den Vergleich mit dem numerischem Ergebnis.
In der Berechnung der irreduziblen Polarisationsfunktion wird nun der Anteil der
Elektron-Elektron Wechselwirkung berücksichtigt, der über den bereits im effektiven
Potential enthaltenen Beitrag hinausgeht. Die irreduzible Polarisationsfunktion ist
über eine Gleichung ähnlich der Dyson-Gleichung mit der Polarisationsfunktion für
nichtwechselwirkende Elektronen verknüpft. Der wichtigste Bestandteil dieser aus
der zeitabhängen Dichtefunktionaltheorie stammenden Gleichung ist der Austausch-
Korrelationskern, welcher die Elektron-Elektron Wechselwirkung enthält, nicht exakt
berechnet werden kann und daher in der adiabatischen lokale-Dichte-Näherung ap-
proximiert wird. Mit Hilfe der Beziehung zwischen der Polarisationsfunktion und der
Leitfähigkeit [Physical Review B, 69(24):245420 (2004)] wird die letztere berechnet.
Da diese Beziehung auf der linear-resonse-Theorie basiert, sind die Untersuchungen
nur auf den Fall der zero-bias Leitfähigkeit anwendbar. Es wird gezeigt, dass die
Leitfähigkeit im nichtwechselwirkenden Fall sehr gut mit dem analytischen Ergebnis
der Landauerformel übereinstimmt. Unter dem Einfluss von Austausch und Korre-
lation wird ein Anstieg der Leitfähigkeit beobachtet.
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1 Introduction

Electronic transport in nanostructures, such as tunnel junctions, point contacts, vac-
uum tunneling microscopy or molecular junctions has become a major subject of
both industrial and academic research in the last couple of years. Extending stan-
dard semiconductor concepts, new materials such as nanowires, carbon nanotubes
[TVD98, HTM+02] or even single molecules [RZM+97, ROB+02] have been explored
and probed for electronic transport. They show interesting transport characteristics,
which are mostly not understood until now but which are crucial for many tech-
nological applications. These new materials might be the key to a new generation
of even more powerful computers. For example, carbon nanotubes have raised high
hopes due to their combination of unique structural and electronic properties, such
as ballistic transport. On the other hand, further shrinking of the structures may
be limited by effects such as leakage currents and increasing power consumption
[Was03]. As a consequence, transport calculations for nanosize setups moved more
and more into the focus of interest. Compared to larger structures on the mesoscopic
and macroscopic scale, in this order of magnitude quantum effects start to change
and in some cases even to dominate the overall transport properties of the sample.
Additionally, atomic details cannot be neglected any more and have to be taken into
account.
Therefore, an adequate treatment of systems at nanoscale dimensions requires ab
initio calculations like density-functional theory (DFT) [HK64, KS65], which was
originally developed to investigate structural and electronic properties of stationary
systems in equilibrium. Transport calculations (i.e., basically the calculation of the
conductance on a microscopic scale) were a new challenge for the electronic-structure
community. One of the key problems in transport calculations lies in the special ge-
ometry required. In contrast to standard density-functional theory setups, neither
can periodic boundary conditions be used to simplify the problem nor is it sufficient
to consider a finite volume. Instead one has to treat a scattering setup in which a
finite scattering volume is attached to semi-infinite leads at two sides. Due to the
broken translational symmetry, the simple description of bulk materials in reciprocal
space using Bloch functions is no longer applicable. In contrast, a Green-function
formalism is required which entails a much more complicated theoretical framework.
The common approach for ab initio predictions of conductance is based on the Lan-
dauer formula Γ = 2e2

~
T (µ) [Lan57, BILP85], which identifies the conductance Γ with

the transmission probability T (µ) for electrons at the chemical potential µ. The Lan-
dauer approach is a so-called single-particle approach, which instead of the actual
interacting many-particle system only consider the motion of a single particle within
the effective potential caused by all other electrons. Nevertheless, the quantization
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of the conductance predicted by the Landauer formula is often in good agreement
with experimental results and correctly describes effects such as the quantum-Hall
effect [KDP80].
In spite of the complications provoked by the scattering boundary conditions, several
implementations of density-functional theory tackling the transport problem have
been developed. Among them are tight-binding formulations [Mat97, CBLC96], the
Korringa-Kohn-Rostoker (KKR) [Kor47, KR54] Green-function approach, and meth-
ods in which the Schrödinger equation is integrated on real space mesh-points [HT95].
All of them are real-space implementations and investigate the three different regions
(i.e., the two leads and the scattering region) of space separately. The possibility to
do so is a direct consequence of the locality of DTF in the conventional local-density
approximation (LDA) [KS65, CA80] and generalized gradient approximation (GGA)
[PCV+92, PBE96]. A very successful recent implementation of the conductance on a
nanosize scale uses a full-potential linearized augmented plane-wave (FLAPW) code
[WIB02]. This might initially be surprising, since the FLAPW method explicitly
includes periodic boundary conditions in its definition of an augmented plane-wave
basis set, and these are contradictory to the special boundary conditions of a scat-
tering problem. Nevertheless, systems with broken translational symmetry can be
treated within the FLAPW code using the Green-function embedding method of In-
glesfield [Ing81]. The basic idea of the embedding method is to include the boundary
conditions imposed on the solution of the Schrödinger equation in the same varia-
tional principle from which the Schrödinger equation is derived; in addition to the
wave functions the boundary conditions are varied themselves. This procedure yields
a supplementary term in the Hamiltonian for the scattering region which ensures the
correct boundary conditions.
Although the DFT approach has proved highly valuable for the interpretation of
experiments measuring the conductance through nanostructures, some spectacular
failures of this approach have also been identified. For example in the case of the
current driven through a single molecule, the experimental result for the conductance
differs several orders of magnitude from the calculated one [EWK04]. One possible
reason for this might be found in the use of single-particle states and the disregard
of (non-local) exchange and correlation effects.

In recent years, alternative ab initio methods like many-body perturbation theory
[FW03, Mah90] have increasingly been used for electronic-structure calculations, of-
ten in combination with DFT as a zeroth order approximation. Such approaches
allow a more systematic treatment of electronic correlation and led to a (sometimes
even qualitative) significant improvement of the numerical results and to a better
physical comprehension of spectroscopic experiments. The amelioration is not sur-
prising since DFT by design describes only ground-state properties correctly and
considers electronic exchange and correlation effects exclusively by a local exchange-
correlation potential [HK64]. Although in DFT theoretically the exact ground state
energy of the whole electron system can be calculated, it does not give access to
any single-particle properties such as the single-particle energy or the wave function.
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Furthermore, the exchange-correlation potential cannot be calculated exactly and
has to be approximated. The most common approximations are the local-density
approximation and the generalized gradient approximation. Thus, possible failures
of DFT might be the consequence of the failure of the chosen exchange-correlation
potential. For example, band gaps of semiconductors are systematically underesti-
mated in the local density approximation of DFT, and, in the case of Ge, it even
predicts a semi-metal with a negative band gap rather then a semiconductor, whereas
the correct result is obtained within many-body perturbation theory [HL86, GSS87].
In contrast to DFT, many-body perturbation theory is suited to the description of
excited states. It is based on the Green-function formalism and connects the Green
function of a non-interacting system with that of the interacting system. In the case
of the one-particle Green function this coupling is described by the Dyson equation
which besides the two Green functions contains the electronic self-energy. Incor-
porating all interaction processes, the electronic self-energy is a very complicated
quantity and therefore cannot be calculated exactly. Its most successful approxima-
tion is the GW approximation [Hed65], derived from the expansion of the electronic
self-energy in terms of the screened interaction. It is obtained using a systematic
algebraic approach and enables one to calculate the spectrum of quasiparticle exci-
tations measured in photoemission spectroscopy.
As another application of many-body perturbation theory the Bethe-Salpeter equa-
tion allows the calculation of the two-particle Green function for the correlated motion
of electron-hole pairs [ARDSO98]. Analogously to the Dyson equation the Bethe-
Salpeter equation is exact but the relevant correlation term has to be approximated
in practical calculations. It gives access to the dielectric polarization and the mag-
netic susceptibility and can be used to study neutral, particle-conserving excitations
such as charge oscillations (plasmons) in metals or bound electron-hole pairs (exci-
tons) in semiconductors. Thus, the Bethe-Salpeter equation is complementary to the
GW approximation, which describes photoemission processes in which the number
of particles changes. Experimentally, excitations calculated with the Bethe-Salpeter
equation can be measured in electron energy-loss spectroscopy and optical absorption
spectroscopy.
The numerics involved in the GW approximation [AG98] and the Bethe Salpeter
equation are very complicated [WGAW00]. For periodic systems many operations
can be simplified by Fourier transforming the problem to reciprocal space. For that
reason almost all implementations were made for periodic (bulk) systems in recip-
rocal space. There are also some real-space codes for finite systems with localized
basis sets, whereas real-space implementations for infinite non-periodic systems are
completely lacking.
Another method for spectroscopic quantities outside many-body perturbation theory
that includes exchange and correlation effects is time-dependent density-functional
theory (TDDFT) [RG84], an extension of static DFT describing the dynamics of
a system. Although it was originally developed to describe dynamic phenomena in
time-dependent potentials, one of its principal areas of applications today is the anal-
ysis of electronic excitations. TDDFT represents an alternative to the Bethe-Salpeter
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equation and gives access to the same physical quantities such as the linear density-
response function (i.e., the dielectric polarization) and the magnetic susceptibility.
In TDDFT, dynamic exchange and correlation effects are included in the exchange-
correlation kernel, which just like the exchange-correlation potential in static DFT
and the self-energy in the GW approximation is not known exactly and has to ap-
proximated.

The integration of electronic exchange and correlation effects in transport calcu-
lations is extremely difficult. As pointed out above, the main problem lies in the
contradictoriness of the scattering setup with its special scattering boundary condi-
tions (lack of periodicity) and the difficulty to implement a real-space code applicable
to infinite systems. However, for the simulation of real devices it is an extremely in-
teresting and important question to go beyond the single-particle Landauer approach
and investigate the influence of exchange and correlation on the conductance.
The problem of incompatible boundary conditions, though not in the context of trans-
port, was tackled in a first exploratory work by Fratesi [FBM04]. It deals with the
calculation of surface states at a potential step, evaluating the GW approximation
with the DFT Green function obtained from the Green-function embedding method.
However, although this approach was successful, it does not yield the conductance.
This diploma thesis is a first effort to fill the gap between transport calculations
and the treatment of explicit exchange and correlation effects, intending to study
the influence of exchange and correlation on the conductance. In order to acquire
some experience in this field of research, which is almost unexplored until now, the
investigations will be restricted to simple model systems whose numerical treatment
is significantly easier than that of realistic ones. I follow the approach of Bokes and
co-workers [BG04, BJG06], who derived a relation between the conductance and the
irreducible polarization, defined as the linear response of the density to an electric
field. This approach to the conductance is especially interesting and promising, since
the irreducible polarization is a quantity that can be constructed using ab initio
methods with inclusion of electronic correlation. However, it has to be emphasized
that the linear-response approach limits the validity of the calculations to the zero-
bias conductance, thus the slope of the voltage/current characteristics at the origin.
Furthermore, only the case of direct current is accessible.
In contrast to the calculations by Bokes and co-workers [BG04], I will investigate
three-dimensional infinite systems which should model a realistic scattering setup.
They are homogeneous in the xy plane and the potential in the z direction has the
shape of a barrier potential or a quantum well. In a first step I calculate the Green
function in the single-particle picture, using the embedding method of Inglesfield. It
is a universal method valid for arbitrary potentials and can be generalized to real-
istic systems. However, the simple potentials investigated in this thesis also make
it possible to calculate the Green function analytically, and to compare the numer-
ical results obtained with the embedding method to the analytical ones. In order
to exclude errors resulting from the inaccuracy of the Green-function embedding
method, for further calculations the analytically calculated Green function is taken.



5

The polarization function in the random-phase approximation (RPA) (i.e., for an ef-
fective potential) is related to the irreducible polarization by a Dyson-type equation
derived in TDDFT [PGG96]. This irreducible polarization includes exchange and
correlation effects via the so-called exchange-correlation kernel, which in general is
not known exactly and has to be approximated. For simplicity, in this diploma thesis
it is calculated in the simplest non-trivial approximation, the adiabatic local-density
approximation (ALDA). Finally, I use the relation between the polarization and the
conductance to obtain the latter both with and without the involvement of exchange
and correlation effects. I will analyze and discuss the results for the conductance and
investigate the possibilities, limits and weak points of the method proposed by Bokes
and co-workers. At the end, a short outlook about possible future investigations is
given.
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2 Green-Function embedding

The Green-function embedding method [Ing81] is one of the very few possibilities
to integrate scattering boundary conditions in a reciprocal space implementation.
Generally, it enables one to calculate the Green function in a finite volume of space,
containing a localized perturbation. This situation occurs in impurity problems, sur-
face problems and scattering setups. For such problems, one is often not interested
in the wave function or the Green function in entire space but in a finite region
which includes the perturbation potential. Therefore it would be a lot of needless
work to solve the Schrödinger equation in whole space, which is often quite com-
plicate and computationally intensive. The basic idea behind the Green-function
embedding method is to limit the calculation to the space where the perturbation
takes place and thus to save unnecessary work. The restriction of the Hamiltonian
to this finite volume leads to a modified Schrödinger equation containing additional
terms which make sure that the boundary conditions at the interface between the
embedding region and the outer volume are fulfilled. The additional terms include
the so-called embedding potential which is a property of the outer volume only. The
geometry of an embedding setup is illustrated in figure 2.1. I would like to stress that
the embedding method can only be applied to systems with a local potential V (r)
in entire space and therefore cannot be used to include e.g. the non-local Coulomb
interaction v(r, r′).
In this chapter I will introduce the technique of Green-function embedding and dis-
cuss its central formulas. In chapter 5 I apply the method to the geometry of the
systems investigated in this thesis.

2.1 Schrödinger equation in the embedded region

The derivation of the Schrödinger equation in the embedded region is based on the
variational principle for the energy expectation value in entire space

E =

∫

V0+Ω
dr Ψ∗(r)HΨ(r)

∫

V0+Ω
dr Ψ(r)∗Ψ(r)

= min , (2.1)

where Ψ(r) denotes the wave function in V0 + Ω. It subsumes the wave functions of
the different regions

Ψ(r) =

{

ψ(r) ∀ r ∈ V0

φ(r) ∀ r ∈ Ω
. (2.2)
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V0

Ω

S

n̂

Figure 2.1: Geometry of the embedding method: The so-called embedding region Ω includ-
ing the ‘perturbation’ (i.e. the surface, the impurity or the scattering potential)
is enclosed by an ‘outer’ volume V0, where the perturbation is zero. The two
volumes V0 and Ω are separated by an interface S = ∂Ω. n̂ denotes the normal-
ized vector perpendicular to the interface S which points out of the embedding
region.

Since the wave function Ψ(r) must be continuous at the interface S, the condition

ψ(rS) = φ(rS) (2.3)

has to be fulfilled.
The wave function φ(r) in the embedded region is an unknown trial wave function
included in trial, whereas the wave function in the outer volume ψ(r) is a solution of
the unperturbed Schrödinger equation in V0 with energy ǫ

(

−1

2
∇2 + V (r)− ǫ

)

ψ(r) = 0 in V0 . (2.4)

Besides, ψ(r) has to fulfill the outer boundary conditions for the volume V0.
Since the wave function φ(r) in Ω is a general trial wave function, the derivative of
the wave function Ψ(r) is in general not continuous at the interface S. Otherwise,
there would not be any variational freedom. The continuity of the derivative of the
wave function Ψ(r) is naturally fulfilled after/through variation.
I will now insert the definition (2.2) in the energy expectation value (2.1). The
operator for the kinetic energy included in H(r) leads to an additional surface term
(ensuring that the Hamiltonian is hermitian) which can be seen by applying Green’s
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Theorem
∫

V0+Ω

dV Ψ∗(r)∇2Ψ(r) (2.5)

= −
∫

V0+Ω

dV ∇Ψ∗(r)∇Ψ(r)

= −
∫

V0

dV ∇ψ∗(r)∇ψ(r)−
∫

Ω

dV ∇φ∗(r)∇φ(r)

=

∫

V0

dV ψ∗(r)∇2ψ(r) +

∫

S

dS ψ∗(r)∂nψ(r)

+

∫

Ω

dV φ∗(r)∇2φ(r) +

∫

S

dS φ∗(r)(−∂n)φ(r)

with ∂nf(r) := n̂ · (∇f(r)) and S = ∂Ω. n̂ is the projection of the gradient onto the
surface normal.
As one can see, the discontinuity of the normal derivative leads to an additional
surface term. Introducing eq. (2.5) in the energy expectation value (2.1) results in

E =

∫

V0
dV ψ∗(r)Hψ(r) +

∫

Ω
dV φ∗(r)Hφ(r) + 1

2

∫

S
dS {ψ∗(r)∂nφ(r)− φ∗(r)∂nψ(r)}

∫

V0
dV ψ(r)∗ψ(r) +

∫

Ω
dV φ(r)∗φ(r)

.

(2.6)

The expectation value of the energy E possibly differs from the predefined energy ǫ
of the wave function ψ(r) in the outer region. However, since one seeks for a final
solution of the Schrödinger equation in entire space V0+Ω, in the end E = ǫ has to be
valid. Therefore it can be already assumed in order to simplify the further derivation1.
On that condition, the variation of the energy expectation value regarding the trial
wave function φ∗(r) in Ω leads to

(H(r)− ǫ)φ(r) +
1

2
δ(n− nS) [∂nφ(r)− ∂nψ(r)] = 0 . (2.7)

We observe that the two terms which do not depend on φ(r) vanish. n denotes the
normal coordinate perpendicular to the surface and nS the position of the surface.
Thus, the second term contributes on the interface S only. It ensures that the
boundary condition (2.3) is fulfilled correctly.
Although eq. (2.7) looks very similar to a common Schrödinger equation, there is an
important difference: since the normal derivative of the wave function of the outer
volume ∂nψ(r) depends on the energy ǫ, the equation does not represent a simple
eigenvalue problem any more.
Before eq. (2.7) can be solved, the normal derivative of the wave function of the outer
volume ∂nψ(r) on the interface S has to be eliminated. This will be done in the next
section by introducing the so-called embedding potential.

1The correct derivation consists in the self-consistent determination of the energy eigenvalue ǫ of the
outer volume V0 and yields the same result. More details can be found in [Ing81].
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2.1.1 The embedding potential

In order to reformulate the normal derivative ∂nψ(r) |S in terms of known quantities I
will use the Schrödinger equation in V0 as well as the definition of the Green function

(H(r)− ǫ)ψ(r) = 0 (2.8)

(H(r)− ǫ)G0(r, r
′; ǫ) = −δ(r− r′) . (2.9)

Writing H(r) as H(r) = −1
2
∇2+V (r) and multiplying the Schrödinger equation (2.8)

with G0(r, r
′; ǫ), the equation for the Green function (2.9) with ψ(r) and integrating

the difference between the two results over the volume V0 yields

∫

V0

dV δ(r− r′)ψ(r) = −1

2

∫

V0

dV
[

G0(r, r
′; ǫ)∇2ψ(r)− ψ(r)∇2G0(r, r

′; ǫ)
]

.(2.10)

At this point the locality of the potential V (r) is required.
Applying Green’s theorem to the right side results in

ψ(r′) =
1

2

∫

S

dS [G0(r, r
′; ǫ)∂nψ(r)− ψ(r)∂nG0(r, r

′; ǫ)] . (2.11)

In order to simplify eq. (2.11) von-Neumann boundary conditions of vanishing normal
derivative on S are applied

∂nG0(r, r
′; ǫ) = 0 . (2.12)

Since ψ(r′) is defined for all r′ ∈ V0, it can be chosen to be on the interface S

ψ(rS) =
1

2

∫

S

dS ′ G0(rS, r
′
S; ǫ)∂nψ(r′S) . (2.13)

Inverting this equation for ∂nψ(rS) results in

∂nψ(rS) = 2

∫

S

dS ′ σ(rS, r
′
S; ǫ)ψ(r′S) , (2.14)

which because of the boundary condition (2.3) equals

∂nψ(rS) = 2

∫

S

dS ′ σ(rS, r
′
S; ǫ)φ(r′S) . (2.15)

The surface inverse of the Green function σ(rS, r
′
S; ǫ) := G−1

0 (rS, r
′
S; ǫ) is a key quan-

tity of the embedding method which in the original paper of Inglesfield was called
embedding potential. It can be interpreted as a generalized logarithmic derivative.
The most important fact about eq. (2.14) is that there is a linear operator which ap-
plied to the wave function itself reproduces the normal derivative of the wave function
at the interface S.
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2.1.2 Embedded Green function

I can now insert the expression for the normal derivative ∂nψ(rS) of eq. (2.15) in the
‘embedded Schrödinger equation’ (2.7). As a result, the Schrödinger equation does
no longer depend explicitly on the wave function ψ(r)

(H(r)− ǫ)φ(r) +
1

2
δ(n− nS)

[

∂nφ(r)− 2

∫

S

dS ′ σ(rS, r
′
S; ǫ)φ(r′S)

]

= 0 . (2.16)

The equation can be rewritten as

(Hemb(r; ǫ)− ǫ)φ(r) = 0 , (2.17)

combining the common Hamiltonian containing the kinetic energy and the potential
with the energy-dependent surface term to the embedding Hamiltonian Hemb(r; ǫ).
The embedding Hamiltonian Hemb(r; ǫ) does not depend on the normal derivative
of the external wave function any more but on the embedding potential which is
uniquely defined by the wave function ψ(r) of the outer region V0.
The reformulation of the ‘embedded Schrödinger equation’ in terms of the embed-
ding potential instead of the normal derivative shows one advantage. As already
mentioned, the embedding potential is a logarithmic derivative and therefore does
not include a normalization.
If one tries to solve eq. (2.17) now, one will meet another problem. Since the em-
bedding potential and therefore the Hamiltonian depends on the energy it is not
easy to find a general solution for the wave function. For this reason, it makes much
more sense to consider energy-dependent Green functions than wave functions. The
defining equation for an embedded Green function then becomes

(H(r)− ǫ)G(r, r′; ǫ)

+
1

2
δ(n− nS)

[

∂nG(rS, r
′; ǫ)− 2

∫

S

dS ′′ σ(rS, r
′′
S; ǫ)G(r′′S, r

′ ; ǫ)

]

= −δ(r− r′) ,

(2.18)

or using the notation of the embedding Hamiltonian Hemb(r; ǫ)

(Hemb(r; ǫ)− ǫ)G(r, r′; ǫ) = −δ(r− r′) . (2.19)

Between the normal derivative of the Green function at the interface and the Green
function itself there exists a similar relation as for the corresponding quantities of
the wave function (see eq. (2.13))

∂nG(rS, r
′
S; ǫ) = 2

∫

S

dS ′′ σ(rS, r
′′
S, ǫ)G(r′′S, r

′
S; ǫ) . (2.20)

The application of the same linear operator σ to the Green function results in its
normal derivative. This is easy to understand, since the Green function G(r, r′; ǫ)
with one argument fixed (for example r = r0) and r′ 6= r fulfills the Schrödinger
equation for the wave function. Therefore G(r, r′; ǫ) has to fulfill the same boundary
conditions and eq. (2.20) is valid.
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3 Theoretical treatment of electronic
exchange and correlation

3.1 Many-body problem in solid-state physics

Whenever a solid has to be described at a fundamental level, one faces a difficult
many-particle problem, because a crystalline solid typically consists of a vast number
of interacting particles (approximately 1023 atoms per cubic centimeter). Governed
by the laws of quantum mechanics, the Schrödinger equation can be written down
quite easily. However, its exact solution is sheer impossible, taking into account that
due to their mutual Coulomb interaction the particles do not act independently from
each other. For that reason the question arises how to reduce the complexity of the
problem but nevertheless describe the macroscopic properties almost correctly.
Considering a solid, one can distinguish two sorts of particles: the positively charged
nuclei and the negatively charged electrons. In principle, one has to solve the
Schrödinger equation containing both the motion of the nuclei and the electrons
as well as the interactions with each other. But in practice it turns out that it is
possible to treat the two systems separately. This is of course an approximation
but it can be justified as follows: Compared to the mass of an electron, the mass
of a nucleus is three to four orders of magnitude larger. Thus, the electronic sys-
tem adapts almost instantaneously to any change in the atomic configuration. In
practice, the lowest-energy state of the electronic system is calculated as a function
of the atomic configuration, and afterward the ground state is found by minimizing
this energy function with respect to the atomic coordinates. This first simplification,
which describes the actual situation very accurately, is called Born-Oppenheimer ap-
proximation.
In the following, only the electronic system will be considered. Naturally, writing
down the Hamiltonian of the electronic system, the Coulomb interaction between
the positively charged nuclei and the negatively charged electrons has to be taken
into account. The interaction terms of one electron at position ri with all nuclei at
RA are subsumed into an external potential vext(r), since they depend on the single
variable ri. The coordinates of the positions of the nuclei enter as parameters and
no longer as variables

vext(ri) = − e2

4πε0

∑

A

ZA
|RA − ri|

. (3.1)
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In the Born-Oppenheimer approximation, the Hamiltonian of the electronic system
can be thus written as

H =
∑

i

[

− ~
2

2me
∇2
i + vext(ri)

]

+
1

2

∑

i6=j

e2

4πε0 |ri − rj|
. (3.2)

In the following, Hartree atomic units will be used, thus ~ ≡ me ≡ e ≡ 4πε0 ≡ 1.
The last term of the Hamiltonian, the strong repulsive Coulomb interaction, keeps
any two electrons apart in space and gives rise to several energy terms. The most
important one is the Hartree energy, followed by the exchange and the relatively
weak correlation energy.
The exchange energy contributes only for electrons with the same spin, since the
Pauli exclusion principle does not allow two electrons with the same spin to be
simultaneously at the same place in space.
The exclusion principle is taken into account by the antisymmetrization of the N -
particle wave function ΨN(x1, ...,xN ), which is a solution of the time-independent
Schrödinger equation

HΨN(x1, ...,xN) = ENΨN(x1, ...,xN) (3.3)

and which has to fulfill the antisymmetry relation

ΨN(...,xi, ...,xj, ...) = −ΨN (...,xj, ...,xi, ...) . (3.4)

Here, N denotes the particle number (thus the number of electrons) and xi = (ri, σi)
the spatial and spin coordinates of the ith electron.
In order to solve the Schrödinger equation (3.3), one could transform the problem
to an effective one-particle problem by treating the mutual Coulomb interaction in
the form of a self-consistent mean field. Examples for such single-particle approxi-
mations are the Hartree and the Hartree-Fock approximation (HFA). In the first one
the non-local Coulomb term is replaced by an average local Coulomb potential from
all other electrons. Although the Hartree approximation does not take exchange and
correlation effects into account, it may still lead to useful and qualitatively correct
results, for example for the homogeneous electron gas. An extension of the Hartree
approximation taking the fermionic nature of the electrons into account is the HFA,
which adds to the Hartree potential a non-local exchange potential reflecting the
Pauli exclusion principle. Whereas the exchange term of the energy is treated ex-
actly in this way, the correlation term is entirely ignored.
Methods like density-functional theory (DFT) [HK64], which in principle includes all
exchange and correlation effects via a local exchange-correlation potential, give access
to ground-state properties of many-electron systems1. But although the solution of

1The exchange-correlation potential in general cannot be calculated exactly, but there are different
approximations for it, which work quite well for some systems. The most common ones are the
local density approximation (LDA) [CA80] and the generalized gradient approximation (GGA)
[PCV+92], [PBE96].
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the Kohn-Sham equation of DFT [KS65] yields a spectrum of single-particle states,
it is not possible to identify the corresponding eigenvalues with excitation energies.
They are simply mathematical tools, Lagrange parameters introduced to enforce the
normalization of the wave function, without any physical meaning. Instead, excited
states as well as excited-state properties can be calculated using many-body per-
turbation theory, which is outside DFT and based on the Green function formalism
[FW03].

3.2 Quasi-particle picture and the concept of

electronic self-energy

Exchange and correlation effects whose origins have been already described in the
previous section cause a positively charged region around each electron (with a
smaller electron density than the average), the so-called Coulomb hole. Since the
Coulomb hole does not exist independently from the bare electron, the electron and
the Coulomb hole are often treated as a single entity, the so-called quasi-particle.
It is important to state that the interaction between quasi-particles is much weaker
than the interaction between bare electrons, because the hole surrounding the elec-
tron screens the strong Coulomb potential caused by the bare electron itself. For
that reason, the independent-particle picture leads often to quite good results. Al-
though the particles interact strongly with each other, the quasi-particles are almost
independent. The interaction between quasi-particles therefore is called screened
interaction and denoted by W instead of the pure Coulomb interaction v. Hence,
from a physical point of view it is more reasonable to calculate the energy of one
quasi-particle instead of one bare electron. Furthermore, the description in terms
of quasi-particles correspond exactly to the experimental situation, for example in
photoemission. As explained in detail in section 3.3, the quasi-particle spectrum can
be measured experimentally, which is not the case for the bare electron spectrum.
The energy difference between the energy of one quasi-particle and the corresponding
bare particle itself is called self-energy. The name can be explained in the following
way: The bare electron interacts with the many-body system and creates a Coulomb
hole. This Coulomb hole in turn reacts back on the electron and disturbs its motion.
Therefore the particle interacts with itself via the many-body system and changes
its own energy.
The self-energy is a very important quantity since theoretically it enables one to cal-
culate the eigenvalues of the many-body system including correlation and exchange
effects exactly. In practice, however, it turns out that the exact calculation of the
self-energy of a given system is very difficult or even impossible. Therefore several
approximations for the self-energy have been developed.
In the following sections of this chapter one possible approximation — the so-called
GW approximation — for the electronic self-energy will be introduced. In the frame-
work of the GW approximation exchange effects are treated exactly and a large part



16 Theoretical treatment of electronic exchange and correlation

of correlation effects are included.
Since the GW approximation serves to calculate excitation spectra, in the next sec-
tion the nature of electronic excitations is analyzed.

3.3 Elementary excitations in solids

There are two kinds of excitations which have to be distinguished: quasi-particle and
collective excitations. Whenever the excitation can be described by the elevation
of a single particle to an excited eigenstate, the excitation is called a quasi-particle
excitation. In the opposite case, when a large number of particles are involved, the
excitation is denoted as a collective excitation. For example plasmons, which de-
scribe the long-lived resonant charge-oscillations in a system induced by a spatially
and temporary varying electric field fall within this category. Other examples are
phonons, magnons and excitons. Excitons are a bound states between an electron
and a hole which propagate as a pair.
Whereas quasi-particle excitations can qualitatively be described in a single-particle
picture, in which the electron-electron interaction is included via an effective poten-
tial, collective excitations result directly from the electron-electron interaction and
are therefore absent in mean-field theories.
Experimentally, electronic excitation spectra can be measured using angle-resolved
photoemission spectroscopy. In direct photoelectron spectroscopy, photons with en-
ergy ~ω impinge on the sample and — if their energy is sufficient — eject elec-
trons from the sample, leaving a quasi-hole behind. Measuring the kinetic energy
of the emitted electron enables one to reconstruct the quasi-particle band structure
Ek = Ekin − ~ω below the chemical potential µ, since the momentum of the pho-
tons is negligible and thus the k vector of the electron does not change in a relevant
way. Equivalently, inverse photoelectron spectroscopy allows one to obtain the quasi-
particle bandstructure Ek above the chemical potential µ. In this case, electrons are
injected into the sample and the energy of the ejected photons is measured. Nat-
urally, the resulting spectrum does not only contain quasi-particle excitations but
includes collective excitations as well, since the injected/ejected electrons as well as
the photons can create or absorb collective excitations. In the resulting spectrum
quasi-particle excitations can be distinguished from collective ones through their high
intensity and the width of the peak. The width of the peak is related to the lifetime
of the state by the uncertainty relation, thus a narrow peak correspond to a long
lifetime. Since quasi-particle excitations typically have a much longer lifetime than
collective excitations, their peaks are much narrower.
In order to describe excitations mathematically, it is convenient to use the Green
function formalism, which will be introduced in the next section.
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3.4 Green function formalism

There are several reasons why the Green function formalism is useful when dealing
with various aspects of the many-body problem in solids. As opposed to common
wave functions, Green functions allow us to calculate the many-body eigenvalues
without having explicitly calculated the eigenstates of the Hamiltonian. Supplemen-
tary to ground-state properties like the electronic density and the expectation value
of any single-particle operator of the system, the time-ordered one-particle Green
function contains the whole excitation spectrum as well as the corresponding ex-
citation lifetimes. As Green functions link the N -particle with the N ± 1-particle
system, they are closely related to photoemission spectroscopy based on the injec-
tion/ejection of electrons. In general, the close connection between Green functions
and experiments is a valued property.
Because of all these characteristics, many-body perturbation theory including the
GW approximation draws on the concept of Green functions. Unfortunately, Green
functions are often quite complicated to calculate. For that reason the Green-function
formalism is rarely applied to calculate ground-state properties only. Most often,
Green functions are calculated in order to obtain properties of the system related to
excited states.
Green-function formalism is based on the concept of second quantization which is
equivalent to common quantum mechanics and only uses a different mathematical
formulation. For the treatment of statistical problems which involve a large and
variable number of particles this approach is more practical, since it provides a more
economical language than conventional quantum mechanics.
In the following I will consider a N -electron system with the N -electron ground state
∣

∣ΨN
0 (t′)

〉

. For the manipulation of the number of particles the so-called field operators

ψ̂†(x) and ψ̂(x) (3.5)

are required. They cause the creation/annihilation of an electron at position r with
spin σ, subsumed into x = (r, σ). Alternatively, the annihilation of an electron is
interpreted as creation of a hole. The time development of the system is described
by the time evolution operator Û(t, t′) = e−iĤ(t−t′), which propagates an arbitrary
system, characterized by the Hamiltonian Ĥ , from t′ to a later time t.
In general, one has to distinct between several kinds of Green functions, which are all
equivalent to each other — knowing one of them (regardless which one), all others can
be calculated. The most popular Green function is the time-ordered one. Physically,
it describes the propagation of an electron and a hole.
In the following, the electron Green function will be derived. It is defined such that
iGelectron(xt,x′t′) is the probability amplitude for an additional electron to propagate
from r′ with spin σ′ at time t′ to the state x at time t. Therefore first the creation
operator ψ̂†(x′) (for an electron in the state x′) is applied to the N -electron ground
state

∣

∣ΨN
0 (t′)

〉

and then the system is propagated in time by applying the time

evolution operator Û(t, t′). Finally the annihilation operator ψ̂(x) for an electron in
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the state x has to be applied to return to an N -electron-system. The overlap of this
product ψ̂(x)Û(t, t′)ψ̂†(x′)

∣

∣ΨN
0 (t′)

〉

representing the final state with
∣

∣ΨN
0 (t)

〉

has to
be calculated in order to obtain the electron Green function. This yields

Gelectron(xt,x′t′) = −i
〈

ΨN
0 (t)

∣

∣

∣
ψ̂(x)Û(t, t′)ψ̂†(x′)

∣

∣

∣
ΨN

0 (t′)
〉

Θ(t− t′) . (3.6)

The Heaviside step function

Θ(t− t′) =

{

1 if t > t′

0 if t < t′
(3.7)

makes sure that the electron has only a finite amplitude to propagate if the time t of
arrival at x is later than the time t′ of departure at x′.
Naturally, formula (3.6) can be reformulated in the Heisenberg picture, too, where
operators are time-dependent

ÂH(t) = Û(0, t)ÂSÛ(t′, 0) , (3.8)

whereas states are time-independent like

|ΨH 〉 = Û(0, t) |ΨS(t)〉 . (3.9)

Inserting the two definitions (3.8) and (3.9) in (3.6) I obtain the Green function in
the Heisenberg picture

Gelectron(xt,x′t′) = −i
〈

ΨN
0

∣

∣

∣
ψ̂(x, t)ψ̂†(x′, t′)

∣

∣

∣
ΨN

0

〉

Θ(t− t′) . (3.10)

The hole Green function, describing the propagation of an additional hole can be
derived equivalently and results in

Ghole(xt,x′t′) = −i
〈

ΨN
0

∣

∣

∣
ψ̂†(x′, t′)ψ̂(x.t)

∣

∣

∣
ΨN

0

〉

Θ(t′ − t) . (3.11)

As already announced, the time-ordered Green function implies electron propagation
as well as hole propagation, and is therefore composed of the electron and the hole
Green function to

G(xt,x′t′) = Gelectron(xt,x′t′)−Ghole(x′t′,xt) (3.12)

= −i
〈

ΨN
0

∣

∣

∣
T̂
[

ψ̂(x, t)ψ̂†(x′, t′)
]
∣

∣

∣
ΨN

0

〉

.

The time-ordering operator T̂ puts the field operators in such an order that the time
increases from the right to the left. If field operators must be commuted, a factor
(−1) has to be added for each permutation. The time-ordering operator T̂ ensures
that the Green function describes either the propagation of an electron (for t > t′)
or the propagation of a hole (for t < t′).
I will now consider the time-ordered Green function of a stationary system with a
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Hamiltonian which does not depend explicitly on the time. Consequently, the Green
function depends only on the time difference τ = t − t′ between the initial and the
final state and therefore in the following will be written as

G(xt,x′t′) = G(x,x′; τ) . (3.13)

In order to obtain the Green function in terms of excited states of the (N±1)-particle
system I will insert the closure relation

∑

i

∣

∣ΨN±1
i

〉 〈

ΨN±1
i

∣

∣ = 1 (3.14)

between the field operators, where
{
∣

∣ΨN±1
i

〉}

is the complete set of state vectors of
the (N ± 1)-particle system. The excitation energies will be denoted as

ǫN−1
i = EN

0 −EN−1
i or ǫN+1

i = EN+1
i − EN

0 , (3.15)

respectively. Thus, the time-ordered Green function in the Schrödinger picture be-
comes

G(x,x′; τ) = −i
∑

i

〈

ΨN
0

∣

∣

∣
ψ̂(x)

∣

∣

∣
ΨN+1
i

〉〈

ΨN+1
i

∣

∣

∣
ψ̂†(x′)

∣

∣

∣
ΨN

0

〉

e−iǫ
N+1
i

τΘ(τ) (3.16)

+i
∑

i

〈

ΨN
0

∣

∣

∣
ψ̂†(x)

∣

∣

∣
ΨN−1
i

〉〈

ΨN−1
i

∣

∣

∣
ψ̂(x′)

∣

∣

∣
ΨN

0

〉

e−iǫ
N−1
i

τΘ(−τ) .

Using the following definitions

ψN−1
i (x) =

〈

ΨN−1
i

∣

∣

∣
ψ̂(x)

∣

∣

∣
ΨN

0

〉

(3.17)

and

ψN+1
i (x) =

〈

ΨN
0

∣

∣

∣
ψ̂(x)

∣

∣

∣
ΨN+1
i

〉

, (3.18)

the time-ordered Green function can be rewritten as

G(x,x′; τ) = −i
∑

i

ψN+1
i (x)ψN+1 ⋆

i (x′)e−iǫ
N+1
i

τΘ(τ) (3.19)

+i
∑

i

ψN−1
i (x)ψN−1 ⋆

i (x′)e−
i

~
ǫN−1
i

τΘ(−τ) .

The summation has to be executed over the ground state and all excited states of
the (N − 1) or the (N + 1) particle system, respectively.
Expression (3.19) shows that the Green function in fact contains the whole excita-

tion spectrum: The resulting states evolve according to their phase factors e−iǫ
N±1
i

τ

containing the excitation energies ǫN+1
i or ǫN−1

i and are then probed in the state x

by the projections ψN+1
i (x) or ψN−1

i (x), respectively.
In the next step, the Green function is Fourier transformed to frequency space, thus
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Imω

Reω
µ0 x xxxx xx xxxx x

x xxxx xx xxxx x

Figure 3.1: The poles of the time-ordered Green function (represented as crosses) are sit-
uated close to the real frequency axis. For frequencies with Re ω < µ they are
located infinitesimally above the real frequency axis, whereas for frequencies
with Reω > µ they are in the lower half-plane of the complex frequency plane.

to G(x,x′;ω).
The only terms in (3.19) which depend on τ are the phase factors and the Heaviside
step functions. With the Fourier transform of the Heaviside step function

Θ(ω) =

∫ ∞

−∞
Θ(τ)eiωτ−η|τ |dτ =

i

(ω + iη)
(3.20)

(with an infinitesimally small real η, η > 0) the time-ordered Green function in
Fourier space results in

G(x,x′;ω) =
∑

i

ψN+1
i (x)ψN+1 ⋆

i (x′)

ω − ǫN+1
i + iη

+
∑

i

ψN−1
i (x)ψN−1 ⋆

i (x′)

ω − ǫN−1
i − iη

. (3.21)

This representation of the Green function is called the Lehmann representation. It
is very useful, because it shows that the Green function has poles at the true many-
particle excitation energies ǫN±1

i . Their position in the complex plane, infinitesimally
below the real axis for energies greater than the chemical potential µ and above
otherwise, are schematically shown in figure 3.1.
Eq. (3.21) can be interpreted for the special case of non-interacting systems: In this
case the ψN+1

i are simply the unoccupied states whereas the ψN−1
i represent the

occupied wave functions. Furthermore, the excitation energies ǫN±1
i become simply

the single-particle energies.

Spectral function In order to analyze the excitation spectrum it is useful to intro-
duce the spectral function A(x,x′;ω) which is defined through the spectral represen-
tation of the Green function

G(x,x′;ω) =

∫ ∞

−∞

A(x,x′;ω′)

ω − ω′ + i sgn (ω′ − µ) η
dω′ . (3.22)
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Inserting the identity
1

x∓ iη = P

(

1

x

)

± iπδ(x) (3.23)

in equation (3.22), where P denotes the principal value, and taking the limit η → 0
yields

A(x,x′;ω) = −1

π
sgn(ω − µ) ImG(x,x′;ω) . (3.24)

This formula enables one to calculate the spectral function explicitly using the
Lehmann representation of the Green function

A(x,x′;ω) =
∑

i

ψN+1
i (x)ψN+1 ⋆

i (x′)δ(ω − ǫN+1
i )

+
∑

i

ψN−1
i (x)ψN−1 ⋆

i (x′)δ(ω − ǫN−1
i ) .

(3.25)

The spectral function is closely related to the distribution function measured by
photoemission experiments. It can be interpreted as the density of excited (or quasi-
particle) states that contribute to the electron or hole propagation.

3.5 The self-energy

In section 3.1 the physical meaning of the self-energy was explained. Now, a defining
equation for the self-energy will be derived. The self-energy is important for the
calculation of the Green function since the original definition of the Green function
(3.12) is not very useful for practical calculations — it is expressed in terms of the
wave functions, which we want to avoid.
In the following a procedure to obtain the Green function without calculating the
wave functions will be derived. This procedure is based on the equation of motion
of the Green function.
In order to derive the equation of motion, the time derivative of the Green function
given by eq. (3.12) is calculated. Therefore the time derivative of the field operators is
needed. It can be obtained using the equation of motion for an arbitrary Heisenberg
operator OH(t)

i
d

dt
ÔH(t) =

[

ÔH(t), Ĥ
]

−
+ i

∂ÔH(t)

∂t
(3.26)

and the derivative of the Heaviside step function dΘ(t)
dt

= δ(t), hence

i
dψ(x, t)

dt
=

[

h(r) +

∫

ψ†(x′, t)v(r, r′)ψ(x′, t)d3x′
]

ψ(x, t) . (3.27)

Here, the one-particle contribution to the Hamiltonian is denoted by h(r) = −1
2
∇2 +

vext(r) and the Coulomb potential is written as v(r, r′) = 1
|r−r′| .
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With the help of eq. (3.27) and the anticommutation relations of the field operators
an equation of motion of the Green function can be derived

[

i
∂

∂t
− h(r)

]

G(xt,x′t′) = δ(x− x′)δ(t− t′)

− i
∫

v(r, r′′)〈ΨN

∣

∣T
[

ψ†(x′′, t)ψ(x′′, t)ψ(x, t)ψ†(x′, t′)
]
∣

∣ΨN〉d3x′′ . (3.28)

The last term which contains a product of four field operators is yet another Green
function but of higher order. Since the one-particle Green function contains two
field operators, we have to deal here with a two-particle Green function describing
two-particle correlations. One could set up a new equation of motion to obtain this
two-particle Green function, but this would result in an equation similar to (3.28),
including now a Green function of still higher order. This procedure would lead
to an infinite chain of differential equations: In order to determine the one-particle
propagator exactly an infinite number of differential equations has to be solved, which
is just as impossible as finding the many-electron wave function.
There are now at least two possibilities to deal with this problem. The first one would
be to terminate the chain of equations by approximating the highest-order Green
function through lower-order terms. The second one, which will be the method of
choice here, decouples the equations by introducing a set of non-linear equations.
This method follows the standard procedure in field theory and invokes the concept
of the self-energy.
Therefore, the dominant interaction term, denoted by the Hartree potential is written
as

V H(r) =

∫

v(r, r′)〈ΨN

∣

∣ψ†(x′, t)ψ(x′, t)
∣

∣ΨN〉d3x′ . (3.29)

Then, the self-energy operator Σ is defined by

[

i
∂

∂t
− h(r)− V H(r)

]

G(xt,x′t′) = δ(x− x′)δ(t− t′)

+

∫

Σ(xt,x′′t′′)G(x′′t′′,x′t′)d3x′′dt′′ (3.30)

and a strict comparison to (3.28). It is a non-local time- (or energy-) dependent
quantity, which accounts for the interaction between a particle and the rest of the
system and generalizes the notion of a local potential. As already illustrated in section
3.1, the self-energy specifies the difference in energy between the quasi-particle and
the bare particle.
If the potential does not depend explicitly on time, the self-energy as well as the
Green function depends only on the relative difference between its two temporal
arguments.
Although in principle the self-energy incorporates all exchange and correlation effects
exactly, in practice it is often approximated. The GW approximation for Σ, which
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is used in this diploma thesis, will be presented in detail in section 3.9. Much easier
approximations which were obtained by educated guesses are the Hartree and the
Hartree-Fock approximation which have been already described in section 3.1. In the
first one the self-energy is chosen to be zero

ΣH(xt,x′t′) = 0 , (3.31)

whereas in the second one the self-energy gives rise to the non-local exchange poten-
tial, thus

ΣHF(xt,x′t′) = iG(xt,x′t′)v(r, r′)δ(t− t′) . (3.32)

In these two mean-field approximations the self-energy does not depend on frequency.
The self-energy of the GW approximation, which will be introduced in section 3.9,
resembles the Hartree-Fock self-energy, but the Coulomb potential is replaced by the
time- (or frequency-) dependent screened interaction W

ΣGW (xt,x′t′) = iG(xt,x′t′)W (rt, r′t′) . (3.33)

3.6 Feynman diagrams

Feynman diagrams are a very useful tool for the description of many-body interaction
processes. They display complex mathematical expressions in a concise picture using
the framework of Green functions. Since Feynman diagrams are a means to describe
mathematical formulas, they can be translated back to mathematical expressions.
Each symbol is associated with a variable. Thus a mathematical expression can be
translated into the language of diagrams, then changed or simplified and in the end
translated back to a mathematical formula without losing its validity.
The basic ingredients of Feynman diagrams are the Green function G(xt,x′t′) of the
interacting system and the Green function G0(xt,x

′t′) of the independent-particle
system. The latter is also called the free-particle propagator and drawn by a single-
line arrow, connecting two vertices associated with different coordinates in space
and time. For t > t′ it describes the propagation of a free particle from (x′t′) to
(xt), whereas for reverse time-order the free propagation of a hole in the opposite
direction is represented by the same symbol. Although a time axis is often included
in Feynman diagrams, in this work no time axis is drawn for reasons of simplicity.
The Green function of the interacting-particle system is represented by a double-line
arrow. In contrast to to the free-particle propagator, it describes the propagation of
a particle influenced by all other particles.
The Coulomb interaction v(r, r′)δ(t− t′) is represented by a wiggly line and assumed
to happen instantaneously in time. It is no fermion propagator and hence drawn
without arrow.
The symbols for the three basic ingredients introduced until now are shown in the
following table.
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Symbol Formula Description
−iG Green function of the interacting system
−iG0 Green function of the non-interacting system
iv Coulomb interaction

There are different criteria which can be used to characterize Feynman diagrams. One
of them is the distinction between connected and disconnected diagrams. Examples
for these two types are diagrams are shown in figure 3.2. The value of a disconnected
diagram is just the product of its subunits. Hence, for the evaluation of the self-
energy only connected diagrams have to be considered. Additionally, in order to
avoid double-counting, only diagrams which are topologically distinct have to be
included.
Connected diagrams can often be broken into two unconnected parts by removing

one particle or hole line. This kind of diagrams is called reducible, whereas diagrams
like the Hartree and the Fock-type diagram displayed in the middle and on the right
side of figure 3.3 are called irreducible, because they cannot be split into two parts
by cutting a single particle or hole line. As I will present in the next section, these
irreducible diagrams play an important role in the calculation of the self-energy (or
the full propagator G(xt,x′t′), respectively), since they are the basic modules of
which all relevant Feynman diagrams are composed of.
Furthermore, Feynman diagrams can be classified by their order, i.e. the number
of interactions which are included in the diagram and represented by the number of
Coulomb (wiggly) lines. Since each Coulomb line connects two vertices, each diagram
of order n contains 2n+1 free-particle propagators G0 (single-arrow lines). Therefore,
the only diagram of zeroth order is the free propagator. In first order, there are
already two possible diagrams: the Hartree- and the Fock-type diagram. The latter
represents the exchange term, which can be interpreted as an electron which emits a
photon and absorbs it at the same time but at a different location. The ‘bubble’ in
the Hartree diagram (right diagram in figure 3.3) is a so-called closed fermion loop
and represents the electron density. Translating it back into mathematical formulas,
it also contains an additional phase factor −1. As I will show in the next section,
these two first-order diagrams are the only irreducible diagrams appearing in the
Hartree-Fock approximation. All other diagrams of higher order are reducible and
composed of these two diagrams only. More detailed information about Feynman
diagrams can be found in [FW03] and [Ink84].

Figure 3.2: Feynman diagrams can be characterized as to whether they are connected
(right diagram) or whether they are disconnected (left diagram).
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3.7 The Dyson equation

In order to obtain the complete Green function, one has to include all possible inter-
actions. In the language of Feynman diagrams that implies the summation over all
diagrams up to infinite order.
This issue is described mathematically by the Dyson equation

G(xt,x′t′) = G0(xt,x
′t′)

+

∫ ∫

G0(xt,x
′′t′′)

[

V H(x′′)δ(x′′ − x′′′)δ(t′′ − t′′′) + Σ(x′′t′′,x′′′t′′′)
]

G(x′′′t′′′,x′t′)d3x′′d3x′′′dt′′dt′′′ , (3.34)

which relates the Green function of the interacting-particle system G(xt,x′t′) to the
free-particle propagator G0(xt,x

′t′) via the electronic self-energy Σ(xt,x′t′). For a
time-invariant system G(xt,x′t′) can be written as G(x,x′; t − t′), and it is more
comfortable to Fourier transform the Dyson equation to frequency space, because in
this case the integrations over the time variables reduce to a product

G(x,x′;ω) = G0(x,x
′;ω)

+

∫ ∫

G0(x,x
′′;ω)

[

V H(x′′)δ(x′′ − x′′′) + Σ(x′′,x′′′;ω)
]

G(x′′′,x′;ω)d3x′′d3x′′′ .

(3.35)

The irreducible self-energy Σ is given by the sum over all single scattering processes.
In terms of diagrams this equals the sum over all irreducible diagrams. One can
convince oneself that the Dyson equation includes all single, double, triple, etc.,
scattering processes composed of these irreducible diagrams by replacing the Green
function on the right side under the integral by the expression for the whole Green
function, thus in the first step by G(0) +G(0)Σ̃G with Σ̃(x,x′;ω) = V H(x)δ(x−x′)+
Σ(x,x′;ω). Repeating this procedure several times will lead to an infinite sum of
scattering terms

G = G0 +G0Σ̃G0 +G0Σ̃G0Σ̃G0 +G0Σ̃G0Σ̃G0Σ̃G0 + .... (3.36)

Figure 3.3: Example of a reducible diagram (left), which can be broken into two irreducible
diagrams, the Hartree- (right) and the Fock-type diagram (middle). They
represent the first scattering process of the Hartree-Fock approximation, hence
G0Σ̃G0.
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Figure 3.4: Zeroth-, first- and second-order terms of the Hartree-Fock approximation

Although the Dyson equation (3.34) is exact, in practice it is not possible to calculate
the Green function exactly since the self-energy comprising a sum over an infinite
number of diagrams cannot be calculated exactly. On the other hand, the Dyson
equation is a good starting point for many-body approximations: The interpretation
in terms of scattering processes allows one to construct approximations for Σ by
the summation of diagrams considered essential for a given electronic system. In
practice, the irreducible self-energy is approximated by one or several irreducible self-
energy parts which yield (or which are assumed to yield) the dominant contribution.
Unfortunately, a straightforward application of finite-order perturbation theory does
not work for infinite systems with a long-range interaction. In this case the value of
individual diagrams of any given order may be infinite and the sum may not converge.
However, the divergences of individual diagrams cancel out when summing up the
entire subclass of diagrams until infinite order.
An example for the successful application of the Dyson equation is the Hartree-Fock
approximation. In this approximation, the irreducible self-energy consists of the two
diagrams of first order already displayed in figure 3.3. The zeroth, first and second-
order terms of the infinite sum (3.36) are presented in figure 3.4.
Another approximation for the irreducible self-energy which can be obtained by the
means of physical intuition and diagrammatic technique is presented in figure 3.5. Its
basic compound is the – divergent – second order diagram (the second in the sum)2.
However, since all other diagrams of higher order diverge as well, the divergences of
the individual diagrams cancel out when calculating the sum over all of them. The
’ring’

in this second order diagram corresponds to the polarization

P0(xt,x
′t′) = −iG0(xt,x

′t′)G0(x
′t′,xt) (3.37)

2It is the only diagram of second order which diverges
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Figure 3.5: Diagrammatic expansion of the self-energy in the GW approximation. Going
from the nth-order diagram to the next highest order, one more Coulomb line
and one more ring has to be added. Except the first-order exchange diagram
all summands contain the ring, representing the polarization. Removing the
free-particle particle propagator results in the screened interaction in the RPA
(see 3.6).

and describes the simultaneous creation of an electron and a hole and their subse-
quent annihilation. This fits to the classical idea of the polarization process as the
production of positive and negative charges in a medium and the resulting reduction
of the applied field. The upper part of the sum presented in figure 3.5 without the
free-particle propagator represents the screened interaction (shown in figure 3.6) be-
tween quasi-particles and is denoted by W . It is an expansion in terms of the bare
Coulomb interaction reduced by the polarization process. This approximation for
the screened interaction is called the Random Phase Approximation (RPA). Symbol-
ically, it can be written as the infinite sum

W = v + vPv + vPvPv + vPvPvPv + · · · . (3.38)

The electronic self-energy approximated by the infinite sum in figure 3.5 equals the
electronic self-energy in the GW approximation. Originally, it was developed to
describe the high-density electron gas, because in this case it can be shown mathe-
matically that it represents a good approximation. However, it leads to reasonable
results even for intermediate and low densities (for example in the case of metals).
Although this approximation was developed by a diagrammatic approach, the GW
approximation is obtained by a systematic algebraic method instead. It will be in-
troduced in section 3.9.

3.8 Hedin’s equations

In 1965 Hedin derived a set of five self-consistent integral equations for the formally
exact calculation of the Green function of a system of interacting particles [Hed65].
These equations link the self-energy to the full particle propagator and include the
calculation of the polarization function as well as the screened interaction.
There are different methods how to derive these equations. In the original paper of
Hedin, they were obtained with the help of Schwinger’s functional derivative method
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Figure 3.6: Diagrammatic expansion of the screened interaction in the RPA. The bare
Coulomb interaction is reduced by the polarization process, represented by
the ring.

[Sch51], [MS59] which makes use of an artificial potential (in the derivation) which
is set to zero at the end. Hedin developed the self-energy in terms of the screened
interaction W (r, r′, ω) (and not the bare Coulomb potential v(r, r′)). Since the exact
derivation is very complicated and lengthy, just the results are written down here. A
detailed derivation can be found in [AG98].
In the following the notation will be simplified by subsuming the position, time
and spin variables (r1, t1, σ1) into a single symbol 1 (or 2, 3,..., respectively). In
this notation the first of Hedin’s equation for the vertex function — a three-point
operator — can be written as

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫ ∫ ∫ ∫

δΣ(1, 2)

δG(4, 5)
G(5, 6)Γ(6, 7; 3)G(7, 4) d4 d5 d6 d7 .

(3.39)
With the help of the vertex function, the irreducible polarization propagator is given
by

P (1, 2) = −i
∫ ∫

G(1, 3)Γ(3, 4; 2)G(4, 1) d3 d4 . (3.40)

The dielectric function which quantifies the screening is then given by

ǫ(1, 2) = δ(1, 2)−
∫

v(1, 3)P (3, 2) . (3.41)

Although eq. (3.41) is not counted among Hedin’s equations, it is written down here
because the dielectric function is an important property. Its inverse relates the bare
Coulomb interaction to the dynamically screened interaction

W (1, 2) =

∫

ǫ−1(1, 3)v(3, 2) d3 = v(1, 2) +

∫ ∫

v(1, 3)P (3, 4)W (4, 2) d3 d4 . (3.42)

As already explained in the last section, W quantifies the interaction between quasi-
particles since the interaction between bare particles is screened through their polar-
ization clouds.
The self-energy Σ is then given by

Σ(1, 2) = i

∫ ∫

W (1, 3)G(1, 4)Γ(4, 2; 3) d3 d4 . (3.43)
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Finally, the Dyson equation (3.34) yields the complete Green function including all
exchange and correlation effects.
In principle, this set of five coupled integral equations (3.39), (3.40), (3.42), (3.43)
and (3.34) solves the many body problem exactly. Unfortunately, the nature of the
relations is not just numerical, since eq. (3.39) contains a functional derivative. There-
fore the equations cannot be solved self-consistently by computer codes. However,
they are a good starting point for approximations, which are intrinsically different
from the diagrammatic approach. For example, they may be iterated analytically
in order to derive useful approximations. One possible approximation is the GW
approximation, which will be presented in the next section.

3.9 The GW approximation

In order to iterate Hedin’s equations analytically, a starting point is required. There-
fore a zeroth-order self-energy Σ(0) and a corresponding Green function G(0) are
chosen, which may already include certain exchange and/or correlation effects. In
order to avoid double-counting, Dyson’s equation must be modified to

G(1, 2) = G(0)(1, 2)+
∫ ∫

G(0)(1, 3)
[

V H(3)δ(3, 4) + Σ(3, 4)− Σ(0)(3, 4)− V H(0)(3)δ(3, 4)
]

G(4, 2) d3 d4 .

(3.44)

In the original version of the GW approximation proposed by Hedin, the Hartree
approximation is chosen as starting point, thus G(0) = GH and Σ(0) = ΣH. This
choice leads to a strong simplification, since the vertex function reduces to a product
of two delta functions

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) . (3.45)

Inserting the simplified vertex function in eq. (3.40) leads to the polarization function

P (1, 2) = −iG(0)(1, 2)G(0)(2, 1) , (3.46)

which corresponds to the ring already introduced in section 3.7, eq. (3.37). In order to
distinguish this approximated polarization function from the irreducible polarization
as defined in eq. (3.40), in the following I will denote it with P0(1, 2). With P (1, 2) =
P0(1, 2), the screened interaction equals the corresponding quantity in the random-
phase approximation (compare the schematic expression eq. (3.38) and figure 3.6).
It results in

W (1, 2) = v(1, 2) +

∫ ∫

v(1, 2)P0(3, 4)W (4, 2) d3 d4

and stays formally the same as defined in eq. (3.42), just with P0 instead of P . The
self-energy reduces to a product of G and W

ΣGW (1, 2) = iG(0)(1, 2)W (1, 2) . (3.47)
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Since the self-energy of the Hartree-approximation is zero, the Green function G(1)

after one iteration becomes

G(1)(1, 2) = G(0)(1, 2) +

∫ ∫

G(0)(13)ΣGW (3, 4)G(1)(42) d3 d4 . (3.48)

Practical applications of the GW approximation often start from a different initial
Green function. In particular, the Green function obtained by mean-field theories
like DFT, which already includes exchange and correlations effects, is often taken.
The comparison to experimental results shows that the choice of a different, ‘better’
starting point leads to a real improvement of the results of the GW calculations.

3.10 Irreducible polarization

The irreducible polarization as defined in eq. (3.40) can be obtained in another way
without calculating the three-point vertex function Γ(1, 2; 3) (see eq. (3.39)) as well.
It satisfies a Dyson-type equation [PGG96] and therefore (for a time-invariant system)
in frequency space

P (r, r′;ω) = P0(r, r
′;ω) +

∫

d3r′′
∫

d3r′′′P0(r, r
′′;ω)fxc(r

′′, r′′′;ω)P (r′′′, r′;ω) ,

(3.49)
where P0(x,x

′;ω) is the polarization function calculated for an effective potential
according to eq. (3.46)3. In eq. (3.49) I have neglected the spin dependence of the
polarization. This is valid for non-magnetic systems and will be discussed in chapter
7.
The function fxc(r, r

′;ω) which appears for the first time in eq. (3.49) is the so-called
exchange-correlation kernel. In direct space it is defined as the derivative of the
time-dependent exchange-correlation potential Vxc(rt) with respect to the density
n(r′t′)

fxc(r, r
′; t− t′) =

δVxc(r, t)

δn(r′, t′)

∣

∣

∣

∣

n(r′,t′)=n(0)(r′)

, (3.50)

where n(0)(r′) is the static ground-state density of the system. Although eq. (3.49)
is in principle exact, the practical evaluation requires to make some approximations,
since the exchange-correlation kernel cannot be calculated exactly.
In order to obtain an approximation for the kernel any explicit approximate for-
mula for the potential can be used to derive a matching approximation for the ker-
nel. The most common approximation for the exchange-correlation potential Vxc(r, t)
is the adiabatic local-density approximation (ALDA) which replaces the exchange-
correlation potential at the coordinates r and t by that of the homogeneous elec-
tron gas with the same local density n(r, t). It is readily expressed in terms of the

3More precisely, it is the polarization function calculated according to eq. (3.46) with a Green function
calculated within DFT.
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exchange-correlation energy density ǫhom
xc (n) of the homogeneous electron gas accord-

ing to

V ALDA
xc (r, t) =

d

dn

[

nǫhom
xc (n)

]

n=n(r,t)
. (3.51)

The ALDA is a rather drastic approximation that ignores the non-local dependence
of Vxc(r, t) on the density elsewhere in space as well as the memory of the density
distribution at earlier times. Nevertheless, the static exchange-correlation potential
in bulk solids is typically quite well modeled in the ALDA; in the case of the homo-
geneous electron gas it yields the correct constant potential.
Inserting formula (3.51) for V ALDA

xc (r, t) in eq. (3.50), one obtains the exchange-
correlation kernel in the adiabatic local-density approximation [ZS80]

fALDA
xc (r, r′; t− t′) =

δV ALDA
xc (r, t)

δn(r′, t′)
= δ(r− r′)δ(t− t′) d

2

dn2

[

nǫhom
xc (n)

]

n=n(0)(r)
.

(3.52)

In order to calculate this kernel, I will in a first step calculate the exchange-correlation
energy-density of the homogeneous electron gas. It is given as the sum of the exchange
and the correlation part

ǫhom
xc (n) = ǫhom

x (n) + ǫhom
c (n) . (3.53)

I start with the (analytical) calculation of the exchange part. In the Hartree-Fock
approximation, one obtains the exact result for the exchange-energy of the homoge-
neous electron gas

Ex = −N 3

4

kF

π
. (3.54)

Expressing the number of particles as an integral over the density N =
∫

V
n d3r and

the Fermi wave-vector in terms of the density kF = (3π2n)1/3 one obtains

Ex =

∫

V

d3r n(r)

[

− 3

4π
(3π2n)1/3

]

=

∫

V

d3r nǫx(n) . (3.55)

The exchange-energy density is thus given by

ǫALDA
x (n) = − 3

4π
(3π2n)1/3 . (3.56)

Finally, the exchange part of the exchange-correlation kernel is obtained following
eq. (3.52) as

fALDA
x (n) =

d2

dn2

[

nǫhom
x (n)

]

= − π

(3π2n)2/3
. (3.57)
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The correlation part of the exchange-correlation energy density ǫALDA
c (n) is known

numerically from quantum Monte-Carlo calculations [CA80] and parametrized in the
form [PW92]

ǫc(rs) = −2A(1 + α1rs) ln

[

1 +
1

X(rs)

]

(3.58)

X(rs) = 2A(β1r
1/2
s + β2rs + β3r

3/2
s + β4r

p+1
s ), (3.59)

with a set of parameters p, A, α1, β1, β2, β3, β4.
The function ǫc depends on the density radius rs which is related to the density by

rs =

(

3

4πn

)1/3

(3.60)

The constants are

p A α1 β1 β2 β3 β4

1 0.031091 0.21370 7.5957 3.5876 1.6382 0.49294

In order to obtain the correlation part of the kernel I have to calculate

fc(n) = 2
∂ǫc
∂n

+ n
∂2ǫc
∂n2

. (3.61)

This involves the derivatives

∂

∂n
=
∂ǫc
∂rs

∂rs
∂n

,
∂2ǫc
∂n2

=
∂2ǫc
∂r2

s

(

∂rs
∂n

)2

+
∂ǫc
∂rs

∂2rs
∂n2

(3.62)

with

∂rs
∂n

= −1

3

(

3

4π

)1/3

n−4/3,
∂2rs
∂n2

=
4

9

(

3

4π

)1/3

n−7/3. (3.63)

The derivatives of the function ǫc

∂ǫc
∂rs

= −2Aα1 ln

[

1 +
1

X

]

+ 2A(1 + α1rs)
1

X2 +X

∂X

∂rs
(3.64)

∂2ǫc
∂r2

s

= 4Aα1
1

X2 +X

∂X

∂rs
+ 2A(1 + α1rs)

[

1

X2 +X

∂2X

∂r2
s

− 2X + 1

(X2 +X)2

(

∂X

∂rs

)2
]

(3.65)

incorporate derivatives of X as well:

∂X

∂rs
= 2A

(

1

2
β1r

−1/2
s + β2 +

3

2
β3r

1/2
s + (p+ 1)β4r

p
s

)

(3.66)

∂2X

∂r2
s

= 2A

(

−1

4
β1r

−3/2
s +

3

4
β3r

−1/2
s + p(p+ 1)β4r

p−1
s

)

(3.67)
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Substituting all derivatives in eq. (3.61) and adding the exchange part (3.57) results
in the exchange-correlation kernel fALDA

xc (n).
Although the ALDA is based on a numerically exact parametrization of the exchange-
correlation energy density ǫhom

xc (n), it actually constitutes a very poor representation
of the kernel even for homogeneous systems. In contrast to the true exchange-
correlation kernel fxc(|r− r′| , t−t′) of the homogeneous electron gas it is both local in
time and space coordinates, and thus ignores essential physical features like the non-
local dependence on the global density distribution. In reciprocal space, the ALDA
corresponds only to the long-wavelength limit fALDA

xc (q, ω) = limq→0 f
hom
xc (q, ω = 0).

One can conclude that although the static exchange-correlation potential in the
ALDA in many cases leads to quite reasonable results, the exchange-correlation ker-
nel is not well represented in this approximation. Therefore often one seeks for
separate approximations for these both quantities [Sch06]. Nevertheless, since there
are few alternatives for practical calculations and very little is known about the true
exchange-correlation kernel, in this diploma thesis the exchange-correlation kernel is
approximated in the ALDA.
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4 Concepts of electronic transport

The calculation of the current flowing in a system due to some bias voltage is one
of the most difficult problems in theoretical solid state physics [BB06]. Therefore
different levels of approximations have been applied to the problem and theoretical
models for many different aspects of the problem have been developed.
The Boltzmann formalism provides a classical description of electronic transport. It
describes the time-dependent change in the electronic distribution function due to
the applied electric field E. It is a classical approximation, since it neglects interfer-
ence effects caused by the quantum-mechanical nature of electrons are neglected and
assumes the electrons to move freely between individual scattering events. Never-
theless, the description of electrons as quasi-particles moving around freely without
scattering at atomic sites is of course a quantum-mechanical phenomenon.
Very often, the Boltzmann formalism is used in the so-called time-relaxation approx-
imation in order to describe inelastic scattering processes. In this approximation
the scattering rate of the conducting electrons is assumed to depend linearly on the
change ∆f of the distribution function f . The basic input parameter is the so-called
mean-free path L, which represents the characteristic average length between two
scattering events.
With the help of the Boltzmann-equation for example the low-temperature depen-
dence of the resistance of simple metals due to electron-phonon scattering can be
derived, yielding the famous Bloch T 5 law. Because of the characteristics described
so far, the Boltzmann formalism represents a good description of systems, in which
the sample dimensions are much larger than the mean-free path and the scattering
events can be viewed as independent of each other so that quantum interference ef-
fects can be neglected1. Therefore it is appropriate to describe diffusive transport in
large structures.
Another more basic starting point to describe electronic transport is made in the
linear-response theory, where the current is treated as (linear) response of the quan-
tum system to the applied electric field. The conductance of the system is obtained
with the help of the so-called Kubo formalism, a quantum mechanical formalism ap-
propriate to time-dependent system. This approach will be described in more detail
in section 4.2. Unlike the Boltzmann formalism, it is not only appropriate to describe
transport in the diffusive transport regime but also in the ballistic regime2. Although
this is a very general approach and allows to include all kinds of scattering, it is not
easy to apply it to realistic systems.

1Such quantum interference can lead to a drastic variation of the resistance of the sample in an effect
known as Anderson localization.

2The ballistic regime deals with elastic scattering processes only.
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In the following, electronic transport will be considered from a quantum-mechanical
point of view. I, however, chose a more intuitive approach than that of the Kubo-
formalism. Nevertheless, the same results could be obtained within the Kubo-
formalism, too.
The investigated systems are assumed to be small enough, so that the resistance is
only due to the scattering of the electrons on the potential in some scattering volume.
Therefore, the dimensions of the considered systems have to be chosen such that they
are much smaller than the mean-free path due to scattering on impurities, interface
roughness, phonons, magnons and other temperature dependent excitations.
Nevertheless, the calculation of the conductance is still complicate even when impos-
ing the latter restrictions, since one has to deal with a complicated many-electron
problem of a system in non-equilibrium. On the macroscopic scale, different quan-
tities like the current and the charge density can be defined. Unfortunately, the
thermodynamical averaging makes it quite complicate to scale these quantities down
to microscopic dimensions. Therefore on different time and length scales different
theoretical approaches are required and different effects have to be included.
However, in the following I will treat microscopic systems which can be described by
pure wave functions without any statistical averaging. Naturally, these pure wave-
functions are no simple one-electron wave functions but complicated time-dependent
many-electron wave functions containing information about the whole electron sys-
tem. Knowing these wave-functions one can calculate the probability Pi,f of the
system changing its state from an initial multi-electron state Φi to a different final
state Φf , corresponding to a different charge distribution than the initial state Φi.
Unfortunately, the calculation of the time dependent many-electron wave functions
is a very difficult problem which cannot be solved in general.
In order to overcome this obstacle I will in a first step treat the electrons as indepen-
dent from each other and calculate the conductance in the single-electron picture. In
this case, the conductance is given by the famous Landauer equation. Subsequently,
exchange and correlation effects are included (see section 4.2) via the irreducible
polarization (as already introduced in chapter 3, eq. (3.49)). Using linear response
theory, a relation between the conductivity and the irreducible polarization will be
derived. Finally, the conductivity including exchange and correlation effects will be
calculated.

4.1 Single particle view on electronic transport: The

Landauer approach

In the following I will restrict the discussion to scattering processes without energy-
dissipation, i.e. treat only elastic scattering. This so-called ballistic transport is well
described in the Landauer approach [Lan57]. The derivation presented here follows
the derivation in [Wor03].
The setup described in the Landauer approach (see figure 4.1) consists of a region
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L RΩ

left reservoir right reservoirregion of
ballistic transport

Figure 4.1: Basic setup of the Landauer approach to electronic transport. The two reser-
voirs are assumed to be in thermal equilibrium.

Ω, the so-called scattering region, in which the electrons travel ballistic. It is located
between two reservoirs, situated at the left and the right side of the scattering volume
Ω. For an easy derivation of the conductance Γ of the region Ω, a simple one-
dimensional model is assumed. The conductance Γ is then defined by the net current
ILR divided by the potential difference between the two reservoirs L and R. The net
current ILR is given by the difference of the current due to electrons traveling from
the right to the left reservoir and the current due to electrons traveling vice versa

ILR = IL→R − IR→L . (4.1)

Assuming that the electronic structure of the region Ω can be described by a single
band, the current from the left to the right reservoir is given by the sum over all
states with k > 0 up to the Fermi wave vector kF

IL→R =

kF
∑

0

v(k)

=
1

2π

∫ kF

0

dk v(k) , (4.2)

where v(k) denotes the group velocity of the state given by

v(k) =
∂E

∂k
. (4.3)

The transformation of the sum to the integral in eq. (4.2) requires the additional
factor 1

2π
which is the one-dimensional volume of one state in reciprocal space. The

integral over k can be transformed to an energy integration resulting in

IL→R =
1

2π

∫ kF

0

dk v(k)

=

∫ µL

0

dE
∂E

∂k

1
1
2π
∂E/∂k

=

∫ µL

0

dE
1

2π
=

1

2π
µL , (4.4)
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where 1
1
2π
∂E/∂k

can be interpreted as the density of states n(E). The upper limit of

the energy-dependent integral is given by the chemical potential of the left side, since
only occupied electronic states contribute to the electric current.
For the states incoming from the right one obtains equivalently

IR→L =
1

2π
µR (4.5)

and therefore

ILR =
1

2π
(µL − µR) . (4.6)

Since the difference of the chemical potentials equals the applied voltage V = µL−µR,
the conductance results in

Γ =
ILR

V
=

1

2π
. (4.7)

This is a striking result, since the conductance neither depends on the group velocity
v(k) nor on the density of states n(E). The derivation shows that a low group velocity
and therefore a low current j is compensated by a high density of states (and vice
versa) such that the conductance does not change.
Since in general the electronic structure of the region of ballistic transport has to be
described not only by a single band but by multiple bands, the derivation has to be
extended and an extra sum over the different bands has to be included. Since each
band contributes the same value Γ = 1

2π
, the conductance of N conducting bands

results in

Γ = N
1

2π
. (4.8)

At this point, one can argue that the description of the electronic structure in the
region Ω with the help of bands including a dispersion relation E(k) is not valid
because of the lack of periodicity of the system. This is true and will be corrected
now. Although one cannot speak of Bloch states in the region of ballistic transport,
one can correctly speak of Bloch states in the two reservoirs. We will assume the
typical scattering problem for a Bloch state in the left lead incoming from the left
(−∞), thus with a current flowing towards Ω. (In the following it will be denoted by
a state propagating towards Ω.) In the left reservoir, the resulting scattering state
can be written as a sum over the incoming and the reflected bulk Bloch states of the
reservoir, whereas in the right lead the state is given by the sum over transmitted
Bloch states

ψ(r) =

{

ψin(r) +
∑

n rin,nψ
n
r (r) r in left reservoir

∑

n′ tin,n′ψn
′

t (r) r in right reservoir.
(4.9)

States which are decaying away from the interfaces into the reservoirs can be ne-
glected since (in the semi-infinite reservoirs) they do not carry any current. They
can simply be eliminated by shifting the interfaces far enough in the reservoirs.
Now, I go back to the derivation of the Landauer formula. The evaluation of the
current in eq. (4.2) has to be modified such that the integration has to be performed
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over all states labeled with an ‘in’ in the definition (4.9). However, since the cur-
rent is conserved and all states are normalized to carry unit current, the integration
can be as well performed in the right lead, where it is much simpler. Exploiting
the orthogonality of the Bloch states, one obtains the correct Landauer equation for
ballistic transport in the presence of some scattering of the incoming electrons

Γ =
1

2π

∑

i,j

|tij |2 . (4.10)

The indices i, j label the Bloch states traveling from the left to the right side. The
square of the absolute value of the transmission coefficient |tij |2 can be interpreted
as the quantum mechanical transmission probability Pi,j = |tij |2 for an electron from
the incoming Bloch state i into the transmitted Bloch state j.
For a homogeneous transport region without any scattering – hence

∑

Pi,j = 1 –
eq. (4.10) reduces to eq. (4.8), i.e. to the finite conductance Γ = N

2π
. Similarly, one

obtains a finite conductance in the case of the free electron gas. This is a striking
result, since only elastic scattering without energy dissipation was assumed — quite
the contrary, an infinite conductance could have been expected for a perfect bulk
crystal!
Since the finite conductance cannot be explained by the scattering in the region of
ballistic transport, the explication has to be searched elsewhere. In fact, the answer
can be found at the interfaces between the ballistic region and the leads. The finite
conductance can be interpreted as due to the finite conductance at the interface be-
tween the reservoirs and the ballistic region. It is also called the Sharvin-resistance
of the system.
The Landauer equation is valid in many cases reaching from systems with a high con-
ductivity to systems in the tunneling regime. Nevertheless, the validity may break
down in the limit of a very low transmission. This is due to the fact, that the Landauer
formalism includes only incoming and transmitted states which can be described by
Bloch states. Therefore all states localized in the ballistic region of transport are ne-
glected. However, coupling of these localized states to the otherwise orthogonal Bloch
states in the reservoirs can be provided by effects like many-body electron-electron
interaction, electron-phonon scattering or structural defects. Transport caused by
such processes may become important in the limit of very low transmission prob-
ability through Bloch states, whereas in the case of high transmission probability
through Bloch states the Landauer approach represents a good description of the
physical process. In the one-electron picture transport through localized states can
be imagined as a transition of one electron from the left reservoir into a localized
state in the region Ω, followed by one or more transitions of the electron to the other
side of Ω and finally a transition into a Bloch state of the other reservoir. Hence, it is
reasonable that the validity of the Landauer equation breaks down if the transmission
probability between reservoirs states and localized states becomes comparable to the
probabilities Pi,j = |tij |2.
The limit of very small transition probabilities is treated in the so-called Bardeen
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approach [Bar61]. In this limit, the details of the scattering processes which couple
the states can be neglected and the physical situation is that of a quantum mechan-
ical tunneling process. In the Bardeen approach to tunneling both localized and
Bloch states contribute to the conductance. Whereas in the limit of small conduc-
tance the results for localized states obtained within the Bardeen approach are in
good agreement with the values calculated with the Landauer formula, in the case
of higher conductance the validity of the Bardeen approach breaks down since we
are no longer in the tunneling regime and the result obtained within the Bardeen
approach rises above the conductance Γ evaluated according to eq. (4.10).
Until now, all results were obtained within the single-electron picture. However, one
should keep in mind that the validity of the single-electron approach is restricted
by many effects. Additionally to electron-electron scattering effects of different con-
ducting electrons, electron-phonon scattering, screening and charging effects or many-
particle interactions in magnetic systems have to be named. Furthermore, as soon
as quantum mechanical many-body effects become dominant, qualitatively different
phenomena can be observed, which cannot be described in the single-particle picture.
One of them is the Kondo-effect [Kon64] which describes conductance abnormalities
at low-temperatures in metals. Another example is the Coulomb blockade.
In the next section, exchange and correlation effects will be included via the irre-
ducible polarization. Therefore linear response theory will be used to relate the
conductance to the irreducible polarization of the system. I follow the derivation of
P.Bokes and R.Godby [BG04].

4.2 Conductance and polarization

In order to relate the irreducible polarization to the conductance, in the first part
of this section I will derive the dependence of the conductance on the conductivity.
In the second part, the equation of continuity is used to connect the polarization
function to the conductivity and therefore also to the conductance. For the simple
case of non-interacting electrons and homogeneous electron gas I will show that the
result equals the conductance calculated with the Landauer formula.

4.2.1 Conductance and conductivity

In Kubo linear response theory [Kub59], the electric current density j(r, t) is given
as a linear answer of the electronic system to an external electric field E(r, t)

j(r, t) =

∫ ∞

−∞
dt′
∫

d3r′←→σ (r, r′; t− t′) ·E(r′, t′) , (4.11)

where ←→σ (r, r′; t) is the nonlocal tensor of conductivity given by

←→σ (r, r′; t) = iΘ(t)

∫ −iβ

0

dτ Tr {ρeqj(r
′, t+ τ)j(r, 0)} (4.12)
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with the equilibrium density matrix ρeq.
In the following derivation exclusively the case of an infinitesimally weak external
field will be considered which acts only in z direction, i.e. Ez(r, t) = E(z)Θ(t) and
Ex = Ey = 0.
Integration of the current density over the surface perpendicular to z leads to the
current

I(z, t) =

∫

dS · j(r, t)

=

∫ ∞

−∞
dt′
∫

d3r′
∫

dS ·←→σ (r, r′; t− t′) ·E(r′, t′)

=

∫ ∞

−∞
dt′
∫

dz′
∫

dS ·←→σ (r, r′; t− t′) · dS′E(z′)Θ(t′)

=

∫ ∞

0

dt′
∫ ∞

−∞
dz′ σ(z, z′; t− t′)E(z′)

=

∫ −∞

t

(−dt′)
∫ ∞

−∞
dz′ σ(z, z′; t′)E(z′)

=

∫ t

−∞
dt′
∫ ∞

−∞
dz′ σ(z, z′; t′)E(z′) , (4.13)

where I have introduced the effective one-dimensional conductivity

σ(z, z′; t) =

∫

dS ·←→σ (r, r′; t) · dS′ . (4.14)

I am now interested in the steady state current I(z). Therefore I assume, that the
electric field is switched on adiabatically, i.e. E(z, t) = E(z)eαt, as t approaches 0
from below and measure the current at t = 0−. This results in the steady state
current

I(z) =

∫ ∞

−∞
dz′ lim

α→0+

∫ ∞

−∞
dt′ e−αtσ(z, z′; t′)E(z′)

=

∫ ∞

−∞
dz′ lim

α→0+
σ(z, z′;ω = iα)E(z′)

=

∫ ∞

−∞
dz′ σ(z, z′;ω = i0+)E(z′) . (4.15)

In order to calculate the conductance of the system given through Γ = I
U

with the
electric current I and the tension U I will Fourier transform eq. (4.15) to reciprocal
space

I(q) =
1

2π

∫

dq′σ(q, q′;ω = i0+)E(q′) (4.16)

with

σ(q, q′, ω = i0+) =

∫ ∞

−∞
dz

∫ ∞

−∞
dz′e−iqz+iq

′z′σ(z, z′;ω = i0+) . (4.17)
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As a consequence of the equation of continuity the steady-state current has to be
independent from z, thus I(z) = I, so that I(q) = 2πIδ(q). According to eq. (4.16)
it follows that also σ(q, q′;ω = i0+) ∼ δ(q). Moreover, the linearity of the theory
demands that the steady-state current is uniquely given by the bias U = E(q = 0).
This is equivalent to the fact, that the steady-state is only influenced by the long-
range part of the external electric field. Due to eq. (4.16) this is achieved, when
σ(q, q′;ω = i0+) ∼ δ(q′).
When calculating the conductance

Γ =
I

U
, (4.18)

it is not sufficient to divide the current through the impressed voltage but through
the voltage of the total electric field Et(r). This is simply the sum of the external
and the induced field Et(r) = Eext(r)+Ei(r). Combining all this considerations one
can conclude

Γ =
I

U
=
I(z = 0)

U

=
1
2π

∫

dq I(q)

E(q = 0)

=
1
2π

∫

dq 1
2π

∫

dq′σ(q, q′;ω = i0+)E(q′)

E(q = 0)

=
1

4π2

∫

dq
∫

dq′ σ(q, q′;ω = i0+)E(q′ = 0)

E(q = 0)

=
1

4π2

∫

dq

∫

dq′ σ(q, q′;ω = i0+) . (4.19)

This result can be reformulated using σ(q, q′;ω = i0+) ∼ δ(q)δ(q′)

lim
α→0+

σ(q, q′; iα) = 4π2Γδ(q)δ(q′) . (4.20)

Eq. (4.20) shows that the conductance Γ is the weight of the Drude singularity.
However, for numerical evaluation eq. (4.19) is more useful, since it serves for inter-
polation of the conductance at small imaginary frequency. Because the conductivity
is a peaked function in q, q′, it has to be evaluated for small values of these variables
only.
Unfortunately, the calculation of the conductivity given by eq. (4.12) and (4.14) is
very difficult. Therefore in the next section I will relate the conductivity to the irre-
ducible polarization function P (r, r′; t − t′), which can be even evaluated efficiently
using ab initio methods.

4.2.2 Conductivity and polarization

The irreducible polarization function P (r, r′; t− t′) defined in chapter 3 is given by

P (r, r′; t− t′) =
δn(r, t)

δV (r′, t′)
(4.21)
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and is interpreted as the change in electron density δn(r, t) due to the classical
electrodynamic potential V (r, t) = −U composed of the external potential and the
Hartree term. The equation of continuity3 integrated over the cross-sectional area

∂zI(z, t)− ∂tN(z, t) = 0 (4.22)

relates the conductivity to the polarization, since the number of particles N(z, t)
consists in

N(z, t) =

∫ t

−∞
dt′
∫

dz′ P (z, z′; t− t′)V (z′, t′) , (4.23)

where P (z, z′; t−t′) is defined similarly to σ(z, z′; t−t′) as the effective one-dimensional
polarization integrated over the cross-sectional area

P (z, z′; t) =

∫ ∫

dS P (r, r′; t) dS ′ . (4.24)

Since the following calculation is quite lengthy, I will in a first step consider the first
summand of eq. (4.22)

∂zI(z, t) =
∂

∂z

∫ t

−∞
dt′
∫ ∞

−∞
dz′ σ(z, z′; t′)E(z′)

=

∫ t

−∞
dt′
∫ ∞

−∞
dz′

∂

∂z

1

4π2

∫ ∞

−∞
dq

∫ ∞

−∞
dq′ eiqz−iq

′z′σ(q, q′; t′)

[(

d

dz′

)

1

2π

∫ ∞

−∞
dq′′ eiq

′′z′V (q′′)

]

= − 1

4π2

∫ t

−∞
dt′
∫ ∞

−∞
dq

∫ ∞

−∞
dq′ eiqzqq′σ(q, q′; t′)V (q′) . (4.25)

In the second step I exploited that the potential V is related to the electric field E
according to E = ∇V . In the steady-state limit eq. (4.25) simplifies to

∂zI(z) = − 1

4π2

∫ ∞

−∞
dq

∫ ∞

−∞
dq′e−iqzqq′σ(q, q′;ω = i0+)V (q′) . (4.26)

3Usually, the equation of continuity is formulated or for the particle current In and the particle
density n or for the electric current I = −eIn and the current density ρ = −en. In this case the
sign in front of both summands is the same. Here, in contrast, the equation of continuity relates
the electric current to the particle density and therefore a factor −e (which in atomic units reduces
to −1) in front of the derivative ∂tN(z, t) has to be added.
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The second summand of the equation of continuity (4.22) is rewritten as

∂tN(z, t) =
∂

∂t

∫ ∞

−∞
dt′
∫ ∞

−∞
dz′P (z, z′; t− t′)V (z′, t′)

=

∫ ∞

−∞
dt′
∫ ∞

−∞
dz′

∂

∂t
P (z, z′; t− t′)V (z′)Θ(t′)

=

∫ t

−∞
dt′
∫ ∞

−∞
dz′

∂

∂t′
P (z, z′; t′)V (z′)

=

∫ t

−∞
dt′

1

4π2

∫ ∞

−∞
dq

∫ ∞

−∞
dq′eiqz

∂

∂t′
P (q, q′; t′)V (q′)

=
1

4π2

∫ t

−∞
dt′
∫ ∞

−∞
dq

∫ ∞

−∞
dq′eiqz

∂

∂t′
1

2π

∫ ∞

−∞
dωe−iωt

′

P (q, q′;ω)V (q′)

=
1

4π2

∫ t

−∞
dt′
∫ ∞

−∞
dq

∫ ∞

−∞
dq′eiqz

1

2π

∫ ∞

−∞
dω(−iω)e−iωt

′

P (q, q′;ω)V (q′) ,

(4.27)

where I have replaced the upper limit t of the integration over the variable t′ with∞.
This replacement does not change the value of the integral, since P (t−t′) ∝ Θ(t−t′).
For the steady-state limit I obtain

∂tN(z) =
1

4π2
lim
α→0+

α

∫ ∞

−∞
dq

∫ ∞

−∞
dq′eiqzP (q, q′; iα)V (q′) . (4.28)

Inserting this and the result obtained in eq. (4.26) in the continuity equation (4.22)
one finds that

σ(q, q′; iα→ 0+) = − lim
α→0+

α

qq′
P (q, q′; iα) . (4.29)

In order to obtain the desired relation between the polarization function and the
conductance, this result simply has to be inserted in eq. (4.19)

Γ = − lim
α→0+

α

4π2

∫

dq dq′
P (q, q′; iα)

qq′
. (4.30)

It has to be stressed once more, that the irreducible polarization P includes exchange
and correlation effects and calculates according to eq. (3.49). Hence, formula (4.30)
is particularly suited to the treatment of a system of interacting electrons.

Irreducible polarization in reciprocal space In the special case of a system which is
invariant under translations along the x, y directions, I can express the conductance
in terms of the k‖ = 0 component of the irreducible polarization transforming the
effective one-dimensional irreducible polarization (or the conductivity, respectively)
as defined in eq. (4.14) to reciprocal space. Regarding the time dependence, I will
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switch to frequency space and obtain

P (z, z′; iω) =

∫ ∫

dSP (r, r′; iω)dS ′

=

∫

d2r′‖

∫

d2r‖P (r‖ − r′‖, z, z
′; iω)

=

∫

d2r′‖

∫

d2r‖
1

(2π)2

∫

d2k‖e
ik‖ ·(r‖−r

′
‖)P (k‖, z, z

′; iω)

=

∫

d2r′‖
1

(2π)2

∫

d2k‖(2π)2δ(k‖)e
−ik‖ · r‖P (k‖, z, z

′; iω)

=

∫

d2r′‖P (k‖ = 0, z, z′; iω)

= AP (k‖ = 0, z, z′; iω) (4.31)

and

σ(z, z′; iω) = Aσ(k‖ = 0, z, z′; iω) , (4.32)

respectively. The unit area A =
∫

d2r‖ is obtained with the help of the cross-sectional
area of the Fermi sphere (in reciprocal space) of the homogeneous electron gas

Areciprocal = πk2
F = 2πµ . (4.33)

This corresponds to the area

A =
(2π)2

Areciprocal
=

2π

µ
(4.34)

in direct space.
Inserting the result of eq. (4.31) in eq. (4.30) leads to the conductance of a system
which is periodic in x and y directions

Γ = −A lim
α→0+

α

4π2

∫

dq

∫

dq′
P (k‖ = 0, q, q′; iα)

qq′

= − lim
α→0+

α

2πµ

∫

dq

∫

dq′
P (k‖ = 0, q, q′; iα)

qq′
. (4.35)

This equation shows that only the irreducible polarization for k‖ = 0 enters into the
conductance. It is therefore sufficient to evaluate it for this special coordinate only.

Irreducible polarization in mixed representation For the numerical calculation of
the conductance it is more convenient to evaluate it in real space according to

Γ =
2π

µ
lim
α→0+

α

∫ ∞

0

dz

∫ 0

−∞
dz′P (k‖ = 0, z, z′; iα) . (4.36)
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In order to prove the equivalence of the expression on the right-hand side to eq. (4.35),
the Fourier transformation of the Heaviside step function is required

Θ(z) =
1

2π
lim
η→0

∫ ∞

−∞
dk

i

k + iη
e−ikz . (4.37)

I start from eq. (4.36) and calculate
∫ ∞

0

dz

∫ 0

−∞
dz′P (k‖ = 0, z, z′; iα)

=

∫ ∞

−∞
dz

∫ ∞

−∞
dz′Θ(z)P (k‖ = 0, z, z′; iα)Θ(−z′)

=
−1

(2π)4
lim
η→0

lim
η′→0

∫ ∞

−∞
dz

∫ ∞

−∞
dz′
∫ ∞

−∞
dq

∫ ∞

−∞
dq′
∫ ∞

−∞
dk

∫ ∞

−∞
dk′

ei(q−k)z

k + iη
P (k‖ = 0, q, q′; iα)

e−i(q
′−k′)z′

k′ + iη′

=
−1

(2π)2
lim
η→0

lim
η′→0

∫ ∞

−∞
dq

∫ ∞

−∞
dq′
∫ ∞

−∞
dk

∫ ∞

−∞
dk′

δ(q − k)
k + iη

P (k‖ = 0, q, q′; iα)
δ(q′ − k′)
k′ + iη′

=
−1

(2π)2
lim
η→0

lim
η′→0

∫ ∞

−∞
dq

∫ ∞

−∞
dq′

1

q + iη
P (k‖ = 0, q, q′; iα)

1

q′ + iη′

=
−1

(2π)2

∫ ∞

−∞
dq

∫ ∞

−∞
dq′
[

P (
1

q
)− 2πiδ(q)

]

P (k‖ = 0, q, q′; iα)

[

P (
1

q′
)− 2πiδ(q′)

]

=
−1

4π2

∫ ∞

−∞
dq

∫ ∞

−∞
dq′

1

q
P (k‖ = 0, q, q′; iα)

1

q′
. (4.38)

In the last step of the derivation I exploited the fact that P (k‖ = 0, 0, q′; iα) =
P (k‖ = 0, q, 0; iα) = 0. Multiplication of the result with 2πα

µ
in the limit α → 0+

proves the asserted equivalence of eq. (4.35) and eq. (4.36).

4.2.3 Conductance of the homogeneous electron gas in the
single-particle picture

I will now prove the validity of eq. (4.35) for the homogeneous electron gas in the non-
interacting single-particle picture, showing that it yields the result of the Landauer
formula for perfect transmission, i.e. Γ = 1

π
. In this case the exchange-correlation

kernel fxc is zero, and hence P hom(k‖ = 0, q, q′; iα) = P hom
0 (k‖ = 0, q, q′; iα) (com-

pare eq. (3.49)). Due to the complete three-dimensional translational invariance, the
polarization

P hom
0 (k‖ = 0, q, q′; iα) = 2πδ(q − q′)P hom

0 (q; iα) (4.39)

is diagonal in the wave vectors and thus the conductance simplifies to

Γhom
0 = − lim

α→0+

α

µ

∫

dq
P hom

0 (q; iα)

q2
. (4.40)
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To simplify the integral I introduce dimensionless scaled variables q̃ = q/kF and
ω = α/k2

F, obtaining

Γhom
0 = − lim

ω→0+

ωkF

µ

∫

dq̃
P hom

0 (q̃kF; iωk2
F)

q̃2
. (4.41)

As the order of the operations is significant, the limit ω → 0 can only be taken after
the integration. However, it is possible to overcome this problem by scaling the wave
vectors simultaneously and substituting x = q̃/ω:

Γhom
0 = − lim

ω→0+

kF

µ

∫

dx
P hom

0 (xωkF; iωk2
F)

x2
= −kF

µ

∫

dx
1

x2
lim
ω→0+

P hom
0 (xωkF; iωk2

F) .

(4.42)

The polarization function of the non-interacting electron gas is known analytically
(see eq. (7.12)) and given by

P hom
0 (xωkF; iωk2

F) =− kF

2π2

(

1 +
1 + x2 − 1

4
ω2x4

2ωx3
ln

1 + (x+ 1
2
ωx2)2

1 + (x− 1
2
ωx2)2

1

x

[

arctan(x+
1

2
ωx2)− arctan(x− 1

2
ωx2)

])

. (4.43)

in the notation used here. For further information see chapter 7. Apart from the
factor kF, the right-hand function is a universal function that does not depend on
the density parameter. Only the limit

lim
ω→0

P hom
0 (xωkF; iωk2

F) = −kF

π2

(

1− arctanx

x

)

(4.44)

contributes to the conductance, which can be calculated analytically and yields

Γhom
0 =

k2
F

π2µ

∫

dx
1

x2

(

1− arctan x

x

)

=
1

π
(4.45)

since µ =
k2
F

2
. This equals the result of the Landauer formula. Hence, I have verified

the validity of eq. (4.35) for the special case of the homogeneous electron gas in the
single-particle picture.

4.2.4 Response to the applied external field

The polarization function P̃ (q; iω) which describes the linear response of the density
to changes in the external field

δn(q;ω) = P̃ (q;ω)δVext(q;ω) (4.46)
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is related to the irreducible polarization function P (q; iω) according to

P̃ (q; iω) =
P (q; iω)

1− v(q)P (q; iω)
. (4.47)

Thus, for the homogeneous electron gas the conductance describing the current with
respect to the applied external field is given by

Γhom = − lim
ω→0+

kF

µ

∫

dx
1

x2

P hom(xωkF; iωk2
F)

1− v(xωkF)P hom(xωkF; iωk2
F)

. (4.48)

As P hom(xωkF; iωk2
F) approaches a finite value for small ω while v(xωkF) ∝ 1

ω2 in the
denominator diverges, the entire integrand is asymptotically proportional to ω2 and
hence vanishes in the limit ω → 0. Therefore, one invariably obtains Γhom = 0.



5 Application of the Green-function
embedding method to the
investigated scattering setup

In this chapter the Green-function embedding technique is applied and tailored to
the investigated scattering setup presented in figure 5.1. Because of its simplicity,
some calculations can be done analytically.
After having introduced in some detail the setup under consideration, I will Fourier
transform the defining equation for the embedded Green function (2.18) to reciprocal
space with respect to the parallel coordinates. Afterwards, I calculate the embedding
potentials. Finally, I introduce a basis set for the z dependence of the Green function
and expand the Hamiltonian in this basis.

5.1 Investigated scattering setup

The system investigated in this thesis is presented schematically in figure 5.1. In
two directions of space — the x and the y direction — the potential is chosen to be
constant. In the third, the z direction, the space is divided into three regions: Two
semi-infinite leads L and R, separated by a finite layer Ω. In this finite region, fixed
between the two z coordinates zL and zR, a z dependent potential V (z) is applied.
Beyond this finite layer, the potential is set constant, but the potential on the left
side VL may differ from the potential on the right side VR.

Although in principle the calculation of the Green function with the embedding
method is possible for an arbitrary potential V (z) with V (z) 6= 0 for z ∈ [zL, zR],
in this thesis only simple step potentials (i.e. quantum wells and potential barriers)
will be investigated. For these simple, piecewise constant potentials the Green func-
tion can be easily calculated analytically1. This enables one to compare the results
obtained with the Green-function embedding method to the analytical ones, and the
quality of the method can be evaluated.
In detail, the systems investigated in this thesis are quantum wells and potential bar-
riers with different values of the potential but the same width and the same chemical
potential µ = 0.1 Htr. They can be subsumed to

V (z) =

{

V if − 1 ≤ z ≤ 1
0 otherwise

(5.1)

1For arbitrary potentials the Green function can be obtained by numerical integration. More details
can be found in section 6.1.2.
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Ω

nL nR

SL SR

x
y

zz
zL zR

V (z)

L R
VL

VR

Figure 5.1: The geometry of the scattering setup investigated in this thesis. Left: The
three-dimensional space is divided into two semi-infinite leads L and R sep-
arated by a finite layer Ω. This finite layer Ω, infinite in x and y directions
and localized in [zL, zR] in z direction represents the embedding region. The
interfaces SL and SR between the embedding region and the leads are defined
through z = zL and z = zR. The vectors nL/R are normal vectors on SL/R

pointing out of the embedding region Ω. Right: Projection on the xy plane:
The Green function embedding method does not impose any restriction on the
potential V (z), z ∈ [zL, zR]. It can be an arbitrary potential, which even does
not have to be continuous at zL and zR.

where the value of V varies between the two limiting cases V = −0.1 Htr and
V = 0.15 Htr in steps of ∆V = 0.025 Htr (i.e. V = −0.1,−0.075,−0.05, · · · , 0.1,
0.125, 0.15 Htr). Thus, I consider the transition between a quantum well and a po-
tential barrier, including the case V = 0 Htr of the homogeneous electron gas. The
two setups with the largest positive and negative potentials are presented in figure
5.2.
Although such model systems might seem far away from a realistic physical situ-

ation, they comprehend and can reveal new physics. The first point to mention is
that the homogeneous electron gas describes the physical situation of simple metals
like aluminum quite well. Secondly, the chosen potentials are not far away from
realistic setups. The potential barrier is a simple model for a thin film of vacuum
or any isolating material sandwiched between two metals. On the other hand, the
quantum well describes the physical situation of a material with a higher electron
density embedded in two conducting materials.
Additionally, the parameters of the investigated setups are chosen in such a way that
they have the same dimensions as in real metals. The chemical potential µ = 0.1 Htr
corresponds to the electron density n = 3.02 · 10−3 and the Wigner-Seitz radius2

rs = 4.29, respectively. This value is comparable to characteristic values of real met-
als, for which the Wigner-Seitz radius is between rs ≈ 2 and rs ≈ 5.
The thickness of the potentials d = 2 Bohr is chosen in such a way that it has the

2The Wigner-Seitz radius is defined as the radius of one sphere which contains one particle. Since n
denotes the number of particles per unit volume, it calculates according to 4π

3
r3
s = 1

n
(in 3D).
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V0 = 0.15

V0 = −0.1

µ = 0.1µ = 0.1

zz

−10−10 1010

V (z)V (z)

VL = 0VL = 0 VR = 0VR = 0

Figure 5.2: The quantum well (left) and the potential barrier (right) with the largest
positive and negative values investigated in this thesis with zL = −10 and
zR = 10. All quantities are given in atomic units (i.e. energies in Htr, lengths
in Bohr).

same order of magnitude as atomic layers. For comparison, in the case of aluminum
e.g. which crystallizes in the face-centered cubic structure with a lattice constant
a = 7.6 Bohr, one atomic layer has a thickness of approximately 4.4 Bohr, since its
unit cell has an extension a√

3
along the z direction. For simplicity, in the following

all units will be omitted.

Considering the geometry of the investigated setups, the choice of the embedding
region is quite obvious: It is a slab limited in the z direction by the interfaces SL and
SR defined through z = zL and z = zR. Although the potential varies in the interval
[−1, 1] only, the embedding region is chosen much larger, i.e. zL = −10 and zR = 10
(see figure 5.2) in order to evaluate the behavior of the Green function in the region
close to the region where the potential V 6= 0. It has to be stressed, that this is not
necessary for the embedding method – for the application of the embedding method,
the choice zL = −1 and zR = 1 would be sufficient. In the x and y directions, the
embedding region is infinite. Since in these directions the potential is constant, they
can be treated partly analytically, whereas the z direction has to be treated numeri-
cally.
The geometry of the embedding region slightly differs from that of chapter 2. The
outer volume V0 of figure 2.1 is separated into two volumes L and R. Instead of one
connected interface between the embedding region and the outer volume there are
now two interfaces parallel to each other. Therefore I have to deal with two embed-
ding potentials (one for each interface) which are independent and may differ from
each other. The reason can be found in equation (2.14): Each embedding potential
depends exclusively on the wave function, or alternatively the Green function, of its
side of the outer volume. Since the constant potential VL in L might be different
from VR in R, in this case the Green functions in L and R will be different as well.
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5.2 Equation for the Green function in the embedding

region

As explained in chapter 2, one should solve the equation for the Green function
instead of that for the wave function because of the energy dependence of the em-
bedding Hamiltonian. The equation which I have to solve is thus (2.18), rewritten
here in more detail

1

2
∇2G (r, r′; ǫ)− V (r)G (r, r′; ǫ) + ǫG (r, r′; ǫ)

− 1

2
δ (n− nS)

(

∂G (rS, r
′; ǫ)

∂nS
+ 2

∫

S

d2r′′‖σ (r, r′′S; ǫ)G (r′′S, r
′; ǫ)

)

= δ (r− r′) . (5.2)

As the potential is constant in x and y directions, the Green function is invariant
under translations in these two directions. As a consequence, it depends only on the
difference of the x and y arguments, and I can combine the x and y coordinates to
r‖ := (x− x′, y − y′), with r‖ given by r‖ =

√

(x− x′)2 + (y − y′)2.
Inserting this in eq. (5.2) leads to

1

2
∇2G

(

r‖, z, z
′; ǫ
)

− V (z)G
(

r‖, z, z
′; ǫ
)

+ ǫG
(

r‖, z, z
′; ǫ
)

− 1

2
δ (n− nS)

(

∂G
(

r‖, z, z
′; ǫ
)

∂nS
+ 2

∫

S

d2r′′‖σ
(

r‖ − r′′‖, z, z
′′
S; ǫ
)

G
(

r′′‖, z
′′
S, z

′; ǫ
)

)

= δ
(

r‖
)

δ (z − z′) . (5.3)

As presented in figure 5.1, the interfaces between the embedding region and the
outer volume are infinite planes located at z = zL and z = zR. The projections of the
gradient onto the interface normals thus become derivatives in −z and z direction,
respectively. For the investigated setup, eq. (5.3) yields

1

2
∇2G

(

r‖, z, z
′; ǫ
)

− V (z)G
(

r‖, z, z
′; ǫ
)

+ ǫG
(

r‖, z, z
′; ǫ
)

− 1

2
δ (z − zL)

(

∂G
(

r‖, z, z
′; ǫ
)

∂(−z) + 2

∫

z=zL

d2r′′‖σL

(

r‖ − r′′‖, z, zL; ǫ
)

G
(

r′′‖, zL, z
′; ǫ
)

)

− 1

2
δ (z − zR)

(

∂G
(

r‖, z, z
′; ǫ
)

∂(z)
+ 2

∫

z=zR

d2r′′‖σR

(

r‖ − r′′‖, z, zR; ǫ
)

G
(

r′′‖, zR, z
′; ǫ
)

)

= δ
(

r‖
)

δ (z − z′) . (5.4)

Two-dimensional Fourier transformation of the equation for the embedded
Green function The aim of this section is to calculate the two-dimensional Fourier
transform of (5.4) with respect to the parallel coordinates. I want to obtain a differen-
tial equation for G(k‖, z, z

′; ǫ) instead of G(r‖, z, z
′; ǫ), since the resulting equation is
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much simpler than eq. (5.4). The two Green functions G(k‖, z, z
′; ǫ) and G(r‖, z, z

′; ǫ)
are related through

G(r‖, z, z
′; ǫ) =

1

(2π)2

∫

d2k‖e
ik‖ · r‖G(k‖, z, z

′; ǫ) , (5.5)

or

G(k‖, z, z
′; ǫ) =

∫

d2r‖e
−ik‖ · r‖G

(

r‖, z, z
′; ǫ
)

, (5.6)

respectively. Therefore the Fourier transform of the terms of eq. (5.4) which do not
depend on r‖ simply are

∫

d2r‖e
−ik‖ · r‖ (−V (z) + ǫ)G

(

r‖, z, z
′; ǫ
)

= (−V (z) + ǫ)G(k‖, z, z
′; ǫ) . (5.7)

The two-dimensional Fourier transform of the first term of eq. (5.4) which contains
the kinetic energy is obtained by replacing G(r‖, z, z

′; ǫ) by its Fourier representation
(eq. 5.5)

∫

d2r‖ e
−ik‖ · r‖ 1

2
∇2G(r‖, z, z

′; ǫ) (5.8)

=

∫

d2r‖ e
−ik‖ · r‖ 1

(2π)2

∫

d2k′‖
1

2

(

∇2
r‖

+∇2
z

)

eik
′
‖
· r‖G(k′

‖, z, z
′; ǫ)

=

∫

d2r‖ e
−ik‖ · r‖ 1

(2π)2

∫

d2k′‖
1

2

(

−k′2
‖ +∇2

z

)

eik
′
‖
· r‖G(k′

‖, z, z
′; ǫ)

=
1

2

(

−k2
‖ +∇2

z

)

G(k‖, z, z
′; ǫ) .

The remaining terms are the additional surface terms which contribute only in the
case when the first of the two z arguments is located at an interface, i.e. z = zL,R.
For each interface there are two terms. The Fourier transformation of the first of
them does not pose any problem, because the derivative acts on the z component
only

∫

d2r‖ e
−ik‖ · r‖

(

−1

2
δ (z − zL,R)

∂G
(

r‖, z, z
′; ǫ
)

∂(±z)

)

= −1

2
δ (z − zL,R)

∂G
(

k‖, z, z
′; ǫ
)

∂(±z) .

(5.9)
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The second one is a convolution of the embedding potential with the Green function,
which in Fourier space becomes a simple multiplication

− δ(z − zL,R)

∫

d2r‖ e
−ik‖ · r‖

∫

d2r′′‖ σL,R(r‖ − r′′‖, z, zL,R; ǫ)G(r′′‖ − r′‖, zL,R, z
′; ǫ)

(5.10)

= −δ(z − zL,R)

∫

d2r‖

∫

d2r′′‖ e
−ik‖ · (r‖−r′

‖
)

1

(2π)2

∫

d2k′‖ e
ik′

‖
· (r‖−r

′′
‖
)σL,R(k′

‖, zL,R, zL,R; ǫ)
1

(2π)2

∫

d2k′′‖ e
ik′′

‖
· (r′′

‖
−r

′
‖
)G(k‖, zL,R, z

′; ǫ)

= −δ(z − zL,R)σL,R(k‖, zL,R, zL,R)G(k‖, zL,R, z
′; ǫ) .

In the first step the Fourier representations of σL,R(r‖ − r′′‖, z, zL,R; ǫ) and G(r′′‖ −
r′‖, zL,R, z

′; ǫ) have been inserted. The unknown Fourier component of the embedding

potential emerging in equation (5.10) will be calculated in the next section.
It is now possible to write down the Fourier transform of the whole equation

[

−1

2
k2
‖ +

1

2

∂2

∂z2
+ ǫ− V (z)− 1

2
δ(z − zL)

(

∂

∂ (−z) + 2σL(k‖, zL, zL; ǫ)

)

−1

2
δ(z − zR)

(

∂

∂ (z)
+ 2σR(k‖, zR, zR; ǫ)

)]

G(k‖, z, z
′; ǫ) = δ(z − z′) . (5.11)

In contrast to eq. (5.4) it is a one-dimensional equation in the z coordinate, where
the three-dimensionality enters through the vector k‖ only.

5.3 The embedding potentials

In order to calculate the embedding potentials the solutions of the Schrödinger equa-
tions in the semi-infinite leads V0,L and V0,R are required. As the potential was
supposed to be constant in the leads, V (r) = VL on the left side for z < zL and
V (r) = VR on the right side for z > zR, the wave functions are just plane waves.
At this point one can decide whether a retarded or an advanced Green function
should be calculated. Incoming waves yield the embedding potential σ for advanced
Green functions, thus ψ(z) = eikzz, kz > 0 for z < zL and ψ(z) = e−ikzz, kz > 0
for z > zR, whereas outgoing waves serve for the calculation of σ for retarded Green
functions (with ψ(z) = e−ikzz, kz > 0 for z < zL and ψ(z) = eikzz, kz > 0 for z > zR).
In the end a time-ordered Green function will be calculated. For energies with real
part smaller than the chemical potential the time-ordered Green function equals the
retarded one (incoming waves), for energies with bigger real part the advanced one
(outgoing waves). The total wave function has to be multiplied by a plane wave in
r‖ direction and results in

ψ(r) = eik · r = eik‖ · r‖±ikzz . (5.12)
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The sign of the exponent ikzz has to be chosen as explained above.
As derived in chapter 2, the embedding potential is defined by

∂ψ(r)

∂nS

∣

∣

∣

∣

r=rS

= 2

∫

S

d2r′‖ σ(rS, r
′
S; ǫ)ψ(r′S) . (5.13)

Exemplary, the calculation of the embedding potential of the left interface at z = zL
for a retarded Green function (incoming waves) will be shown. For this purpose the
wave function (5.12) is inserted in equation (5.13)

−∂ψ(r)

∂z

∣

∣

∣

∣

z=zL

= −ikzeik‖ · r‖+ikzzL (5.14)

= 2

∫

z=zL

d2r′‖ σL

(

r‖ − r′‖, zL, zL; ǫ
)

eik‖ · r′‖+ikzzL .

Replacing σL(r‖ − r′‖, zL, zL; ǫ) by its Fourier transform

σL(r‖ − r′‖, zL, zL; ǫ) =
1

(2π)2

∫

d2k‖ e
ik‖ · (r‖−r′

‖
)σ(k‖, zL, zL; ǫ) (5.15)

leads to

−ikzeik‖ · r‖+ikzzL = 2

∫

S

d2 r′‖
1

(2π)2

∫

d2k′‖ e
ik′

‖
· (r‖−r′

‖
)σL(k′

‖, zL, zL; ǫ)eik‖ · r‖+ikzzL

(5.16)

=
2

(2π)2

∫

d2k′‖ e
ik′

‖
· r‖(2π)2δ(k‖ − k′

‖)σL(k′
‖, zL, zL; ǫ)eikzzL

= 2 σL(k‖, zL, zL; ǫ)eik‖ · r‖+ikzzL .

This yields

σL(k‖, zL, zL; ǫ) = −ikz
2

. (5.17)

The z component of the wave vector can be expressed in terms of the energy, the
constant potential VL of the semi-infinite lead and the parallel component of the wave
vector k‖

kz =

√

2

(

ǫ− 1

2
k2
‖ − VL

)

. (5.18)

Replacing kz on the right side of equation (5.17) by the above relation results in

σL,R(k‖, zL,R, zL,R; ǫ) = − i
2

√

2

(

ǫ− 1

2
k2
‖ − VL,R

)

. (5.19)
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In this formula it is already anticipated, that the result for σR(k‖, zR, zR; ǫ) is similar
to that for σL(k‖, zL, zL; ǫ). Even the sign of the two embedding potentials is the same,
although the normal coordinate of the gradient points in the opposite direction (thus

−∂ψ(r)
∂z

changes to ∂ψ(r)
∂z

). Indeed, the z component of the wave vector kz changes its
sign as well, in order to represent either an outgoing or an incoming wave from −∞
as well as from ∞. The embedding potentials for an advanced Green function have
the opposite signs of the retarded one: Since the sign of the wave function kz changes
(outgoing waves instead of incoming ones) the derivative in z direction yields the
opposite sign.

5.4 Expanding the Green function in terms of plane

waves

For an arbitrary potential V (z) it is not possible to treat the z dependence of the
Green function in the embedding region analytically. Therefore, the Green function
is expanded in a convenient basis set. For the sake of simplicity the chosen basis set
are plane waves

G(k‖, z, z
′; ǫ) =

∑

kz ,k′z

eikzz

√
d
Gkz,k′z(k‖, ǫ)

e−ik
′
zz

′

√
d

(5.20)

or

G(r‖, z, z
′; ǫ) =

1

(2π)2

∫

d2k‖ e
ik‖ · r‖ ∑

kz,k′z

eikzz

√
d
Gkz,k

′
z

(k‖, ǫ)
e−ik

′
zz

′

√
d

. (5.21)

The coefficients Gkz,k
′
z

(k‖, ǫ) yielding the correct Green function have to be calculated
numerically.
The variable d is a normalization constant which is chosen as the length of the
embedding interval d := zR − zL. The wave vectors kz are selected as kz = 2πn/d̃
with n ∈ [−N,N ]. The length d̃ is a numerical parameter which has to be larger than
d, the length of the embedding interval. More details about this numerical parameter
follow in chapter 5.6 about the numerical implementation. The task is now to derive
a formula for the coefficients Gkz,k

′
z

(k‖, ǫ).

5.5 Calculation of the embedding Hamiltonian

In order to calculate the expansion coefficients Gkz,k′z(k‖, ǫ) eq. (5.11) will be trans-
formed to an equation depending on kz, k

′
z and k‖ instead of z, z′ and k‖. It has

to be emphasized that the coefficients do not equal the Fourier coefficients, since kz
and k′z have to be chosen in such a way (with kz = 2πn/d̃, n ∈ [−N,N ] with d̃ > d)
that the Green function G(k‖, z, z

′; ǫ) is not periodic on the interval [zL, zR] with
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zR − zL = d. This is necessary in order that (in general different) boundary condi-
tions at both sides might be fulfilled, i.e. that in general G(k‖, zL, z

′) 6= G(k‖, zR, z
′)

and G(k‖, z, zL) 6= G(k‖, z, zR) is valid. I choose the interval in which the basis is

periodic as [z̃L, z̃R] with z̃R − z̃L = d̃ and [zL, zR] ⊆ [z̃L, z̃R]. The periodicity on this
interval will be used later for the treatment of the z dependent potential V (z).
In the first step of the derivation, the expansion (5.20) of G(k‖, z, z

′; ǫ) is inserted in
equation (5.11). At the same time, the whole equation is multiplied by e−ikzz and
integrated over z on the interval [zL, zR]
∫ zR

zL

dz e−ikzz

[

−1

2
k2
‖ +

1

2

∂2

∂z2
+ ǫ− V (z)− 1

2
δ(z − zL)

(

∂

∂ (−z) + 2σL(k‖, zL, zL; ǫ)

)

−1

2
δ(z − zR)

(

∂

∂ (z)
+ 2σR(k‖, zR, zR; ǫ)

)]

∑

k′′z ,k
′
z

eik
′′
z z

√
d
Gk′′z ,k

′
z
(k‖, ǫ)

e−ik
′
zz

′

√
d

=

∫ zR

zL

dz e−ikzzδ(z − z′) . (5.22)

Simplification of the right side yields
∫ zR

zL

dz e−ikzzδ(z − z′) = e−ikzz′ . (5.23)

The only term on the left side of eq. (5.22) which could equal the z′ dependence of the
right side is the basis function e−ik

′
zz

′
. Therefore the only summand in the sum over

k′z which is allowed to contribute is k′z = kz, and equation (5.22) can be transformed
to

1

d

∑

k′′z

∫ zR

zL

dz e−ikzz

[

−1

2
k2
‖ +

1

2

∂2

∂z2
+ ǫ− V (z)− 1

2
δ(z − zL)

(

∂

∂ (−z) + 2σL(k‖, zL, zL; ǫ)

)

−1

2
δ(z − zR)

(

∂

∂ (z)
+ 2σR(k‖, zR, zR; ǫ)

)]

eik
′′
z zGk′′z k

′
z
(k‖, ǫ) = δkz ,k′z . (5.24)

For the further calculation it is convenient to rewrite this equation as
∑

k′′z

(

ǫSkzk′′z (k‖, ǫ)−Hkzk′′z (k‖, ǫ)
)

Gk′′z k
′
z
(k‖, ǫ) = δkz ,k′z , (5.25)

introducing the overlap matrix Skzk′′z (k‖, ǫ) defined as

Skzk′′z (k‖, ǫ) =
1

d

∫ zR

zL

dz e−ikzzeik
′′
z z (5.26)

and the embedding Hamiltonian

Hkzk′′z (k‖, ǫ)

= −1

d

∫ zR

zL

dz e−ikzz

[

−1

2
k2
‖ +

1

2

∂2

∂z2
− V (z)− 1

2
δ(z − zL)

(

∂

∂ (−z) + 2σL(k‖, zL, zL; ǫ)

)

−1

2
δ(z − zR)

(

∂

∂ (z)
+ 2σR(k‖, zR, zR; ǫ)

)]

eik
′′
z z . (5.27)
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The overlap matrix Skzk′′z (k‖, ǫ) yields

Skzk′′z (k‖, ǫ) =

{

1 for k′′z = kz
1
d
ei(k′′z −kz)zR−ei(k′′z −kz)zL

i(k′′z−kz)
else.

. (5.28)

In order to simplify the embedding Hamiltonian in a first step all terms which contain
derivatives in z direction are summed up

− 1

2d

∫ zR

zL

dz e−ikzz

(

∇2
z − δ(z − zL)

∂

∂(−z) − δ(z − zR)
∂

∂z

)

eik
′′
z z (5.29)

=
1

2d

∫ zR

zL

dz
∂

∂z
e−ikzz

∂

∂z
eik

′′
z z

=
1

2d
k′′zkz

∫ zR

zL

dz ei(k
′′
z −kz)z

=
1

2
kzk

′′
zSkzk′′z (k‖, ǫ) .

The integral over the z-dependent potential V (z) is transformed to a Fourier trans-
form. Therefore a modified potential Ṽ (z) is defined on [z̃L, z̃R]

Ṽ (z) = V (z) for zL ≤ z ≤ zR and 0 otherwise. (5.30)

With the help of Ṽ (z) one obtains

1

d

∫ zR

zL

dz e−ikzzV (z)eik
′′
z z =

1

d

∫ z̃R

z̃L

dz e−i(kz−k′′z )zṼ (z) (5.31)

=
d̃

d
V (kz − k′′z ).

The embedding Hamiltonian can be rewritten as

Hkzk′′z (k‖, ǫ) =
1

2
k2
‖ +

1

2
kzk

′′
z +

d̃

d
V (0) +

1

d

[

σL(k‖, zL, zL; ǫ) + σR(k‖, zR, zR; ǫ)
]

(5.32)

for k′′z = kz and

Hkzk′′z (k‖, ǫ) =
1

d

[

ei(k
′′
z−kz)zR − ei(k′′z −kz)zL

i(k′′z − kz)

(

1

2
k2
‖ +

1

2
kzk

′′
z

)

+ d̃ V (kz − k′′z ) (5.33)

+ei(k
′′
z −kz)zLσL(k‖, zL, zL; ǫ) + ei(k

′′
z −kz)zRσR(k‖, zR, zR; ǫ)

]

for k′′z 6= kz.
The coefficients Gk′′z k

′
z
(k‖, ǫ) are calculated for each value of k‖ and ǫ separately.

Therefore in a first step for each combination of them the matrix ǫS(k‖, ǫ)−H(k‖, ǫ)
has to be calculated. Then, according to eq. (5.25) this matrix will be inverted using
a Lapack matrix inversion routine to obtain the coefficients Gk′′z k

′
z
(k‖, ǫ) which are
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the elements of the inverted matrix. The Green function G(k‖, z, z
′; ǫ) is evaluated

using eq. (5.20). Although the coefficients Gk′′z k
′
z
(k‖, ǫ) are only expansion coeffi-

cients and no Fourier coefficients, the summations in eq. (5.20) formally equal one-
dimensional Fourier transformations. Therefore G(k‖, z, z

′; ǫ) can be calculated using

a Fast Fourier Transformation (FFT). Because of the special choice of kz = 2πn/d̃,
n ∈ [−N,N ], the Green function is obtained for z, z′ ∈ [z̃L, z̃R] with d̃ = z̃R− z̃L, but
it has only physical meaning for z, z′ ∈ [zL, zR].

5.6 Details of the implementation: The numerical

parameters

The numerical calculation of the Green function G(k‖, z, z
′; ǫ) depends on two nu-

merical parameters:

• the number of basis functions – thus the number of wave vectors kz – defined
through N

• and the length d̃.

Since there are positive and negative kz = 2πn/d̃, n ∈ [−N,N ], the number of basis
functions calculates to 2N + 1. The two numerical parameters have to be chosen
carefully, because the accuracy of the calculation depends strongly on their choice.
In addition, they are not independent from each other.
Let us start with the parameter d̃. It must be chosen bigger than the length of the
embedding region d as illustrated in figure 5.3. The reason for that can be seen by

V (z)

zL zR

d

d̃

z̃L z̃R
z

Figure 5.3: Illustration of the parameter d̃
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having a look at the equations which define the Green function

(ǫ−Hemb (r))G(r, r′; ǫ) = δ(r− r′) (5.34)
∑

k′′z

(

ǫSkz ,k′′z −Hembkz,k′′z

(

k‖; ǫ
))

Gk′′z ,k
′
z
(k‖, ǫ) = δkz ,k′z . (5.35)

At first glance they seem to be identical, but in fact they are not: The second
equation (in Fourier space) includes periodic boundary conditions, since the basis
functions in z direction are plane waves. If I chose d̃ = d, the basis function eikzz

with kz = 2πn/d̃ with n ∈ [−N,N ] would be periodic with a period length d, and
at both margins the value of the basis functions would be the same. In this case,
I could not fulfill arbitrary boundary conditions different on each side, given by the
embedding potentials. Choosing d̃ larger than d causes that the period of the basis
functions is no longer d but d̃, and the basis function will have the same values at z̃L
and z̃R. At zL and zR the basis functions are free to fulfill the boundary conditions.
In the intervals [z̃L, zL] and [zR, z̃R] the basis functions can ‘close’ the period. For
that reason it is easy to understand that d̃ must not be chosen too small, because
in this case the difference between d and d̃ is too small to ensure that arbitrary
boundary conditions at zL and zR can be fulfilled. Additionally, the length of d̃ for a
constant N must not be chosen too large either — increasing the value of d̃ entails
the decrease of each wave vector kz and thus the decrease of the maximal wave vector
kz as well. Fourier transforming the Green function back to direct space may be then
not accurate because the Green function is not yet fallen to zero at maximal kz.
For the number of wave vectors kz there are constraints as well. Naturally, choosingN
too small leads to an inaccuracy, because the number of basis functions is not enough
to represent the function correctly. Furthermore, there is an upper limit for N , too.
This can be explained in the following way. Using more basis function as necessary
to fulfill the boundary conditions at zL and zR leads to an over-completeness of the
basis. In this case, the overlap matrix becomes singular and the numerics fail. In
other words, choosing N very large opens several possibilities to fulfill the boundary
conditions and the basis representation is no longer unique. Thus, for values of N
larger than a critical value Nc, the enhancement of N does not lead to a higher
accuracy.
In practice, it turns out that for a given length d of the embedding region there is
an optimal N and an optimal d̃. In order to find these optimal values for N and d̃
for a given d, the Green function for constant potential V (z) = const. = VL = VR

is calculated. This Green function equals the Green function for the homogeneous
electron gas, which can be calculated analytically. The comparison of the numerical
and the analytical result enables one on the one hand to check whether the method
works well and whether the implementation is correct and on the other hand it serves
as a tool to determine the optimal values of the two numerical parameters N and d̃.
This is done in the next chapter.



6 Test of the Green-function
embedding method

In the last chapter I have tailored the Green-function embedding method to the
investigated setup and explained its numerical implementation. I will now check the
method and its implementation. Therefore, in the first part of this chapter I will
derive an analytical expression for the Green function of the homogeneous electron
gas and of the quantum well/potential barrier which are investigated in this thesis.
Since the potentials vary only in the z direction, I will start with the calculation of
a one-dimensional Green function. Afterwards, the defining equation for the three-
dimensional Green function G(k‖, z, z

′;µ+iω) will be derived and its two-dimensional
Fourier transform G(r‖, z, z

′;µ+ iω) will be calculated.
In the second part of this chapter, I will show and discuss the results obtained within
the embedding method and compare them to the analytical ones.
In order to distinguish the Green function for an interacting system G from that
for a non-interacting system without exchange and correlation effects, the latter is
indexed with 0 from now on and hence written as G0. The Green function for the
homogeneous electron gas for the constant potential V (z) = 0 is denoted by Ghom or
Ghom

0 , respectively.

6.1 Analytical calculation of the Green function

6.1.1 Green function of the homogeneous electron gas

In reciprocal space, the Green function of the free electron gas for complex energies
ǫ is given by

Ghom
0 (k‖, kz; ǫ) =

1

ǫ− 1
2
k2
‖ − 1

2
k2
z

. (6.1)



62 Test of the Green-function embedding method

Fourier transforming this term with respect to the z coordinate yields the represen-
tation of G as a function of z − z′ and k‖

Ghom
0 (k‖, z − z′; ǫ) =

1

2π

∫ ∞

−∞
dkz e

ikz(z−z′)Ghom
0 (k‖, kz, ǫ) (6.2)

=
1

2π

∫ ∞

−∞
dkz e

ikz(z−z′) 1

ǫ− 1
2
k2
‖ − 1

2
k2
z

= −1

π

∫ ∞

−∞
dkz e

ikz(z−z′) 1

k2
‖ + k2

z − 2ǫ

= −1

π

∫ ∞

−∞
dkz e

ikz(z−z′) 1
(

kz −
√

2ǫ− k2
‖

)(

kz +
√

2ǫ− k2
‖

) .

The integral can be evaluated using complex analysis by closing the integral contour
in the complex upper (or lower) half plane with the radius of the semicircle going to
infinity. This is valid because the contribution of the upper (or lower, respectively)
semicircle decays to zero if z − z′ > 0 (or z − z′ < 0) and thus can be added without
any consequences.
For z − z′ > 0, the function

eikz(z−z′) 1
(

kz −
√

2ǫ− k2
‖

)(

kz +
√

2ǫ− k2
‖

) (6.3)

has a pole in the upper half-plane at kz =
√

2ǫ− k2
‖ if the imaginary part of

√

2ǫ− k2
‖

is positive. Since k2
‖ is real, the condition Im

√

2ǫ− k2
‖ > 0 is equivalent to Im ǫ > 0.

The integral becomes

Ghom
0 (k‖, z − z′; ǫ) = −1

π
2πi

e
i
q

2ǫ−k2
‖
(z−z′)

2
√

2ǫ− k2
‖

. (6.4)

If the imaginary part of
√

2ǫ− k2
‖ is negative, it is the other factor in the denominator

which produces a pole in the upper half-plane, thus the integral yields

Ghom
0 (k‖, z − z′; ǫ) = −1

π
2πi

e
−i

q

2ǫ−k2
‖
(z−z′)

−2
√

2ǫ− k2
‖

. (6.5)

As already mentioned above, for z coordinates z−z′ < 0 the integral has to be closed
in the lower half-plane, so that the integral over the lower semicircle decays to zero in
infinity. Equivalent to the calculations above, it has to be distinguished whether the

imaginary part of
√

2ǫ− k2
‖ is positive or negative. If Im

√

2ǫ− k2
‖ > 0, the enclosed
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pole is at kz = −
√

2ǫ− k2
‖ and thus the Green function becomes

Ghom
0 (k‖, z − z′; ǫ) = −1

π
(−2πi)

e
−i

q

2ǫ−k2
‖
(z−z′)

−2
√

2ǫ− k2
‖

. (6.6)

For the second case, the relevant pole is kz =
√

2ǫ− k2
‖ and thus

Ghom
0 (k‖, z − z′; ǫ) = −1

π
(−2πi)

e
i
q

2ǫ−k2
‖
(z−z′)

2
√

2ǫ− k2
‖

. (6.7)

We can now subsume the four cases in one formula

Ghom
0 (k‖, z − z′; ǫ) = −i sgn

(

Im
√

2ǫ− k2
‖

) e
i sgn

“

Im
q

2ǫ−k2
‖

”
q

2ǫ−k2
‖
|z−z′|

√

2ǫ− k2
‖

(6.8)

=
e
sgn(Im ǫ)i

q

2ǫ−k2
‖
|z−z′|

sgn (Im ǫ) i
√

2ǫ− k2
‖

.

The representation of the Green function Ghom
0 as a function of z and r‖ can be

calculated similarly, Fourier transforming Ghom
0 (k‖, kz; ǫ) just in three dimensions.

The result is

Ghom
0 (r‖, z, z

′; ǫ) = − 1

2π

e
sgn(Im ǫ)i

√
2ǫ

q

r2
‖
+(z−z′)2

√

r2
‖ + (z − z′)2

. (6.9)

6.1.2 One-dimensional Green function

The aim of this section is to calculate the one-dimensional Green function G0(z, z
′; ǫ)

for the one-dimensional problem

[

ǫ−
(

−1

2

d2

dz2
+ V (z)

)]

G0(z, z
′; ǫ) = δ(z − z′) , (6.10)

where the potential V (z) is given by

V (z) =







VL z < zL
arbitrary z ∈ [zL, zR]
VR z > zR

(6.11)

with constant VL and VR. The energy ǫ is situated in the upper part of the complex
plane, i.e. Im ǫ > 0. The Green function for energies with Im ǫ < 0 is obtained via the
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relation G0(r, r
′; ǫ∗) = G∗

0(r, r
′; ǫ), which directly follows from the Lehmann represen-

tation of the Green function (see eq. (3.21)) and the propertyG0(r
′, r; ǫ) = G0(r, r

′; ǫ).
In addition to eq. (6.10), the Green function must also satisfy the asymptotic bound-
ary condition lim|z|→∞G0(z, z

′; ǫ) = 0, which guarantees that any derived wave func-
tions are square-integrable and thus lead to finite expectation values.
For the formal construction of the Green function I use the eigenfunctions of the
Hamiltonian φ(z, ǫ) that belong to the same given complex frequency ǫ and hence
obey

[

ǫ−
(

−1

2

d2

dz2
+ V (z)

)]

φ(z, ǫ) = 0 . (6.12)

This equation has, in general, many solutions. To satisfy the boundary conditions
I select two particular solutions φ±(z, ǫ) with limz→±∞φ±(z, ǫ) = 0. The Green
function is then given by

G0(z, z
′; ǫ) = 2

φ−(z, ǫ)φ+(z′, ǫ)θ(z′ − z) + φ+(z, ǫ)φ−(z′, ǫ)θ(z − z′)
W (ǫ)

, (6.13)

where W (ǫ) denotes the Wronskian

W (ǫ) = φ−(z, ǫ)
dφ+(z, ǫ)

dz
− dφ−(z, ǫ)

dz
φ+(z, ǫ) . (6.14)

Green function of the potential barrier/quantum well We will now apply this
formalism to a piecewise constant potential, in particular to the potential barri-
er/quantum well illustrated in figure 5.2 with V (z) = V0 for a > z > b and V (z) = 0
otherwise (i.e. VL = VR = 0). In each of the three regions the solutions of the
Schrödinger equation are (damped) plane waves; the total wave functions are con-
structed by matching these piecewise solutions

φ(z, ǫ) =











Aei
√

2ǫz +Be−i
√

2ǫz if z ≤ a

Cei
√

2(ǫ−V0)z +De−i
√

2(ǫ−V0)z if a ≤ z ≤ b

Eei
√

2ǫz + Fe−i
√

2ǫz if z ≥ b

(6.15)

and ensuring that the wave functions as well as their derivatives are continuous at
the boundaries of the regions.
As ǫ lies in the upper part of the complex frequency plane, the imaginary part of the
complex root is positive and

√
2ǫ > 0. The particular solution that goes to zero for

large negative z is given by φ−(z, ǫ) = e−i
√

2ǫz for z ≤ a; the coefficients C−, D−, E−
and F− in the other regions are then determined by the four continuity equations
at the boundaries of the region. The particular solution that goes to zero for large
positive z is given by φ+(z, ǫ) = ei

√
2ǫz for z ≥ b, while the coefficients A+, B+, C+

and D+ again follow from the continuity conditions. All the resulting equations can
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in fact be solved explicitly and yield the formulas

C− =
1

2

(

1−
√
ǫ√

ǫ− V0

)

e−i
√

2ǫa

ei
√

2(ǫ−V0)a
(6.16)

D− =
1

2

(

1 +

√
ǫ√

ǫ− V0

)

e−i
√

2ǫa

e−i
√

2(ǫ−V0)a
(6.17)

E− =
1

2

[

(

1 +

√
ǫ− V0√
ǫ

)

C−
ei
√

2(ǫ−V0)b

ei
√

2ǫb
+

(

1−
√
ǫ− V0√
ǫ

)

D−
e−i
√

2(ǫ−V0)b

ei
√

2ǫb

]

(6.18)

F− =
1

2

[

(

1−
√
ǫ− V0√
ǫ

)

C−
ei
√

2(ǫ−V0)b

e−i
√

2ǫb
+

(

1 +

√
ǫ− V0√
ǫ

)

D−
e−i
√

2(ǫ−V0)b

e−i
√

2ǫb

]

(6.19)

as well as

A+ =
1

2

[

(

1 +

√
ǫ− V0√
ǫ

)

C+
ei
√

2(ǫ−V0)a

ei
√

2ǫa
+

(

1−
√
ǫ− V0√
ǫ

)

D+
e−i
√

2(ǫ−V0)a

ei
√

2ǫa

]

(6.20)

B+ =
1

2

[

(

1−
√
ǫ− V0√
ǫ

)

C+
ei
√

2(ǫ−V0)a

e−i
√

2ǫa
+

(

1 +

√
ǫ− V0√
ǫ

)

D+
e−i
√

2(ǫ−V0)a

e−i
√

2ǫa

]

(6.21)

C+ =
1

2

(

1 +

√
ǫ√

ǫ− V0

)

ei
√

2ǫb

ei
√

2(ǫ−V0)b
(6.22)

D+ =
1

2

(

1−
√
ǫ√

ǫ− V0

)

ei
√

2ǫb

e−i
√

2(ǫ−V0)b
(6.23)

The Wronskian does not vary along the z axis and can hence be calculated once at
a convenient location, for example in the central scattering region. The result

W (ǫ) =
i
√
ǫ− V0√

2

[

(

1 +

√
ǫ√

ǫ− V0

)2
ei

√
2ǫ(b−a)

ei
√

2(ǫ−V0)(b−a)
−
(

1−
√
ǫ√

ǫ− V0

)2
ei

√
2ǫ(b−a)

e−i
√

2(ǫ−V0)(b−a)

]

(6.24)
reduces to W (ǫ) = 2i

√
2ǫ in the homogeneous limit V0 = 0. In this limit, the

coefficients C−, E−, B+ and D+ becomes 0 and the remaining coefficients D−, F−,
A+ and C− simplify to 1. Therefore the wave functions reduce to the two solutions

φ±(z, ǫ) = e±i
√

2ǫz . (6.25)
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Inserting the simplified wave functions and the Wronskian into eq. (6.13) yields

G0(z, z
′; ǫ) = 2

e−i
√

2ǫzei
√

2ǫz′θ(z′ − z) + ei
√

2ǫze−i
√

2ǫz′θ(z − z′)
2i
√

2ǫ
=
ei

√
2ǫ|z−z′|

i
√

2ǫ

(6.26)

which equals the result eq. (6.8) with Im ǫ > 0 and k‖ = 0 calculated in the previous
section.

Arbitrary potentials If the potential is not piecewise constant, the procedure dis-
cussed here can still be used, but it is necessary to integrate the Schrödinger equation
numerically to obtain the wave functions φ−(z, ǫ) for z < a and φ+(z, ǫ) for z < b.

6.1.3 Relation between the one-dimensional and the
three-dimensional Green function

Transformation of G0(z, z
′; ǫ) to G0(k‖, z, z

′; ǫ) In the previous section the one-
dimensional Green function G0(z, z

′; ǫ) was calculated. Here, I will generalize it to
a Green function for a three-dimensional system with a potential V (z), which varies
only in the z direction and corresponds to the potential described in the last section.
The defining equation for the Green function of the three-dimensional system can be
written as

[

ǫ−
(

−1

2

(

∇2
r‖

+
d2

dz2

)

+ V (z)

)]

G0(r‖, z, z
′; ǫ) = δ(r‖)δ(z − z′) . (6.27)

Compared to eq. (6.10), it contains only one additional term −1
2
∇2

r‖
, corresponding

to the kinetic energy for the additional degrees of freedom. The Hamiltonian is
separable in the r‖ and z directions. The Fourier transformation of eq. (6.27) leads
to

[

ǫ− 1

2
k2
‖ −

(

−1

2

d2

dz2
+ V (z)

)]

G0(k‖, z, z
′; ǫ) = δ(z − z′) . (6.28)

This equation equals eq. (6.10) with a reduced energy ǫ̃ = ǫ − 1
2
k2
‖. Therefore the

three-dimensional Green function G0(k‖, z, z
′; ǫ) equals the one-dimensional Green

function G0(z, z
′; ǫ̃).

Two-dimensional Fourier transformation of G0(k‖, z, z
′; ǫ) to G0(r‖, z, z

′; ǫ) In
order to obtain the three-dimensional Green function in real space, G0(k‖, z, z

′; ǫ)
has to be Fourier transformed in two directions. This two-dimensional Fourier trans-
formation can be partly performed analytically, since the Green function depends
only on the absolute value of k‖, i.e. k2

‖. Therefore, G0(r‖, z, z
′; ǫ) may be simplified
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according to

G0(r‖, z, z
′; ǫ) =

1

(2π)2

∫ ∞

−∞
d2k‖ e

ik‖ · r‖G0(k‖, z, z
′; ǫ) (6.29)

=
1

(2π)2

∫ ∞

0

k‖dk‖G0(k‖, z, z
′; ǫ)

∫ 2π

0

dφ eik‖r‖ cosφ

=
1

2π

∫ ∞

0

k‖dk‖G0(k‖, z, z
′; ǫ)J0(k‖r‖) ,

where J0(k‖r‖) is the Bessel function of zeroth order. The remaining integral has
to be calculated numerically. For the numerical calculation Simpson’s rule is used,
which is based on a quadratic interpolation of the integrand. The Green function
results in

G0(r‖, z, z
′; ǫ) ≈ 1

2π

∆k‖
3






2

nk‖max

2
−1

∑

j=1

(2j∆k‖)G0(2j∆k‖, z, z
′; ǫ)J0(2j∆k‖r‖)

+ 4

nk‖max

2
−1

∑

j=0

((2j + 1)∆k‖)G0((2j + 1)∆k‖, z, z
′; ǫ)J0((2j + 1)∆k‖r‖)

+k‖maxG0(k‖max, z, z
′; ǫ)J0(k‖maxr‖)

]

(6.30)

with k‖max = nk‖max∆k‖, nk‖max even.
∆k‖ and k‖max (or nk‖max, respectively,) are numerical parameters, which have to be
chosen such that the sum converges. Their numerical values chosen for the calcula-
tions in this thesis will be presented in section 6.2.3.

6.2 Determination of the numerical convergence

parameters

6.2.1 Comparison to the Green function of the homogeneous
electron gas

The comparison of the three-dimensional Green functionG0(k‖, z, z
′; ǫ) = G0(z, z

′; ǫ−
1
2
k2
‖) for constant potential V (z) = 0 and energies ǫ+ iδ, where δ > 0 and infinitesi-

mally small, with the analytical result

Ghom
0 (k‖, z, z

′; ǫ) =
e
i
q

2ǫ−k2
‖
|z−z′|

i
√

2ǫ− k2
‖

for the homogeneous electron gas derived in section 6.1.1 serves as a first check of
the embedding method. Additionally, it enables one to determine the two numerical
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Figure 6.1: Real part of the Green function Re Ghom
0 (k‖ = 0, z−z′; ǫ) for the homogeneous

electron gas. The results calculated with the embedding method (symbols) for
V (z) = 0 and different values of the convergence parameters are compared to
the analytical ones at the energy ǫ = 0.5 + 0.001i. Left: The parameter N is
varied for constant d̃ = 22.4. Right: Whereas the number of basis functions
2N+1 is set to 21 (N fixed to the constant value N = 10), the length d̃ is varied.
In practice, one z coordinate was hold at a constant value approximately in the
center of the embedding region (e.g. z = const), and the other z coordinate z′

was varied. Since the z grid depends on the choice of the basis functions, the
value of z is not the same for the different curves. It is chosen as z′ = −10+9∆z
with ∆z = d̃/(2N + 1) and therefore it varies between z′ = −1.23 for N = 11
and z′ = 1.86 for N = 8 (left) and z′ = −0.03 for d̃ = 21.4 and z′ = 3.03 for
d̃ = 30.4.

parameters N and d̃ for the chosen embedding region [zL = −10, zR = 10]. Since the
insertion of k‖ 6= 0 leads to a shift along the real energy axis only, it suffices to
compare the Green functions for k‖ = 0.
For the considered system with d = 20, the Green function for V (z) = 0 calculated
with the embedding method is shown in figure 6.1 for different values of the con-
vergence parameters N and d̃ at the energy ǫ = 0.5 + 0.001i. For a fixed value of
d̃ = 22.4, the best agreement of the Green function calculated with the embedding
method and the analytical result is achieved for N = 9 or N = 10 (see the left plot
of figure 6.1). For further calculations, N = 10 (i.e. 21 basis functions) is chosen
because a higher number of basis functions leads to a better resolution in z, since ∆z
is given through ∆z = d̃/(2N + 1).
In the right plot of figure 6.1 the length d̃ is varied between d̃ = 21.4 and d̃ = 30.4.
As one can see, the difference between the points and the analytical curve does not
vary much for different values of the parameter d̃. Although at z − z′ = 0 the best
agreement to the analytical curve is achieved for d̃ = 21.4, the average deviation for
this choice of d̃ with the analytical curve is the biggest among the presented curves.
I choose d̃ = 22.4 for the same reason as I chose N = 10 instead of N = 9: The
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Figure 6.2: Real part of the Green function ReGhom
0 (k‖ = 0, z− z′; ǫ+ iδ) for the homoge-

neous electron gas at z′ = −0.4 for varying z. The results calculated with the
embedding method (symbols) for V (z) = 0 and the parameters N = 10 and
d̃ = 22.4 are in good agreement with the analytical results (lines) for positive
energies (left) as well as for negative energies (right). To all energies ǫ a small
imaginary part iδ = 0.001i was added.

difference ∆z between two points on the z grid increases linearly with the length d̃,
thus the resolution in z direction increases for decreasing d̃.
For the chosen parameters N = 10 and d̃ = 22.4 the Green function for homoge-

neous electron gas for different real energies is displayed in figure 6.2. As expected,
for constant energy ǫ the Green function depends only on the difference |z − z′| and
not on z, z′, respectively. For positive energies it oscillates with increasing |z − z′|,
whereas for negative energies it decays exponentially.
The biggest deviations of the analytical results from the Green function calculated
with the embedding method can be observed for small |z − z′|, especially for z =
z′. This was expected, since the implementation of the Green-function embedding
method uses a plane-wave basis, which is not suitable for the representation of a
sharp kink or an exponential decay.
Another limit of the Green-function embedding method can be observed in figure

6.3. Here, the Green function is plotted for constant distances z − z′ but varying
energy ǫ. As one can see, the analytical and the numerical values agree only up to
energies of approximately 3.5. In order to reproduce the Green function for higher
energies, one has to increase the number of basis functions. Then, in order to ensure
the accuracy, the other parameters d and d̃ has to be determined anew. However, this
limitation on the real frequency axis does not pose a problem. Since, as I will show
in the next chapter, the Green function is only required on the imaginary frequency
axis for a constant real part much smaller than 3.5.
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Figure 6.3: Real part of the Green function Re Ghom
0 (k‖ = 0, z, z′; ǫ) for the homogeneous

electron gas for constant distance z−z′ and varying energy ǫ. The comparison
of the embedding method (points) to the analytical result(lines) shows that the
chosen basis set reproduces the analytically calculated Green function only up
to energies of approximately 3.5.

6.2.2 Simple one-dimensional potential problems

Real energies

In the last section the embedding method with a constant potential was checked
and the two numerical parameters N and d̃ were determined. In the next step, the
embedding method will be applied to simple one-dimensional potentials in order to
check whether it works for these problems as well. I assume that the best choice of
the numerical parameters does not depend on the chosen potential. Therefore I reuse
the same convergence parameters, i.e. (N = 10 and d̃ = 22.4) as for the homogeneous
electron gas.
The quantum well with V = −0.1 and the potential barrier with V = 0.15 are the
two potentials with the largest positive and negative values investigated in this thesis.
Therefore I determine the convergence parameters for these two extreme cases only,
supposing that they require the ‘highest’ convergence parameters. For reasons of
simplicity, the two potentials with these values are denoted simply as the quantum
well and the potential barrier from now on. Thus, every time I speak of the quantum
well (potential barrier), the one with V = −0.1 (V = 0.15) is meant. As presented
in chapter 5, the chemical potential is set to µ = 0.1 and the width of the potential
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Figure 6.4: Real part of the Green function ReG0(k‖ = 0, z, z′; ǫ + iδ) for the potential
barrier (left) and the quantum well (right) with V (z) = 0.15 or V (z) = −0.1,
respectively, for −1 ≤ z ≤ 1 and V (z) = 0 otherwise. For the energy ǫ = 0.5
the difference between the Green functions of the two potentials is much less
pronounced than for energies which are in the range of the barrier and the
well.

(not of the embedding region!) to dV = 2.
In figure 6.4, the Green functions for the quantum well and the potential barrier
are displayed for different (real) energies. The deviations of the Green function for
V (z) 6= 0 calculated with the embedding method from the analytical result calculated
according to section 6.1.2 have approximately the same order of magnitude as those
with the potential V (z) = 0.
The comparison of the curves in figure 6.4 corresponding to different energies shows

the expected behavior: The three curves for the energies ǫ = −0.1, ǫ = 0 and ǫ = 0.1
which are in the range of the two potentials differ from the Green function of the
homogeneous electron gas and are distinct for the quantum well and the potential
barrier. In contrast, the Green function for ǫ = 0.5, which is much larger than the
potentials with V = −0.1 and V (z) = 0.15, respectively, is barely affected by the
potentials.

Complex frequencies

For further calculations the Green function on the complex frequency axis at ǫ =
µ + iω is required, because it is less structured and decays faster on the imaginary-
frequency than on the real-energy axis1. Therefore from here on all comparisons will
be done for energies ǫ = µ + iω, where the real part µ of the energy ǫ denotes the
chemical potential of the considered system.
Furthermore, all calculations will not be performed with the Green function itself
but with the difference ∆G0 of the Green function G0 for V (z) 6= 0 and the Green

1More details will follow in chapter 7.
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function Ghom
0 of the homogeneous electron gas of the leads (i.e. V (z) = 0). As

I will show in chapter 7, this decomposition of the Green function is essential for
the calculation of the polarization function — given as a convolution of two Green
functions in frequency space — because for small distances r = (r2

‖ + (z − z′)2)1/2

the Green function decays very slowly for increasing complex frequency2. Although
this decomposition of the Green function in G0 = Ghom

0 + ∆G0 is not essential un-
til the calculation of the polarization function, it is convenient to split it from here
on: In the next step (see next section), the Green function G0(k‖, z, z

′;µ + iω) (or
∆G0(k‖, z, z

′;µ+iω)) is Fourier transformed numerically to G0(r‖, z, z
′;µ+iω). Since
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Figure 6.5: Real part of the Green function ReG0(k‖ = 0, z, z′;µ + iω) for the potential
barrier (top) and the quantum well potential (bottom). At the left side the
Green functions with V (z) 6= 0 as well as the Green functions of the homoge-
neous leads and their differences are shown for ω = 0.1. At the right side only
the differences ∆G0 for ω = 1 are plotted. In all figures the differences ∆G0

calculated with the Green-function embedding method (points) are compared
to the analytical results (lines).

2The same decomposition of G0 for the numerical calculation of the polarization P0 was made by
Fratesi [FBM04].



6.2 Determination of the numerical convergence parameters 73

∆G0(k‖, z, z
′;µ+ iω) has much smaller absolute values and decays much faster than

G0(k‖, z, z
′;µ+ iω), the numerical effort for the numerical treatment is significantly

reduced compared to the Fourier transformation of G0(k‖, z, z
′;µ + iω) itself. This

faster decay of ∆G0(k‖, z, z
′;µ + iω) for increasing k‖ can be easily understood. As

already explained, the insertion of k‖ 6= 0 leads only to a shift along the real energy
axis, more precisely the enhancement of k‖ entails the decrease of the energy. For en-
ergies much smaller than the potential, the corresponding Green functions converges
to the Green function of the homogeneous electron gas, which leads to ∆G0 → 0.
The complete Green function G0(r‖, z, z

′;µ + iω) is obtained by the addition of
Ghom

0 (r‖, z, z
′;µ + iω) calculated analytically according to eq. (6.9). The real part

of the Green function G0(k‖ = 0, z, z′;µ+ iω) as well as of Ghom
0 (k‖ = 0, z, z′;µ+ iω)

and ∆G0(k‖ = 0, z, z′;µ+ iω) for complex energies are shown in figure 6.5. Looking
at the spatial behavior of the Green functions, one observes that the basis of the
embedding method does not contain enough points for a good resolution of the im-
portant features. For small z − z′ the description of the analytical curve with the
points of the embedding method is very poor, especially for frequencies with a higher
imaginary part iω, since the width of the peak around z−z′ decreases with increasing
imaginary frequency.

6.2.3 Three-dimensional Green function

Two-dimensional Fourier transformation As already mentioned in the last sec-
tion, the three-dimensional Green function G0(r‖, z, z

′;µ+ iω) is obtained via a two-
dimensional numerical Fourier transformation (see section 6.1.3) of ∆G0(k‖, z, z

′;µ+
iω) and the addition of the Green function Ghom

0 (r‖, z, z
′;µ + iω) (see eq. (6.9)) of

the homogeneous electron gas of the leads.
The numerical calculation of ∆G0(r‖, z, z

′;µ + iω) according to eq. (6.30) involves
two parameters ∆k‖ and k‖max. In the upper plots of figure 6.6 the result for the
analytical curve for the potential barrier is presented for varying parameter ∆k‖ and
k‖max = 10. As expected, the convergence for ω = 0.1 (plot on the right side) is much
faster than for ω = 0.01 (left side), since the oscillations of the Green function for
frequencies with larger imaginary part are more damped than for frequencies close
to the real energy axis. Thus, for ω approaching 0 the integrand becomes more-
structured and a higher resolution (i.e. a smaller ∆k‖) is required. Nevertheless, for
both values of ω an adequate convergence is reached for ∆k‖ = 0.025.
For the chosen value of ∆k‖ = 0.025, the maximal k‖max is varied (see lower plots of

figure 6.6). In contrast to the parameter ∆k‖, the investigation of k‖max for different
frequencies (i.e. ω = 0.5 and ω = 0.01) leads to the same result. This is reasonable
since the increase of k‖ implies the decrease of the energy (see previous section) and
therefore the addition of a (small) imaginary part does not carry weight. As one can
see, most k‖ are required for points with small |z − z′|. It does not matter whether
the point z = z′ itself is converged or not, since it will extrapolated in a later step
anyway. This is due to the fact that the convolution of the two Green functions
for the calculation of the polarization requires very high frequencies (in the range
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Figure 6.6: Determination of the convergence parameter ∆k‖ (top) and k‖max (bottom) for
the potential barrier. Top: The result of the numerical Fourier transformation
Re ∆G0(r‖, z, z′;µ + iω) is displayed for different values of ∆k‖ for constant
k‖max = 10 and for ω = 0.01 (left) and ω = 0.1 (right). The curves are
converged for ∆k‖ = 0.025. Bottom: For the constant value ∆k‖ = 0.025 the
maximal value of k‖ is varied. The different curves both for ω = 0.5 (left)
and for ω = 0.01 (right) shows that an adequate convergence is reached for
k‖max = 10.

of ω ≈ 100) for the convergence of the point z = z′, much more than for all other
points z 6= z′. Details will be demonstrated in chapter 7. For further calculations,
k‖max = 10 is chosen since both curves (for ω = 0.01 as well as for ω = 0.5) for this
value of k‖max and z 6= z′ are in good agreement with the curves with k‖max = 12.5.
For the quantum well, the same parameters have been determined. The results are
shown in figure 6.7. Whereas the required maximal value of k‖ does not differ from
that of the potential barrier, ∆k‖ = 0.025 does not suffice for convergence. Therefore,
I will choose a smaller ∆k‖ = 0.01, for which an adequate convergence is achieved.
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Figure 6.7: Determination of the convergence parameters ∆k‖ (left) and k‖max (right) for
the quantum well. The check of the parameter ∆k‖ was made for a very small
frequency, since the investigations for the quantum barrier have shown that the
convergence is worst for frequencies close to the real energy axis. For further
calculations, the values k‖max = 10 and ∆k‖ = 0.01 are chosen.

Comparison of the analytical and the numerical results We will now compare the
results obtained by the one-dimensional analytical Green function to the numerical
ones calculated with the embedding method. The results are shown in figure 6.8.
The two figures at the top show both Green functions as a function of z for constant
r‖, z

′ and ω. Again, the largest deviations can be observed for z ≈ z′, where ∆G0 is
most structured.
In order to investigate the deviations of the embedding method from the results
obtained with the analytical one-dimensional Green function, in the two figures at
the bottom of figure 6.8 the Green function for the quantum well is displayed for
z = z′ = −0.4 and constant r‖ on the complex frequency axis. The relative deviations
of the curve obtained with the Green-function embedding method from the analytical
curve are larger for r‖ = 0.1 than for r‖ = 1. This could be expected, since the 1/r
behavior of the Green function (see eq. (6.9) for the homogeneous electron gas) is not
well represented in the plane-wave basis. Though, even for r‖ = 1 the two curves do
not agree well. Since the corresponding curves for the quantum barrier do not lead to
new insights, they are not shown here. I have to stress, that although the deviations
of the Green function obtained with the embedding method to the analytical results
are quite large, they might not be significant for the final results for the conductance.
First, as already explained, the case z = z′ is difficult to describe in a plane-wave basis
set, and therefore it is the case with the worst agreement. Secondly, the point z = z′

does not enter in the final calculation of the conductance, since it is extrapolated
anyway. Furthermore, tests of the convergence of ∆z show (see the inversion of the
renormalization function in section 7.6) that even the sparsity of the z grid might
not play a role.
Nevertheless, I will abandon the Green-function embedding method here in order
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Figure 6.8: Top: Comparison of the Green function obtained with the Green-function
embedding method (symbols) to the Green functions calculated from the ana-
lytical one-dimensional Green functions (lines) for the quantum well (left) and
the potential barrier (right). The deviations are largest for z = z′. Bottom:

In contrast to the previous figures, the Green function for the quantum well
obtained with the embedding method (blue lines) is compared to analytical
result (red lines) as a function of the complex frequency ω for constant values
z = z′ and r‖ = 0.1 (right) (or r‖ = 1 (left), respectively,).

to obtain more accurate results. It has to checked in future whether the results for
the conductance obtained with the Green-function embedding method are in good
agreement with the results calculated in this diploma thesis or not.

Decay of the Green function Before closing this chapter I will compare the decay
of ∆G0 on the complex frequency axis to that of G0 itself in order to justify the
decomposition of the Green function in a homogeneous part Ghom

0 and a remainder
∆G0. The three functions G0, G

hom
0 and ∆G0 are shown in figure 6.9 as a function

of ω for constant z = z′ = −0.4 and r‖ = 0.1 (or r‖ = 1, respectively,). As expected,
the difference ∆G0 of the two Green functions decays much faster than G0 itself.
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Additionally, it is several orders of magnitude smaller and represents only a small
correction to the Green function of the homogeneous electron gas Ghom

0 . It is obvious
that the numerical integration over the difference ∆G0 on the complex frequency axis
is much cheaper than that over G0 itself.
Comparing the two plots of figure 6.9 for r‖ = 0.1 (left) and r‖ = 1 (right), one
can observe that the value of G0 is much higher for small values of r‖ than for large
ones. This is simply a consequence of the divergence of the three-dimensional Green
in the limit r‖ → 0. For the homogeneous electron gas, this behavior agrees with the
analytical result (6.9).
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Figure 6.9: Comparison of the decay on the complex frequency axis for G0, Ghom
0 and ∆G0

for the quantum well for constant z = z′ = −0.4 and different values of r‖. The
difference ∆G0 is several orders of magnitude smaller and decays much faster
than the Green function G0 itself. (For a better resolution of ∆G0 see figure
6.8.) Furthermore, the decay of ∆G0 and especially of G0 for large values of
r‖ (left) is much faster than for small values of r‖ (right).
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7 Polarization function

In this chapter I present the calculation of the irreducible polarization function.
Whereas in the first part the polarization P0 for an effective potential is evaluated,
in the second part exchange and correlation effects are included and the irreducible
polarization function is calculated.
The first part itself is structured as follows: At the beginning, I explain the procedure
how to calculate the polarization and introduce the applied equations. Afterwards,
the involved numerical parameters are investigated and the results for the polarization
function for an effective potential are presented. The second part of the chapter
starts with the numerical calculation of the electron density which is required for the
evaluation of the exchange-correlation kernel. Finally, I present the calculation of
the irreducible polarization function including electronic exchange and correlation.

7.1 Polarization function in the complex frequency

plane

As demonstrated in section 3.9 the polarization function (see eq. (3.46)) depending
on time and space coordinates is given as a product of two Green functions

P0(1, 2) = −iG(0)(1, 2)G(0)(2, 1) .

The upper index (0) denotes that the Green function is the initial Green function of
Hedin’s equations. It will be dropped in the following derivation. Instead, as already
introduced in the last chapter, the Green function and the polarization function for
non-interacting particles are indexed with 0. Since the potential neither depends on
time nor on the x or y coordinates, the Green function G(1, 2) depends only on the
differences τ = t1− t2 and r‖ = r‖,1−r‖,2 as well as on the spins σ1 and σ2. Therefore
eq. (3.46) simplifies to

P0(r‖, z1, z2; τ ; σ1, σ2) = −iG0(r‖, z1, z2; τ ; σ1, σ2)G0(−r‖, z2, z1;−τ ; σ2, σ1) . (7.1)

In the following, the two space coordinates z1 and z2 are again denoted by z and
z′ in order to stay consistent with the notation chosen in chapter 5. Furthermore, I
consider non-magnetic systems only. In this case, the Green function is diagonal in
the spin coordinates and and can be written as

G0(r‖, z1, z2; τ ; σ1, σ2) = G0(r‖, z1, z2; τ)δσ1σ2 . (7.2)
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The same applies to P0 as defined by Hedin. The integration to obtain the screened
interaction W (see eq. (3.42)) leads in this case to an additional factor 2. Often, this
factor 2 is already included in the polarization. I follow this convention and redefine

P0(r‖, z, z
′; τ) = −2iG0(r‖, z, z

′; τ)G0(−r‖, z
′, z;−τ) . (7.3)

In frequency space the product between G0(r‖, z, z
′; τ) andG0(−r‖, z

′, z;−τ) becomes
a convolution, i.e.

P0(r‖, z, z
′; ǫ) =

∫ ∞

−∞
dτeiǫτP0(r‖, z, z

′; τ) (7.4)

= −2i

∫ ∞

−∞
dτeiǫτ

1

2π

∫ ∞

−∞
dǫ′′e−iǫ

′′τG0(r‖, z, z
′; ǫ′′)

1

2π

∫ ∞

−∞
dǫ′eiǫ

′τG0(−r‖, z
′, z; ǫ′)

=
−2i

(2π)2

∫ ∞

−∞
dǫ′′
∫ ∞

−∞
dǫ′2πδ(ǫ− ǫ′′ + ǫ′)G0(r‖, z, z

′; ǫ′′)G0(−r‖, z
′, z; ǫ′)

= − 2i

2π

∫ ∞

−∞
G0(r‖, z, z

′; ǫ+ ǫ′)G0(−r‖, z
′, z; ǫ′) dǫ′ .

The convolution is an integral over the real energy axis. Its evaluation is quite
complicated since the Green function (see section 3.4) has poles very close to the real
energy axis. To avoid numerical difficulties, one can define the analytic continuation
of P0 to complex frequencies — where the Green function has less structure — and
calculate P0(iω) instead of P0(ǫ).
Since the Green function and therefore the whole integrand of eq. (7.4) decays to
zero for infinite energies I can add the integral along the upper semi-circle (whose
result is zero) and carry out the integration along a closed contour. According to the
theorem of residues it has the same value as the sum over the enclosed poles. The
time-ordered Green function has poles in the upper half-plane only for ǫ < µ and
below the real energy axis only for ǫ > µ. Therefore, for purely imaginary frequencies
iω the integration contour can be rotated counter-clockwise to the shifted complex
frequency axis, so that it forms a closed integral over the left half-plane (see figure
7.1). Even the poles of the Green function G0(ǫ + ǫ′) are inside the contour, since
for purely imaginary frequencies ǫ = iω, the poles of the Green function are shifted
only perpendicular to the real frequency axis, whereas the real part of the frequency
does not change.
Finally, using the same argument as at the beginning, the contour integral over the
left semi-circle can be neglected, and the polarization on the imaginary frequency
axis may be written as

P0(r‖, z, z
′; iω) = −2

i

2π

∫ µ+i∞

µ−i∞
G0(r‖, z, z

′; ǫ′ + iω)G0(−r‖, z
′, z; ǫ′) dǫ′

=
1

π

∫ ∞

−∞
G0(r‖, z, z

′;µ+ iω + iω′)G0(r‖, z, z
′;µ+ iω′) dω′ .

(7.5)

In the last step, the spatial arguments of the second Green function are permuted,
since it does not change under exchange of the two coordinates, and I used the sub-
stitution ǫ′ = µ+ iω′ which implies dǫ′ = idω′.
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Figure 7.1: Left: The poles of the time-ordered Green function G0(ǫ
′) (represented as

lozenges), ǫ′ real, are situated close to the real frequency axis. They are in the
upper half-plane for ǫ′ < µ and in the lower half-plane otherwise. The addition
of a real energy ǫ to ǫ′ leads to a translation of the poles along the real energy
axis, such that the sign of the poles changes at µ−ǫ instead of µ. Nevertheless,
both the poles of G0(ǫ

′) as well as of G0(ǫ + ǫ′) (displayed as triangles) are
in the upper half-plane and therefore inside the integration contour. Right:

Whereas the addition of a real frequency ǫ (left) has led to a translation of the
poles along the real energy axis, the addition of a purely imaginary frequency
iω leads to a shift of the poles along the imaginary frequency axis. Therefore
the integration contour can be rotated to the left half-plane without neglecting
any of the poles included in the original integration contour on the left side.

As the Green function decays to zero for very large positive and negative frequencies,
the integrand does so as well. Therefore it is sufficient to approximate the inte-
gral over the complex frequency axis by a sum over a finite interval of frequencies.
Unfortunately, as I have shown in the last chapter (compare figure 6.9), the decay
of the Green function (and of the integrand, respectively,) is very slow whenever
r = (r2

‖ + (z− z′)2)1/2 becomes very small. For that reason one has to include a wide
range of frequencies, which makes the calculation very time-consuming. As already
mentioned, one possibility to deal with this problem is to split the Green function
into two terms

G0(r‖, z, z
′;µ+ iω′) = G̃0(r‖, z, z

′;µ+ iω′) + ∆G0(r‖, z, z
′;µ+ iω′) . (7.6)
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Inserting this partition in eq. (3.40) for the polarization function leads to an integral
over four terms

P0(r‖, z, z
′; iω) =

1

π

∫ ∞

−∞
G̃0(r‖, z, z

′;µ+ iω + iω′)G̃0(r‖, z, z
′;µ+ iω′) dω′

+
1

π

∫ ∞

−∞

[

G̃0(r‖, z, z
′;µ+ iω + iω′)∆G0(r‖, z, z

′;µ+ iω′)

+∆G0(r‖, z, z
′;µ+ iω + iω′)G̃0(r‖, z, z

′;µ+ iω′)

+∆G0(r‖, z, z
′;µ+ iω + iω′)∆G0(r‖, z, z

′;µ+ iω′)
]

dω′ .

(7.7)

Denoting the first term as

P̃0(r‖, z, z
′; iω) :=

1

π

∫ ∞

−∞
G̃0(r‖, z, z

′;µ+ iω + iω′)G̃0(r‖, z, z
′;µ+ iω′) dω′ (7.8)

and the second integral containing all terms with ∆G0 by

∆P0(r‖, z, z
′; iω) :=

1

π

∫ ∞

−∞

[

G̃0(r‖, z, z
′;µ+ iω + iω′)∆G0(r‖, z, z

′;µ+ iω′)

+∆G0(r‖, z, z
′;µ+ iω + iω′)G̃(r‖, z, z

′;µ+ iω′)

+∆G0(r‖, z, z
′;µ+ iω + iω′)∆G0(r‖, z, z

′;µ+ iω′)
]

dω′ , (7.9)

the equation for the complete polarization function can be rewritten as

P0(r‖, z, z
′; iω) = P̃0(r‖, z, z

′; iω) + ∆P0(r‖, z, z
′; iω) . (7.10)

The artifice is to choose the Green function G̃0(µ + iω) such that it fulfills two
conditions: First, it must be possible to calculate P̃0(r‖, z, z

′; iω) given by eq. (7.8)
in another way than by numerical integration over the frequency axis (for example
analytically or numerically using another method). Secondly, G̃0(µ+ iω) must show
the same convergence behavior for imaginary frequencies with a large absolute value
ω as the whole Green function G0(µ+ iω), so that ∆G0(µ+ iω) decays much faster
to zero than G0(µ + iω). In this case the integral leading to ∆P0(r‖, z, z

′; iω) given
by eq. (7.9) over the three terms containing ∆G0(µ+ iω) converges much faster than
the original one in eq. (3.40) and can therefore be evaluated numerically.
The question is how to choose the Green function G̃0(r‖, z, z

′;µ+iω) best. The easiest
Green function which one can imagine is the Green function of the homogeneous
electron gas, denoted by Ghom

0 (r‖, z, z
′;µ+ iω), whose derivation yields (6.9). In this

case, both conditions are fulfilled: First, the polarization function of the homogeneous
electron gas is known analytically. Secondly, as I have already shown in the last
chapter (see figure 6.9), the difference of the Green function with V (z) 6= 0 and the
Green function of the homogeneous electron gas decays much faster than the Green
function itself (at least for the systems under consideration).
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7.2 Polarization function of the homogeneous

electron gas

An analytical derivation of the polarization function for the homogeneous electron
gas in reciprocal space yields

P hom
0 (k; iω) = − kF

2π2

(

1 +
1

2kFk3

[

4µǫk − (ǫk + iω)2
]

ln

[

ǫk + kkF + iω

ǫk − kkF + iω

]

(7.11)

+
1

2kFk3

[

4µǫk − (ǫk − iω)2
]

ln

[

ǫk + kkF − iω
ǫk − kkF − iω

])

with ǫk = k2

2
and µ =

k2
F

2
. Although in this representation the polarization function

P hom
0 (k; iω) seems to be a complex number, it turns out to be a real function of k

and ω

P hom
0 (k; iω) = − kF

2π2

(

1 +
1

2kFk3

[

4µǫk − ǫ2k + ω2
]

ln

[

(ǫk + kkF)2 + ω2

(ǫk − kkF)2 + ω2

]

(7.12)

+
ω

kkF

[

arctan

(

ω

ǫk + kkF

)

− arctan

(

ω

ǫk − kkF

)])

.

Furthermore, P hom
0 (k; iω) depends on the absolute value of k only, i.e. on k = (k2

‖ +

k2
z)

1/2. A derivation of eq. (7.11) can be found in [Mah90].
For further calculations the polarization function P0 and P hom

0 , respectively, have to
be of the form P0(k‖, z, z

′; iω). This representation is obtained from eq. (7.11) as the
one-dimensional Fourier transform of P hom

0 (k; iω)

P hom
0 (k‖, z, z

′; iω) =

∫ ∞

−∞
dkze

ikz |z−z′|P hom
0 (k‖, kz; iω) . (7.13)

Eq. (7.13) is evaluated numerically using a Fast Fourier Transformation (FFT). Since
the system is invariant under spatial translations, P hom

0 depends on the difference
of the two z coordinates only and can hence be written as P hom

0 (k‖, z, z
′; iω) =

P hom
0 (k‖, |z − z′| ; iω). Moreover, the polarization function is needed for k‖ = 0

only, since it serves for the calculation of the conductance which is obtained from
the irreducible polarization P (k‖) at k‖ = 0 according to eq. (4.36). Unfortunately,
P hom

0 (k; iω) contains terms which diverge for k = 0 and therefore a straightforward
numerical evaluation fails. This problem can be solved by calculating the limit k → 0
of P hom

0 (k; iω) analytically

lim
k→0

P hom
0 (k; iω) ≈ kF

2π2

[

1 +
2

3

(

kkF

iω

)2

+ · · ·
]

≈ kF

2π2
. (7.14)
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Setting P hom
0 (k‖ = 0, kz; iω) for kz = 0 to the constant value P hom

0 (k‖ = 0, 0; iω) =
kF
2π2 , the FFT of P hom

0 (k‖ = 0, kz; iω) yields P hom
0 (k‖ = 0, |z − z′| ; iω) as presented in

figure 7.2.
The two convergence parameters ∆kz and kz,max = −kz,min involved in the FFT
are tested for frequencies very close to the real frequency axis (i.e. at ω = 0.01),
since the function P hom

0 (k‖ = 0, kz; iω) has higher absolute values for small complex
frequencies than for large ones and hence a higher resolution might be required. This
can be observed at the top of figure 7.2, where the function P hom

0 (k‖ = 0, kz; iω) is
displayed for the three different frequencies ω = 0.1, ω = 0.05 and ω = 0.01. An
adequate convergence is achieved for ∆kz = 0.01 and kz,max = 6.2.
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Figure 7.2: Polarization function of the homogeneous electron gas P hom
0 (k‖ = 0, kz ; iω)

(top) and its Fourier transform P0(k‖ = 0, |z − z′| ; iω) (bottom). Since the
one-dimensional Fourier transformation is carried out with the help of a FFT,
the resulting function P hom

0 (k‖ = 0, |z − z′| ; iω) is shown here for different con-
vergence parameters ∆kz (bottom left) and kz,max (bottom right). An adequate
convergence is reached for ∆kz = 0.01 and kz,max = 6.2.
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7.3 Numerical calculation of ∆P0(k‖, z, z
′; iω)

This section deals with the numerical calculation of the remainder ∆P0(k‖, z, z
′; iω).

Whereas in the first part details about the concrete numerical procedure are given,
in the second part the numerical convergence parameters are investigated.

7.3.1 Convolution on the complex frequency axis

In a first step, I need to calculate the polarization function ∆P0 in the representation
∆P0(r‖, z, z

′; iω), which according to eq. (7.9) calculates as a numerical convolution
over the complex frequency axis

∆P0(r‖, z, z
′; iω) :=

1

π

∫ ∞

−∞

[

Ghom
0 (r‖, z, z

′;µ+ iω + iω′)∆G0(r‖, z, z
′;µ+ iω′)

+∆G0(r‖, z, z
′;µ+ iω + iω′)Ghom

0 (r‖, z, z
′;µ+ iω′)

+∆G0(r‖, z, z
′;µ+ iω + iω′)∆G0(r‖, z, z

′;µ+ iω′)
]

dω′ .

I consider the three summands separately. The first summand is approximated as

1

π

∫ ∞

−∞
Ghom

0 (r‖, z, z
′;µ+ iω + iω′)∆G0(r‖, z, z

′;µ+ iω′)dω′

≈ 1

π

∫ ωmax

−ωmax

Ghom
0 (r‖, z, z

′;µ+ iω + iω′)∆G0(r‖, z, z
′;µ+ iω′)dω′

≈ 1

π

∆ω

3






2

nωmax
2

−1
∑

j=−(nωmax
2

−1)

Ghom
0 (µ+ iω + i2j∆ω)∆G0(µ+ i2j∆ω)

+ 4

nωmax
2

−1
∑

j=−(nωmax
2

−1)

Ghom
0 (µ+ iω + i(2j + 1)∆ω)∆G0(µ+ i(2j + 1)∆ω)

+Ghom
0 (µ+ iω + iωmax)∆G0(µ+ iωmax)

]

, (7.15)

where I have introduced the three numerical parameters ωmax, nωmax and ∆ω, which
are related through ωmax = nωmax∆ω. In the last step Simpson’s rule was used. The
difference ∆G0 is thus calculated for frequencies in the interval [−ωmax, ωmax] only, for
larger and smaller frequencies it is assumed to be zero. In contrast, the Green function
of the homogeneous electron gas is needed for frequencies ω ∈ [−ωmax + ω, ωmax + ω].
This choice of the integration limits is quite reasonable, since Ghom

0 decays much
more slowly than ∆G0 and therefore even for frequencies not in the vicinity of zero
it might contribute at ωmax +ω, although ∆G0(ωmax) ≈ 0 might be valid. Of course,
the maximal frequency ωmax (or the minimal frequency ωmin = −ωmax, respectively,)
as well as the step size ∆ω are numerical parameters which have to be determined.
For the potential barrier as well as for the quantum well this will be done in the next
section.
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Since ∆G0 is assumed to be nonzero for frequencies ω ∈ [−ωmax, ωmax] only, in the
second summand the variable ω′ is transformed to ω′′ = ω′ + ω and the numerical
integration limit can be chosen equivalently to that of the first summand

1

π

∫ ∞

−∞
∆G0(r‖, z, z

′;µ+ iω + iω′)Ghom
0 (r‖, z, z

′;µ+ iω′)dω′

=
1

π

∫ ∞

−∞
∆G0(r‖, z, z

′;µ+ iω′)Ghom
0 (r‖, z, z

′;µ+ iω′ − iω)dω′

≈ 1

π

∫ ωmax

−ωmax

∆G0(r‖, z, z
′;µ+ iω′)Ghom

0 (r‖, z, z
′;µ+ iω′ − iω)dω′ . (7.16)

This time, the Green function of the homogeneous electron gas is needed for frequen-
cies ω ∈ [−ωmax − ω, ωmax − ω]. The integral is evaluated equivalently to the first
summand with Simpson’s rule.
The third summand will be split into two terms. One of them is treated equally to
the first summand, whereas in the second one the integration variable is transformed
as in the second summand. Hence, for positive frequencies ω the third summand is
given by

1

π

∫ ∞

−∞
∆G0(r‖, z, z

′;µ+ iω + iω′)∆G0(r‖, z, z
′;µ+ iω′)dω′

≈ 1

π

[

1

2

∫ ωmax−ω

−ωmax

∆G0(r‖, z, z
′;µ+ iω + iω′)∆G0(r‖, z, z

′;µ+ iω′)dω′

1

2

∫ ωmax

−ωmax+ω

∆G0(r‖, z, z
′;µ− iω + iω′)∆G0(r‖, z, z

′;µ+ iω′)dω′
]

.

(7.17)

The decomposition of the third term was made in order to keep the result symmetric
for positive and negative frequencies ω, i.e., to ensure that ∆P0(iω) = ∆P0(−iω) is
valid. This expression can be obtained by inserting the frequency −iω in the third
summand and by taking into account ∆G0 is assumed to be zero for frequencies
|ω| > ωmax. Equivalent to the first and the second summand, the two integrals are
discretized and calculated using Simpson’s rule.
All three numerical integrations include the Green function (or Ghom

0 and ∆G0, re-
spectively,) on the real frequency axis, i.e. G(µ). Intrinsically, the Green function
is not defined for real frequencies, and therefore in general a (positive or negative)
infinitesimally imaginary part is added. However, I can define the Green function
on the real frequency axis as the average of the two limits δ → 0+ and δ → 0− of
G(ǫ+iδ), where ǫ and δ are real numbers. Since the Green function obeys the relation
G(µ− iω) = G∗(µ+ iω), the real parts of the two Green functions which have to be
averaged are the same, whereas the imaginary parts have just the opposite sign (but
the same absolute values) and therefore its sum cancels out. Consequently, at the
real energy µ it suffices to take either the real part of the Green function for positive
frequencies or for negative frequencies and set the imaginary part to zero.
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7.3.2 Two-dimensional Fourier transformation

So far I have presented the calculation of the difference ∆P0 as a function of r‖, z, z
′

and iω. Since for further calculations the polarization function as a function of k‖,
z, z′ and iω is required, ∆P0(r‖, z, z

′; iω) — the result of the numerical convolution
following eq. (7.9) — has to be Fourier transformed. The two-dimensional Fourier
transform of ∆P0(r‖, z, z

′; iω) is calculated equivalently to the two-dimensional (in-
verse) Fourier transform of ∆G0

∆P0(k‖, z, z
′; iω) =

∫

d2r‖e
−ik‖ · r‖∆P0(r‖, z, z

′; iω) (7.18)

=

∫ ∞

0

r‖dr‖∆P0(r‖, z, z
′; iω)

∫ 2π

0

dφ e−ik‖r‖ cos φ

= 2π

∫ ∞

0

r‖∆P0(r‖, z, z
′; iω)J0(k‖r‖) dr‖ .

This integral involves again J0(k‖r‖), the Bessel function of zeroth order and is eval-
uated numerically using Simpson’s rule

∆P0(k‖, z, z
′; iω) ≈ ∆r‖

3






2

nr‖max

2
−1

∑

j=1

(2j∆r‖)∆P0(2j∆r‖, z, z
′; iω)J0(2j∆r‖k‖)

+ 4

nr‖max

2
−1

∑

j=0

((2j + 1)∆r‖)∆P0((2j + 1)∆r‖, z, z
′; iω)J0((2j + 1)∆r‖k‖)

+r‖max∆P0(r‖max, z, z
′; iω)J0(r‖maxk‖)

]

. (7.19)

It involves the two convergence parameter r‖max and ∆r‖, which will be determined
in the next section.

7.3.3 Convergence parameters

The numerical evaluation of ∆P0(k‖, z, z
′; iω) involves several convergence param-

eters: First, the convolution over the complex frequency axis, i.e. the evaluation
of (7.15), (7.16) and (7.17) includes the grid size ∆ω as well as the maximal fre-
quency ωmax. Secondly, for the numerical Fourier transformation (see eq. (7.18))
from ∆P0(r‖) to ∆P0(k‖) the sufficient maximal values for r‖ and for the step size
∆r‖ have to be tested. Similarly to the determination of the numerical parameters
for the Fourier transformation of the Green function (see chapter 6), all parameters
will be investigated for the potential barrier and the quantum well with the largest
positive (V (z) = 0.15) and negative (V (z) = −0.1) values of the potential.

Parameters involved in the convolution over the complex frequency axis The
polarization function ∆P0(r‖, z, z

′; iω) for the potential barrier is displayed in figure
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Figure 7.3: Top: ∆P0(r‖, z, z′; iω) is shown as a function of r‖ for different grid sizes ∆ω
and constant maximal frequency ωmax. Whereas z is situated in the center
of the potential, the second spatial coordinate is set to z′ = 0.4 (left) or
z′ = 5.0 (right). Although the absolute values of the curves for large distances
|z − z′| (right) are much smaller than for small ones (left), a higher resolution,
i.e. a smaller ∆ω is required. For z′ = 0.4 only a marginal deviation of the
curves for different values of ∆ω can be observed. Thus, for both positions
of z′ an adequate choice is ∆ω = 0.02. Bottom: For the constant parameter
∆ω = 0.02 the maximal frequency ωmax is varied between ωmax = 25 and
ωmax = 45. Although the five curves for ∆P0 (left) differ from each other for
small values of r‖, the multiplication with r‖ (right) leads to a reduction of the
difference of the curves. Since in the next step r‖∆P (r‖) will be integrated to
obtain ∆P0(k‖ = 0), the maximal frequency ω = 40 suffices for an adequate
convergence.

7.3 as a function of r‖ for different values of ∆ω and ωmax. As one can see, an adequate
convergence is achieved for ∆ω = 0.02 and ωmax = 40. The curves corresponding
to different parameters ∆ω (see the two upper plots in figure 7.3) are compared for
the constant frequency ω = 0.1 which is the lowest common multiple of the chosen
values of ∆ω. In the limit of small frequencies ω (i.e. for frequencies much smaller
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Figure 7.4: Top: ∆P0(r‖) and r‖∆P0(r‖), the integrand of the two-dimensional Fourier
transformation, for the quantum well for different values of ω. For frequencies
in the vicinity of 0, ∆P0(r‖) (or r‖∆P0(r‖), respectively,) oscillate strongly and
decay much slower to zero than for higher frequencies. Bottom: Determination
of the convergence parameters ∆ω (left) and ωmax (right) for the convolution
on the complex frequency for the quantum well. Compared to the potential
barrier, the parameter ∆ω has to be chosen much smaller, i.e. ∆ω = 0.005
(instead of ∆ω = 0.02 for the potential barrier). As far as the parameter ωmax

is concerned, an adequate convergence is reached for ωmax ≈ 30.

than ωmax) the required convergence parameters ∆ω and ωmax merely depend on the
frequency at which ∆P0 is compared, since the frequency ω shifts only the limits of
the Green function Ghom

0 (see section 7.1).
In the plot on the right side of the bottom of figure 7.3 the polarization function ∆P0

is multiplied with r‖. This multiplication was made having in mind already the next
step, which is the two-dimensional Fourier transformation of ∆P0 to reciprocal space.
According to eq. (7.18), ∆P0 is multiplied with r‖ and the Bessel function J0(r‖k‖).
Since I am interested in ∆P0(k‖ = 0) only, the Bessel function simplifies to 1 and
the Fourier transformation reduces to an integration over the function r‖∆P0(r‖).
The function r‖∆P0(r‖) decays much slower to 0 than ∆P0(r‖) itself and reveals
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the oscillating behavior of ∆P0(r‖) as a function of r‖. Of course, this oscillating
behavior depends strongly on the complex frequency at which ∆P0 (or r‖∆P0(r‖),
respectively,) is considered. This can be observed in the two plots at the top of figure
7.4, where ∆P0(r‖) and r‖∆P0(r‖) are shown for different frequencies for the quantum
well. For the calculations I have used the convergence parameters ∆ω and ωmax for
the quantum well which are tested in the two plots at the bottom of figure 7.4. There,
r‖∆P (r‖) is displayed for different parameters ∆ω (left side) and ωmax (right side) as
a function of r‖. As the comparison for the potential barrier has revealed that the
convergence is worse for larger |z − z′| (see figure 7.3), one of the z coordinates was
chosen to be in the center of the potential z = 10 and the other at z′ = 5. Whereas in
the case of the potential barrier an adequate convergence is reached for ∆ω = 0.02,
for the quantum well a smaller step size is required. Although the reduction of ∆ω
is very expensive, for all further calculations for the quantum well ∆ω = 0.005 is
used. In contrast, the maximal frequency ωmax can be reduced to ωmax ≈ 30, which
is much smaller than the maximal frequency for the potential barrier ωmax ≈ 40.

Convergence parameters of the two-dimensional Fourier transformation The
two-dimensional Fourier transformation of the polarization function ∆P0(r‖, z, z

′; iω)
to the representation ∆P0(k‖ = 0, z, z′; iω) is evaluated numerically using Simpson’s
rule according to eq. (7.19). It involves again two numerical parameters, ∆r‖ and
r‖max which are determined in the following. As one can recognize in figure 7.4, it is
very important at which frequency the check of the parameters is done: The integrand
of the numerical integration r‖∆P0(r‖) is most structured and has the slowest decay
for frequencies close to the real frequency axis. Since in my implementation I can
calculate ∆P0(k‖ = 0, z, z′; iω) only for frequencies on a grid which is determined
by the choice of ∆ω of the convolution on the complex frequency axis, the smallest
possible frequency amounts to ω = 0.02 for the potential barrier and to ω = 0.005
for the quantum well. In order to treat both potentials similarly, I will test the
convergence for the lowest common multiple ω = 0.02. (Though possible for the
quantum well, from now on I will not regard ∆P0(k‖ = 0, z, z′; iω) for frequencies
smaller than ω = 0.02.) The results of ∆P0(k‖ = 0, z, z′; iω) as a function of z with z′

centered in the potential are presented in figure 7.5 for different parameters ∆r‖ and
r‖max. For the determination of the parameters I ignore the point at which the two
z coordinates are the same, i.e. z = z′ = 0. As I will demonstrate in section 7.3.4,
it is very difficult to achieve convergence at this special point and therefore it will
be treated in a different way. For all other z coordinates an adequate convergence
concerning ∆r‖ is reached both for the potential barrier and the quantum well for
∆r‖ = 0.2. In contrast, the maximal r‖max has to be chosen differently for the two
potentials. Whereas for the quantum barrier convergence is reached for r‖max ≈ 40,
for the quantum well a higher r‖max ≈ 50 is required.
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Figure 7.5: Determination of the convergence parameters ∆r‖ and r‖max for the potential
barrier (top) and the quantum well (bottom). In all four figures the polarization
function ∆P0(k‖ = 0, z, z′ = 0; iω) is presented as a function of z for constant
z′ = 0. On the left side, the parameter ∆r‖ is varied. An adequate convergence
is reached both for the potential barrier and the quantum well for ∆r‖ =
0.2. In contrast, the maximal r‖ (right) has to be chosen differently for the
two potentials: Whereas r‖max ≈ 40 suffices for the potential barrier, for the
quantum well convergence is reached not until r‖max ≈ 50.

7.3.4 Extrapolation to z = z′

I will now consider the point z = z′ which was neglected so far. As one can ob-
serve in figure 7.5, the enhancement of the number of r‖ does not lead to a better
convergence — in contrast, both the enhancement of r‖max for constant ∆r‖ and the
downsizing of ∆r‖ at constant r‖max changes the result for the worse. Furthermore,
since the Green function ∆G0(r‖, z, z

′;µ + iω) for the parameter k‖,max = 10 is al-
most converged at z = z′ (see figure 6.6 and 6.7), I conclude that in order to obtain
convergence the parameters of the numerical convolution on the complex frequency
axis have to be enhanced. 7.3.3. This assumption can be verified easily by calcu-
lating the polarization function for parameters ωmax much larger than the maximal
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Figure 7.6: Polarization function ∆P0 for the quantum well (top) and the potential barrier
(bottom). On the left side, ∆P0 is shown for different parameters ωmax of
the convolution of the complex frequency axis, whereas on the right side the
extrapolated points are compared to the converged results. Top right: The
extrapolated points from the results obtained for the parameters ωmax = 30
and ωmax = 50 are slightly too small in comparison to the converged result
for ωmax = 150. Bottom right: For the potential barrier, the agreement of
the extrapolated points (ωmax = 40 and ωmax = 50) with the converged result
(ωmax = 150) is even better than for the quantum well.

frequency ωmax = 30 determined in section 7.3.3. In figure 7.6 the polarization func-
tion ∆P0(k‖ = 0, z, z′; iω) is displayed as a function of z for different values of ωmax,
starting from ωmax = 30 for the quantum well and ωmax = 40 for the potential barrier,
respectively. Although convergence is reached for ωmax ≈ 150, it is not a practical
solution to deal with these high maximal values ωmax since it makes the calculations
very expensive. Thus, another way was found to deal with the point z = z′ exploiting
the fact that the gradient close to z = z′ is approximately linear. I will extrapolate
the point z = z′ from its neighboring points, i.e.

∆P0(k‖, z, z; iω) ≈ 2∆P0(k‖, z, z −∆z; iω)−∆P0(k‖, z, z − 2∆z; iω) . (7.20)
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For the final calculation the grid size ∆z will be chosen larger than it was the case in
the calculations presented until here, where it amounted to ∆z = 0.2. Extrapolation
of ∆P (z, z) at z = 0 for ∆z = 0.4 from the two values ∆P (0,−0.4) and ∆P0(0,−0.2)
for ωmax = 50 and ωmax = 30 for the quantum well (or ωmax = 40 for the potential
barrier) yields

∆P (z, z) ωmax = 150 ωmax = 50 ωmax = 30(40)
quantum well −0.7966 · 10−2 −0.8114 · 10−2 −0.8154 · 10−2

potential barrier 0.5714 · 10−2 0.5768 · 10−2 0.5784 ·10−2

In the second column the converged (and not extrapolated) results obtained with
ωmax = 150 are presented. The results of the extrapolation are compared graphically
to the converged results on the right side of figure 7.6. As one can recognize in the
table as well as in figure 7.6, the extrapolated values slightly differ from the converged
result. Although the relative deviation amounts to approximately two percent for
the quantum well and one percent for the potential barrier it is accepted in favor of a
significantly shorter calculation time. Having now all ingredients together, the total
polarization function can be calculated.

7.4 Total polarization function

According to eq. (7.10), the total polarization function P0(k‖, z, z
′; iω) is given as the

sum

P0(k‖, z, z
′; iω) = P hom

0 (k‖, z, z
′; iω) + ∆P0(k‖, z, z

′; iω) . (7.21)

In figure 7.7, P0 is presented together with its two constituents P hom
0 (k‖, z, z

′; iω) and
∆P0(k‖, z, z

′; iω) both for the potential barrier and the quantum well. Whereas for
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Figure 7.7: The polarization function P0 and its two compounds ∆P0 and P hom
0 for the

potential barrier (left) and the quantum well (right).
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the quantum well the polarization is enhanced compared to the polarization function
of the homogeneous electron gas, in the case of the potential barrier ∆P0 has the
opposite sign of P hom

0 and the total polarization is reduced. This is quite reasonable,
since the density in the quantum well is expected to behave equivalently: Classically
the electrons are not allowed to be located in the region of the potential barrier,
whereas the probability for the electrons to be in the region of the quantum well is
classically expected to be larger than in the leads. The density of the two potentials
is discussed in the following section.
In figure 7.8 the total polarization function P0 as well as the remainder ∆P0 is shown
for all potentials presented in section 5.1. It can be observed that the diminution
of the potential from positive potentials (potential barriers) as well as from negative
potentials (quantum wells) results in the approach of the polarization function to
that of the homogeneous electron gas with V = 0.
Compared to previous calculations, I have extended the investigated region in order
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Figure 7.8: Polarization function ∆P0 (left) and P0 (right) for the potentials presented
in section 5.1. In the two plots at the top, the potential has the nature of a
potential barrier, (thus V ≥ 0) whereas in the bottom the polarization function
for different quantum wells (V ≤ 0) is presented.
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to observe the decay of ∆P0(z) as a function of z and to estimate the interval in
which ∆P0(z) differs from zero. This is important to know, since the calculations
both of the conductance and the irreducible polarization include integrations over
the z axis. One can already see, that ∆P0(z) decays slower for the potential barriers
than for the quantum wells and therefore for the former broader intervals are needed.
While the exact length of the required intervals will be tested in chapter 8, it seems
that the interval chosen in figure 7.8 is sufficient. Furthermore, it can be observed
that ∆P0(z) decays much faster on the z axis than P0(z) itself.

7.5 Density

The aim of this chapter is the calculation of the irreducible polarization. As presented
in section 3.10 it depends on the exchange-correlation kernel, which is a function of
the electron density. Hence, I need to calculate the density, which will be the subject
of this section.
The density of a system can be calculated with the help of the imaginary part of
the retarded Green function G0(r‖ = 0, z, z; ǫ), which is proportional to the energy-
dependent density of states

n(z; ǫ) = −2
1

π
ImG0(r‖ = 0, z, z; ǫ) . (7.22)

The density of states is then obtained by integrating n(z; ǫ) over the real frequency
axis up to to the chemical potential µ

n(z) =

∫ µ

−∞
n(z; ǫ)dǫ . (7.23)

In order to prove the relation (7.22) I write the Green function in the Lehmann
representation (compare eq. (3.21))

G0(r‖, z, z
′; ǫ) =

∑

j

ψj(r‖,1, z)ψ
∗
j (r‖,2, z

′)

ǫ− ǫj + iη

with r‖ = r‖,1 − r‖,2. The wave functions ψj(r‖, z) are eigenfunctions with the corre-
sponding eigenvalues ǫj . Using the Dirac identity

lim
η→0+

1

x∓ iη = P

(

1

x

)

± iπδ(x) , (7.24)

where P denotes the principal value, one can rewrite the imaginary part of the
diagonal elements of G0(r‖ = 0, z, z; ǫ) as

ImG0(r‖ = 0, z, z; ǫ) =
∑

j

∣

∣ψj(r‖, z)
∣

∣

2
Im lim

η→+0

1

ǫ− ǫj + iη

= −π
∑

j

∣

∣ψj(r‖, z)
∣

∣

2
δ(ǫ− ǫj)

= −π
2
n(z; ǫ) . (7.25)
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Since the validity of eq. (7.22) is proved I can insert it in eq. (7.23) and obtain the
electron density

n(z) =

∫ µ

−∞
n(z, ǫ)dǫ (7.26)

= −2

π

∫ µ

−∞
ImG0(r‖ = 0, z, z; ǫ)dǫ

= −2

π

∫ µ

−∞

(

1

2π

∫ ∞

0

ImG0(k‖, z, z; ǫ)k‖dk‖

)

dǫ .

In the last step I have inserted the two-dimensional Fourier representation of G0(r‖ =
0, z, z; ǫ) as derived in eq. (6.29) and exploited the fact that the Bessel function
reduces to 1 for r‖ = 0. Interchanging the order of the two integrations n(z) results
in

n(z) = − 1

π2

∫ ∞

0

(
∫ µ

−∞
ImG0(k‖, z, z; ǫ)dǫ

)

k‖dk‖ . (7.27)

Although the integral over the real frequency axis has the lower limit −∞, it suffices
(for all potentials) to integrate from−0.1 to the chemical potential 0.1, since for lower
energies there are no allowed states and therefore the imaginary part of the Green
function is zero. However, the integration over the real energy axis is not easy to per-
form because the poles are situated close to the real frequency axis at energies ǫ− iη.
For Re ǫ < µ, the Green function has no poles in the upper half-plane and therefore
each closed integral results in 0. This fact can be exploited for the calculation of
the integral choosing an integration contour as shown in figure 7.9. Since the total
integral along the contour amounts to zero, the contribution of the upper semicircle
must have the same absolute value and the opposite sign of the integral over the real

xx x x xx xx x x xx xx x x xxx x xx

µ

Im ǫ

Re ǫ
0

Figure 7.9: Integration contour for the calculation of the density together with the poles
of the retarded Green function. The integral over the real frequency axis is the
negative of the integral of the semi-circle, since there are no poles inside the
contour and therefore the integral must amount to zero.
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Figure 7.10: Electronic density of the potential barrier (left) and the quantum well (right)
for different strengths of the potential as a function of z. For z coordinates far
away from the center of the potential, the densities of all potentials approach
the density of the homogeneous electron gas n = (2µ)3/2/(3π2) = 0.0030 for
the chemical potential µ = 0.1. Whereas the density of the quantum wells in
the vicinity of the center of the potential (z = 0) is enhanced compared to
the density in the leads, it is reduced for the quantum barriers.

frequency axis. The integral along the semi-circle can be easily parametrized and
the density is obtained by calculating the negative of the contribution of the upper
semi-circle. For the numerical calculation it is sufficient to take 31 points on the in-
tegration contour, since the Green function – which now is evaluated at points which
are not close to poles – has not much structure. Moreover, the Fourier transform was
calculated numerically with the same convergence parameters as determined for the
Fourier transformation of ∆G0(k‖, z, z

′;µ+ iω) to ∆G0(r‖, z, z
′;µ+ iω).

The resulting densities for the quantum well and the potential barrier for different
values of V are displayed in figure 7.10. As one can observe for z coordinates far away
from the potential the density of all potentials converge to a constant value which is
the density of the homogeneous electron gas of the leads. Its value is determined by
the chemical potential µ, since the number of particles N in a volume V is related
to the radius of the Fermi sphere according to

N = 2
V

(2π)3

4

3
πk3

F . (7.28)

The factor two arises because each state can be occupied by two electrons (with
different spin). Since µ = 1

2
k2

F, the density of the homogeneous electron gas results
in

n =
N

V
=

(2µ)3/2

3π2
. (7.29)
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7.6 Irreducible polarization function

I have now all ingredients to calculate the irreducible polarization function which
includes exchange and correlation effects via the exchange-correlation kernel. There-
fore in the first part details of the numerical calculation are presented, followed by the
determination of the involved convergence parameters (for the homogeneous electron
gas). Finally, the numerical results for the potential barrier and the quantum well
are presented.

7.6.1 Numerical calculation

In chapter 3 the Dyson-type equation (3.49), which relates the irreducible polarization
P to the polarization P0 was presented

P (r, r′;ω) = P0(r, r
′;ω) +

∫

d3r′′
∫

d3r′′′P0(r, r
′′;ω)fxc(r

′′, r′′′;ω)P (r′′′, r′;ω) .

I will calculate now the former (P ) with the exchange-correlation kernel fALDA
xc (r, r′;ω)

in the ALDA. Since eq. (3.49) is not very convenient for practical implementation, I
define a renormalization function

ε(k‖, z, z
′; iω) = δ(z − z′)−

∫ ∞

−∞
fxc(k‖, z, z

′′, iω)P0(k‖, z
′′, z′; iω) dz′′ . (7.30)

With its inverse ε−1(k‖, z, z
′; iω) given by

∫ ∞

−∞
ε(k‖, z, z

′′; iω)ε−1(k‖, z
′′, z′; iω) dz′′ = δ(z − z′) , (7.31)

the irreducible polarization can be rewritten as

P (k‖, z, z
′; iω) =

∫ ∞

−∞
P0(k‖, z, z

′′; iω)ε−1(k‖, z
′′, z′; iω) dz′′ . (7.32)

In the ALDA, the exchange-correlation kernel fxc(k‖, z, z
′; iω) is local, i.e., it depends

on z via the electron density n(z) only. Thus, introducing the approximation

fxc(k‖, z, z
′; iω) ≈ fALDA

xc (n(z))δ(z − z′) (7.33)

in eq. (7.30), the integral can be solved analytically and the calculation of the renor-
malization function reduces to a simple product

ε(k‖, z, z
′; iω) = δ(z − z′)− fALDA

xc (n(z))P0(k‖, z, z
′; iω) . (7.34)

The inversion of ε(k‖, z, z
′; iω) involves an integration over the whole z axis. How-

ever, the integration can be restricted to a finite interval since the inverse of the
renormalization function is required in a finite volume only and the renormalization
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umin umaxvmin vmax
z

Figure 7.11: Demonstration of the intervals which are important for the inversion of the
renormalization function. Whereas the inverse is calculated in the outer in-
terval [vmin, vmax], finite-size effects cause that the inverse is correct in the
inner interval [umin, umax] only. The differences vmax − umax and umin − vmin

have to be chosen big enough that the renormalization function is zero when
one z argument is located in the inner interval and the other argument is
outside the outer window.

function decays to zero for increasing distances |z − z′|. In the following I denote the
interval in which I want to calculate ε−1(k‖, z, z

′; iω) with [umin, umax]. Furthermore
I define an interval [vmin, vmax] with [umin, umax] ⊂ [vmin, vmax], which has to be cho-
sen such that ε(k‖, z, z

′; iω) = 0 for all z ∈ [umin, umax] and z′ outside of [vmin, vmax]
(see figure 7.11). Under this condition it can be proved [FBM04] that the inverse
of ε(k‖, z, z

′; iω) calculated in the interval [vmin, vmax] equals the ‘correct’ inverse (in-
verted in the infinite interval) in the subset [umin, umax]. The extent of the interval
[vmin, vmax] is a numerical parameter, which will be determined in the next section.
The calculation of the inverse ε−1(k‖, z, z

′; iω) following eq. (7.31) can be simplified
in another way, too, exploiting that ε(k‖, z, z

′; iω) is composed of a delta function
and a remainder — therefore, I can assume that its inverse is composed equivalently,
thus

ε−1(k‖, z, z
′; iω) = δ(z − z′) + ∆ε−1(k‖, z, z

′; iω) . (7.35)

In this case the integral on the left-hand side of eq. (7.31) can be rewritten as

∫ ∞

−∞

[

δ(z − z′′)− fALDA
xc (n(z))P0(k‖, z, z

′′; iω)
] [

δ(z′′ − z′) + ∆ε−1(k‖, z
′′, z′; iω)

]

dz′′

= δ(z − z′)− fALDA
xc (n(z))P0(k‖, z, z

′; iω) + ∆ε−1(k‖, z, z
′; iω)

−
∫ ∞

−∞
fALDA

xc (n(z))P0(k‖, z, z
′′; iω)∆ε−1(k‖, z

′′, z′; iω) dz′′ (7.36)

and eq. (7.31) simplifies to

∆ε−1(k‖, z, z
′; iω)−

∫ ∞

−∞
fALDA

xc (n(z))P0(k‖, z, z
′′; iω)∆ε−1(k‖, z

′′, z′; iω) dz′′

= fALDA
xc (n(z))P0(k‖, z, z

′; iω) . (7.37)

For constant k‖ and constant iω, the remaining integral can be approximated by a
sum over an equidistant discrete mesh. The expression on the left-hand side can then
be written in the form of a matrix multiplication, which yields

[

1−∆zfALDA
xc P0(k‖; iω)

]

∆ε−1(k‖; iω) = fALDA
xc P0(k‖; iω) . (7.38)
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Hence, ∆ε−1(k‖; iω) is given as the solution of a system of linear equations.
The decomposition of ε−1 in a delta function and a remainder ∆ε−1 can also be used
for the following calculation of the irreducible polarization according to eq. (7.32)

P (k‖, z, z
′; iω) = P0(k‖, z, z

′; iω) +

∫ ∞

−∞
P0(k‖, z, z

′′; iω)∆ε−1(k‖, z
′′, z′; iω) dz′′ .

(7.39)
The last integral can be evaluated (for constant k‖ and iω) as a matrix multiplication
of P0(k‖; iω) and ε−1(k‖; iω) multiplied by the step size ∆z

P (k‖; iω) = P0(k‖; iω) + ∆zP0(k‖; iω)∆ε−1(k‖; iω) . (7.40)

Similarly to the integration (or inversion, respectively,) for the calculation of ε−1(k‖, z, z
′; iω)

I have restricted the integration over the z axis to a finite interval. This restriction
can be justified regarding the fact that the irreducible polarization is needed in a
finite volume only. Nevertheless, in order to avoid effects which are due to the finite
size of the integration interval, it has to be chosen larger than the interval in which
the irreducible polarization has to be calculated. Again, the size of the integration
interval is a numerical parameter which has to be chosen appropriately.

7.6.2 Homogeneous electron gas

I will now present the renormalization function, its inverse and the irreducible polar-
ization of the homogeneous electron gas. Furthermore, I determine the involved con-
vergence parameters. Although these parameters are obtained for the homogeneous
electron gas, they will be used for the calculations of the corresponding functions for
all investigated potentials. Thus, I assume that they do not change for the different
potentials. This assumption can be justified by looking at the polarization functions
presented in figure 7.8: They differ in a finite region only, and they decay in the same
way for large |z − z′|.

Renormalization function For the homogeneous electron gas with V = const. both
the density and the exchange-correlation kernel are constant everywhere. The latter
amounts to fALDA

xc = −19.10 for the chemical potential µ = 0.1. As expected, the
exchange part fALDA

x = −15.71 yields a larger contribution than the correlation
part with fALDA

c = −3.39. The renormalization function is simply given as the sum
of the delta function δ(z − z′) and the polarization function of the homogeneous
electron gas multiplied by the constant −fALDA

xc (see eq. (7.34)). ∆ε(k‖, z, z
′; iω) =

−fALDA
xc P (k‖, z, z

′; iω) is depicted in figure 7.12.

Inverse renormalization function The inversion of the renormalization function
involves two numerical parameters. In addition to the grid size ∆z, I need to de-
termine the size of the interval used to integrate ∆ε(k‖, z, z

′; iω). Since all other
functions like the polarization and the renormalization function were calculated in



7.6 Irreducible polarization function 101

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

-20 -10  0  10  20

∆ε
(k

||=
0,

z,
z’

=
0;

 iω
=

0.
02

i)

z

Figure 7.12: Renormalization function (or ∆ε(k‖, z, z′; iω) = ε(k‖, z, z′; iω) − δ(z − z′),
respectively,) for the homogeneous electron gas with µ = 0.1.

the interval [−25, 25], I want to calculate ε−1(k‖, z, z
′; iω) in this interval as well.

Therefore I have to evaluate all functions calculated previously in a larger interval
[−25 − dinv, 25 + dinv] since the region in which ε(k‖, z, z

′; iω) is inverted is larger
than the interval in which it leads to a correct result for ε−1(k‖, z, z

′; iω). On the
left side of figure 7.13 ∆ε−1(k‖, z, z

′; iω) is displayed for z ∈ [−25,−15] calculated
for different parameters dinv. One can see that it is sufficient to choose dinv = 10.
As far as the step size is concerned, the figure on the right side of 7.13 shows that
∆z = 0.75 leads to an adequate convergence.
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Figure 7.13: Determination of the convergence parameters for the inversion of the renor-
malization function. Whereas on the right side the inverse of the renormal-
ization function ∆ε(k‖, z, z′; iω) is shown for different ∆z, on the left side the
integration limit is varied. An adequate convergence is reached for ∆z = 0.75
and dinv = 10.
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Irreducible polarization In the next step, the irreducible polarization according to
eq. (7.39) is evaluated. In order to determine the necessary size of the integration
limits I have calculated the irreducible polarization function for varying integration
limits zmin = −25 − dpol and zmax = 25 + dpol. On the left side of figure 7.14 the
irreducible polarization as a function of z and different values of dpol is displayed with
one z coordinate fixed at the lower limit of the interval, thus at z′ = −25. The two
curves with dpol = 2.5 and dpol = 5 agree very well, therefore in each case dpol = 5
should be sufficient.
It is quite interesting to compare the irreducible polarization function in the ALDA
with the non-interacting polarization function P hom

0 (see the right side of figure 7.14).
The inclusion of exchange and correlation effects leads to an increase of the polar-
ization, whose magnitude might not have been expected. The discussion of this
enhancement is postponed to the following chapter, where I will show that as a
consequence, the conductance increases, too.
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Figure 7.14: Left: Irreducible polarization function of the homogeneous electron gas for
different convergence parameters dpol. Convergence is reached already for
dpol = 5. Right: Comparison of the polarization function of the homogeneous
electron gas with and without exchange and correlation effects. The former
has much larger absolute values.

7.6.3 Potential barrier and quantum well

With the convergence parameters determined in the last subsection the irreducible
polarization of the potential barrier and the quantum well can be calculated. The
results are displayed in figure 7.15. Equivalently to the irreducible polarization of
the homogeneous electron gas, the inclusion of exchange and correlation effects in
the ALDA leads to a strong enhancement of the polarization. As expected, for the
potential barriers the irreducible polarization is reduced compared to that of the
homogeneous electron gas, and it decreases for increasing barriers. In contrast, an
enhancement of the irreducible polarization can be observed for the quantum well
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potentials.
However, in this work the irreducible polarization on the imaginary frequency axis is
just a tool to calculate the conductance of the system, which will be the subject of
the next chapter.
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Figure 7.15: Irreducible polarization for the potential barrier (left) and the quantum well
(right). The inclusion of exchange and correlation effects leads to an en-
hanced polarization but does not influence the qualitative dependence on the
potential V .
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8 Conductance

This chapter deals with the calculation of the conductance Γ both for non-interacting
electrons and systems including electron-electron interaction in linear response. In
the first case, the result equals the conductance obtained within the single-particle
picture of the Landauer approach (see chapter 4), which from now on is denoted by
‘Landauer conductance’.
In the second part of this chapter exchange and correlation effects are taken into
account, and the conductance is calculated using the irreducible polarization pre-
sented in the last chapter. Finally, I analyze the results and discuss the effects of
electron-electron interaction on the conductance. I perform all calculations both for
the homogeneous electron gas and the different potentials presented in section 5.1.

8.1 Landauer conductance

As presented in chapter 4, the conductance is related to the polarization following
eq. (4.36)

Γ =
2π

µ
lim
ω→0+

ω

∫ ∞

0

dz

∫ 0

−∞
dz′P (k‖ = 0, z, z′; iω) .

In order to calculate the Landauer conductance for non-interacting electrons the
polarization P0 is inserted instead of the irreducible polarization. Again, for the
numerical calculation the integrals have to be discretized and are calculated using
Simpson’s rule. The integrations over the half z axis can be limited to finite intervals
since the irreducible polarization swiftly decays to zero for large distances |z − z′|.
The size of these intervals is investigated in the next section whereas the step size of
the numerical integrations can be chosen equally large to the grid size of the inversion
and the numerical integration of the irreducible polarization investigated in the last
chapter.
Furthermore, I will calculate Γ(ω) for finite values of ω and extrapolate to the real
frequency axis, i.e. I take the limit ω → 0 to obtain the conductance. The calculation
at ω = 0 itself does not make any sense, since the result of the integral in eq. (4.36)
must be infinite in order to obtain a finite conductance. It has to be emphasized that
although Γ(ω) is displayed for finite values of ω, only the value of Γ(ω) extrapolated
to ω = 0 has physical meaning and represents the conductance.
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8.1.1 Homogeneous electron gas

The conductance within the non-interacting single-particle picture can be calculated
with the Landauer formula (4.10)

Γ =
1

π

∑

i,j

|tij |2 .

Compared to eq. (4.10) I have added a factor two to take the spin degeneracy into
account, since this factor is included in the polarization function, too. For the case
of the homogeneous electron gas (

∑

i,j |tij |
2 = 1) I expect the conductance Γhom

0 = 1
π
.

From now on all results for the conductance will be normalized to the conductance
of the homogeneous electron gas in the single-particle picture Γhom

0 = 1
π
.

The polarization function for the effective potential of the homogeneous electron
gas P hom

0 (k‖ = 0, z, z′; iω) is calculated in section 7.2. Inserting it in eq. (4.36), it
turns out that for small frequencies, the integral is not yet converged in the interval
[−25, 25], in which I have calculated the polarization function so far. In order to
achieve convergence the total interval in which the irreducible polarization is calcu-
lated is enlarged to [−25 − dc, 25 + dc] and therefore the lower integration limit of
z becomes −25 − dc whereas the upper limit of the integration over z′ increases to
25 + dc. On the left side of figure 8.1, Γhom

0 (ω)/Γhom
0 is presented for different values

of dc. One can observe that for decreasing imaginary frequency a larger dc is re-
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Figure 8.1: Γhom
0 (ω)/Γhom

0 in the non-interacting single-electron picture for the homoge-
neous electron gas. Left: Check of the integration limits for the calculation
of Γ for the chemical potential µ = 0.1. Convergence is reached for dc = 85.
Right: Linear extrapolation of the conductance for different values of the chem-
ical potential (comparable to corresponding values for metals). Evaluation of
the extrapolated curves yields the conductance Γhom

0 (ω)/Γhom
0 = 1. As ex-

pected, in the single-particle picture the conductance does not depend on the
chemical potential and has the finite value Γ = 1

π calculated with the Landauer
formula.
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quired. This is quite reasonable, since the imaginary part of the frequency dampens
the oscillations and causes a faster decay. For all frequencies displayed in figure 8.1
convergence is reached for dc = 85. The deviation of the curves Γhom

0 (ω) for small
values of ω towards Γ = 0 is a finite size effect, which is due to the restriction of
the infinite integration limits to finite values. In the limit ω → 0, this restriction
is no longer valid, and the integrations in eq. (4.36) have to be performed over the
semi-infinite axes.
According to the Landauer formula, the conductance of the homogeneous electron
gas for non-interacting electrons is expected not to depend on the chemical potential
µ. This is verified on the right side of figure 8.1. A linear extrapolation from the
two smallest frequencies shows that all curves for different values of µ in the limit
ω → 0 yields the conductance Γhom

0 (ω = 0) ≈ 1
π
. Since the curves are convex, linear

extrapolation slightly underestimates the correct value. However, I can conclude,
that the results agree very well with the Landauer formula.

8.1.2 Potential problems

The calculation of the conductance for potentials V 6= const. proceeds similarly to
the calculation of the conductance of the homogeneous electron gas. In particular,
starting from the polarization function for an effective potential all numerical pa-
rameters can be assumed to be the same. This includes the interval [−110, 110], in
which the polarization has to be evaluated in order to reach convergence for Γ (see
figure 8.1). However, there is no need to calculate ∆P0 in this large interval as well,
since for increasing |z − z′| it decays much faster to zero than P0 itself. In order to
investigate the required length l of the interval [− l

2
, l

2
] ⊆ [−110, 110], in which ∆P0

has to be evaluated, the conductance Γ0(ω) for the potential barrier V = 0.15 and
the quantum well V = −0.1 (with the chemical potential µ = 0.1) for different values
of l is evaluated. Obviously, for varying l the potential is always kept in the center
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Figure 8.2: Conductance for the potential barrier (left) and the quantum well (right) for
different lengths of the interval in which the difference ∆P0 is calculated.
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of the interval at z = 0 and the width of the potential is not changed. Figure 8.2
shows that for the potential barrier a broader interval than for the quantum well is
required. For the potential barrier, convergence is reached not until l ≈ 54, whereas
for the quantum well l = 48 suffices.
For these simple potentials the theoretical value of the conductance can be calcu-
lated analytically. The transmission coefficient for the potential barrier/quantum
well T (µ) = |t(µ)|2 at the chemical potential µ has to be inserted in the Landauer
formula eq. (4.10). t(ǫ) can be calculated analytically by wave-function matching
and yields

t(ǫ) =
4ikκe−iκd

(ik + κ)2 + (k + iκ)2 eκd
(8.1)

with k =
√

2ǫ and κ =
√

2V − k2. Formula (8.1) is valid for both, positive and
negative potentials. The length d is the width of the potential barrier/quantum well,
which in the investigated systems amounts to d = 2. In figure 8.3 the analytical
values of the conductance for the different potential barriers are shown at ω = 0.
Linear extrapolation of Γ0(ω) to ω = 0 leads to a relatively good agreement with
the analytical result. Whereas for the highest barrier (V = 0.15) the conductance
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Figure 8.3: Conductance of the potential barrier for different values of V divided by Γhom
0 =

1
π . At ω = 0, the analytically calculated values obtained with the Landauer
formula are shown. Linear extrapolation of the curves Γ(ω) from the two lowest
frequencies ω = 0.02 and ω = 0.04 leads to a relatively good agreement with
the analytical results.
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is slightly overestimated, for small barriers (V = 0.05, V = 0.025) the extrapolated
values are too small. In contrast, for the quantum wells displayed in figure 8.4,
a linear extrapolation of Γ0(ω) to ω = 0 is not sufficient. Especially for very flat
quantum wells (V = −0.03 and V = −0.05), a linear extrapolation would lead to a
conductance higher than that of the homogeneous electron gas. In order to improve
the result a better curve for fitting has to be found. That is not easy, since even in
the case of the homogeneous electron gas the frequency-dependence Γhom

0 (ω) is not
known analytically and therefore cannot be used for fitting purposes. On the other
hand, an improvement of the extrapolation can already be reached by a parabolic fit
taking the three lowest frequencies into account.
Of course, a more accurate conductance could be obtained by calculating Γ0(ω) at
lower frequencies. However, this would drastically increase the computation time,
since much higher convergence parameter would be required. It has to be said that
for the quantum wells even Γ0(ω) shown here might not be fully converged for small
values of ω.
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Figure 8.4: Conductance of the quantum well for different values of V and µ = 0.1. At ω =
0, the analytically calculated values obtained with the Landauer formula are
shown. In contrast to the potential barriers (see figure 8.3), linear extrapolation
of the curves Γ(ω) is not sufficient in the case of the quantum wells. For the
curves of very flat wells (V = −0.03 and V = −0.05) linear extrapolation leads
to an unphysical conductance larger than that of the homogeneous electron
gas.
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8.2 Inclusion of exchange and correlation effects

In the following section I will investigate the influence of electron-electron interaction
on the conductance. Therefore I evaluate eq. (4.36) for the irreducible polarization
calculated in section 7.6 instead of the polarization for non-interacting electrons.

8.2.1 Homogeneous electron gas

The numerical results Γhom(ω) for the homogeneous electron gas for different chem-
ical potentials are displayed in figure 8.5. Compared to the Landauer conductance
(see figure 8.1), one observes a systematic increase in the conductance. Furthermore,
in contrast to the conductance in the non-interacting single-particle picture, the
absolute value of the full conductance within the adiabatic local-density approxima-
tion (ALDA) strongly depends on the chemical potential µ: The effects of exchange
and correlation increase with decreasing chemical potential (i.e. decreasing density).
However, although the dependence of the conductance on the chemical potential is
reasonable, the quantity of the influence of exchange and correlation in general is not
expected. The extrapolated values for Γhom are very large. For example, for µ = 0.1
I obtain Γhom/Γhom

0 ≈ 1.77. They are equal to the numerical results calculated by P.
Bokes et al. [BJG06] presented in the following table.
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Figure 8.5: Linear extrapolation of the full conductance within the ALDA for the homoge-
neous electron gas for different chemical potentials. For comparison, at ω = 0
the numerically calculated values calculated by P.Bokes et al. are shown. They
agree quite well with our numerical results.
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µ 0.1 0.15 0.2 0.25 0.3
rs 4.29 3.50 3.03 2.71 2.48
Γhom/Γhom

0 1.77 1.48 1.37 1.28 1.24

Additionally, these values are displayed in figure 8.5 at ω = 0. Regarding this figure
one can see that the linear extrapolation of Γhom(ω) to ω = 0 yields approximately
the same values.
Each chemical potential µ corresponds to a density parameter rs, since 1

n
= 4π

3
r3
s ,

kF = (3π2n)1/3 and µ = 1
2
k2

F. P. Bokes et al. showed that the ALDA correction is
significant within the physically relevant region 2 . rs ≤ rs,c, where rs,c is a critical
value that is caused by a pole in the irreducible polarization. It amounts to rs,c ≈ 5.4.
More details can be found in [BJG06]. Hence, all chemical potentials displayed in
figure 8.5 represents physically relevant cases.
For the different potentials which are investigated in this thesis I have chosen µ = 0.1
which is equivalent to rs = 4.29. It is a rather extreme case, for which the influence
of exchange and correlation is very large.

8.2.2 Potential barrier and quantum well

Finally, I can calculate the full conductance including electron-electron interaction for
different step potentials. The results for the potential barriers are presented in figure
8.6. As already observed for the homogeneous electron gas, exchange and correlation
effects cause a strong enhancement of the conductance. As expected, the inclusion
of exchange and correlation effects does not change the qualitative behavior between
the different heights of the barrier, i.e., for a higher barrier a lower conductance is
obtained. However, the relative difference between the different potential barriers is
smaller than in the non-interacting case. In contrast, the conductance calculated for
the different quantum wells (see figure 8.7) is higher than that of the homogeneous
electron gas and the conductance for the deepest quantum well (V = −0.1) is the
largest among all potentials considered here. This is opposed to the non-interacting
case, since for this quantum well the lowest conductance was obtained (see figure
8.4). The enhancement of the conductance of the quantum wells compared to that
of the homogeneous electron gas might be due to the states localized in the quantum
well. For all depths V investigated in this thesis there is one localized state with
positive parity at the eigenenergy EV . The eigenergies for the different potentials are
written down in the following table.

V EV
−0.1 −0.016
−0.075 −0.009
−0.05 −0.004
−0.03 −0.002

Since the quantum wells are very flat, the eigenstates are only weakly bound. The
smoother the potential, the smaller is the difference in energy to the free states. This
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Figure 8.6: Extrapolation of the full conductance within the ALDA for the potential bar-
rier for different values of V , but constant µ = 0.1. As observed already for the
homogeneous electron gas, the inclusion of exchange and correlation leads to
a strong increase of the conductance. Compared to the conductance without
exchange and correlation effects the relative difference between the conduc-
tances of the different potentials is reduced. In order to obtain the values for
Γ(0), I have extrapolated the curves linearly from the two points ω = 0.04 and
ω = 0.02.

small difference might lead to numerical inaccuracies, especially for the two flattest
potentials with V = −0.03 and V = −0.05 and explain that a higher conductance
for these two potentials is obtained than for the two quantum wells with V = −0.075
and V = −0.1. Moreover, this fits to the observations made in the non-interacting
case (see figure 8.4), where the curves Γ0(ω) for the flattest potentials merely deviate
to smaller values.
The general enhancement of the conductance for the quantum wells compared to
that of the homogeneous electron gas under consideration of exchange and correla-
tion effects can be explained with the help of these localized states. Electron-electron
interaction of the incoming Bloch waves with the localized states might enable new
transport mechanisms and (obviously) leads to an enhancement of the net conduc-
tance. However, the actual physical process is intransparent which is a consequence
of the approach of TDDFT where electronic exchange and correlation enter in the
exchange-correlation kernel only, but are not treated explicitly (e.g. as it is the case
in the Coulomb interaction). Of course, such an enhancement of the conductance is
not possible in the non-interacting case, in which for any potential the conductance
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Figure 8.7: Extrapolation of the full conductance within the ALDA for the quantum well
for different values of V , but constant µ = 0.1. For the quantum well I even
obtain a higher conductance than the one of homogeneous electron gas. This
effect might be caused by localized states, which in consideration of exchange
and correlation can couple to the Bloch states of the leads and thus contribute
to the conductance. The fact that the conductance of the two flat potentials
with V = −0.03 and V = −0.05 is higher than that of the deeper quantum
wells might be due to numerical inaccuracies.

has to be smaller than that of the homogeneous electron gas.

8.2.3 Discussion

The relatively strong enhancement of the conductance especially for small chemi-
cal potentials under explicit consideration of exchange and correlation both for the
homogeneous electron gas and the potential barriers and quantum wells is not yet
understood. It might be due to the unusual definition of the conductance made by
Bokes and co-workers as the current dependence on the total field composed of the
external and the induced field. This is contradictory to the usual definition where
only the external field is taken into account and surely connected to the fact that the
conductance becomes zero when calculating the conductance describing the current
with respect to the applied external field (see section 4.2.4).
Furthermore, it is worth to discuss the influence of the approximation of the exchange-
correlation kernel fxc(|r− r′| , t− t′) on the conductance. I have calculated the kernel



114 Conductance

in the most simple approximation, the ALDA. In the ALDA, the kernel is local both
in time and space and thus ignores essential physical features like the nonlocal de-
pendence on the global density distribution or the density at former times. As a
consequence, the approximated kernel depends neither on the frequency nor on the
wave vector in reciprocal space and is approximated by a constant

fALDA
xc = lim

q→0
fhom

xc (q, iω = 0) (8.2)

that depends only on the density.
Although the exchange-correlation kernel is in general not known, for the homoge-
neous electron gas an accurate parameterization of the dynamic kernel fxc(q, iω) on
the imaginary frequency axis is available [RA94]. It is derived from a high-order
diagrammatic expansion of the polarization and, in addition, takes known sum rules
into account. However, the specific element

lim
ω→0

fhom
xc (q, iω = 0) = fALDA

xc (8.3)

required for the evaluation of the conductance is identical to the adiabatic local-
density approximation, and thus leads to the same results for the conductance.
For inhomogeneous systems, however, the use of accurate parameterizations of the
exchange-correlation kernel is doubtful, since the density in general is not unique,
i.e. n(r) 6= n(r′) is valid. Hence, it is unclear which density to insert in the parametriza-
tion.
While for the homogeneous electron gas the ALDA leads to an exact result for the
conductance, for inhomogeneous systems the ALDA remains an approximation. The
magnitude of the errors in the conductance is not known, but the deviation of the ex-
act result is assumed to increase with the deviation of the potential from the constant
potential of the homogeneous electron gas. However, since in this diploma thesis only
relatively weak potentials are treated, the errors made by using the ALDA are sup-
posed to be small.

Concluding, the method for the calculation of the conductance via the irreducible
polarization function proposed by P. Bokes et al. is very promising, since it allows to
integrate electronic exchange and correlation beyond the single-particle approach of
the Landauer formula. However, the practical implementation is quite complicated
because of the extrapolation to the real frequency axis (ω → 0). Moreover, it is based
on an usual definition of the conductance as the current dependence on the total field
instead of the external field which complicates a physical interpretation of the result.
Finally, the integration of electron-electron interaction in the exchange-correlation
kernel (in the calculation of the irreducible polarization function) conceals the actual
physical processes and, as the former argument, makes the physical interpretation
difficult.
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In this diploma thesis I investigated the effect of the electron-electron interaction
on quantum transport. Generally, nanoscale transport calculations are very complex
because of the involvement of many particles and the special geometry of a scat-
tering setup. For my explorations I chose simple potential barriers and quantum
wells, modeling a thin film of vacuum, an isolating material or a metal with another
electron density sandwiched between two metallic leads. In this way I simplified the
scattering setup while focusing on the many-body aspect.
The first part of my work deals with the calculation of the Green function in the
single-particle picture assuming an effective local potential. This potential might be
the Hartree-potential or the effective potential of density- functional theory, which
already includes exchange and correlation effects in a local description. Since the
Green-function embedding method represents one of the few possibilities to integrate
the special scattering boundary conditions in feasible numerical transport calcula-
tions, I tailored the Green-function embedding method to the investigated three-
dimensional setup with a one-dimensional potential. In order to evaluate the accu-
racy of the embedding method, I derived an analytical expression for the Green func-
tion valid for all investigated potential-step problems. This enabled me to compare
the results obtained with the Green-function embedding method to the analytical
ones. I showed that the deviations of the numerical results are significantly large,
so that I decided to continue my calculations with the Green function calculated
semi-analytically. In the following I calculated the polarization function for non-
interacting electrons, given as a convolution on the complex frequency axis. For this
purpose, I decomposed the Green function in a homogeneous part and a remainder,
since the remainder decays much faster on the complex frequency axis than the Green
function itself and the homogeneous part can be treated analytically.
In order to take dynamic exchange-correlation effects into account beyond the static
contribution already included in the effective potential, I calculated the irreducible
polarization. It is related to the polarization function of the non-interacting elec-
trons through a Dyson-type equation (derived in time-dependent density-functional
theory) via the exchange-correlation kernel. I approximated the kernel in the adia-
batic local-density approximation (ALDA). Finally, I used the relation between the
polarization and the conductance derived by Bokes and Godby [BG04] to calculate
the latter both in the non-interacting single-particle picture and under the explicit
consideration of dynamic exchange and correlation. The numerical results obtained
in the first case agree very well with the Landauer formula and indicate the cor-
rectness of the implementation. Furthermore, the conductance for different electron
densities calculated with the irreducible polarization of the homogeneous electron gas
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is in good agreement with the results presented in [BG04]. I observed a systematic
increase of the conductance when dynamic exchange and correlation are included.
These corrections can be surprisingly large for some systems. For example, in the
case of a small electron density the conductance amounts to 1.8 times the Landauer
conductance.

Before the procedure of calculating the conductance via the irreducible polariza-
tion can be applied to realistic systems, some difficulties have to be overcome. First,
the Green function cannot be calculated analytically and another method such as the
Green-function embedding method has to be used. As shown in chapter 6, for the
investigated model systems the deviations of the Green functions calculated numeri-
cally with the embedding method to the analytical results are quite large, when the
real space arguments of the Green function are the same or located very close to each
other. Furthermore, I showed that the accuracy of the method is very sensitive to
the choice of the involved numerical parameters. Nevertheless, despite this complex
interplay, a set of parameters could always be found for which the description is good.
For the setups investigated in this thesis, the determined optimal parameters lead
to a relatively sparse grid in the z direction, however. As the resolution cannot be
increased while retaining the same accuracy of the description, this becomes a prob-
lem in the calculation of the conductance later, which requires several integrations
over the z axis. Although I bypassed the problem here by continuing the calcula-
tion with the analytical Green function, in the future it is worth trying to overcome
these numerical problems, since the Green-function embedding method is applicable
to arbitrary potentials and realistic three-dimensional setups. The Green-function
embedding method would offer the possibility to calculate the conductance for more
realistic, interesting and difficult potentials.
A second question which is worth to discuss is the dependence of the irreducible
polarization and the conductance on the approximation of the exchange-correlation
kernel. The adiabatic local-density approximation chosen in this thesis is a very dras-
tic approximation of the kernel. In the ALDA, the kernel is local both in the time and
the space coordinates and thus ignores essential physical features like the non-local
dependence on the global density distribution and on the density at former times.
As a consequence, in reciprocal space the approximated kernel depends neither on
the frequency nor on the wave vector. For the homogeneous electron gas for a wide
range of densities n there are parameterizations of the exchange-correlation kernel
fhom

xc (n, |r− r′| , t − t′) available. With the help of such a parametrization it can be
shown that in the case of the homogeneous electron gas the ALDA leads to the cor-
rect result for the conductance. Using the parametrized kernel fhom

xc (n, |r− r′| , t− t′)
in inhomogeneous systems, on the other hand, one meets a fundamental problem:
In such systems the density parameter n is not unique since in general n(r) 6= n(r′)
and therefore it is not clear which density to insert when evaluating the kernel. The
magnitude of the errors in the conductance caused by this drastic approximation is
difficult to estimate, but for the relatively flat potentials investigated in this thesis
it is supposed to be rather small.
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Assuming that the exchange-correlation kernel is well approximated (or numerically
exact for the homogeneous electron gas) the extrapolation of the conductance to zero
frequency remains a source of error. Since the frequency dependence of Γ(ω) even
in the case of the homogeneous electron gas is not known analytically it cannot be
used as a parametrization for fitting purposes. However, in the calculations made
in this thesis I contented with a linear fit to obtain the conductance. The accuracy
of the linear fit can be estimated with the help of the non-interacting case, where
the conductance Γ(ω = 0) can be calculated with the Landauer formula. In order to
reach a higher accuracy, either a better curve for fitting has to be found or the con-
ductance has to be extrapolated from smaller frequencies. However, going to smaller
frequencies requires higher convergence parameters and as a consequence leads to a
higher computation time.
Even for the simple model systems considered here, the calculation of the conduc-
tance already turned out to be computationally very demanding. In order to avoid
expensive double calculations, the Green function must calculated and stored as a
function of four variables. As shown in chapter 5, in the embedding method it is first
calculated for one frequency ǫ and one wave vector k‖ as a matrix of the two spatial
coordinates z and z′. In contrast, the polarization function is given as a convolu-
tion over the complex frequency axis and therefore the Green function is required
as a function of the frequency, too (for one r‖ and one combination of z and z′).
Moreover, it is needed in real space coordinates in order to avoid a supplementary
(two-dimensional) convolution concerning k‖. Concerning the parallel coordinates
the Green function has to be Fourier transformed from reciprocal space to real space,
since it is calculated most easily as a function of k‖. On the other hand, the polar-
ization function is required for k‖ = 0, and hence must be Fourier transformed back
to reciprocal space. Imagining a realistic system with a three-dimensional potential
the calculation time as well as the amount of data increases drastically: The Green
function is now a function of eight coordinates (instead of four)! Thus, even the
government of this huge amount of data constitutes a challenge. It is evident that
for a practical and feasible implementation smart novel and parallel programs are
required.
At the end of this diploma thesis I want to discuss once more the limits of the investi-
gations I made here. The linear response approach is only suitable for the calculation
of the static zero-bias conductance in equilibrium and does not include dynamical
processes like the switch-on and the switch-off of an electric field. However, these
processes are very important in nanoelectronics since most things happen on a very
short time-scale. Furthermore, the model systems investigated in this thesis here are
periodic in two dimensions and therefore assumed to be infinite. Thus, they model a
system composed of different layers which are small only in one dimension. In con-
trast, in nanoelectronics most of the conducting devices are small in all dimensions.
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Quasiparticle energies in gaas and alas.
Phys. Rev. B, 35(8):4170–4171, Mar 1987.

[Hed65] Lars Hedin.
New Method for Calculating the One-Particle Green’s Function with

Application to the Electron-Gas Problem.
Phys. Rev., 139(3A):A796–A823, Aug 1965.

[HK64] P. Hohenberg and W. Kohn.
Inhomogeneous electron gas.
Phys. Rev., 136(3B):B864–B871, Nov 1964.

[HL86] Mark S. Hybertsen and Steven G. Louie.
Electron correlation in semiconductors and insulators: Band gaps and

quasiparticle energies.
Phys. Rev. B, 34(8):5390–5413, Oct 1986.

[HT95] Kenji Hirose and Masaru Tsukada.
First-principles calculation of the electronic structure for a bielectrode

junction system under strong field and current.
Phys. Rev. B, 51(8):5278–5290, Feb 1995.

[HTM+02] S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph.
Avouris.

Carbon nanotubes as schottky barrier transistors.
Phys. Rev. Lett., 89(10):106801, Aug 2002.

[Ing81] J. E. Inglesfield.
A method of embedding.
Journal of Physics C, 14:3795–3806, 1981.

[Ink84] John C. Inkson.
Many-body theory of solids.
Plenum Press, 1984.

[KDP80] K. v. Klitzing, G. Dorda, and M. Pepper.
New method for high-accuracy determination of the fine-structure con-

stant based on quantized hall resistance.



Bibliography 123

Phys. Rev. Lett., 45(6):494–497, Aug 1980.

[Kon64] J. Kondo.
Resistance minimum in dilute magnetic alloys.
Progress of Theoretical Physics, 32(1):37–49, 1964.

[Kor47] J. Korringa.
Physica, 1947.

[KR54] W. Kohn and N. Rostoker.
Solution of the schrödinger equation in periodic lattices with an appli-

cation to metallic lithium.
Phys. Rev., 94(5):1111–1120, Jun 1954.

[KS65] W. Kohn and L. J. Sham.
Self-consistent equations including exchange and correlation effects.
Phys. Rev., 140(4A):A1133–A1138, Nov 1965.

[Kub59] R. Kubo.
Some aspects of the statistical-mechanical theory of irreversible pro-

cesses.
In W. E. Brittin and L.G. Dunham, editors, Lectures in Theoretical

Physics, volume 1. Interscience, 1959.

[Lan57] R. Landauer.
Spatial variations of currents and fields due to localized scatterers in

metallic conduction.
IBM Journal of Research and Development, 1(3):223, 1957.

[Mah90] Gerald D. Mahan.
Many-Particle Physics.
Plenum Press, second edition, 1990.

[Mat97] J. Mathon.
Tight-binding theory of tunneling giant magnetoresistance.
Phys. Rev. B, 56(18):11810–11819, Nov 1997.

[MS59] Paul C. Martin and Julian Schwinger.
Theory of many-particle systems. i.
Phys. Rev., 115(6):1342–1373, Sep 1959.

[PBE96] John P. Perdew, Kieron Burke, and Matthias Ernzerhof.
Generalized gradient approximation made simple.
Phys. Rev. Lett., 77(18):3865–3868, Oct 1996.

[PCV+92] John P. Perdew, J. A. Chevary, S. H. Vosko, Koblar A. Jackson, Mark R.
Pederson, D. J. Singh, and Carlos Fiolhais.

Atoms, molecules, solids, and surfaces: Applications of the generalized
gradient approximation for exchange and correlation.

Phys. Rev. B, 46(11):6671–6687, Sep 1992.



124 Bibliography

[PGG96] M. Petersilka, U. J. Gossmann, and E. K. U. Gross.
Excitation energies from time-dependent density-functional theory.
Phys. Rev. Lett., 76(8):1212–1215, Feb 1996.

[PW92] John P. Perdew and Yue Wang.
Accurate and simple analytic representation of the electron-gas correla-

tion energy.
Phys. Rev. B, 45(23):13244–13249, Jun 1992.

[RA94] C. F. Richardson and N. W. Ashcroft.
Dynamical local-field factors and effective interactions in the three-

dimensional electron liquid.
Phys. Rev. B, 50(12):8170–8181, Sep 1994.

[RG84] Erich Runge and E. K. U. Gross.
Density-functional theory for time-dependent systems.
Phys. Rev. Lett., 52(12):997, Mar 1984.

[ROB+02] J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor, and H. v.
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