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Abstract
In this theoretical thesis the structure of magnetic domain walls is explained by an in-
terplay of spin stiffness, anisotropy energy and Dzyaloshinsky-Moriya interaction. The
wall structures are discussed within a micromagnetic model and the corresponding model
parameters are obtained ab initio by electronic-structure calculations.

The inclusion of the Dzyaloshinsky-Moriya interaction in these investigations is a new
aspect. This interaction arises only in certain crystal symmetries, it is of particular im-
portance in the studied ultrathin magnetic films deposited on non-magnetic surfaces. The
Dzyaloshinsky-Moriya interaction leads to unusual domain-wall structures that can be
classified in several distinct phases. The ab-initio calculations are done with the FLAPW
method that relies on density functional theory. Within this method a perturbative ap-
proach is developed, that allows to estimate the effect of spin-orbit coupling on spin spirals
with large spatial periods and thus allows to estimate the strength of the Dzyaloshinsky-
Moriya interaction. The theory is applied to the system Fe/W(110), i.e. to the W(110)-
surface covered with one respectively two atomic layers of Fe. The domain-wall widths
are calculated and compared with experimental data. Furthermore, a new explanation
is given for the experimentally observed phenomenon, that the domain walls in the Fe
double-layer are preferably oriented along the [11̄0]-direction.



Contents

1 Introduction 4

2 Density functional theory 8

2.1 Theorem of Hohenberg and Kohn . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Kohn-Sham equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Local density approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Total energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Relativistic Kohn-Sham equation . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Spin-orbit coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Solving the Kohn-Sham equation, the FLAPW method 16

3.1 The selfconsistency cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Calculating the total energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Solving the secular equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Core states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.2 Valence states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 LAPW basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 LAPW basis in film geometry . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2 Representation of density and potential . . . . . . . . . . . . . . . . 23

3.5 Calculating the density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Calculating the potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Magnetic calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7.1 LAPW basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7.2 Constrained magnetic moments . . . . . . . . . . . . . . . . . . . . . 27

3.7.3 Generalized Bloch theorem . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Relativistic effects in the valence band . . . . . . . . . . . . . . . . . . . . . 29

3.9 Spin-orbit coupling in helical spin spirals . . . . . . . . . . . . . . . . . . . . 31

3.9.1 Local force theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.9.2 Second variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9.3 Diagonalizing the sparse matrix H0 +Hso . . . . . . . . . . . . . . . 34

4 Magnetic interactions 35

4.1 Exchange interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Dzyaloshinsky-Moriya interaction . . . . . . . . . . . . . . . . . . . . 36

4.2 Magnetostatic interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Domain structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



Contents 3

5 Domain walls 39
5.1 Some definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Micromagnetic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 Symmetry considerations to the D-vector . . . . . . . . . . . . . . . 43
5.2.3 Analytic solution for D=0 . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.4 Influence of the Dzyaloshinsky-Moriya term . . . . . . . . . . . . . . 45

5.3 Effects of the discrete lattice structure . . . . . . . . . . . . . . . . . . . . . 54
5.3.1 The case D=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.2 Influence of the Dzyaloshinsky-Moriya term . . . . . . . . . . . . . . 56

5.4 Extension of the models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 The system Fe/W(110) 59
6.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Experimental observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Magnetostatic dipolar interactions . . . . . . . . . . . . . . . . . . . . . . . 62
6.4 Effective exchange interactions . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4.1 Spin stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4.2 Hopping parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Magnetocrystalline anisotropy in the ferromagnetic domains . . . . . . . . . 67
6.6 Dzyaloshinsky-Moriya interaction in the DL domain walls . . . . . . . . . . 68
6.7 Modeling the domain-wall structure . . . . . . . . . . . . . . . . . . . . . . 69

6.7.1 Domain magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.7.2 Micromagnetic model for the broad DL walls . . . . . . . . . . . . . 70
6.7.3 Micromagnetic and discrete model for the narrow ML walls . . . . . 72

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Summary 76

A Applying GGA to non-collinear magnetism 78

B SOC matrix elements described with the LAPW basis 83

C Local force theorem 86

D Perturbation theory for the sum of eigenvalues 89

E Relations between real- and spin-space symmetries 94

F Details concerning the domain wall models 97
F.1 Derivation of the micromagnetic model . . . . . . . . . . . . . . . . . . . . . 97
F.2 Optimizing the magnetization numerically . . . . . . . . . . . . . . . . . . . 98
F.3 Period length of the rotating ground state . . . . . . . . . . . . . . . . . . . 101
F.4 Phase transitions of the micromagnetic ground state . . . . . . . . . . . . . 103
F.5 DM interaction in the discrete model . . . . . . . . . . . . . . . . . . . . . . 106

G Calculation of the ML exchange parameters 109

H Computational details 118

Bibliography 123



Chapter 1

Introduction

This thesis deals with the structrure of magnetic domain walls. Even though the corre-
sponding basic micromagnetic equations were derived and solved already 70 years ago by
Landau and Lifshitz [57], the topic gave rise to numerous vivid discussions throughout
the decades. Nowadays, when the information density of magnetic data-storage media
steadily increases and spintronic devices come in sight, a good understanding of the mag-
netic domain boundaries is of increasing technological relevance.

The internal structure of the magnetic domain walls is determined by a competition of spin
stiffness and anisotropy energy. In the simplest case, both quantities can be regarded as
local and the magnetization changes only in the spatial direction r normal to the wall. In
a simple model, both quantities are local and the magnetization direction depends only on
the distance perpendicular to the wall. It is often sufficient to approximate the energy E
of a wall in-between two oppositely magnetized domains by

E[ϑ(r)] =

+∞∫

−∞
dr

(
A
(

d
d r ϑ(r)

)2

︸ ︷︷ ︸
spin stiffness

+ K cos2(ϑ(r) )
︸ ︷︷ ︸
anisotropy energy

)
with






ϑ(r)
r↘−∞
−−−−→ 0

ϑ(r)
r↗+∞
−−−−→ π

(1.1)

where the angle ϑ(r) characterizes the magnetization direction. The wall structure (de-
pending on the system-specific model parameters A, K ) is given by the variation of E[ϑ],
a straightforward analytical solution of this Landau-Lifshitz equation was for the first time
presented in [57]. However, in many cases it is necessary to extend the model beyond the
basic ansatz (1.1).

First extensions take into account a variety of crystal symmetries. This includes dif-
ferent structures of the anisotropy term and allows for non-collinear alignments of two
adjacent (ferromagnetic) domains [e.g. 62].

The problem gets more involved when the long-ranged nature of the magnetostatic
interactions is taken into account. In this case, the shape and size of the magnetic sample
can have considerable influence on the wall structure. An ordinary magnetic film of finite
thickness already shows very complex magnetic wall structures. In 1955 Néel realized
that the rotation axis of the magnetization depends on the film thickness [75]. Later on,
improved micromagnetic methods [e.g. 10,48,88] allowed for more detailed investigations
of the magnetic films. It was discovered, that the correct treatment of the magnetostatic
stray fields can lead to wall structures that break the symmetry of the energy functional:
The local wall structure is not necessarily symmetric with respect to the two adjacent
domains [e.g. 44, 56, 87, 92], furthermore a stable two-dimensional superstructure (called
cross tie) can evolve [e.g. 42,43,70]. A resulting phase diagram is given in [86].



5

Further wall structures result from other constrictions (besides the reduced film thick-
ness) [e.g. 19,47].

The previously mentioned models rely on system-dependent parameters. These parame-
ters can be fitted to experimental results. But, from this ansatz one does not gain much
insight in the electronic origins of the described effects and it requires a lot of data to
obtain the model parameters and to confirm the applicability of the model ansatz si-
multaniously. It is very desirable to describe the systems by ab-initio1 calculations. A
breakthrough for this approach and, thus, for the theoretical description of solids, was
the development of the density functional theory. Starting 40 years ago with the famous
works of Kohn, Hohenberg and Sham [41,52], by now the density functional theory and the
resulting Kohn-Sham formalism are well established and represent a very powerful tool for
the calculation of the electronic and magnetic structure of real solids, the approximations
involved keep a good balance between accuracy and computational effort.

In some recent calculations simple domain walls are treated entirely ab initio [e.g.
73, 91, 102]. But the systems presented in this thesis (i.e. domain walls in thin magnetic
films deposited on surfaces) are too complex for this approach, even with present algo-
rithms and computing facilities. Therefore, a multiscale approach is followed here: The
values of the model parameters are obtained from parameter-free electronic-structure cal-
culations (i.e. on atomic scales) and inserted in the previously mentioned (mesoscopic)
models. Thus, the domain wall properties are calculated without adjustable parameters,
but the simple models are not abandoned. The unavoidable use of the simplified micro-
magnetic models for the description of large systems does not need to be regarded as a
drawback to the parameter-free approach, since these simplifications are very useful to
illustrate the main effects.

For many years the theoretically predicted details of the the wall structures could hardly be
confirmed (or disprooved) experimentally. But, the experimental techniques have strongly
progressed since the pioneering work of Landau and Lifshitz and by now the magnetic
imaging of surface films has achieved almost atomic resolution. The early experiments
were restricted to the superstructures (cross ties) at the surfaces, but more than 40 years
ago it was already possible to determine the rotation axis of the magnetization by Bitter
powder patterns [e.g. 69] and Lorentz electron microscopy reached a spatial resolution
sufficient to image the gradual change of the magnetization direction in walls of various
systems [e.g. 37,38]. For about three decades Lorentz microscopy remained the most accu-
rate experimental technique for the imaging of surface domain walls, especially in scanning
transmission mode [e.g. 101]. Other electron microscopy techniques do not provide the
same spatial resolution of magnetic structures, but a resolution of 20 nm is also obtained
with spin-polarized scanning electron microscopy (i.e. SEMPA) [2,67].

In the last 15 years spin-polarized scanning tunneling microscopy (spin-polarized STM)
[e.g. 13,100] and magnetic force microscopy [e.g. 8,39,84] have evolved into very powerful
tools for the analysis of magnetic nanostructures on surfaces. By now, these techniques
allow to resolve magnetic structures on the nanometer length-scale. This provides an in-
sight into a class of magnetic systems that previously were subject to hardly revisable
theories.

1The term ab initio means that the ansatz does not contain any adjustable parameters. In the context
of solid state physics the term ususally denotes calculations that determine the electronic structure (and
resulting observables) from the positions and charges of the nuclei by applying the Schrödinger or Dirac
equation to the interacting electron system.
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This thesis presents theoretical investigations of domain walls, including micromagnetic
models as well as ab-initio calculations of the model parameters. As mentioned previously,
this approach bridges between an atomistic and a mesoscopic micromagnetic description.

The focus is laid on the Dzyaloshinsky-Moriya interaction [29, 71]. This interaction
is a consequence of spin-orbit couplig and arises in spin structures where the symmetry
between right-handed and left-handed spin alignment is broken by the crystal field. In
the case of spin spirals (i.e. curling magnetic structures) it can be viewed as a linear
approximation to the helicity-dependent energy term.

The former micromagnetic investigations that included the Dzyaloshinsky-Moriya term
mainly focussed on vortex structures [e.g. 15–17]. The influence of this term on domain
walls (i.e. on systems with the boundary conditions of Eqn. (1.1) ) is only fragmentary
discussed in literature [e.g. 18,46,93], but in detail studied within this thesis.

The extension of the micromagnetic energy functional by a local Dzyaloshinsky-Moriya
term increases the complexity of the problem remarkably. Even for very simple crystal
structures and under the neglection of long-ranged magnetostatic interactions, the magne-
tization rotates on a complicated 3-dimensional path in spin-space and the domain walls
can be described by a rich phase diagram.

In order to obtain the domain-wall model parameters (i.e. spin-stiffness constant,
anisotropy-energy tensor, Dzyaloshinsky vector) by ab-initio calculations, the FLAPW
method (based on density functional theory) ist employed. It is not straightforward to in-
clude the Dzyaloshinsky-Moriya interaction in the currently established ab-initio methods.
Recently, this has been done for some quantum-chemistry problems [96]. For the descrip-
tion of the domain walls, however, the relevant length scales impose a formidable problem
as the spatial rotation of the magnetization is very small. Even with modern massively
parallelized supercomputers a sophisticated perturbative approach is indispensable.

The theoretical concepts are applied for a detailed investigation of the domain-wall
structures of atomically thin Fe films on the non-magnetic W(110)-surface. This system
is chosen since its magnetic structure is well known from recent STM experiments [e.g.
81,83], this allows a detailed comparison between theory and experiment.

The system nicely illustrates the significance of the various effects in a sample that is
scaled down to the atomic size: The magnetostatic stray field is essential for the explana-
tion of the domain-wall structure in thick Fe films, but irrelevant in films of one or two
atomic layers. On the other hand, spin-orbit coupling plays a particular important role in
these ultrathin films where the low surface symmetry is crucial in the local environment
of all magnetic atoms. This causes a large Dzyaloshinsky-Moriya interaction and a large
magnetocrystalline anisotropy. The latter leads to very narrow domain walls (this might
even make the micromagnetic ansatz questionable).

This thesis is structured in three parts:

In the Chapters 2 and 3 the methods and the underlying theory of the electronic struc-
ture calculations are described. In Chapter 2 the basic ideas of density functional theory
and the Kohn-Sham formalism are illustrated. In Chapter 3 details of the computational
method are described. The LAPW basis set is introduced. Then, the (by now well es-
tablished) treatments of spin-orbit coupling and non-collinear magnetism are sketched.
Special attention is paid to a new methodical tool that is developed within this thesis,
namely to a perturbative approach that allows to calculate the effect of spin-orbit coupling
in spin spirals with large spatial periods. With this approach, the Dzyaloshinsky-Moriya
interaction can be estimated for a variety of systems for which this quantity previously
was hardly accessible by ab-initio calculations.

The Chapters 4 and 5 deal with the model descriptions of magnetic structures, in par-
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ticular those of domain walls. The main focus is laid on the influence of the Dzyaloshinsky-
Moriya interaction. Chapter 4 briefly discusses the atomistic models that are relevant in
the Chapters 5 and 6. In Chapter 5 the domain walls are described with a micromagnetic as
well as with a discrete Heisenberg-like model. The inclusion of the Dzyaloshinsky-Moriya
interaction gives rise to a variety of phase transitions. Within a simple micromagnetic
model the resulting phase diagrams are systematically studied, to our knowledge for the
first time.

Finally, in Chapter 6 the previously developed theories and methods are applied to
a real system, namely an ultrathin Fe film (of one and two atomic layers respectively)
covering the W(110)-surface. The parameters of the models are obtained from ab-initio
calculations and the results are compared with experimental data. In the interpretation
of the results, the Dzyaloshinsky-Moriya interaction plays a key role again.



Chapter 2

Density functional theory

In this chapter the density functional theory (DFT) for electronic structures is described.
DFT presents a powerful method for the calculation of the total energy and other observ-
ables of a many-electron systems.

The theory is derived from the N -body Schrödinger equation1

HΨ = EΨ

with H =
N∑

ν=1

(
p̂2

ν +
N∑

ν′=1
ν′ 6=ν

1

|rν−rν′ | + Vext(rν)

)
, Ψ = Ψ(r1, r2, ..., rN ) .

(2.1)

In the solid systems that are discussed within this thesis, Ψ represents an (antisymmetric)
N -electron wavefunction and the external potential Vext is the Coulomb potential of the
atomic nuclei. Thus, the electronic structure is analyzed for fixed nuclear positions (i.e.
in the Born-Oppenheimer approximation). Further external electromagnetic fields are not
considered.

The N -particle problem (2.1) is extremely complex, a (numerically) exact solution is
feasible only for very small systems. The DFT reduces the complexity of the equations
drastically, since here the basic quantity is not the N -body wavefunction Ψ(r1, r2, ..., rN )
but the corresponding electron density n(r) :

n(r) =

∫
d3r1 d3r2...d

3rN Ψ(r1, r2, ..., rN )†
N∑

ν=1

δ(r − rν) Ψ(r1, r2, ..., rN ) . (2.2)

The remarkable consequence of the theorem of Hohenberg and Kohn (cf. Chapter 2.1)
is, that the density n (i.e. a function IR3→ IR ) contains the same information as the
wavefunction Ψ (i.e. a function IR3N→ IC ), provided that Ψ is the ground-state solution
of a Schrödinger equation. Thus, it is in priciple possible to calculate all ground-state
observables without determining Ψ explicitly.

In the actual calculations it is necessary to introduce an auxiliary function ΨKS that
has the form of a wavefunction of N non-interacting fermions (cf. Chapter 2.2). Such a
wavefunction can be represented by N functions IR3→ IC :

ΨKS = Ŝ(−)
N∏

ν=1

ψν(rν) = 1√
N !

det
(
ψν(rν′)

)

ν,ν′ ,

∫
d3r ψν′(r)† ψν(r) = δν,ν′

where Ŝ(−) denotes the antisymmetrizer operator. The set {ψν(r)} of auxiliary single-
particle wavefunctions is much easier to handle than the many-body wavefunction Ψ({rν}) .

1Atomic Rydberg units are used throughout this thesis. Exeptions are stated explicitly.
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When the electron spin is taken into account, the wavefunction Ψ is a two-component
spinor and the DFT works with the electron density n (Eqn. (2.2) ) and the three-
component magnetization density m :

m(r) =

∫
d3r1 d3r2...d

3rN Ψ(r1, r2, ..., rN )† σ

N∑

ν=1

δ(r− rν) Ψ(r1, r2, ..., rN ) (2.3)

where σ = (σx, σy, σz )t is a real-space vector of Pauli matrices.

2.1 Theorem of Hohenberg and Kohn

The theorem of Hohenberg and Kohn can be written in the following form:

1) The ground-state many-body wavefunction Ψ is uniquely determined by the
ground-state densities {n,m} (i.e., two different ground-state eigenfunctions Ψ
of the Schrödinger equation (2.1) for two (different or identical) external poten-
tials Vext represent different densities {n,m} ).

2.1) For every potential Vext there exists a functional Etot[ñ, m̃] that is minimal (and
equal to the ground-state energy E0 ) if the variational densities {ñ, m̃} coincide
with the ground-state densities {n,m} of Eqn. (2.1):

{ñ, m̃} ∈ N ⇒ Etot[ñ, m̃] ≥ Etot[n,m] = E0 . (2.4)

Here N denotes the space of N -representable densities. These are densities with∫
d3rn(r)=N that are obtained from any antisymmetric N -body wavefunction.

2.2) The contribution of the potential energy can be separated from the total energy:

Etot[n,m] = Euni[n,m] +

∫
d3rVext(r)n(r) (2.5)

where the universal functional Euni[n,m] depends on the densities but not explic-
itly on the potential Vext .

These propositions are exact. Proposition 1) implies that the densities {n,m} contain all
information of the ground state that is described by Ψ. Therefore, any observable O is
a functional of the densities, i.e. O[n,m] . If this functional is known, the observable can
be calculated without determining the wavefunction Ψ explicitly. Proposition 2) indicates
how the ground-state densities {n,m} can be calculated if the functional Euni is known.
Approximations for this functional are discussed in Chapters 2.2 and 2.3.

In the original work of Hohenberg and Kohn [41], the theorem is formulated in a slightly
different way. Important developments of the theory are the allowance of a degenerate
ground state [51], the inclusion of the electron spin and the magnetization density m
[98] and the extension of the set of trial densities {ñ, m̃} in (2.4) to all N -representable
densities [60].

2.2 Kohn-Sham equation

The theorem, that is presented in the previous chapter, is exact. But, the energy func-
tional Etot[n,m] is not known explicitly. Kohn and Sham introduced some approxima-
tions [52], that allow to determine the ground-state densities {n,m} from the variation
of Etot (cf. Eqns. (2.4), (2.5) ). Although these approximations seem quite plausible, a
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rigid justification for them is not simple and is omitted here. For detailed explanations cf.
e.g. [33].

The energy functional (2.5) can be written as

Etot[n,m] = Ekin[n,m] + Eee[n,m] + Eei[n]

with

Ekin[n,m] =
∑

ν

〈Ψ|p̂2
ν |Ψ〉

Eee[n,m] = EH[n] + Ex̃c[n,m] =

∫
d3rd3r′

n(r)n(r′)
|r− r′| + Ex̃c[n,m]

Eei[n] =

∫
d3rVext(r)n(r) .

Ex̃c denotes all electron-electron interactions that are not included in the Hartree term EH

(i.e. exchange and correlation). The functional Ekin[n,m]+Ex̃c[n,m] is not explicitly
known. It is dominated by the kinetic energy Ekin . It is not straightforward to calculate
the kinetic energy from the densities without knowing the wavefunction. In the following
it is illustrated how this problem is solved by introducing an auxiliary wavefunction ΨKS .

The auxiliary function ΨKS has the form of a N -body wavefunction of non-interacting
fermions:

ΨKS(r1, r2, ..., rN ) = 1√
N !

det
(
ψν(rν′)

)

ν,ν′ with

∫
d3r ψν′(r)† ψν(r) = δν,ν′ . (2.6)

With Eqns. (2.2), (2.3) ΨKS leads to the densities

n(r) =
N∑

ν=1

ψν(r)† ψν(r) , m(r) =
N∑

ν=1

ψν(r)
†
σ ψν(r) . (2.7)

The basic ideas of the Kohn-Sham formalism are:

1) The set of trial densities in the variation of Etot (cf. Eqn. (2.4) ) is restricted to the
densities that can be represented as in Eqn. (2.7) .

2) The major part of the kinetic energy is approximated by the kinetic energy of the
auxiliary function:

Ekin[n,m] =
N∑

ν=1

〈ΨKS|p̂2
ν |ΨKS〉+E(1)

kin[n,m] =
N∑

ν=1

∫
d3rψν(r)† p̂2 ψν(r)+E

(1)
kin[n,m] .

The correction term E
(1)
kin is well approximated by a simple expression (i.e. by a local

function, cf. Chapter 2.3).

With the abbrevations

VH(r) = 2

∫
d3r′

n(r′)
|r− r′|

for the Hartree potential and

Exc[n,m] = Ex̃c[n,m] +E
(1)
kin[n,m] = Ex̃c[n,m] +

(
Ekin[n,m]−

N∑

ν=1

〈ΨKS|p̂2
ν |ΨKS〉

)
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for the exchange-correlation energy the ground-state energy-functional (2.5) can be written
as

Etot [ {ψν}ν ]=

∫
d3r

(
N∑

ν=1

ψν(r)
† p̂2 ψν(r) +

(
1
2VH(r)+Vext(r)

)
n(r)

)
+ Exc[n,m]

with n(r) = n( {ψν(r)}ν ) , m(r) = m( {ψν(r)}ν ) , VH(r) = VH[r, n] .

(2.8)

The only approximation entering (2.8) is the restriction of the space N of N -representable
trial densities to the densities that are represented by N non-interacting fermions
(Eqn. (2.7) ). But, the functional Exc[n,m] is not known. The advantage of the formu-
lation (2.8) is, that the major part of the kinetic energy is expressed explicitly, therefore
the errors introduced by an approximation to Exc are relatively small.

Astonishingly, Exc[n,m] can be approximated well by a functional of the form

Exc[n,m] ≈
∫

d3r fxc(n(r),m(r))

where fxc is a function of n, m (i.e. local in real-space). This local density approximation
(LDA) is used to approximate all many-body effects beyond the Hartree term. It is further
described in Chapter 2.3.

The next step is to find the orthonormal wavefunctions {ψν(r)}ν∈[1,N ] that minimize the
functional Exc described in (2.8).

With the Lagrange multipliers {εν}ν , that are introduced in order to constrain the
normalization of the wavefunctions, the functional F to be minimized is

F [ {ψν}ν ] = Etot [ {ψν}ν ]−
∑

ν

εν

∫
d3r ψν(r)

† ψν(r) .

The variation of F leads to 4N Euler-Lagrange equations, since the up- and down-

components of ψν(r) =
(↑ν(r)
↓ν(r)

)
both have a real and an imaginary part. But it is sufficient

to calculate the variations with respect to the up- and down-components because

δ F

δ Re↑ν
=

δ F

δ ↑ν
+
δ F

δ ↑∗ν
!
= 0

δ F

δ Im↑ν
= i

δ F

δ ↑ν
− i δ F

δ ↑∗ν
!
= 0





⇒ δ F

δ ↑∗ν
= 0 .

This leads to the differential equations

δ F

δ ↑∗ν
=

(
p̂2 + VH + Vext +

δ Exc

δ n
+
δ Exc

δ mz
− εν

)
↑ν +

(
δ Exc

δ mx
− i δ Exc

δ my

)
↓ν ,

δ F

δ ↓∗ν
=

(
p̂2 + VH + Vext +

δ Exc

δ n
− δ Exc

δ mz
− εν

)
↓ν +

(
δ Exc

δ mx
+ i

δ Exc

δ my

)
↑ν .

(2.9)

Note that the prefactor 1
2 of VH appears in the functional F but not in the expression for

δ F
δ↑∗ν since both factors of n(r)n(r′) depend on ↑∗ν .

Within the LDA the variations of Exc get a simple structure. In Chapter 2.3 it is shown
that

δ Exc

δ ↑∗ν
= V (↑,↑)

xc (n,m) ↑ν +V (↑,↓)
xc (n,m) ↓ν ,

δ Exc

δ ↓∗ν
= V (↓,↑)

xc (n,m) ↑ν +V (↓,↓)
xc (n,m) ↓ν
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where V
(↑,↑)
xc , V

(↑,↓)
xc , V

(↓,↑)
xc , V

(↓,↓)
xc are functions of n(r), m(r) , i.e. in real-space they depend

only locally on the densities. This allows to express the variations of Exc in the form of a
local potential, i.e. an exchange-correlation potential matrix

Vxc(r) = Vxc(n(r),m(r)) =



V

(↑,↑)
xc (n,m) V

(↑,↓)
xc (n,m)

V
(↓,↑)
xc (n,m) V

(↓,↓)
xc (n,m)


 (2.10)

that can in practice be calculated from the densities. Inserted in (2.9) the matrix Vxc

has the form of a density-dependent potential, the Euler-Lagrange equations (2.9) can be
written as

H[n,m]ψν = εν ψν with H[n,m] = p̂2 + (VH[n] + Vext ) 11 + Vxc[n,m] . (2.11)

This equation is called Kohn-Sham equation. It has a formal analogy to a single-particle
Schrödiger equation with an effective potential Veff = (VH+Vext) 11 + Vxc . The Hamilto-
nian H depends on the densities, thus the selfconsistent solution for {ψν}ν , VH, Vxc has to
be calculated iteratively.

The sought-after solution of (2.11) is the one given by the set of orthonormal trial func-
tions {ψν}ν∈[1,N ] that minimizes Etot . Of course, these functions are eigenfunctions of the
Hamiltonian H[n,m] in selfconsistency. In practice, it is assumed that Etot is minimized
by the set of eigenfunctions of H with the N lowest eigenvalues {εν}ν . Thus, a Fermi
energy εF is introduced for the auxiliary single-particle wavefunctions {ψν}ν and the den-
sities (2.7) are calculated from the N single-particle eigenfunctions of H with εν<εF . The
total electronic energy Etot , however, needs to be calculated from Eqn. (2.8).

2.3 Local density approximation

All electron-electron interactions beyond the Hartree term
∫
d3r 1

2VH(r)n(r) are repe-
sented by the exchange-correlation energy functional Exc[n,m] .

As already mentioned in Chapter 2.2, Exc is in many cases succesfully approximated
by the local density approximation

Exc[n,m] ≈
∫

d3r flda(n(r), |m(r)|) . (2.12)

In real space the integrand flda is a function of the densities, thus it depends only on their
local values. From symmetry reasons, it is obvious that it cannot depend on the direction
of m. flda is an universal function that can be applied to a wide class of systems. It
is derived for the homogeneous electron gas and is exact in the limit of spatial constant
densities {n,m} . A widerly used approximation of flda is obtained by a RPA [72, 98].
The most accurate approximations are obtained with quantum Monte Carlo calculations
of the homogeneous electron gas [e.g. 22].

For the case of spatially rapidly varying densities the approximation (2.12) needs to
be improved. For collinear magnetization densities (i.e. m(r) = m(r) em , em = const )
approximations of the form

Exc[n,m] ≈
∫

d3r fgga(n(r), |∇n(r)|, |m(r)|, |∇m(r)| )

have been constructed [e.g. 79,80]. These approximation is called generalized gradient ap-
proximation (GGA). Simple generalizations of the known GGA functionals to non-collinear
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situations are discussed in Appendix A.1.

According to Eqns. (2.9) the variations of Exc can be written as




δ Exc
δ↑∗ν

δ Exc
δ↓∗ν


 =




δ Exc
δ n + δ Exc

δ mz

δ Exc
δ mx

− i δ Exc
δ my

δ Exc
δ mx

+ i δ Exc
δ my

δ Exc
δ n − δ Exc

δ mz






↑ν
↓ν


 .

Within the local density approximation (2.12) the last equation simplifies to




δ Exc
δ↑∗ν

δ Exc
δ↓∗ν


 =




∂ flda
∂ n + ∂ flda

∂ mz

∂ flda
∂ mx

− i ∂ flda
∂ my

∂ flda
∂ mx

+ i ∂ flda
∂ my

∂ flda
∂ n −

∂ flda
∂ mz






↑ν
↓ν


 = Vxc ψν

with Vxc(n,m) = Vxc 11 + Bxc ·σ , Vxc(n,m) =
∂ flda

∂ n
, Bxc(n,m) =

∂ flda

∂ |m|
m

|m| .

Thus, within LDA the exchange-correlation potential Vxc has the structure (2.10).
The derivation of an exchange-correlation potential for GGA functionals is shown in

Appendix A.1.

2.4 Total energy

The electronic energy Etot is given by the functional (2.8). With (2.11) this can be
rewritten as

Etot =

∫
d3r

(
N∑

ν=1

ψ†
ν p̂2 ψν + (1

2VH + Vext)n

)
+ Exc

=
N∑

ν=1

∫
d3r ψ†

ν

(
p̂2 + (1

2VH + Vext) 11
)
ψν + Exc

=
N∑

ν=1

(
εν −

∫
d3r ψ†

ν

(
1
2VH 11 + Vxc

)
ψν

)
+ Exc

=
N∑

ν=1

εν −
∫

d3r
(

(1
2VH + Vxc)n + Bxc ·m

)
+ Exc

︸ ︷︷ ︸
=Edc

. (2.13)

Edc is called double-counting term in analogy of the double-counting term
∫
d3r 1

2
VH n of

the Hartree method. In the actual calculations the double-counting term can be expressed
in a slightly different way for better numerical accuracy (cf. Chapter 3.2).

The formulation Etot =
∑

ν εν + Edc can be clarifying since one often has some intu-
itive picture about the behaviour of the single-particle energies {εν}ν . For small changes
in the external potential Vext it is justified to neglect the changes in Edc (cf. local force
theorem, Chapter 3.9.1 and Appendix C).

The energy E that is relevant for the analysis of an entire chemical, structural and mag-
netic configuration is the sum of the electronic energy Etot and the energy Eii due to the
Coulomb interaction between the atomic nuclei:

E = Etot + Eii .
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With R(µ) and Z(µ) denoting position and atomic number of the µth nucleus and M
denoting the number of atoms one gets

Eii =
∑

µ,µ′∈{1,M}
µ6=µ′

Z(µ) Z(µ′)

|R(µ) −R(µ′)| .

2.5 Relativistic Kohn-Sham equation

The formalism of the previous chapters can be generalized to relativstic systems. A gener-
alization of the theorem of Hohenberg and Kohn to QED states that the ground state is an
unique functional of the relativistic four-currents jµ(r) = ψ(r)†γ0γµψ(r) [85]. In analogy
to the non-relativestic case the total energy is decomposed in the sum of single particle
kinetic energies, the Hartree term and the exchange-correlation term Exc . Of course in
the relativistic theory the kinetic energies are calculated from the Dirac equation. In solids
with no external magnetic field one can use the charge and spin densities n, m to approxi-
mate the four-currents and to construct a local approximation for the exchange-correlation
energy functional Exc[n,m] ≈ ∫ d3r fxc(n(r),m(r)) [34,65]. The charge and spin densities
are much easier to handle than the four-currents, in the “standard” representation (cf.
e.g. [59]) that is used throughout this thesis they are defined as

n(r) =
∑

ν

(
ϕν(r)
χν(r)

)†(
ϕν(r)
χν(r)

)
, m(r) =

∑

ν

(
ϕν(r)
χν(r)

)†(
σ 0
0 σ

)(
ϕν(r)
χν(r)

)
.

The total energy in absense of an external magnetic field becomes

Etot =

∫
d3r

( ∑

ν

(
ϕν(r)
χν(r)

)†(
+1

2c
2 11 cσ ·p̂

cσ ·p̂ −1
2c

2 11

)(
ϕν(r)
χν(r)

)

+
(

1
2VH(r)+Vext(r)

)
n(r)

+ fxc(n(r),m(r) )

)
.

With this ansatz for Etot the variation of the total energy with respect to the normalized
wavefunctions can be done the same way as in the non-relativistic case. It leads to the
Kohn-Sham Dirac equation

(
cσ ·p̂

(
0 11
11 0

)
+ 1

2c
2

(
+11 0
0 −11

)
+ (Veff + σ ·Bxc)

(
11 0
0 11

)) (
ϕν

χν

)

= (εν + 1
2c

2 )

(
ϕν

χν

)
.

(2.14)

Here the eigenenergies εν are given with respect to the rest-mass energy 1
2c

2 and
Veff = VH +Vext +Vxc denotes the effective potential. The exchange-correlation poten-
tial Vxc, Bxc is defined in analogy to the non-relativistic case.

2.5.1 Spin-orbit coupling

In this thesis Eqn. (2.14) is not solved exactly, but the Kohn-Sham equation (2.11) is
extended by some relativistic corrections that are deduced from (2.14). These approxima-
tions are further described in Chapter 3.8. In this chapter the spin-orbit coupling (SOC)
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operator is deduced from the well-known 1
c2

-expansion of the Dirac equation (2.14) (cf.
e.g. [9]):

Hrel φν = εν φν where ϕν =
(

1− 1
2 c2 p̂

2
)
φν +O(c−4)

χν =
(

1
c (σ ·p̂) + 1

c3
(−1

2 p̂
2 + V − εν) (σ ·p̂)

)
φν +O(c−5)

Hrel = p̂2 + V

+ 1
c2

(
−p̂4 + 1

2(∇2V) + σ ·( (∇Veff )×p̂ )
)

+ 1
c2 B

+ O(c−4)

V = Veff 11 + σ ·Bxc = (VH + Vext + Vxc) 11 + σ ·Bxc .

The term B is a (2×2)-matrix, whose elements contain products of the form ( d
d rs

Bs′) p̂s′′

and Bs p̂s′ p̂s′′ . Usually 1
c2 B can be neglected as Bxc and ∇·Bxc are very small compared

to ∇VH close to the atom core where the momentum is high.
The terms that couple real- and spin-space are dominated by the SOC operator

Hso = 1
c2 σ ·( (∇Veff )×p̂ ) . (2.15)

In the region where the potential gradient is large (i.e. close to the atom core) the potential
can be approximated well by its spherically symmetric average (i.e. Veff(r) ≈ Ṽeff(r) ,
r = |r − R| where R denotes the position of the nucleus). Then Eqn. (2.15) can be
simplified by using

(∇Veff)×p̂ ≈ ( d
d r Ṽeff) r×p̂ = ( d

d r Ṽeff) L̂ .

The spin-orbit coupling operator gets the form

Hso = v(r) σ ·L̂ (2.16)

where v(r) is a spherically symmetric function that decays fast for increasing distance r
from the nucleus.



Chapter 3

Solving the Kohn-Sham equation,
the FLAPW method

This chapter gives an introduction on the computational method that is used in this
thesis to solve the Kohn-Sham equation (2.11) selfconsistently. Most attention is paid to
the parts of the method one has to be aware of when performing the actual calculations.

The calculations were performed with the full-potential linearized augmented plane
wave (FLAPW) method implemented in the FLEUR code [36]. A good introduction to
the computational method can be found in [94], details of the implementation are well
descibed in [54].

For simplicity the methods are first explained for a spinless Kohn-Sham equation

(
p̂2 + VH[n] + Vext + Vxc(n)

)
ψν = εν ψν . (3.1)

The generalization to the magnetic case is discussed thereupon.

3.1 The selfconsistency cycle

Eqn. (3.1) is solved iteratively with the following selfconsistency cycle:

• Starting from an input density n
(in)
N the density-dependent potential VH[n

(in)
N ] +

Vxc(n
(in)
N ) is calculated.

• The eigenstates of the Kohn-Sham equation (3.1) are determined for the potential

V =VH[n
(in)
N ]+Vext+Vxc(n

(in)
N ) .

Since only periodic crystals are considered, the Bloch theorem is applied. The Bril-
louin zone is sampled by a finite mesh of Bloch vectors {k}. For each of these
k-points the secular equation

Hψk,ν = (p̂2 + V )ψk,ν = εk,ν ψk,ν

is solved in the subspace that restricts {e−i k·r ψk,ν}ν to lattice-periodic functions.

• The Fermi energy and the occupation numbers wk,ν of the Kohn-Sham states {ψk,ν}
are determined. Of course, all states from all k-points have to be considered when
the Fermi energy is calculated.
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• The output density n
(out)
N is determined by summing over all occupied states of all

k-points:

n
(out)
N =

∑

k,ν

wk,ν ψ
†
k,ν ψk,ν .

• A new input density n
(in)
N+1 for the next iteration is calculated by mixing of n

(in)
N

and n
(out)
N . In most cases, the selfconsistency cycle does not converge if the output

density n
(out)
N is used directly as new input density n

(in)
N+1 . In the simple mixing

scheme the new input density is obtained by

n
(in)
N+1 = (1− α)n

(in)
N + αn

(out)
N .

Typically, the damping factor is α<0.1 . In [27] it is shown that the selfconsistency
cycle always converges for sufficiently small α. The speed of the convergence can be
improved with more sophisticated mixing schemes. The schemes used in this thesis
are described e.g. in [11].

3.2 Calculating the total energy

The total electronic energy Etot is given by the functional (2.8). If selfconsistency is
achieved, it can be calculated by Eqn. (2.13). In the actual calculations, however, the
density n is never exactly converged. Therefore, the density n(in) that is used to construct
the potential Veff in the Kohn-Sham equation (2.11) differs from the density n(out) that is
constructed from the solutions {ψν} of (2.11):

( p̂2 + VH[n(in)] + Vext + Vxc[n
(in)]︸ ︷︷ ︸

Veff [n(in)]

)ψν = εν ψν , n(in) 6= n(out) =
∑

ν

ψ†
ν ψν .

In order to minimize the error, the total energy Etot should be calculated by inserting
only one density in the energy functional (2.8). This has to be n(out) : The evaluation of
the kinetic energy term

∑
ν ψ

†
ν p̂2 ψν requires the knowledge of the wavefunctions, but the

wavefunctions are not known for n(in) since the latter is obtained from the density-mixing
process. Thus, the total electronic energy is calculated with (2.8):

Etot[n
(out)]=

∫
d3r

(
∑

ν

ψ†
ν p̂2 ψν + n(out) Vext

)
+EH[n(out)] + Exc[n

(out)] .

For numerical reasons, it is not convenient to evaluate the kinetic-energy term directly.
The derivatives can be avoided since the wavefunctions {ψν} are solutions of the Kohn-
Sham equation (2.11):

(p̂2 + Veff [n(in)] )ψν = εν ψν ⇒
∑

ν

ψ†
ν p̂2 ψν =

∑

ν

ψ†
ν ( εν − Veff [n(in)] )ψν .

The last expression allows to simplify Etot[n
(out)] :

Etot[n
(out)] =

∑

ν

εν +

∫
d3r n(out)

(
−VH[n(in)]− Vxc[n

(in)]
)

+ EH[n(out)] + Exc[n
(out)] .

(3.2)
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The right-hand side of (3.2) can be interpreted as a functional Ẽ that depends on n(out),
n(in), {εν} :

Ẽ[n1, n2, {εν}] = Etot[n1]
∣∣∣
n(in)= n2

.

For a reasonably well converged charge density one can write

n(out) = n(in) + δn with ‖δn‖ � ‖n(in)‖

and Etot[n
(out)] can be approximated by

Etot[n
(out)] = Ẽ[n(out), n(in), {εν}] ≈

Ẽ[n(in), n(in), {εν}] +

∫
d3r (δn)

δ Ẽ[ñ, n(in), {εν}]
δ ñ

∣∣∣∣∣
ñ=n(in)

+ O
(

(δn)2
)
.

The second term in the last expression vanishes since

δ Ẽ[ñ, n(in), {εν}]
δ ñ

∣∣∣∣∣
ñ=n(in)

= −VH[n(in)]− Vxc[n
(in)] +

(
δ EH[ñ]

δ ñ︸ ︷︷ ︸
VH[ñ]

+
δ Exc[ñ]

δ ñ︸ ︷︷ ︸
Vxc[ñ]

)∣∣∣∣
ñ=n(in)

= 0 .

Therefore, the expression

Etot[n
(out)] ≈ Ẽ[n(in), n(in), {εν}] =

∑

ν

εν −
∫

d3r n(in)
(

1
2VH[n(in)] + Vxc[n

(in)]
)

+ Exc[n
(in)]

(3.3)

is a good approximation for (3.2) if the density is well converged. Note, that (3.3) has the
same structure as (2.13).

Expression (3.2) is slightly more accurate, but Expression (3.3) is easier to implement in
the computer code since it avoids the calculation of the potential from the output-density.
In the code used in this thesis Etot is calculated with (3.3).

3.3 Solving the secular equation

In each loop of the selfconsistency cycle the secular problem of the Kohn-Sham Hamilto-
nian has to be solved. This is done differently for the core and valence states.

3.3.1 Core states

For the core states the relativistic effects are strong. Therefore, the Kohn-Sham Dirac
equation (2.14) is used and the states are represented by four-spinors.

The core states are localized very close to the nuclei. Therefore, for the calculation
of core states the atoms can be treated as isolated atoms. Within a certain distance (i.e.
RMT , see below) from the respective nucleus the potential is replaced by its spherical
average, beyond this distance it is neglected. This simplifies the solution of the Dirac
equation significantly.
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3.3.2 Valence states

The valence states are expanded in LAPW functions (cf. Chapter 3.4). They are called
basis functions for the valence states, although they do not really form a basis of the Hilbert
space: These basis functions are linear independent but not orthogonal. Furthermore, the
number of basis functions is finite.

The set of basis functions depends on the Bloch vector k. For a fixed k-point the
basis functions can be labeled with (G,k) . In this Chapter 3.3 the index k is dropped for
simplicity, { |G〉 }G denotes the set of basis functions.

The νth eigenstate of H expanded in this basis functions has the form
|ψν〉 =

∑
G cν,G |G〉 and the eigenvalue equation has the form

H
∑

G

cν,G |G〉 = εν
∑

G

cν,G |G〉 ⇒
∑

G

〈G′|H|G〉 cν,G = εν
∑

G

〈G′|G〉 cν,G .

In the actual calculations a finite basis set has to be used, therefore the exact eigenvalue
equation is appoximately represented by the matrix equation

(H − εν S) cν = 0 where HG′,G = 〈G′|H|G〉 , SG′,G = 〈G′|G〉 . (3.4)

The (hermitian) matrices H and S are called Hamiltonian matrix and overlap matrix re-
spectively. The overlap matrix is positive definite. This becomes clear as it can be written
as S = T T † where T denotes the transformation matrix from the (linear independend)
LAPWs to an orthogonal basis set. In a standard secular equation the overlap matrix is
the unit matrix, an equation of the form (3.4) is called generalized eigenvalue problem .
The transformation of this generalized eigenvalue problem to an equivalent eigenvalue
problem of a hermitian matrix of same rank can be found in numerical text books [e.g.
104].

One should keep in mind that the solution of (3.4) has better numerical stability when
the off-diagonal elements of S are small.

Usually the diagonalization of the Hamiltonian is the most time consuming part of the
calculations, it scales cubic with the number of basis functions {G}.

3.4 LAPW basis functions

This chapter introduces the basis set that is used to expand the solutions of the Kohn-Sham
equation in the valence band. The right choice of the basis set is very critical in these kind
of calculations. It is already mentioned in the provious chapter that the diagonalization
of the Hamiltonian matrix is the most time consuming part in the calculations. Therefore
it is very important to keep the number of basis functions small, but they need to be able
to describe the lower eigenstates of H properly. Furthermore for numerical reasons one
has to be careful not to choose functions with a large overlap.

Plane waves form a particular simple basis set that is already suggested by the Bloch
theorem. Plane waves are orthogonal, can easily be transformend from real to momentum
space and can be described by simple formulars. Unfortunately wavefunctions and charge
density vary very rapidly near the atomic nuclei, therefore a very large number of plane
waves is needed in order to describe the electronic structure properly. A common way
to circumvent this problem is the use of pseudopotentials. These potentials replace the
effective potential of the atom nuclei and the core electrons by a relatively smooth function.
They are constructed in such a way that outside a certain core-radius the corresponding
wavefunctions mimic the valence electron wave functions of the all-electron system. The
construction of the pseudopotentials is not trivial, besides the nuclear and Hartee potential
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they have to simulate all relevant exchange and correlation effects. For many applications
it is sufficient to work with pseudopotentials that have been constructed once for each
chemical element and to represent the wavefunctions with planewaves.

In this thesis a different basis set is used that allows a better description of the wave-
functions near the nucleus. The investigated magnetic properties are relatively small
changes to the charge density and the energies. Therefore the pseudopotential approach
might not be accurate enough. In particular the spin-orbit coupling is preferably treated
with an all-electron potential since it originates mainly from the region close to the nucleus
where the potential gradient is high.

In the calculations presented in this thesis the wavefunctions are representented in
linearized augmented plane waves (LAPWs). This is a numerically very efficient and still
handable basis set that is first proposed in [3]. Here the real-space is divided in several
regions: In the transition region between the atoms the basis functions are simple plane
waves (i.e. solutions of the Schrödinger equation with constant potential), whereas in
spheres around each nucleus they are constructed from the solutions of the Schrödinger
equation with spherical potential. The regions around the nuclei are called the muffin-tin
spheres of the atoms while the remaining space is called the interstitial region (cf. Fig. 3.1).

x x x

x x x

R
(µ)
MT

-
muffin-tin µ

-
interstitial

Figure 3.1: Division of
the space in non-overlapping
spheres and interstitial re-
gion. The muffin-tin sphere µ
is centered in R(µ) at the nu-
cleus of atom µ and has the

muffin-tin radius R
(µ)
MT .

For simplicity one can work with a local coordinate frame for each muffin-tin sphere,
with R(µ) denoting the center of the µth sphere the vector r can be expressed in polar
coordinates with the notation r −R(µ) = r(µ) ( sinϑ(µ) cosϕ(µ) ex + sinϑ(µ) sinϕ(µ) ey +
cos ϑ(µ) ez ) . Then the LAPW basis function that corresponds to the wave vector K in
the interstitial region can be written as

φK(r) =





exp(iK·r) interstitial
region

∑

`,m

Y`,m(ϑ(µ), ϕ(µ))
(
A

(µ)
K,`,m u

(µ)
` (r(µ)) +

B
(µ)
K,`,m u̇

(µ)
` (r(µ))

) muffin-tin
sphere µ .

(3.5)

Here Y`,m denote the angular dependent spherical harmonics and u
(µ)
` , u̇

(µ)
` are radial

dependent functions whose construction will be described below. The coefficients A
(µ)
K,`,m ,

B
(µ)
K,`,m are usually referred as the muffin-tin A- and B-coefficients . They are determined

by the matching conditions that φK(r) and ∇r φK(r) must be continuous at the muffin-tin
sphere boundary.

As it is known from standard quantum-mechanics text-books, the solutions of the
Schrödinger equation with a radial symmetric potential V (r) can be written in the form
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Y`,m(ϑ,ϕ) ũ`(ε, r) where ũ` denotes the solution of the radial Schrödinger equation

(
− d2

d r2
− 2

r

d

dr
+
` (`+1)

r2
+ V (r)− ε

)
ũ`(ε, r) = 0 . (3.6)

For each ε this equation has one solution ũ`(ε, r) that is regular at r=0 , provided that the
potential is reasonable. In the APW method (already suggested by Slater in 1937 [95]) the
regular solutions ũ of Eqn. (3.6) are used as the radial functions u in Eqn. (3.5), whereas B
is kept zero. In order to represent the same eigenstate in all regions in space the function
ũ has to be constructed when ε is set to the band energy. This imposes some problems
as the band energies are different for each eigenstate and have to be determined in the
selfconsistency cycle. The introduction of the term B`,m u̇` in the basis functions allows to
construct the radial functions u`, u̇` from approximate band energies ε`. u̇ can be regarded
as the linear term in the Taylor expansion of ũ around the approximate band energy:

ũ`(ε, r) = ũ`(ε`, r)︸ ︷︷ ︸
u`(r)

+ (ε− ε`) d
dε ũ(ε, r)

∣∣∣
ε=ε`︸ ︷︷ ︸

u̇`(r)

+O
(

(ε−ε`)2
)
.

Differentiating Eqn. (3.6) with respect to ε leads to a conditional equation for

u̇`(r) = d
dε ũ(ε, r)

∣∣∣
ε=ε`

:

(
− d2

d r2
− 2

r

d

dr
+
` (`+1)

r2
+ V (r)− ε`

)
d
dε ũ(ε, r)

∣∣∣
ε=ε`︸ ︷︷ ︸

u̇`(r)

− ũ`(ε, r)︸ ︷︷ ︸
u`(r)

= 0 .

The ε` are called energy parameters. They are determined during the selfconsistency cycle
from the average band energies but (in contrast to the use of plain APW basis functions)

it is usually sufficient to describe all valence electrons with one ε
(µ)
` for each µ, `.

Note that the energy parameters, radial functions and A- and B-coefficients need to
be calculated for each loop of the selfconsistency cycle since the potential changes.

Despite the fact that the basis functions are constructed under some assumptions of
the potential (constant in interstitial and spherical in muffin tins) they form a very good
basis in the sense that relatively few basis functions are needed to describe the solutions
of the Hamiltonian. Unfortunately the LAPWs are not orthogonal, this has to be taken
into account when diagonalizing the Hamiltonian (cf. Chapter 3.3).

3.4.1 LAPW basis in film geometry

The LAPW basis set as presented in the previous chapter is periodic in real-space. If one
wants to describe surfaces instead of (infinite) bulk systems one has to use supercells in
which the surfaces are far enough separated to minimize the interaction between them.
This implies the use of a very large unit cell and therefore of a very big number of basis
functions. In order to reduce this problems an extension of the LAPW basis set is in-
troduced in [53]. It allows to calculate a film without the use of supercells. The film is
periodic and infinite in two dimensions but truly finite in the third dimension. Within the
film the basis functions are constructed as described in the previous chapter, but addi-
tionally to the muffin tins and interstitial two vacuum regions are introduced. They begin
on both sides of the film and extend infinitely in the direction normal to the film plane
(cf. Fig. 3.2). In this regions the basis functions are constructed from the solutions of a
Schrödinger equation with asymptotically decaying potential.
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One should note that in this setup the Bloch theorem can be applied only in the two
dimensions with translational symmetry. Xz and X‖ shall denote the component normal
to the film plane and the 2-dimensional in-plane vector respectively. According to the
2-dimensional Bloch theorem the wavefunctions can be written as

ψk‖(r) = exp(ik‖ ·r‖)
∑

G‖

ck‖,G‖(rz) exp(iG‖ ·r‖)

where the sum runs over all G‖-vectors that are commensurate in the 2-dimensional unit
cell and thus describes a lattice periodic function. The functions ck‖,G‖(rz) do not possess
any periodicity, but in the interstitial region they are expanded in plane waves as well.
These plane waves are commensurate in an interval that is a bit larger than the intersti-
tial region (cf. Fig. 3.2), this way the wavefunctions have full variationl freedom in the
interstitial region.

z

x

vacuum

vacuum

muffin tin

interstitial

unit cell

D/2

-D/2

-D/2

D/2
~

~

Figure 3.2: Division of the space in film
calculations. In the (x, y)-plane the crys-
tal has the usual translational symmetry,
whereas in z-direction the unit cell is in-
finitely extended. The plane waves that de-
scribe the wavefunctions in the interstitial
region have the periodicity D̃ in z-direction
but for |rz | > 1

2D the basis consists of the
vacuum functions that decay as z approaches
infinity. The basis functions in the muffin
tins are identical as in the previously de-
scribed bulk case.

In the film geometry the basis functions can be labeled by the plane wave vectors K
like in the bulk geometry. But now K = k‖+G‖+Gzez = (kx+Gx) ex+(ky+Gy) ey+Gzez :

φK(r) =






exp(iK·r) interstitial
region

∑

`,m

Y`,m(ϑ(µ), ϕ(µ))
(
A

(µ)
K,`,m u

(µ)
` (r(µ)) +

B
(µ)
K,`,m u̇

(µ)
` (r(µ))

) muffin-tin
sphere µ

exp(iK‖ ·r‖)
(
A

(η)
vac,K‖

u
(η)
vac,K‖

(rz) +

B
(η)
vac,K‖

u̇
(η)
vac,K‖

(rz)
) vacuum

region η .

(3.7)

The vaccum A- and B-coefficients and uvac, u̇vac are constructed similar to the correspond-
ing coefficients and functions in the muffin-tin spheres. Now V (rz) denotes the potential
in the vacuum region averaged in x- and y-direction and εvac denotes the vacuum energy-
parameter. Then uvac, u̇vac are determined by the 1-dimensional Schrödinger equation

(
K2

‖ −
d2

d r2z
+ V (rz)− εvac

)
uvac(rz) = 0
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and its energy derivative

(
K2

‖ −
d2

d r2z
+ V (rz)− εvac

)
u̇vac(rz)− uvac(rz) = 0 .

Usually it is sufficient to describe all valence electrons with one ε
(η)
vac for each vacuum

region.

3.4.2 Representation of density and potential

The previously described LAPWs are used to represent the wavefunctions. The density n
and the potential V are expanded and stored in a similar fashion: In the interstitial region
n, V are expanded in plane waves. The vacuum regions are sampled with an equidistant
grid in the direction normal to the film plane. In each of these layers n, V are expanded in
2-dimensional plane waves. Of course, the grid in the direction normal to the film plane
needs to be cut at a certain distance. The muffin-tin spheres are sampled with a logarith-
mic radial mesh. In each of these shells n and r V are expanded in spherical harmonics.
The muffin-tin potential is represented as r V since V diverges at the nuclei.

The density and the potential possess the crystal symmetries (unlike the wavefunctions at
arbitrary k-vectors). Therefore, one needs to store only one expansion coefficient for all
plane waves (or spherical harmonics) that are equivalent due to the crystal symmetry.

A sum of equivalent plane waves is called star, a sum of equivalent spherical harmonics
is called lattice harmonic.

3.5 Calculating the density

The charge density n and magnetization density m are obtained by integration over one
Brillouin zone:

n(r) =

∫

BZ

d3k
∑

ν

wk,ν ψk,ν(r)
† ψk,ν(r) ,

m(r) =

∫

BZ

d3k
∑

ν

wk,ν ψk,ν(r)
†
σ ψk,ν(r) .

(3.8)

Of course, only the occupied states contribute to the densities. The occupation numbers
are denoted with {wk,ν} . The states are occupied fermionically (i.e. wk,ν≤1 ), the single-
partice energy

∫
dk

∑
ν εk,ν is minimized by occupying the all states below the Fermi

energy εF :

wk,ν =

{
1 ; εk,ν <εF
0 ; εk,ν >εF

, with εF defined by

∫

unit
cell

d3rn(r) =

∫

unit
cell

d3r

∫

BZ

d3k
∑

ν

wk,ν ψk,ν(r)
† ψk,ν(r) =

# electrons

unit cell
. (3.9)

In practice, the occupation numbers are not calculated by a step function, but smeared
out around εF by a Fermi distribution:

wk,ν =
1

exp( 1
kT (εk,ν − εF) ) + 1

.
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This improves the numerical stability: In case of a sharp Fermi distribution (kT ↘ 0) the
occupation of a state close to the Fermi energy can change from one iteration to the next,
thus the densites do not converge smoothly. For kT >0 two degenerate states at the Fermi
energy are both half occupied.

The k-integral in Eqn. (3.8) covers the first Brillouin zone. In the actual calculations,
the Brillouin zone is sampled by a discrete k-mesh. In the calculations presented in this
thesis the integral is evaluated simply by summing over the integrands at all k-points. Of
course, if k-points are equivalent due to the crystal symmetry then the densities need to
be evaluated only at one of these k-points (i.e. the k-point integration can be reduced to
the irreducible wedge of the first Brillouin zone).

3.6 Calculating the potential

The potential consists of the Hartree, external and exchange-correlation part (cf. Chap-
ter 2.2):

V [ r, n(r) ] = VH[n(r) ] + Vext(r) + Vxc(n(r) ) .

The calculation of the exchange-correlation potential Vxc is straightforward. For the com-
mon exchange-correlation potentials explicit parameterizations in real space are known.
The density n is stored as described in Chapter 3.4.2, but it does not present a numerical
difficulty to transform it into real space, calculate Vxc(r) and then expand Vxc as described
in Chapter 3.4.2. Some complications, that might arise when using a GGA potential for
non-collinear magnetism, are discussed in Chapter A.2.

The Hartree potential VH is given by VH(r) = 2
∫
d3r′ n(r′)

|r−r′| . The numerical evaluation

of VH for an arbitrary periodic charge distribution n(r) is not trivial. For slowly varying
n(r) one can make use of the fact that the Hartree potential is local in reciprocal space.
This becomes clear when realizing that VH is determined by the Poisson equation:

VH(r) = 2

∫
d3r′

n(r′)
|r− r′| ⇒ ∇2 VH(r) = −2π n(r)

n(r) =
∑

G

bG exp(iG·r)





⇒ VH = 2π
∑

G

bG
G2

exp(iG·r) .

Close to the nuclei, however, the density gradient is very high and the Fourier sum con-
verges very slowly. Therefore, it is not feasible to calculate the Hartree potential in
reciprocal space.

The numerical problem of calculating the Coulomb potential Vext+VH (where Vext is the
potential of the nuclei) can be simplified by approximating the potential shape (e.g. radial
symmetric potential in the muffin tins and constant potential in the interstitial region).
In the full-potential LAPW method no shape approximations are made, the Coulomb
potential is expanded as described in Chapter 3.4.2. Even though the solution of the
Poisson equation does not contribute much to the total computing time, the numerical
concept is rather involved. It is based on a procedure that is first described in [99].
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3.7 Magnetic calculations

Neglecting Bext and using the definitions

H11 = p̂2 + VH + Vext + Vxc , Bxc = |Bxc|

the Kohn-Sham equation (2.11) can be written as



H11 +Bxc

mz

|m| Bxc
mx−imy

|m|

Bxc
mx+imy

|m| H11 −Bxc
mz

|m|






↑ν

↓ν


 = εν



↑ν

↓ν


 . (3.10)

In non-magnetic systems (m=Bxc =0) the last equation reduces to two equivalent equa-
tions of the form

H11 ψν = εν ψν .

The solution of these equations has been described in the last chapters. But these methods
can as well be applied to the magnetic equation (3.10). In this case for each K-vector two
basis functions are constructed, each is zero in one component of the spinor.

Most magnetic configurations are (approximately) collinear, i.e. their magnetization m
can be described by

m(r) = m(r) em with em = const .

The restriction to collinear configurations reduces the computational effort a lot: With an
appropriate choice of the coordinate system (i.e. em‖ez ) the exchange-correlation poten-
tial is diagonal in spin space and Eqn. (3.10) has the form

( H11+Bxc 0
0 H11−Bxc

)(↑ν
↓ν

)
= εν

(↑ν
↓ν

)
.

and Hamiltonian and overlap matrix are block-diagonal. Thus, the diagonalization of
the full magnetic matrix reduces to the diagonalization of two matrices of half size that
correspond to the two equations

(H11+Bxc ) ↑ν = εν ↑ν , (H11−Bxc ) ↓ν′ = εν′ ↓ν′ .

As the computing time for matrix diagonalization scales cubic with the matrix size, one
selfconsistency iteration in a non-collinear calculation takes roughly 23

2 = 4 times longer
than one iteration in an equivalent collinear calculation. A further speedup can be achieved
in the collinear case if the system possesses inversion symmetry: Then the Hamiltonian
and overlapp matrices (Eqn. (3.4) ) are real symmetric and can be diagonalized about
3 times faster than complex hermitian matrices of the same size. In practice, non-collinear
calculations often take even more than 3 ·4 = 12 times than collinear calculations of the
same system: The allowance of non-collinearity can reduce the symmetry of the problem
(in particular the time-inversion symmetry +k ↔−k ) and thus requires a larger set of
k-points and in some cases the a larger unit cell. Furthermore, it can require large numer-
ical cutoffs to resolve the energy differences between several non-collinear configurations.

The treatment of non-collinear magnetism by the code used in this thesis is in detail
described in [54,55].
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3.7.1 LAPW basis functions

This chapter sketches the extensions of the basis set (3.7) that are necessary in magnetic
calculations. As already mentioned, in magnetic calculations for each K-vector two basis

functions are constructed, namely φ
(↑)
K

(r) that is purely spin-up and φ
(↓)
K

(r) that is purely
spin-down.

In the interstitial region the basis functions are equivalent for both spins, they have
the form

φ
(↑)
K

(r) =

(
exp(iK·r)

0

)
, φ

(↓)
K

(r) =

(
0

exp(iK·r)

)
.

In the muffin-tin spheres the radial components (u(r), u̇(r) ) of the basis functions are
constructed from the potential via Eqn. (3.6). This potential differs between spin up and
spin down, therefore the sets of basis functions for spin up and spin down differ in the
muffin tins.

In the case of collinear calculations the choice of the spin coordinate frame is clear.
It is chosen such that the magnetization points in z-direction, thus the potential and the
Hamiltonian are diagonal in spin-space. In the case of non-collinear calculations, however,
the potential matrix V = (VH + Vext) 11 + Vxc has off-diagonal components in spin space

(namely V
(↓,↑)
xc , V

(↑,↓)
xc ). In this case a local spin coordinate frame is introduced for each

muffin-tin sphere. This frame is rotated with respect to the global spin coordinate frame
that is chosen for the entire unit cell:

Ṽ = U
†
MT V UMT = (VH+Vext) 11 +

(
Ṽ

(↑̃,↑̃)
xc Ṽ

(↑̃,↓̃)
xc

Ṽ
(↓̃,↑̃)
xc Ṽ

(↓̃,↓̃)
xc

)

where: The tilde (̃ ) indicates the quantities in the local coordinate frame of the µth

muffin tin.

UMT is a spin rotation matrix that transforms from the local to the global
frame. Note that UMT is not the same for all muffin tins but constant within
each muffin-tin sphere.

The orientation of the local frame (defined by UMT) should be chosen such that the total
magnetic moment of the muffin tin M̃ =

∫
MT d3r m̃(r) points parallel to the local z̃-

direction. Then Ṽxc(r) in the muffin tin is dominated by its diagonal elements Ṽ
(↑̃,↑̃)
xc (r),

Ṽ
(↓̃,↓̃)
xc (r). This improves the quality of the basis functions since u, u̇ are constructed from

the diagonal elements of Ṽ. The basis functions {φ(↑)
K
, φ

(↓)
K
} are purely spin up or spin

down in the global coordinate frame. At the muffin-tin boundary the plane waves are
matched to the global spin up or spin down components of

Y`,m UMT

(
u

(↑̃)
`

0

)
, Y`,m UMT

(
0

u
(↓̃)
`

)
, Y`,m UMT

(
u̇

(↑̃)
`

0

)
, Y`,m UMT

(
0

u̇
(↓̃)
`

)

with the matching coefficients

{
A

(↑,↑̃)
K,`,m , A

(↑,↓̃)
K,`,m , B

(↑,↑̃)
K,`,m , B

(↑,↓̃)
K,`,m , A

(↓,↑̃)
K,`,m , A

(↓,↓̃)
K,`,m , B

(↓,↑̃)
K,`,m , B

(↓,↓̃)
K,`,m

}

`,m
.

In the vacuum regions the functions u
(↑)
vac, u

(↓)
vac, u̇

(↑)
vac, u̇

(↓)
vac are constructed from V (↑,↑), V (↓,↓)

in the global spin coordinate frame.

In the computer code that is used in this thesis the off-diagonal components of Ṽxc in the
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muffin tins are neglected in the Kohn-Sham equation (3.10). Thus, within each muffin-tin
sphere the exchange-correlation potential is assumed to be diagonal in the local spin coor-
dinate frame. It is believed that the error introduced by this implementation does not play
an important role in the calculations presented in Chapter 6. Plots of the magnetization
density m̃(r) show that the magnetization direction of the studied systems is reasonably
collinear in the region around the atoms that is assigned to the muffin-tin spheres.

3.7.2 Constrained magnetic moments

With the methods presented so far it is possible to calculate the charge and magnetization
densities that are local minima of the energy functional Etot[n,m] as defined in Eqn. (2.8)
under periodic boundary conditions. It is possible to introduce further constraints into
this functional without violating the theorem of Hohenberg and Kohn [26]. In particular,
one can constrain the average magnetization direction

M̂ =
M

|M| =

( ∫

muffin
tin

d3r m(r)

) ∣∣∣∣∣

∫

muffin
tin

d3r m(r)

∣∣∣∣∣

−1

of a certain muffin-tin sphere. This is equivalent with the conditions

∫

muffin
tin

d3r mx̃(r) =

∫

muffin
tin

d3r mỹ(r) = 0 (3.11)

in the local coordinate frame of the muffin tin.

The energy functional Etot[n,m] can be extended with these constraints by introducing
the Lagrange multipliers Bc,x̃, Bc,ỹ :

F [n,m] = Etot[n,m]−Bc,x̃

∫

muffin
tin

d3r mx̃(r)−Bc,ỹ

∫

muffin
tin

d3r mỹ(r) .

The variation of F [n,m] is done in the same way as described in Chapter 2.2. This leads
to the Kohn-Sham equation

(
H11 11 + Bxc σ · m

|m| + UMT (σxBc,x̃ + σy Bc,ỹ)U
†
MT

)(↑ν
↓ν

)
= εν

(↑ν
↓ν

)
. (3.12)

The Lagrange multipliers can be interpreted as a local magnetic field that forces the mag-
netization in the desired direction. Therefore B̃c = Bc,x̃ ex̃+Bc,ỹ eỹ is called constraining
field. The explicit dependence of the constraining field on the densities n, m is not known.
B̃c is determined during the selfconsistency cycle, the minimal solution of the functional F
needs to fulfill Eqns. (3.12) and (3.11) simultaniously.

3.7.3 Generalized Bloch theorem

In a homogeneous (helical) spin spiral the magnetization is rotated by a constant angle
from one chemical lattice point to the next (cf. Fig 3.3). Such a spin spiral can be
characterized by the spiral vector q. The direction of q defines the real-space direction
along which the magnetization rotates, the rotation period is given by 2π |q|−1 . With an
appropriate choice of the spin coordinate system the rotation axis points in z-direction.
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With this rotation axis for the magnetization of the spin spiral there holds

m(r) = |m(r)|




sinϑ cosϕ
sinϑ sinϕ
cos ϑ


 ⇒ m(r+R) = |m(r)|




sinϑ cos(ϕ+ q·R)
sinϑ sin(ϕ+ q·R)
cos ϑ




where R is a lattice vector of the chemical lattice .

(3.13)

ϑ is called cone angle. It describes the deviation between the magnetization direction and
the rotation axis.

q

0 R1 R2 R3 R4

q
·R

2

Figure 3.3: Spin spiral with ϑ= 1
2π . From one chemical unit cell to the next the magnetization

rotates by the constant angle ϕn+1−ϕn = q·(Rn+1−Rn) .

In the framework of the Pauli equation with no external B-field the orientation between
real- and spin-space is not coupled. In this case all chemical unit cells of a spin spi-
ral (3.13) are equivalent. This allows to calculate such systems within one chemical unit
cell by applying a generalized Bloch theorem [89, 90]. This procedure is sketched in the
following.

Bxc is parallel to m. Therefore, the condition (3.13) implies that Bxc and the total
potential V perform the same rotation in spin-space. The potential V and thus the Hamil-
tonian H = Tkin + V commutes with a generalized translation operator G that performs a
translation in real-space and a rotation in spin-space:

GR ψ(r) = U(q·R) ψ(r−R) , [GR,V ] = [H,V ] = 0

where U(ϕ) =

(
exp(− i 1

2 ϕ) 0
0 exp( + i 1

2 ϕ)

)
,

R is a lattice vector of the chemical lattice .

U(ϕ) is a spin rotation matrix that rotates a spinor by an angle ϕ around the z-axis.
In analogy to the Bloch theorem one can conclude that the eigenfunctions of H can be

written as

ψk,ν(r) = exp(ik r) U(q·r) θk,ν(r) =




exp(i (k− 1

2 q·r) ) θ
(↑)
k,ν(r)

exp(i (k+ 1
2 q·r) ) θ

(↓)
k,ν(r)





where θk,ν(r) = θk,ν(r−R) .

(3.14)

This allows to reformulate the Kohn-Sham equation (Tkin + V)ψk,ν = εk,ν ψk,ν as
(

U(q·r)† Tkin U(q·r) + U(q·r)† V U(q·r)
)

U(q·r)†ψk,ν = εk,ν U(q·r)†ψk,ν
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and to work with the lattice-periodic potential U(q ·r)† V U(q ·r) and the eigenfunctions
U(q ·r)†ψk,ν . The functions of the form U(q ·r)†ψk,ν can be expanded in the same ba-

sis set {φ(σ)
k+G

}σ,G as in the previously discussed ordinary non-collinear case. But it is
recommended to construct the radial functions u, u̇ in the muffin tins from the diagonal
elements of U

†
MT V UMT (i.e. Ṽ (↑̃,↑̃), Ṽ (↓̃,↓̃) ; cf. Chapter 3.7.1) and not from the diagonal

elements of U
†
MT U(q·r)† V U(q·r)UMT since the magnetization usually is approximately

collinear within the muffin-tin spheres and rotates mainly in the interstitial region. Thus,
the matching conditions at the muffin-tin boundaries differ from spin-spiral calculations
to ordinary non-collinear calculations.

The construction of the densities and the density-dependent potential V[n, m

|m| , |m| ]
does not impose a further problem since

n =
∑

k,ν

ψ†
k,ν ψk,ν =

∑

k,ν

ψ†
k,ν U(q·r)U(q·r)† ψk,ν ,

|m| =
∣∣∣∣
∑

k,ν

ψ†
k,ν σ ψk,ν

∣∣∣∣ =
∣∣∣∣
∑

k,ν

ψ†
k,ν U(q·r)σ U(q·r)† ψk,ν

∣∣∣∣ .

3.8 Relativistic effects in the valence band

This chapter describes relativistic corrections to the Kohn-Sham equation (2.11) that are
used when calculating the valance states. These approximations are deduced from the the
Kohn-Sham Dirac equation (2.14), but they work with spinors, i.e. the wavefunctions have
only two independent components. This is done since a computer code that works with
four-spinors is computationally very demanding.

In the following the band index ν is dropped. The abbrevations

Aε = − c2 (Veff + σ ·Bxc − c2 − ε)−1 − 11 , V = Veff + σ ·Bxc

are used.

Eqn. (2.14) represents a set of two coupled equations for ϕν and χν (i.e. for the large
and small component of ψν ). Solving the second row of (2.14) for χ yields

χ =
1

c
(Aε + 11)σ ·p̂ ϕ .

This expression can be inserted in the first row of (2.14):

(
σ ·p̂ (Aε + 11) σ ·p̂ + V

)
ϕ = ε ϕ .

With the operator identity (σ · â) (σ · b̂) = â · b̂ + iσ ·(â × b̂) the operator in the last
equation can be rewitten:

σ ·p̂ (Aε + 11) σ ·p̂ + V = p̂2 + V + p̂Aε p̂ + iσ ·( (p̂Aε)× p̂ ) ⇒
(

p̂2+ V︸ ︷︷ ︸
H0

+ p̂Aε p̂︸ ︷︷ ︸
H1,ε

+ iσ ·( (p̂ Aε)× p̂ )︸ ︷︷ ︸
Hso,ε

)
ϕ = ε ϕ . (3.15)

Eqn. (3.15) is equivalent to the Kohn-Sham Dirac equation (2.14). Its solutions (ϕ, ε)ν
can be determined selfconsistently. In an approximate solution the band energy ε on the
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left-hand side is fixed to an approximate value E and the resulting secular equation for ϕ
and the eigenvalue ε on the right-hand side is solved [e.g. 12,50,64]:

(H0 +H1,E +Hso,E)ϕE = εE ϕE . (3.16)

For E ≈ ε the error made in this approximation is much smaller than the error made in
the Schrödinger-like equation H0 ϕ0 = ε0 ϕ0 , this is obvious since

H1,ε +Hso,ε = H1,E +Hso,E +O(ε−E) .

In practice, E is obtained from the LAPW energy-parameters, ususally the same value is
used for the whole valence band.

A further important approximation is made when calculating the gradients ∇V : For
these expressions the potential V in each muffin tin is replaced by its spherical averaged
non-magnetic part:

∇V(r) ≈ ∇Veff(r) ≈ r d
d r Ṽeff(r) with r = |r−R| .

Here R denotes the position of the nucleus. Outside the muffin-tins the relativistic effects
are neglected. This approxmation is justified, since the contributions to the potential
gradient are dominated by small regions close to the atom cores. In these regions Bxc can
be neglected and the potential is almost spherically symmetric.

At the muffin-tin boundaries ϕ is matched to the wavefunction spinors in the interstitial
region. The small component χ can be neglected in such a distance from the atom cores.
Nevertheless, inside the muffin tins the density needs to be calculted as

n =
∑

ν

(
ϕ†

ν ϕν + χ†
ν χν

)
6=
∑

ν

(
ϕ†

ν ϕν

)
.

In Eqn. (3.16) the term Hso,E describes the spin-orbit coupling, i.e. the coupling between
real- and spin-space. In the scalar-relativistic approximation this term is dropped. This
is useful, if a collinear magnetization with Bx =By =0 can be assumed. In this case the
scalar-relativistic Hamiltonian H0+H1,E is diagonal in spin-space and the Hamiltonian is
block diagonal:

B = Bz ez ⇒

Aε =

(
− V+−ε

V+−ε−c2 0

0 − V−−ε
V−−ε−c2

)

=

(
− V+−E

V+−E−c2
0

0 − V−−E
V−−E−c2

)
+ (ε−E)




(
c

V+−E−c2

)2
0

0
(

c
V−−E−c2

)2


+O

(
(ε−E)2

)

with V+ = Veff +Bz , V− = Veff −Bz .

The SOC operator Hso,E is not generally included in the calculations. As already
indicated in Chapter 2.5.1, it is approximated by a term of the form (2.16)

Hso,E ≈ v(r) σ ·L̂ .

If the potential can be approximated by a collinear potential then Hso,E is usually
treated with a procedure called second variation (cf. Chapter 3.9.2).

Note, that the spin-orbit coupling term always contains non-vanishing off-diagonal ele-
ments in spin-space (that mix among ↑ and ↓ ), whereas in the scalar-relativistic approxi-
mation most systems are collinear magnetic (or not magnetic at all).
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3.9 Spin-orbit coupling in helical spin spirals

The previously mentioned appoximation of the spin-orbit coupling cannot directly be
applied to spin spirals. The generalized Bloch theorem does not hold, if atoms with
different magnetization direction can be distinguished by their spin-orbit contribution. In
principle, every spin spiral with fractional q-vector can be calculated in a correspondingly
large unit cell in which it is commensurate. But the required computer time increases
quadratic with the size of the unit cell, so that the range of spirals, that can be calculated
in practice, is rather restricted.

This chapter describes some tricks that decrease the computational effort and therefore
allow to calculate the spin-orbit coupling corrections of spin spirals in much larger unit
cells. These tricks make use of the fact that the spin-orbit coupling can be regarded as a
small perturbation. The unperturbed spiral can be calculated easily (in a small unit cell
by applying the generalized Bloch theorem). The explicit form of the perturbation is not
relevant for the method.

At first the local force theorem is described. Then a method called second variation
is introduced and refered to the special case of spin-orbit coupling in helical spin spi-
rals. A perturbative scheme to gain further speedup is presented in Appendix D. It is a
widerly used approach to treat spin-orbit coupling in second variation and to estimate the
anisotropy energies with the local force theorem.

3.9.1 Local force theorem

The local force theorem is first published in [66], extended to magnetic systems in [77]
and further generalized in [61]. The theorem investigates the change of the total electronic
energy due to a small perturbation in the framework of the Kohn-Sham equation in LDA.
The remarkable result is that in 1st-order perturbation theory the change of the total
energy of the selfconsistent solution coincides with the change of the single-electron eigen-
values of the Kohn-Sham equation for unperturbed VH and Vxc. This means that one can
approximate the changes in the total energy due to a small perturbation by comparing the
single-electron eigenvalues of the Kohn-Sham equation with the unperturbed potential. It
is not necessary to converge the selfconsistency cycle for the perturbed system.

For example, H0[n] denotes the unperturbed Kohn-Sham Hamiltonian (2.11) with
the selfconsistent solution n0, {ε0,ν}ν , {ψ0,ν}ν and (H0[n] +H1 ) denotes the perturbed
Kohn-Sham Hamiltonian with the selfconsistent solution n1, {ε1,ν}ν , {ψ1,ν}ν :

H0[n0]ψ0,ν = ε0,ν ψ0,ν , (H0[n1] +H1 )ψ1,ν = ε1,ν ψ1,ν .

With Eqn. (2.13) the respective total energies have the form

Etot,0 =
∑

ν

ε0,ν + Edc,0 , Etot,1 =
∑

ν

ε1,ν + Edc,1 .

If the perturbation H1 is small, then the energy difference can be approximated by

Etot,1 − Etot,0 ≈
∑

ν

ε2,ν −
∑

ν

ε0,ν where (H0[n0] +H1 )ψ2,ν = ε2,ν ψ2,ν .

A derivation of the local force theorem is given in Appendix C. In this derivation it is
assumed that the changes in the potential due to the changes of the occupation numbers
can be neglected, otherwise the theorem cannot be applied.

The local force theorem can be applied to a variety of perturbations, since it can be
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proven without knowing the explicit form of the perturbation. But, if the perturbation
introduces strong changes in the charge density n(r) (e.g. in the case of structural relax-
ations) then it is usually not sufficient to treat the Hartree energy in 1st-order perturbation
theory and the local force theorem cannot be applied. Changes in the magnetic structure,
on the other hand, are often well described by the local force theorem. In Chapter 6.4.1
the local force theorem is used to estimate the energies of spin spirals (i.e. to estimate the
energy changes due to changes of the magnetic boundary conditions), in this Chapter 3.9
the spin-orbit coupling term of the Hamiltonian is regarded as the perturbation.

3.9.2 Second variation

If the approximate (i.e. unperturbed) solution of the (perturbed) Hamiltonian is known,
there is an efficient way to reduce the number of basis functions which is usually re-

ferred to as second variation: Instead of the LAPW functions the eigenstates {ψ(0)
ν } of

the unperturbed Hamiltonian H0 are used as basis functions when diagonalizing the per-
turbed Hamiltonian H0 +H1 . Thus, the eigenstates {ψν} of H0 +H1 are expanded as

ψν =
∑

ν′ cν,ν′ ψ
(0)
ν′ . This way the size of the Hamiltonian matrix (i.e. the number of basis

functions) can be kept small without introducing a large error. From elementary pertur-
bation theory it is plausible that the projection of an unperturbed on a perturbed state
decreases with increasing energy difference. This is due not only to the energy denomina-
tor, but also to the fact that the H1 matrix elements are usually small if the states differ
much in energy. Thus, if describing a perturbed state then it is possible to neglect not
only the projection of an unperturbed state that differs much in energy but even the sum
of the projections of all states that differ much in energy. Since one is interested only in
the occupied states the set of basis functions can be restricted to the unperturbed states
below a certain energy level. In the case of spin-orbit coupling it is in many cases sufficient
to work with an incomplete basis set that contains twice (or less) the number of occupied
states.

In the case of helical spin spirals it is particular useful to treat the spin-orbit coupling
as a perturbation (H1 =Hso), this allows to calculate the eigenstates of H0 in the chemical
unit cell (with the generalized Bloch theorem as described in Chapter 3.7.3).

But, there are non-zero Hso matrix elements beween states of different k-vectors:

With
{
|ψ(ss)

k,ν 〉
}

k,ν
denoting the set of unperturbed states with spiral vector q ,

|ψ(ss)
k,ν 〉 =

(
|ψ(↑)

k,ν〉 |ψ
(↓)
k,ν〉

)t
,

Hso =



H(↑,↑)

so H(↑,↓)
so

H(↓,↑)
so H(↓,↓)

so


 denoting the perturbation,

{G} denoting the set of reciprocal lattice vectors of the chemical lattice,

one can conclude for the matrix elements

〈ψ(ss)
k′,ν′ |Hso|ψ(ss)

k,ν 〉 =
∑

σ′,σ

〈ψ(σ′)
k′,ν′ |H(σ′,σ)

so |ψ(σ)
k,ν〉
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that
〈ψ(↑)

k′,ν′ |H(↑,↑)
so |ψ(↑)

k,ν〉 6= 0 ⇒ k′− k ∈ {G} ,

〈ψ(↑)
k′,ν′ |H(↑,↓)

so |ψ(↓)
k,ν〉 6= 0 ⇒ k′− k− q ∈ {G} ,

〈ψ(↓)
k′,ν′ |H(↓,↑)

so |ψ(↑)
k,ν〉 6= 0 ⇒ k′− k + q ∈ {G} ,

〈ψ(↓)
k′,ν′ |H(↓,↓)

so |ψ(↓)
k,ν〉 6= 0 ⇒ k′− k ∈ {G} .

(3.17)

This gets comprehensible with the following considerations:
The real-space representation of Hso (Eqn. (2.16) ) has the periodicity of the chemical

lattice. Thus, for any lattice-periodic function f(r) =
∑

G exp(iG·r) cG one obtains

H(σ′,σ)
so exp(i (k± 1

2q)·r) f(r) = exp(i (k ± 1
2q)·r)

so

f (r)

with a lattice-periodic function
so

f (r) =
∑

G exp(iG·r) so
cG . Inserting the components of

the spinor ψ
(ss)
k,ν for f leads to the expansions

ψ
(σ)
k,ν(r) =

∑

G

exp
(
i (k + G± 1

2q )·r
)
c
(σ)
k,ν,G ,

H(σ′,σ)
so ψ

(σ)
k,ν(r) =

∑

G

exp
(
i (k + G± 1

2q )·r
)

so
c

(σ)

k,ν,G .

The matrix elements in (3.17) vanish if (k′ ± 1
2 q) 6= (k ± 1

2 q) , since

limR→∞ 1
R

∫ R
0 dr exp(i g r) = 0 if g 6= 0 . There are non-vanishing Hso matrix elements

between states whose k-vectors are connected by q.
If the q-vector is a fraction of a reciprocal lattice vector G of the chemical lattice

(i.e. q= 1
nG , n integer) then the Hso matrix can be partitioned in blocks of the form as

indicated in Fig. 3.4. In this case each set of k-vectors that is connected with q corresponds
to one k-vector in the first Brillouin zone of the magnetic unit cell (in which the spin spirals
are commensurate). q is a reciprocal lattice vector of this magnetic unit cell.

Hso = H †
so =




q q q q q q q
q q q q q q

q q q q q q

A1 B †
1

B1 A2 B †
2

B2 A3 B †
3

B3

B †
n−1

Bn−1 An

Bn

B †
n

k k
+

q

k
+

2
q

k
+

3
q

... k
+

(n
−

1)
q

k

k+q

k+2q

...

k+(n−2)q

k+(n−1)q

0

0




Figure 3.4: Most Hso ma-
trix elements are zero. Nev-
ertheless the shown parti-
tion, corresponding to the
states whose k-vectors are
connected by q= 1

n
G , is not

block-diagonal.

The matrix Hso that is sketched in Fig. 3.4 can be diagonalized, if n is not too large
(i.e. on a reasonably coarse q-grid). The discrete k-point mesh that is used for sampling
the Brillouin zone has to be chosen in accordance with the q-vector. Usually, this does not
present a problem since the calculation of spin-orbit interaction requires a large k-point
density anyhow.
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Note that the sparseness of Hso is important in the actual calculations, for large n this
reduces the time and memory required for calculating and storing the matrix elements
drastically.

Explicit expressions (in terms of LAPWs) for the Hso matrix elements of spin spiral
eigenstates are presented in Appendix B.

3.9.3 Diagonalizing the sparse matrix H0 + Hso

The choice of the unperturbed spiral functions as basis reduces the number of required
basis functions and the size of the Hamiltonian matrix a lot. But further approximations
are needed in order to deal with very big matrices (i.e. small q-vectors).

A simple and fast procedure to find the eigenvalues of a band matrix can be found in
many books on numerical linear algebra but the corners that are named Bn, B†

n in Fig. 3.4
impose a problem. Unfortunately, the common methods do not allow to treat the corners
as perturbation to the band matrix: In order to represent the perturbation in the basis
that diagonalizes the unperturbed band matrix one needs not only the eigenvalues but also
parts of all eigenvectors of the band matrix, furthermore in this basis the perturbation
is not sparse anymore and can hardly be stored in the computer memory. Subspace
methods that do not need all the eigenvectors of the unperturbed problem are feasible for
calculating a few energies but require much time when successively calculating the energies
of all occupied states. Also it is not possible to neglect the disturbing corners completely,
the error would be too large.

Therefore, the whole matrix Hso is treated as a perturbation to the spiral solutions
of the Pauli equation. The perturbative method is in detail described in Appendix D.
It is based on 2nd-order Rayleigh-Schrödinger perturbation theory, the sums that occur
thereby are of moderate length if the sparseness of the matrix is taken into account. For
the investigated systems this approach turned out to be accurate and fast enough to
determine the sum of eigenvalues, but if one is interested in the individual energy levels
(i.e. band structure) at small |q| a more sophisticated algorithm has to be used.
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Magnetic interactions

4.1 Exchange interactions

In widerly used simple models the magnetic configuration of a system is described by the
magnetization directions {Sj}j of the individual atoms (or unit cells), i.e. the magnetiza-
tion direction of the jth atom is described by Sj with |Sj|=1 . The energies of the systems
are approximated by functions of these normed vectors. In the simplest case, the energy
is expressed by the Heisenberg model :

E = 1
2

∑

j,j′

at

Jj,j′ Sj ·Sj′ with
at

Jj,j′ =
at

Jj′,j . (4.1)

The parameters {
at

J j,j′ } are called (effective) exchange integrals. In most systems, they
decay very fast with the distance of the lattice sites.

There are several approaches that lead to the Heisenberg model as an approximation
of the many-body Hamiltonian. It is beyond the scope of this thesis to give a detailed
discussion of that matter, in the following only some aspects are briefly sketched. For
further explanations cf. e.g. [4, 5, 103].

A possible perturbative approach, that leads to the Heisenberg model, is to split from
the many-body Hamiltonian (2.1) the single-particle (and possibly on-site interaction part)
and to apply the ordinary Rayleigh-Schrödinger perturbation theory to the Coulomb in-
teraction between states of different lattice sites. Then (4.1) is obtained in first order
perturbation from the direct exchange interaction (hence the name exchange integral). An
expression of the same structure is obtained in second order perturbation theory, when the
interaction between states of different atoms is neglected and the hopping term resulting
from the single particle part of the Hamiltonian is obtained by perturbation theory.

In some approaches the states at one atom are approximated by atomic functions, in
other approaches they are Wannier functions that are constructed from the eigenstates of
the unperturbed Hamiltonian. In the latter case, Sj is the mean magnetization direction
of the Wannier functions of site j and not the mean magnetization in the jth unit cell.

In higher orders of the several perturbative approaches, there appear additional terms
of the form

(Sj1 ·Sj2)
2 biquadratic interaction ,

(Sj1 ·Sj2) (Sj3 ·Sj4) + (Sj1 ·Sj4) (Sj2 ·Sj3)− (Sj1 ·Sj3) (Sj2 ·Sj4) four-spin interaction .

They can be identified with electronic hopping processes between two or four lattice sites,
their coefficients are called higher order exchange constants or hopping integrals. A re-
peated back and forth hopping between two lattice sites contributes to the biquadratic
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term, a hopping between four lattice sites contributes to the four-spin interaction.

In most cases, it is not feasible to identify the exchange integrals with a distinct term
of a perturbative expansion since the term Sj ·Sj′ usually results from many processes.
More often, it is possible to obtain the exchange integrals from fits to the results of
parameter-free calculations or experiments.

4.1.1 Dzyaloshinsky-Moriya interaction

If spin-orbit coupling is taken into account, there is the possibility of an antisymmetric
interaction with an energy contribution of the form

EDM =
at

D · (S1 × S2) . (4.2)

This interaction is called Dzyaloshinsky-Moriya interaction. The possibility of an energy
term with this symmetry properties was for the first time pointed out by Dzyaloshinsky in
1957 [29]. An atomistic description, that expresses D in terms of exchange and hopping
integrals, was derived by Moriya in 1960 [71]. In this ansatz, it is necessary to include
interactions of at least three lattice sites. Of course, the accuracy of the latter approach
depends on the system.

In a phenomenological picture, one can expand the energy of the pair interaction of S1

and S2 in a Fourier series of the angles between S1 and S2, then the Heisenberg model (4.1)
is the lowest-order symmetric and (4.2) is the lowest order antisymmetric term.

It is very illuminating to analyze the general symmetry conditions that allow for an inter-
action of the form (4.2) without referring to a detailed exchange mechanism. This is done
in the following.

Such an interaction cannot be described with the non-relativistic Pauli equation, since
spin-orbit coupling is essential: Without spin-orbit coupling the energy is invariant under
spin reflections, whereas EDM is not. E.g. if D=ez , S1 =ex , S2 =ey then a spin reflection
on the (y, z)-plane changes the sign of EDM .

If spin-orbit coupling is taken into account then the crystal field can break the chiral
symmetry of the magnetic structure. This is illustrated by an example in Fig. 4.1. In that
example, the symmetry is broken by a third atom with negligible magnetic moment.

(a)
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j j
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Figure 4.1: Broken chiral symmetry of the magnetic struc-
ture. The atoms are indicated with circles and the corre-
sponding magnetic moments (with directions S1 , S2) are
indicated with arrows. Between Fig. a and Fig. b the sign
of the angle between S1 and S2 changes. Due to the non-
magnetic atom, the configurations in Fig. a and Fig. b are
not equivalent if the orientation between spin- and real-
space is taken into account.

If the chiral symmetry of the magnetic structure is not broken, then the effect of the
spin-orbit coupling contributes only to the symmetric exchange integral J (Eqn. (4.1) ).
If the symmetry is broken, it can contribute to the symmetric term (Eqn. (4.1) ) and to
the antisymmetric term (Eqn. (4.2) ).

The D-vector vanishes if the chemical lattice is invariant under real-space inversion:
In Appendix E it is shown that spin-space inversion cannot change the energy. Real-space
inversion plus spin-space inversion leads to an equivalent system and thus to the same
energy.
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For some further crystal symmetries it is straightforward to determine the direction of
the D-vector, the following rules are given in [71]. It is assumed that S1 and S2 are located
at R1 and R2 respectively. The point in the middle is denoted with R3 = 1

2 (R1+R2) .
Then one gets:

• If a center of inversion is located at R3 then

D = 0 .

• If a mirror plane perpendicular to (R1−R2) includes R3 then

D ⊥ (R1−R2) .

• If a mirror plane includes R1 and R2 then

D ⊥ mirror plane .

• If a two-fold rotation axis perpendicular to (R1−R2) includes R3 then

D ⊥ two-fold axis .

• If a n-fold axis (n ≥ 2) includes R1 and R2 then

D ‖ (R1−R2) .

In [25] it is pointed out, that the low symmetry of surfaces also induces the Dzyaloshinsky-
Moriya interaction. In this reference, the direction of the D-vector is discussed for several
surface crystal structures.

4.2 Magnetostatic interactions

The above considerations do not include the interactions due to the magnetic fields. The
magnetostatic energy of solids can be approximated well by replacing the magnetization
density with the magnetic dipolar moments of the atoms. The magnetostatic interactions
can affect the preferred real-space orientation of the magnetic moments, but a further
influence of these interactions on the electronic structure can be neglected.

The magnetostatic energy E(dip) of a magnetic dipole at position R0 with moment M0

that is exposed to the fields of other dipoles at positions {Rj}j 6=0 with moments {Mj}j 6=0

is given by (cf. e.g. [23]):

E(dip) =
µ2

B

2

∑

j 6=0

(Mj ·M0)(Rj −R0)
2 − 3 ((Rj −R0) ·Mj)((Rj −R0) ·M0)

|Rj −R0|5
. (4.3)

In order to obtain the total magnetostatic energy of a sample the last equation has to be
evaluated for each dipole.

Eqn. (4.3) gives rise to a magnetostatic anisotropy energy since E(dip) depends on the
orientations of the magnetic moments with respect to the chemical lattice (the lattice is
given by the positions {Rj} ).

In bulk material E(dip) depends on the macroscopic shape of the magnetic sample
(shape anisotropy), whereas in magnetic films and wires E(dip) depends only on the local



38 Chapter 4. Magnetic interactions

orientation of the magnetic moments. The reason for this is that the sum (4.3) con-
verges only if the lattice of magnetic moments extents infinitely in less than 3 dimensions:
Consider an infinite set of identical dipoles Mj that are equally distributed in d dimen-
sions and let N(n) denote the number of lattice points Rj that are localized within a
shell of radius n∆ and thickness ∆ that is centered at R0 , i.e. N(n) = #{ j | n∆ <
|Rj−R0| ≤ (n+1)∆ } . Then each term of the sum (4.3) is of the order |Rj−R0|−3 and
for large n the number N(n) is proportional to nd−1 . The contribution of one shell to the
sum (4.3) is of the order (n∆)−3N(R) ∼ nd−4 and the sumation over all shells leads to
E(dip) ∼∑n n

d−4 . This sum diverges logarithmically for d=3 but converges for d≤2 .

4.3 Domain structure

Ferromagnets usually show a magnetic superstructure. They are divided into several uni-
formly magnetized domains that differ by their magnetization direction. The domains are
separated by thin boundary regions (domain walls) where the magnetization orientation
turns from one domain to the next. Of course, the domain walls have a larger exchange
energy density than the domains. The formation of the domain structure can be explained
by an interplay of magnetostatic and exchange interactions and anisotropy energy:

The microscopic magnetic structure is mainly governed by the exchange interactions.
The magnetostatic interactions contribute to the anisotropy energy but are much too weak
to inhibit domains with local ferromagnetic spin alignment, if the latter is favored by the
exchange interactions. However, the range of the magnetostatic interactions is much larger
than the range of the exchange interactions: The dipolar interaction between two atoms
decays as the inverse cube of the distance whereas the exchange interactions usually decay
much faster.

In a simplified picture, the division of a ferromagnetic sample in domains of opposite
magnetization direction decreases the energy in the entire volume due to the long-ranged
magnetostatic interactions and increases the energy in the domain boundaries due to
the short-ranged exchange interactions. When a bulk domain pattern is scaled with the
length r, then the domain volume grows with r3 whereas the boundary area grows with
r2. Therefore, a magnetic structure with sufficiently large domains has lower energy than
an uniformly magnetized ferromagnet.

A gradual change of the magnetization over the entire sample also would show low
exchange energy as the local structure would be almost ferromagnetic. But such a config-
uration is prohibited by the anisotropy energy that favors certain magnetization directions.

The domain pattern in a real sample (at low temperature) is not generally the ground
state, but a metastable state. The transitions between different domain patters involve
the remagnetization of many atoms, therefore the energy barriers between the metastable
patterns are relatively high. The actual domain pattern often depends on the history of
the sample.
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Domain walls

This chapter describes the structure of the domain walls that form in the boundary region
between two ferromagnetic domains. The most important quantities are the wall width
and the wall energy. The width is referred to in Chapter 6 where magnetic surfaces are
discussed since this quantity can be accessed directly by experiments. In some cases the
wall energy can determine the size of the domains (cf. Chapter 4.3).

The following analysis is carried out on the basis of a simple model that is sufficient to
explain the main effects. In particular, it is assumed that the magnetization changes only
in the direction perpendicular to the walls. This reduces the analysis to the investigation
of a quasi one-dimensional problem. If the shape of the walls is described just by a
competition between spin stiffness and anisotropy energy, the solution of the model is
simple and well known. But if the Dzyaloshinsky-Moriya (DM) interaction is included the
situation is more complicated. The main aim of Chapter 5 is to describe the effects of the
DM interaction on the domain wall shape. This interaction is of particular importance
at magnetic surfaces, since they show large spin-orbit coupling effects and no inversion
symmetry.

Some non-standard situations that require extensions to the model that is discussed
here, are sketched briefly in Chapter 5.4.

5.1 Some definitions

For the following discussion of the domain walls it is important to distinguish the different
directions and rotation paths that characterize the magnetic configurations. All domain
walls that are considered in this thesis change their magnetization direction only along one
direction in real-space. Their local magnetic structure can be described by a q-vector. This
is the wave vector of a frozen magnon. The direction of q defines the real-space direction
along which the magnetization rotates, the rotation period is given as 2π |q|−1 unit cells
(cf. Chapter 3.7.3). Even though the direction of the q-vector is assumed to be constant,
its absolute value |q| changes along the way from one domain to the other. Apart from
the real-space orientations the walls can differ by their alignment in spin-space, i.e. by
the direction of the spin rotation axis and the rotational direction. Of course, the last
distinctions have to be made only if a coupling between real- and spin-space is taken into
account. The orientations and directions are illustrated in Fig. 5.1. A wall with a spin
rotation axis parallel to the q-vector is called Bloch wall, a wall with a spin rotaion axis
perpendicular to the q-vector is called Néel wall (cf. Fig. 5.2).

When the model systems are discussed x, y, z denote the magnetization direction in
spin-space while r denotes the real-space coordinate parallel to q. Since the discussion
is restricted to domain walls that change their magnetization only in the direction of the
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Figure 5.1: Definition of the wall orientation and rotation. In the bulk the orientation is the
orientation of a plane, but in atomically thin films it is just one direction in the film plane. The
q-vector defines the wall orientation but not the spin rotation axis. A change of the sign of q
reverts the spin rotational direction.

Bloch wall

Néel wall

Figure 5.2: Rotation paths of the
Bloch and Néel walls.

In the Bloch walls the spin rotation
axis is parallel to the q-vector, whereas
in the Néel walls it is perpendicular to
the q-vector.

q-vector the magnetization is described by M(r) = |M(r)|m(r) with m(r) = (x(r) ex +
y(r) ey+z(r) ez) , x(r)2+y(r)2+z(r)2 = 1 . The magnetization direction of a discrete atom
at lattice point j is described by Sj = xj ex +yj ey + zjez with x2

j +y2
j +z2

j = 1 . Polar
coordinates are used according to the convention

x = sinϑ cosϕ , y = sinϑ sinϕ , z = cos ϑ .

When it is necessary to describe all three real-space dimensions (e.g. in Chapter 5.2.2),
then the corresponding real-space vector is denoted with r .

The term ferromagnetic denotes a homogeneous ferromagnetic structure (in contrast
to a domain wall between two ferromagnetic domains or to a homegeneous spin spiral).

Note that in the framework of density functional theory and LDA (Chapters 2, 3) the
notation m is used to describe the magnetization density with |m| 6=1 . The nomenclature
is chosen according to the ususal conventions in the electronic structure calculations and
micromagnetic calculations respectively, therefore it is not consistent within this thesis.

5.2 Micromagnetic model

If the magnetization in a wall changes on length scales that are large compared to the
atomic distances the walls can be described with a micromagnetic model, where the dis-
crete crystal lattice is replaced by a continuum. This is the case in most bulk systems. In
the micromagnetic model used here all relevant interactions are regarded as being local
(i.e. it is assumed that the magnetic structure does not change significantly on the length
scale where the relevant magnetic interactions decay). The assumption of local relevant
interactions is no contradiction to the requirement of long-range magnetostatic interac-
tions for the formation of the domain structure: The energy density in the small wall
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volume is much higher than in the domains and therefore the mechanisms responsible for
the wall internal structure are on a different energy scale than the long-range interactions
relevant for the domain pattern.

Detailed descriptions of the derivation and applications of micromagnetic models can
be found in many text books [e.g. 28]. The model that is introduced in the following
and is used throughout this thesis is restricted to the terms of most importance for the
system discussed in Chapter 6, i.e. to the spin stiffness, the anisotropy energy and the DM
interaction. The main scope of this chapter is to discuss the influence of the DM interaction
on the domain wall profile as the DM interaction usually is neglected in micromagnetic
calculations.

5.2.1 Ansatz

The Expressions (4.1) and (4.2) combine to a Heisenberg-like model. Usually, the higher-
order terms mentioned in Chapter 4.1 are of minor relevance if the magnetization orien-
tation does not change much from one atom to the next.

The atomic interactions that are discussed in the following are the spin stiffness, the
anisotropy energy and the DM interaction. The magnetostatic dipolar interactions are
mapped into the effective anisotropy energy constant (in Chapter 6.3 it is shown that this
is sufficient when describing the ultrathin films that are studied in this thesis).
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Figure 5.3: Atomic rows in two
dimensions. It is assumed that all
atoms in one row have the same
magnetization direction (i.e. Sj,i =
Sj,i′ ). Then it is possible to work
with effective pair interactions be-
tween atomic rows instead of pair
interactions between atoms.

If the q-vector points along a high-symmetry line it can be assumed that the magnetic
moments in the atomic rows perpendicular to q are all aligned in parallel to each other
(cf. Fig. 5.3). This is a reasonable assumption, which is made in this entire thesis (without
testing its validity). Now the problem of finding the magnetization distribution is reduced
to a quasi one-dimensional problem. The interactions within one atomic row are irrelevant
since they do not depend on the rows orientation Sj . The interaction Jj,j′ between row j
and row j′ can be written the following way:

Jj,j′ = J|j′−j| =
1

N

N∑

i,i′=1

at

J (j,i),(j′,i′) =
N∑

i=1

at

J (j,i),(j′,0) . (5.1)

Here
at

J (j,i),(j′,i′) denotes the effective exchange integral between atom i in row j and atom i′

in row j′ (cf. Eqn. 4.1). It is assumed that there are N equivalent atoms in each row. With
the prefactor 1

N the interaction is given in energy per atom. Furthermore, it is assumed
that all atomic rows are chemically equivalent. Then the exchange integral depends only
on |j′ − j| .

When the DM interaction is treated the same way, the total energy of the discrete
model used here has the form

E =
∑

j<j′

(
J|j′−j| ( 1− Sj ·Sj′ ) + Dj′−j ·(Sj × Sj′)

)
+
∑

j

S†
j ·K·Sj (5.2)
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with the anisotropy energy tensor K =



Kx 0 0
0 Ky 0
0 0 Kz


 .

The exchange term J|j′−j| (1−Sj ·Sj′) is chosen such that it vanishes in the ferromagnetic
state and for J > 0 any deviations from the ferromagnetic state increase the energy. It
dhould be pointed out that J represents some effective exchange integral that can have
contributions from the quantities described in Chapter 4.1 as well as from symmetric
spin-orbit coupling effects that are not included in Eqn. (4.2). The term S†

j ·K ·Sj de-
scribes only local contributions. Furthermore, one should note that the structure of the
anisotropy energy tensor K depends on the crystal structure. The (110)-surface that is
studied in Chapter 6 has 2-fold in-plane symmetry and the leading anisotropy energy
terms are 2nd-order in the magnetization direction. In this case the anisotropy energy can
be approximated with S†

j ·K·Sj and K is diagonal in Cartesian spin-space coordinates (cf.
Appendix E).

If Jj′−j and Dj′−j decay on a length scale where Sj′−Sj is small and Sj+1−Sj is approx-
imately constant, then (5.2) can be approximated by a micromagnetic energy functional
that depends on the magnetizations orientation m and its first spatial derivative ṁ= d

d rm .
This micromagnetic model has the form

Ẽ =

∫
dr
(
Ã ṁ(r)2 + D̃·(m(r)× ṁ(r) ) + m(r)† ·K̃·m(r)

)
. (5.3)

In the following the tilde (˜) is omitted since it is clear from the context whether a discrete
or continuous ansatz is made. The micromagnetic equivalence of J is denoted by A which is
a widely used convention. A detailed derivation of (5.3) from (5.2) is given in Appendix F.1,
but one should keep in mind that (5.3) approximates most discrete lattice models with
reasonably fast decaying interactions (not only (5.2) ).

In the discrete model (5.2) E denotes the energy of a stripe of atoms that consists of
one atom from each atomic row (e.g. {Sj,0}j in Fig. 5.3). In the micromagnetic model (5.3)
the crystal structure enters only in the parameters A, D, K. Therefore these parameters
are scaled such that E denotes the energy per area (in bulk systems) or length (in film
systems) perpendicular to q.

In this Chapter 5 the coordinate system is chosen such that D‖ez . This simplifies the
description of the DM term in polar coordinates. The assumpmtion D‖ez in combination
with the diagonal structure of K restricts D to a high symmetry direction of the real-space
lattice. But, the spin-space vector ez can point parallel or perpendicular to q.

With D =D ez and the polar coordinates ϑ(r), ϕ(r) the energy functional (5.3) has
the form

D = D ez ⇒ E =

∫
dr
(

A ( ϑ̇2 + sin2 ϑ ϕ̇2 ) +D sin2 ϑ ϕ̇ (5.4)

+ Kx sin2 ϑ cos2 ϕ+Ky sin2 ϑ sin2 ϕ+Kz cos2 ϑ
)
.

The walls between ferromagnetic domains are calculated by minimizing the energy (5.3)
under the boundary conditions

m(r)
r→±∞−−−−−−−→ ±measy

where ±measy denotes the domain magnetization parallel to the easy axis, i.e. it is assumed
that the size of the domains does not influence the wall profile and the interaction between
different walls can be neglected.
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5.2.2 Symmetry considerations to the D-vector

In [25,71] and Chapter 4.1.1 some general relations between the direction of the D-vector
and the crystal symmetry are given. The systems that are further investigated in Chap-
ter 6 are domain walls in films at surfaces that have some in-plane symmetry. In this
chapter some special surface symmetries are investigated in detail.

Symmetry considerations allow to identify configurations of equal energy and opposite
sign of the term m× ṁ , i.e. of opposite rotational direction. In such cases the D-vector
must be zero or orthogonal to m× ṁ .

According to Appendix E two magnetic configurations ψ and SRψ have equal energy
if [H−V , S R]= 0 . Here S denotes a spin-space operator and R a real-space symmetry
operator of the chemical lattice (i.e. [Vext , R]=0 ). It is useful to identify the operations
SR that reverse the rotational direction for a given real-space symmetry operation R.

The real-space inversion RI changes the rotational direction:

m(r)× ṁ(r)
RI←→ −m(−r)× ṁ(−r) ,

thus in systems with inversion symmetry there is D=0 . Usually there is a non-vanishing
DM interaction at the surface since a surface breaks the inversion symmetry of the system.

R2 and S2 denote 2-fold real- and spin-space rotations around the surface normal n .
It can be shown easily that [H−V , S2R2]=0 if [Vext , R2]=0 . R2 changes the sign of ṁ
since the q-vector is in the surface plane. S2 does not influence the component parallel to
n and changes the sign of the in-plane components of m × ṁ . Thus, a 2-fold rotational
symmetry implies D·n=0 .

Similar considerations show that a mirror plane perpendicular to the q-vector implies
D·q=0 and a mirror plane parallel to the q-vector implies that the D-vector is perpen-
dicular to the mirror plane (i.e. D lies in the surface plane and perpendicular to q).

The resulting consequences for the domain walls that rotate within one high-symmetry
plane are summarized in the following table, an example is illustrated in Fig. 5.4

rotation axis

in-plane ‖q in-pane ⊥ q out-of-plane
Bloch wall Néel wall Néel wall

2-fold rotation X X

mirror plane ‖ q X

mirror plane ⊥q X X

X means that the
DM term does not
vanish generally

Note that the Néel walls that are induced by stray fields always have an out-of-plane ro-
tation axis.

Two systems are of opposite chirality if they can be brought into coincidence by inverting
and rotating the (real- and spin-space) coordinates. In the following this term is always
related to the magnetization given by m(r) and its properties defined by the energy func-
tional. Thus, in this nomenclature two walls of opposite rotational direction are never of
the same chirality but not necessarily of opposite chirality.
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plane

mirror

plane

refl.

+q↔ −q
spin
inv.

=

refl.

+q↔ −q
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6=

Figure 5.4: Sketch illustrating the influence of a mirror plane ‖q on Néel walls. In Fig. a the
chemical lattice has a mirror plane parallel to the rotation axis. In this case the system with
opposite rotational direction is equivalent to the mirror image of the original system. In Fig. b
the symmetry is broken (e.g. if the wall has a rotation axis parallel to a surface). In this case
the system with opposite rotational direction is not equivalent to the mirror image of the original
system, i.e. both systems cannot be brought into coincidence by any rotation or spin inversion
(spin inversion is frequently referred to as time inversion).

If spin-orbit coupling (and the magnetostatic interaction) is neglected, two systems are already
equivalent if they can be brought into coincidence by any spin rotation or spin reflection. In this
case the systems in Fig. b are equivalent.

Reflections in real- and spin-space are further commented in Appendix E.

5.2.3 Analytic solution for D=0

At first the case D = 0 is considered. In this case the domain-wall magnetization stays
in one plane (normal to the hard axis) and can be described by one angle ϑ. If z labels
the easy and y labels the hard axis then ϑ is 0 or π in the domains and the energy
functional (5.4) simplifies with K=Kx−Kz (and by adding an irrelevant constant to the
integrand) to

E =

+∞∫

−∞
dr (A ϑ̇2 +K sin2 ϑ ) . (5.5)

The variation of Eqn. (5.5) has a well-known analytic solution that can be found in many
text books [e.g. 58] and is first derived by Landau and Lifshitz in 1935 [57]. It is clear from
the integrand that the solution of minimal energy is a monotonic function ϑ(r), this allows
for some substitutions in order to simplify the calculation. With the boundary conditions
ϑ( r↘ −∞) = 0 , ϑ( r↗ +∞) = π (implying A, K > 0) and the choice ϑ(r=0) = π

2 one
gets

+∞∫

−∞
dr (A ϑ̇2 +K sin2 ϑ ) =

π∫

0

dϑ r′
(
A

r′2
+K sin2 ϑ

)
where r′ =

dr

dϑ
,

0
!
=

(
d

dϑ

∂

∂r′
− ∂

∂r

)(
r′
(
A

r′2
+K sin2 ϑ(r)

))
=

d

dϑ

(
− A

r′2
+K sin2 ϑ

) bound.
cond.

=⇒

− A

r′2
+K sin2 ϑ = 0 ⇒

√
A

K

1

1− cos2 ϑ
=

r′

sinϑ
= − dr

d(cosϑ)
⇒

r = −
cos ϑ∫

0

dc

√
A

K

1

1− c2 = −
√
A

K
arctanh(cos ϑ) ⇒

ϑ = arccos tanh



−
√
K

A
r



 . (5.6)
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From the last equation it is obvious that the wall is symmetric in r and that its width
scales proportionally to

√
A/K . In this thesis the wall width is defined as

w = 2

√
A

K
. (5.7)

The prefactor 2 is just a convention. It is constructed from the r-intercept of a straight

line f(r) that is tangent to tanh(−
√

K
A r) at r=0 and extends from f(r)=+1=cos 0 to

f(r)=−1 = cos π .
From − A

r′2 +K sin2 ϑ = 0 one obtains the maximum slope as

ϑ̇(r) ≤ ϑ̇(0) =

√
K

A
. (5.8)

r

ϑ

π

π

2

0

w� -

Figure 5.5: Domain wall profile de-
rived from the micromagnetic model.

The wall width according to the
convention w = 2

√
A/K is indicated.

Note that the shape of the wall does
not depend on the parameters A, K .

Another important quantity is the wall energy. With the use of − A
r′2 +K sin2 ϑ = 0 the

energy integral can be simplified to

E =

π∫

0

dϑ r′
(
A

r′2
+K sin2 ϑ

)
=

π∫

0

dϑ

√
A

K

2K sin2 ϑ

sinϑ
= 2
√
AK

π∫

0

dϑ sinϑ

(5.9)

= 4
√
AK .

5.2.4 Influence of the Dzyaloshinsky-Moriya term

Unlike the other terms in (5.4) the DM interaction does not favor ferromagnetism. For
large D the system does not form ferromagnetic domains (and corresponding walls) but
has a non-collinear periodic spin configuration as ground state [e.g. 7, 30–32,46,74].

Even if the ground state is ferromagnetic the DM interaction can be relevant for the
domain wall shape. In this case the wall shape is more complicated than the one discussed
above since the magnetization generally does not stay in one plane. For a fixed set of
parameters (A, D, K) the domain wall configuration can be determined numerically by
the method described in Appendix F.2, whereas a general analytical solution does not
seem to be feasible.

In the following the D-vector is assumed to be parallel to one of the (Cartesian) coor-
dinate axes. With the ansatz made for the anisotropy energy tensor these axes correspond
to the high-symmetry lines of the crystal. Therefore the analysis covers (among others) all
cases where the domain walls are oriented along a high-symmetry line of the (110)-surface
(as this implies D⊥ q ). It is important to note that in this cases the parameter space
spanned by A, D, K can be described in 2 dimensions, i.e. all points in the parameter
space can be mapped into a 2-dimensional space just by exchanging the coordinate axes
and rescaling the units (see below).
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Ground state of the quasi one-dimensional model

Before the shape of the domain walls is studied the ground state of the model (5.4)
is investigated, taking into account the non-collinear periodic spin configurations. The
restriction to one dimension in real-space is reasonable for the description of walls between
ferromagnetic domains (which are the main subject of investigation in this thesis), but
one has to keep in mind that this might be a crude simplification if the domains are not
ferromagnetic. Nevertheless, this simple model already shows a complex behavior if D is
large enough to compete with A, K .

At first the most simple case is considered: If the D-vector points parallel to the hard
axis the magnetization obviously stays in the plane perpendicular to D . If the easy axis
is the x-axis, the hard axis is the z-axis and K=Ky−Kx then the energy functional has
the form:

E =

∫
dr (A ϕ̇2 +D ϕ̇+K sin2 ϕ ) . (5.10)

This case is already analyzed in [32, 46]. The DM term can give a negative contribution
to the energy of a periodic state only if the magnetization performs a full rotation and
in any possible non-collinear periodic ground state D ϕ̇ is negative over the entire period.
The energy of one period with length R can be written as

ER =

R∫

0

dr (A ϕ̇2 +K sin2 ϕ ) ± 2π D

where the sign of the last term depends on the rotational direction. A full spin rotation
from ϕ=0 to ϕ=±2π with a period length R cannot take less energy than two optimal
domain walls, since the latter cover the same ϕ-intervals but are not bounded on the r-
axis. With Expression (5.9) a rotating state has the energy ER ≥ 8

√
AK ± 2π D . If this

value is positive the ground state cannot be non-collinear, if this value is negative there
exist states (e.g. a series of domain walls) that have lower energy than any ferromagnetic
state. Therefore a non-collinear periodic spin-configuration is the ground state if and only
if

|D| > 4

π

√
AK . (5.11)

Note that |D| is much weaker in most real systems. The shape of the periodic ground state
is shown in Fig. 5.6, the real-space period is plotted in Fig. 5.7. In the limit |D|↘ 4

π

√
AK

the system forms two domains of diverging length. In this limit it requires only minor
energy to move the domain walls with respect to each other and the domain size calculated
from (5.10) is not meaningful.
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r r r

D√
A K

=−2.57
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A K
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=−1.28

R√
A/K

= 20

Figure 5.6: Shape of
the periodic ground
state for D parallel to
the hard axis. If the
period length R is small
ϕ̇ is almost constant.
For increasing R two
domains of length R/2
emerge.

If the D-vector does not point parallel to the hard axis the magnetization can deviate
from the plane normal to D. Depending on the size of A, D, K the ground state can be



5.2. Micromagnetic model 47

4/π 2 4 6
0

4

8
R√
A/K
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Figure 5.7: Period length R of the ground state for D par-
allel to the hard axis. If R is considerably larger than the
wall width 2

√
A/K then the system forms virtually ferro-

magnetic domains whose size in reality depend on effects
not considered here (like magnetostatic interactions, fur-
ther boundary conditions). For large |D| the period length
approaches zero very slowly.

A straightforward method to obtain this curve is
presented in Appendix F.3.

ferromagnetic, rotate in the plane normal to D or describe a truly 3-dimensional rotation
path in spin-space. In the following an overview over the possible ground states is given.

The system can be described with just two independent nondimensional parameters
D, K instead of A, |D|, K , this simplifies the situation a lot:
The coordinate system is chosen such that

D = D ez , Ky > Kz .

With the definitions

E =
E√

A (Ky −Kz)
, K =

Kx −Kz

Ky −Kz
, D =

−D√
A (Ky −Kz)

ϑ̄(r) = ϑ
(√

Ky−Kz

A r
)

, ϕ̄(r) = ϕ
(√

Ky−Kz

A r
)

the energy functional (5.4) can be written as

E =

∫
dr

(
˙̄ϑ
2
+ sin2 ϑ̄

(
˙̄ϕ
2−D ˙̄ϕ+K cos2 ϕ̄+ sin2 ϕ̄

)
+ const

)
.

In the following the irrelevant constant term in the integrand and the bars (¯) on ϑ,ϕ are
omitted:

E =

∫
dr
(
ϑ̇2 + sin2 ϑ

(
ϕ̇2 −D ϕ̇+K cos2 ϕ+ sin2 ϕ

) )
. (5.12)

The investigation of Eqn. (5.12) can be restricted to the parameter space K≤1 and D≥0 :
The intervals K ∈ (0, 1) and K ∈ (1,∞) correspond to equivalent cases, just the labeling
of the x- and y-axes are exchanged. Also the cases for +D and −D differ only by the
rotational direction.

For K< 0 the easy axis is perpendicular to the D-vector. If the magnetization stays
in the plane normal to D (i.e. sin2 ϑ = 1, ϑ̇ = 0 ), the energies of the ferromagnetic and
the flat rotating state can be compared with the same argument as above: By noting that
K cos2 ϕ+ sin2 ϕ = (1−K) sin2 ϕ+const one can conclude from (5.12) that there is a flat
rotating state that has lower energy than any ferromagnetic state if and only if

|D| > 4

π

√
1−K .

But since D now is pointing parallel to the intermediate instead of the hard axis (K <
0 , Ky >Kz), the rotating system can lower its anisotropy energy by deviating from the
(x, y)-plane while sin2 ϕ is large. The numerical simulations reveal that for small |D|
the ground state is always ferromagnetic. With increasing |D| the system undergoes a
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first-order phase transition1 to a non-collinear ground state. For K < Kc ≈ −0.08 this
non-collinear ground state rotates entirely in the (x, y)-plane. For Kc<K<0 there is an
additional phase with a truly 3-dimensional rotation path that separates the ferromagnetic
phase from the phase with the flat rotation path. With increasing |D| the 3-dimensional
rotation path flattens out and at a critical point there is a continuous transition towards
the flat rotation path in the (x, y)-plane. The corresponding phase diagram is given in
Fig 5.8, the shapes of the ground states are plotted in Fig. 5.9.

For K> 0 the easy axis is parallel to the D-vector. In this case the system can gain
energy by rotating around the D-vector without deviating much from the easy axis. Thus,
with increasing |D| the ground state changes continuously from the ferromagnetic to the
flat rotating state without a first-order phase transition. In Appendix F.4.2 it is shown
that the ground state is ferromagnetic if and only if

|D| ≤ Dc =
√
K + 1 . (5.13)

At |D| = Dc the system undergoes a second-order phase transition, for larger |D| the
ground state is truly 3-dimensional until a second critical point is reached beyond which
the system rotates entirely in the (x, y)-plane normal to the easy axis. The phase diagram
is given in Fig. 5.8, the shapes of the ground states are plotted in Fig. 5.9.

For K↗1 the distance between the two critical points vanishes. At K=1 the directions
normal to the D-vector do not differ in anisotropy energy and (5.12) simplifies to

E =

∫
dr
(
ϑ̇2 + sin2 ϑ ( ϕ̇2 −D ϕ̇+ 1 )

)
.

In this case the system is ferromagnetic if ϕ̇2 − D ϕ̇+1>0 , otherwise the magnetization
rotates in the (x, y)-plane. In the latter case the E is minimal for ϕ̇= 1

2 D = const , the
phase transition from ferromagnetic to rotating magnetization takes place at |D|=2 .

A numerical procedure suitable to obtain the phase diagram (Fig. 5.8) is sketched
briefly in Appendix F.4.1.

Domain walls

The discussion of the domain walls is split in the two cases where the D-vector points per-
pendicular or parallel to the easy axis. The independent parameters are chosen differently
in both cases. This might help to win the competition between simple nomenclature and
simple phase diagrams.

• Easy axis perpendicular to D :

In the case that D is perpendicular to the easy axis, the coordinate system is chosen such
that

D = D ez , Ky , Kz > Kx

and as independent parameters are used

K⊥ =
Kz −Kx

Ky −Kx
, D⊥ =

−D√
A (Ky −Kx)

.

1There are several definitions for the term phase transition. In this thesis it is used in a generalized
sense: Here, a phase transition is a non-analytic behavior of the total energy E with respect to some
parameter P . If d E

dP is not continuous, the transition is first-order. In all other cases it is second-order.
The line that describes the position of a phase transition in the parameter space is called coexistence curve

in analogy to the corresponding curves describing chemical phase transitions.
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Figure 5.8: Phase diagram for the ground
state of the 1-dimensional micromagnetic
model. For positive K the easy axis is paral-
lel to the D-vector, for negative K the inter-
mediate axis is parallel to the D-vector. The
case that the hard axis is parallel to the D-
vector cannot be described with this choice
of K, D . The intervals K∈(1,∞) , K∈(0, 1)
describe the same case in different coordi-
nate systems, also the ground states at +D
and −D differ just by chirality.

For D < 1 the ground state is collinear.
The dashed line starting at a (D=1, K=0)
defines the critical points for the transition
to the non-collinear ground state, the dashed
line starting at b (K=Kc) defines the criti-
cal points for the transition from the truly
3-dimensional to the flat rotation path. At
c (D = 2, K = 1) both lines touch (at this
point only). The solid line defines a first-
order transition. It separates ground states
that are ferromagnetic perpendicular to D
from ground states that rotate around D.
For K < Kc this line is defined by D =
4
π

√
1−K .
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Figure 5.9: Shape of the ground state for
differentD, K. Each curve shows one period,
thus the scale of r is not constant.

For K = −0.04 < 0 (i.e. D ⊥ easyx-axis )
the magnetization is plotted at the non-
collinear limit of the first-order transition at
D= 1.30 and at the second-order transition
at D=1.38. At |D|<1.30 the magnetization
is collinear.

For K = +0.25 > 0 (i.e. D ‖ easy z-axis )
the magnetization is plotted at both second-
order transitions at D=1.50 and at D=1.58
as well as at a truly 3-dimensional state in
between. The ϕ-curves coincide within the
resolution of this plot.

The definition of the polar angles is re-
peated for direct comparison with the figure:


x
y
z



 =




sinϑ cosϕ
sinϑ sinϕ
cosϑ



 .
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D perpendicular to the easy axis implies K⊥>0 . Then the energy functional has the form

E⊥ =

∫
dr
(
ϑ̇2 + sin2 ϑ

(
ϕ̇2 −D⊥ ϕ̇−K⊥ + sin2 ϕ

) )
. (5.14)

For D parallel to the hard axis (i.e. K⊥ > 1 ) the magnetization obviously stays in the
(x, y)-plane normal to D . In this case the domain walls between ferromagnetic domains
minimize the functional

E⊥ =

+∞∫

−∞
dr
(
ϕ̇2 −D⊥ ϕ̇+ sin2 ϕ

)
=

+∞∫

−∞
dr
(
ϕ̇2 + sin2 ϕ

)
±

π∫

0

dϕ d r
d ϕ D⊥ ϕ̇

=

+∞∫

−∞
dr
(
ϕ̇2 + sin2 ϕ

)
± πD⊥ .

(provided that the ground state is ferromagnetic). The sign of the last term depends on
the rotational direction. The integral in the last expression is already discussed above. It
leads to the domain wall profile (5.6) with the energy

E⊥ = 4− π |D⊥| ⇔ E = 4
√
A (Ky −Kx)− π |D| . (5.15)

It is remarkable that the size of the DM interaction in this case influences the wall energy
but not the wall profile. The sign of D⊥ determines the favorable rotational direction.

If the D-vector points neither parallel to the hard nor easy axis but along the interme-
diate axis there is a competition between the DM interaction that favors a rotation in the
plane normal to D and the anisotropy energy that favors a rotation in the plane normal
to the hard axis. For large |D⊥| the magnetization stays entirely in the plane normal to
D but when moving along in the parameter space the system undergoes a second-order
phase transition where the magnetization starts to rotate out of this plane.

For D⊥ = 0 and K⊥ < 1 the magnetization rotates in the (x, z)-plane where the
anisotropy energy is lowest. There are two degenerate rotation paths of opposite chirality.
With increasing D⊥ the wall profile changes continuously, since a wall in the (x, z)-plane
cannot benefit from the DM interaction. For small D⊥ the magnetization rotates on a
truly 3-dimensional path in spin-space and there remain two degenerate rotation paths
of opposite chirality. For larger D⊥ the solutions of opposite chirality both approach the
same rotation path that is flat in the (x, y)-plane (cf. Fig. 5.10).

The second-order phase transition from the wall that rotates truly in 3-dimensions to
the wall that rotates entirely in the (x, y)-plane is observed by analyzing the numerical
solutions of Eqn. (5.14). The magnetization normal to the (x, y)-plane (i.e.

∫
dr |z| ) can

be chosen as an order parameter that vanishes at the critical point. The characteristic
behavior of this order parameter and the derivative of the energy at the phase transition
are shown in Fig. 5.11. The parameter space is sampled by performing calculations like
the one shown in Fig. 5.11 for several K⊥, the resulting coexistence curve is presented in
Fig. 5.12.

If D is parallel to the intermediate axis, the size of the D-vector can influence the width of
the walls between ferromagnetic domains to a certain extent: For D=0 the magnetization
rotates in the plane normal to the hard axis and the width according to Formula (5.7)
is w=

√
A/Ki-e where Ki-e denotes the anisotropy energy between the intermediate and

the easy axis. With increasing D the rotation path moves towards the plane normal to
D, along this path the anisotropy energy is higher and thus the walls get thinner. If D is
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Figure 5.10: Domain wall profiles for different
D⊥ . The curves are calculated for K⊥ =0.5 . For
D⊥=0 the wall rotates entirely in the (x, z)-plane
and has the width w=2

√
A/(Kz−Kx) . For D⊥

beyond its critical value (0.65 at K⊥ = 0.5) the
wall rotates entirely in the (x, y)-plane and has
the width w = 2

√
A/(Ky−Kx) . With further

increasing D⊥ the wall profile does not change
until the periodic state shown in Fig. 5.6 appears
for D⊥ > 4

π
= 1.27 . For D⊥ < 0.65 there are two

degenerate wall profiles of opposite chirality.
The definition of the polar angles is repeated

for direct comparison with the figure:




x
y
z



 =




sinϑ cosϕ
sinϑ sinϕ
cosϑ



 .

Note that m(r) is smooth, the discontinuity in ϕ
is introduced by the definition of the polar angles.
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Figure 5.11: Behavior of the or-
der parameter and d

dD⊥

E⊥ when
varying D⊥ at fixed K⊥ . The
critical point can be identified
easily. The magnified image
shows that the kink in the
order-parameter curve is slightly
smeared out due to numerical ef-
fects. In this particular calcula-
tions the acuity of the kink de-
pends primarily not on the sys-
tem size but on other numerical
cutoffs.

This figure is obtained for
K⊥=0.5 .
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Figure 5.12: Phase diagram for D
perpendicular to the easy x-axis. The
data points represent the second-order
transition from the flat to the truly 3-
dimensional domain walls (DW). The
magnetic structures for +D⊥ and −D⊥
differ just by chirality, the solid line
starting at a (D⊥ = 0, K⊥ = 1) rep-
resents a first-order transition whereas
the walls on the line D⊥=0, K⊥<1 are
flat in the (x, z)-plane.

In the regime of the truly 3-
dimensional walls there are two rota-
tion paths of opposite chirality for each
(D⊥,K⊥) , these paths coincide at the
coexistence curve towards the regime of
flat walls.

The solid line on the right separates
the areas of collinear and non-collinear
ground states. For large K⊥ the mag-
netization of the non-collinear ground
state rotates in the (x, y)-plane and
there exist no separate domains, for
small K⊥ (shaded area) it describes a
truly 3-dimensional rotation path (cf.
Fig. 5.8, note the different axes-labels).

large enough the magnetization rotates entirely in the plane normal to D, Formula (5.7)
can be applied again and leads to w=

√
A/Kh-e where Kh-e denotes the anisotropy energy

between the hard and the easy axis.

• Easy axis parallel to D

In the case that D is parallel to the easy axis, the coordinate system is chosen such that

D = D ez , Kx , Ky > Kz

and as independent parameters are used

K =
Kx −Kz

Ky −Kz
, D =

−D√
A (Ky −Kz)

.

D parallel to the easy axis implies K> 0 . The following discussion can be restricted to
K∈ (0, 1] since K> 1 describes the same situation in a different coordinate system. The
energy functional has the form

E =

∫
dr
(
ϑ̇2 + sin2 ϑ

(
ϕ̇2 −D ϕ̇+K cos2 ϕ+ sin2 ϕ

) )
. (5.16)

The domain walls are numerically investigated in the regime of the collinear ground
state (i.e. |D|<

√
K+1 ). They show no phase transition, the magnetization rotates around

the easy axis for all K>0 , D 6=0 . Small K corresponds to a large anisotropy in the (x, y)-
plane. For small K the magnetization stays close to the (x, z)-plane normal to the hard
axis (ϕ ≈ π if ϑ ≈ 1

2π). For increasing K < 1 the anisotropy between the hard and the
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Figure 5.13: Domain wall profiles for
different D, K. ϑ describes the devi-
ation from the easy axis, ϕ the rota-
tion around the easy axis. For D well
below Dc (Dc = 1.5 at K = 0.25, cf.
Eqn. (5.13) ) the shape of ϑ(r) does
not change much and the magnetization
component in the hard y-axis is small
everywhere (i.e. ϕ≈π while ϑ≈ 1

2π ). In
the vicinity of Dc ϑ oscillates and con-
verges slowly towards the domain mag-
netization. Beyond the critical point Dc

the domains are not ferromagnetic (cf.
Eqn. 5.13). Beyond the second critical
point of the ground state (D ≈ 1.58 at
K=0.25) the magnetization rotates en-
tirely in the (x, y)-plane and there are
no diverse domains.
←− The definition of the polar angles

is repeated for direct comparison with
the figure.

intermediate axis decreases and the rotation path moves further out of the (x, z)-plane
(cf. Fig. 5.13).

In the special case K=1 (i.e. Kx =Ky ) the anisotropy energy does not depend on ϕ
and the Euler-Lagrange equations can be solved analytically:

E(K=1) =

∫
dr L(ϑ,ϕ, ϑ̇, ϕ̇) with L = ϑ̇2 + sin2 ϑ

(
ϕ̇2 −D ϕ̇+ 1

)
,

Lϕ =

(
∂

∂ ϕ
− d

d r

∂

∂ ϕ̇

)
L(ϑ,ϕ, ϑ̇, ϕ̇) = − d

d r

(
sin2 ϑ (2 ϕ̇−D)

)
!
= 0

lim
|r|→∞

sin2 ϑ= 0

=⇒

ϕ̇ = 1
2 D = const ,

Lϑ

∣∣∣
ϕ̇ = 1

2
D

=

(
∂

∂ ϑ
− d

d r

∂

∂ ϑ̇

)(
ϑ̇2 + sin2 ϑ

(
−1

4 D2 + 1
) )

!
= 0 .

The last equation has the same structure as the Euler-Lagrange equation of the func-
tional (5.5) that describes the case D=0 . The optimal wall has the energy

E(K=1) = 4
√

1− 1
4 D2

⇔ E(Kx=Ky) = 4
√
A (Kx−Kz)− 1

4 D
2 = 4

√
A (Ky−Kz)− 1

4 D
2 .

and the width (that is defined with respect to the deviation from the easy axis, i.e. inde-
pendently of ϕ) is

w(Kx=Ky) = 2

√
A

K − D2

4 A

≥ 2

√
A

K
.

This simple analytic solution can give some idea about the general behavior. One should
note that Kx≈Ky might be a reasonable approximation for some real system but is not
directly induced by the crystal symmetry. For example, an (100)-surface of a cubic lattice
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has negligible in-plane anisotropy but the D-vector cannot point out-of-plane (cf. Chap-
ter 5.2.2).

In the regime of the truly 3-dimensional ground state the domain walls look like the
one plotted in Fig. 5.13. The width of these walls obviously vanishes if the difference
between the domains vanishes at the critical point towards the flat rotating ground state.

General remarks

In this chapter it has been shown that the effect of the DM interaction depends strongly
on the relations between the anisotropy constants and the direction of the D-vector. The
direction of D depends on the direction of q as well as on the crystal symmetry, it is
determined by the rules given in Chapters 4.1.1 and 5.2.2.

For the understanding of the domain pattern the precise shape of the walls is of minor
importance, although it plays a role in the dynamics of the wall formation. In the anal-
ysis presented in Chapter 6.7.2 it is of particular importance that A, |D| depend on the
direction of the q-vector. This way the DM interaction can influence the preferable wall
orientation.

The sign of m×ṁ is the only term in the energy functional (5.3) that depends on the rota-
tional direction, thus the introduction of the DM interaction breaks the chiral symmetry.

For large |D| the ground state is non-collinear, but in the quasi one-dimensional model
it is surely ferromagnetic if |D|<

√
A (∆K)min .

If the D-vector is parallel to the hard axis it does not influence the wall profile (apart
from the rotational direction), although it alters the energy. If the D-vector is parallel
to the intermediate axis it reduces the wall width by changing the wall shape towards a
rotation path with higher anisotropy energy. If the D-vector is parallel to the easy axis the
wall width is only subtly altered for small |D| but considerably enlarged in the vicinity of
the non-collinear ground state (at even larger |D| the difference between the non-collinear
domains vanishes, then the width also vanishes).

In Chapter 6 the influence of the DM interaction is discussed for domain walls oriented
along high-symmetry lines of the (110)-surface. Even in that restricted symmetry there
are several different cases to be distinguished.

If large values of |D| (or small values of A) are considered one should check whether
the ansatz (5.2) is still valid, in this ansatz the exchange interactions are considered only
in lowest relevant order.

5.3 Effects of the discrete lattice structure

If the magnetization direction changes on short length scales the simplifications of the
micromagnetic model are questionable. In this cases the discrete model (5.2) can be
employed. In the following the ground state and the domain walls of the discrete model
are investigated. The interactions are restricted to nearest neighbors for simplicity:

E =
∑

j

(
J ( 1− Sj ·Sj+1 ) + D·(Sj × Sj+1)

+Kx (ex ·Sj)
2 +Ky (ey ·Sj)

2 +Kz (ez ·Sj)
2
)
.

(5.17)

One has to keep in mind that this model is a crude simplification of the real systems:
As the magnetization is allowed to vary only along one direction in real-space all possible
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two-dimensional patterns are excluded a priori. The interactions are assumed to be local
(i.e. between nearest neighbors). Furthermore, if the difference in the magnetization di-
rections of two neighboring atoms is not small then it might not be sufficient to describe
the exchange processes by the lowest-order pair-interactions that enter (5.17). The aim
of the following analysis is not to give an accurate description of real domain walls but
to give some idea how the discrete nature of the lattice modifies the micromagnetic results.

At first the DM interaction is neglected (Chapter 5.3.1). Then the influence of the D-
vector is discussed briefly (Chapter 5.3.2).

5.3.1 The case D=0

If the DM term can be neglected (e.g. in systems with inversion symmetry) the spins
obviously stay in the plane normal to the hard axis, with an appropriate orientation of
the coordiante system (5.17) reduces to

E =
∑

j

(
J ( 1− Sj ·Sj+1 ) +Kx (ex ·Sj)

2 +Kz (ez ·Sj)
2
)

=
∑

j

(
J ( 1− cos (ϑj+1 − ϑj) ) + (Kx−Kz) sin2 ϑj + const

)
.

With K = Kx−Kz (and by dropping the constant term) the discrete model can be written
as

1
K E =

∑

j

(
J
K ( 1− cos (ϑj+1− ϑj) ) + sin2 ϑj

)
. (5.18)

The corresponding micromagnetic energy functional has the form

1
K E =

∫
dr
(

A
K ϑ̇(r)2 + sin2 ϑ(r)

)
.

It is obvious that the discrete model has a well defined antiferromagnetic ground state for
J
K < 0 .

Eqn. (5.18) has been analyzed already in 1972 [40] in order to compare the domain wall
shape resulting from the discrete model with the result (5.6) from micromagnetic theory.
It turns out that for small J

K the discrete ansatz leads to a sharp domain wall where
the magnetization rotates by π from one lattice point to the next. At J

K = 3
2 the system

undergoes a second-order phase transition from a sharp to an asymptotically decaying
wall. For increasing J

K the spin orientations quickly approach values that are predicted
from the corresponding micromagnetic ansatz (cf. Fig. 5.14).

It is not surprising that the continuum ansatz (5.5) leads to broader domain walls than
the discrete ansatz (5.18) : The spin stiffness A is fitted to the quadratic term of cos(ϑj+1−
ϑj) at small angle differences, but for large (ϑj+1−ϑj) the (1 − cos)-term is considerably
smaller than the quadratic fit and thus causing less exchange energy. Furthermore, in
a narrow discrete wall there are no lattice points with ϑ≈ π

2 (i.e. with large anisotropy
energy).

The critical ( J
K )-value can be determined as the sharp domain wall is always an ex-

tremal of (5.18) but for J
K > ( J

K )crit it is not a local minimum with respect to varying

{ϑj}j . Thus the Hessian matrix (∂2 (E/K)
∂ ϑj ∂ ϑj′

)j,j′ evaluated for the sharp walls is positive def-

inite only for J
K < ( J

K )crit [63]. For finite systems it is straightforward to estimate ( J
K )crit

numerically with nested intervals: In each iteration one has to diagonalize the Hessian
matrix and to change the upper or lower limit of J

K according to the sign of the lowest
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eigenvalue. For increasing number of lattice sites the critical value reaches the thermody-
namic limit (i.e. the limit for infinite system size) very rapidly, thus the finite-size effects
do not impose a problem. But it should be mentioned that the critical point ( J

K )crit = 3
2

is also determined analytically in [63].

5.3.2 Influence of the Dzyaloshinsky-Moriya term

The influence of the DM interaction in the discrete model (5.17) is shown in two special
cases that are easy to analyze. The discussion of the general case is beyond the scope of
this thesis but for a given set of parameters A, K, D the domain wall width, energy and
shape can always be calculated with the method that is described in Appendix F.2.

• Hard axis parallel to D

Like in the continuum model the magnetization obviously stays in the plane normal to the
hard axis if the D-vector points parallel to the hard axis. With an appropriate choice of
the coordinate system Eqn. (5.17) can be simplified to

E =
∑

j

(
J ( 1 − cos(ϕj+1−ϕj) ) +D sin(ϕj+1−ϕj) +K sin2 ϕj

)
(5.19)

where K =Ky−Kx denotes the anisotropy energy in the plane normal to the hard axis.
For large |D| the ground states of (5.19) is non-collinear but (in contrast to the continuum

model) the period length converges for diverging D: |ϕj+1−ϕj| |D|→∞
−−−−−−−−→ π

2 . For |D| 6=0
the sharp domain wall that is described in the previous section is not an extremal solution
of (5.19). The phase diagram is plotted in Fig. 5.15, details are given in Appendix F.5.

• Easy axis parallel to D, plane normal to hard axis isotropic

The case that the D-vector points parallel to the easy axis is analyzed under the assump-
tion that there is no anisotropy in the plane normal to the easy axis. Like in the continuum
case this assumption reduces the applicability of the model but simplifies the calculations
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significantly. With an appropriate choice of the coordinate system Eqn. (5.17) can be
simplified to

E =
∑

j

(
J ( 1− sinϑj sinϑj+1 cos(ϕj+1− ϕj)− cosϑj cos ϑj+1 )

+D ( sinϑj sinϑj+1 sin(ϕj+1− ϕj) )

+K sin2 ϑj

)
(5.20)

where K =Kx =Ky denotes the anisotropy energy between the easy axis and the plane
normal to it. The corresponding phase diagram is plotted in Fig. 5.16, details are given
in Appendix F.5.
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Figure 5.16: Phase diagram for D par-
allel to the easy axis and no anisotropy
energy in the plane normal to it. The
solid lines indicate the first-order tran-
sitions between the ferromagnetic (FM),
antiferromagnetic (AF) and helical non-
collinear (NC) ground states. The dashed
lines denote the second-order transition be-
tween the sharp and asymptotically decaying
domain walls. The point a at (D
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= 0 , J

K
=

3
2 ) is the critical point discussed above for
D=0 . Four coexistence curves meet in the
points b and c at (D

K
=∓1 , J

K
= 0) respec-

tively.

5.4 Extension of the models

The previously described micromagnetic model is a good description for most broad do-
main walls. Some of the drawbacks are already mentioned: If the magnetization varies
on length scales that are comparable with the atomic distance the exchange interactions
have to be considered explicitly. Generally, they have a more complicated structure than
the one considered in (5.2). Even if a continuous ansatz is sufficient, in some cases it
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might be necessary to include more terms than it is done in (5.3). The diagonal form
of the anisotropy energy tensor that is assumed in (5.2) is not appropriate for all crystal
structures, obviously it is not suitable to describe hexagonal surfaces.

If the crystal symmetry allows for non-collinearity between two adjacent (ferromag-
netic) domains then the length of the rotation path is not independent of the rotational
direction.

Other extensions of the model are necessary if the sample geometry induces further
boundary conditions. In [19] the effect of the boundary geometry of narrow magnetic
stripes is discussed, if the broadness of the stripe changes on the same length scale as the
magnetization then the wall length (perpendicular to q) competes with the wall width.
Another example for the influence of the sample geometry is the transition from Bloch
to Néel walls in systems where the magnetostatic (dipolar) interactions are dominant: In
thick magnetic films Bloch walls are energetically more favorable, but in thinner films
(thickness on the same length scale as wall width) an in-plane Néel wall reduces the stray
field energy. This is first pointed out in [75]. When the magnetostatic interactions are
mapped to Eqn. (5.3) then the parameters depend on the film thickness. In the atomically
thin films that are discussed in Chapter 6 the stray fields are of minor importance and the
Néel walls that interact with the D-vector do not rotate in-plane.

A good overview of different domain walls and adequate models can be found e.g.
in [45].



Chapter 6

The system Fe/W(110)

The previously described concepts are used to analyze the magnetic properties of atomi-
cally thin surface Fe films that cover a (non-magnetic) W-substrate. The domain walls of
these system are of particular interest as the parameters of the models discussed in Chap-
ter 5 are in a rather different energy regime than the parameters of the well-described
walls in bulk material and thicker magnetic films. Furthermore the atomic sleaziness of
the magnetic layer is important for the magnetocrystalline anisotropy that in the studied
case is mainly governed by surface effects.

This system is chosen for this thesis, since it is well studied experimentally. The
theoretical analysis mainly focusses on the quantities that are directly accessible with the
experiment, i.e. the orientation and shape of the domain walls (that can be probed in
real-space experimentally).

The analysis is constricted to the static equilibrium properties, i.e. to the low-tempera-
ture regime.

The ab-initio calculations show the orders of magnitude of the different effects and there-
fore help to identify the relevant interactions. The theoretical prediction of the domain-wall
structures is limited by the accuracy of the method.

The results are presented in this chapter, the details concerning the ab-initio calcula-
tions (computational parameters etc.) are given in Appendix H.

6.1 Structure

The system in study are atomic thin Fe films that are grown on the W(110)-surface.
The geometry and the notation used for the coordinate axes is decribed in Fig. 6.1. The
experimentally investigated samples are based on a vicinal W-surface. In this thesis the
terraces are approximated by infintite surfaces (with constant Fe coverage and without step
edges). This approach is justified by the experimental evidence that the local magnetic
structure hardly depends on the shape of the terraces. (Nevertheless, the steps are crucial
to support a homogeneous coverage of more than one Fe layer, the internal strain of an Fe
double layer in the W lattice constant prohibits a smooth coverage on an extended plain
W(110)-surface.)

Coverages of one mono-layer (ML) and one double-layer (DL) Fe are considered.

The structural relaxations are determined for the ferromagnetic surface neglecting the
spin-orbit coupling. All magnetic configurations are calculated with the same interlayer
relaxation.
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Figure 6.1: (a) The Fe films on the vicinal W(110)-surface grown with one (ML) or two (DL) layers
coverage. The [110] direction points perpendicular to the surface of a single step. (b) Orientation
of a two-atomic surface unit-cell. In the [11̄0]-direction the plotted unit cell has the length of

√
2

times the W lattice constant. The diamonds (3) indicate the atomic positions in the next layer
(W or Fe). (c) Definition of the polar angles ϑ∈ [ 0, π ] and ϕ∈ [ 0, 2π) that are used to describe the
direction of the magnetic moment m in spin-space. Note that ϑ= 0 indicates the direction out-
of-plane (i.e. perpendicular to the surface). The [001]- [11̄0]- and [001]-directions are occasionally
referenced as x- y- and z-directions respectively.

6.2 Experimental observations

The experimental results that are of most relevance for this thesis are obtained with spin-
polarized STM. This technique allows to construct a two-dimensional map of the surface
magnetic structure from the tunneling current into a ferromagnetic tip. For a review of
this technique cf. e.g. [13].

Results on the system Fe/W(110) can be found in [e.g. 13,81–83,97], a typical image
is shown in Fig. 6.2.

Several properties of the studied system can be obtained directly from the STM images.
In the context of this thesis the most important observations are:

• Easy axis:

The easy axis can be identified from the contrast between the domains since the STM
tip is known to have in-plane magnetization. However, the in-plane orientation of
the tip is not known.

In the ML the magnetization points in-plane, in the DL it points out-of-plane.

• Domain size:

The size of the domains can be read immediately from the STM image. The irregular
boundaries between the mono- and double-layers complicate the estimation of the
wall energies, therefore it is not straightforward to check whether the the domain
size is related to the wall energy as described in Chapter 4.3.

• Domain wall orientation:

The orientation of the domain walls is analyzed for a variety of terrace width and
orientations.

In the case of the ML several wall orientations are observed. The wall energy is
reduced by minimizing the wall length, thus the favored orientation depends on the
sample topology. But even at ≈15K random deviations from the shortest path are
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(a) (b)

Figure 6.2: (from [83]) STM image of the magnetic structure. The tip magnetization points
parallel to the surface. (a) The broad stripes represent areas with ML coverage. Here the con-
trast between the domains magnetized parallel and antiparallel to the tip is obvious. The narrow
stripes in-between represent areas with DL coverage. Here the magnetization in both domains is
perpendicular to the magnetization in the tip, but the tilted magnetization in the domain walls is
repesented by the small brighter areas. The dark stains (clearly visible on the bright ML domains)
are caused by impurities, mainly O adatoms. (b) Linescans roughly along the [001]-direction (the
path of the scans is indicated in Fig. a ). The data is fitted with the wall profile (5.6) that is ob-
tained from the micromagnetic model. Note that the experimental results for the ML wall width
are not very clear (see text).

observed, most likely the wall is pinned by the adatom impurities.
In the case of the DL the walls are usually oriented along the [11̄0]-direction

(i.e. q ‖ [001] ), independent of the sample topology (there are only a few exeptions
observed in the case of very narrow constrictions).

• Domain wall width and shape:

The wall profile in the regions with constant Fe coverage can be measured directly.
The Formula (5.6) is fitted to the experimental data in order to obtain a value for
the width 2

√
A/K .

For the broad DL walls the results are quite clear. The wall shape fits well to (5.6)
and the observed widths are in the range of 5 -10 nm, the average value is reported
as 7.3 nm .

For the ML the results are less evident. The walls are very narrow, in most
experiments the width reaches the resolution of the experimental setup and thus is
estimated to be less than ≈0.8 nm . But recent measurements on very clean samples
show ML walls with a width of ≈1.5 nm [14].

• Domain wall rotation path and rotational direction:

The magnetization direction in the middle of the wall cannot be determined without
further assumptions about the tips magnetization direction (in the narrow ML walls
it cannot be detected at all). But the STM images reveal that all DL walls show
the same rotational direction, even if the walls are separated by several topological
steps.
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6.3 Magnetostatic dipolar interactions

The magnetostatic energy is described by the sum (4.3). In Chapter 4.2 it is shown
that this sum converges in the two-dimensional surface layers, therefore it can be eval-
uated by summing over the contributions from all atoms within a certain real-space cutoff.

In the ferromagnetic domains (4.3) can be reduced to two anisotropy energy constants:

E(dip)(ϕ, ϑ) = K
(dip)
001 cos2 ϕ sin2 ϑ+K

(dip)
11̄0

sin2 ϕ sin2 ϑ+ const (6.1)

where K
(dip)
001 = −

µ2
B
2

∑j 6=j′

j,j′ 3 |Mj | |Mj′ |
( (rj−rj′)·ex )2−( (rj−rj′ )·ez )2

|rj−rj′ |5
,

K
(dip)
11̄0

= −
µ2

B
2

∑j 6=j′

j,j′ 3 |Mj | |Mj′ |
( (rj−rj′)·ey )2−( (rj−rj′)·ez )2

|rj−rj′ |5
.

Here rj and Mj denote the position and magnetic moment of atom number j , in the sums
j runs over all atoms and j′ runs over all atoms in one unit cell. In the case of just one
magnetic layer it is immediately clear from the last formulas that the anisotropy constants

K
(dip)
001 , K

(dip)
11̄0

are negative and thus in-plane magnetization is favored. In thicker films the
dipolar interactions also favor in-plane magnetization.

The magnetic moment |Mj | of atom j is obtained from the ab-initio results by inte-
grating the magnetization density over the muffin-tin sphere j (thus neglecting the orbital
moment). Inserting these values in the last formulas leads to the anisotropy constants

ML : K
(dip)
001 =−0.10 meV per surf. atom , K

(dip)
11̄0

=−0.11 meV per surf. atom ,

DL : K
(dip)
001 =−0.28 meV per surf. atom , K

(dip)
11̄0

=−0.27 meV per surf. atom .

It is tempting to approximate the magnetostatic energies of non-collinear structures with

E(dip) =
1

N

N∑

j=1

(
K

(dip)
001 sin2 ϑj cos2 ϕj +K

(dip)
11̄0

sin2 ϑj sin2 ϕj

)
(6.2)

where the sum runs over the non-equivalent atoms and the anisotropy constants K
(dip)
001 ,

K
(dip)
11̄0

are defined as in (6.1). But the applicability of (6.2) implies that |Mj | or the
continuus equivalence |M(r)| do not depend much on the magnetic configuration and that
the sum (4.3) converges on a length scale where the spatial rotation of M can be neglected.

Considerable fluctuations of |M| are observed in none of the ab-initio calculations
that are presented in Chapter 6. For spin spirals with q in [001]-direction the magnetic
moments are shown in Fig. 6.3.

In this chapter the q-vector is given in terms of 4π a−1 and
√

8π a−1 respectively.
Here a denotes the W bcc lattice constant, (2 a−1)−1 is the distance in [001]-direction
and (

√
2 a−1)−1 is the distance in [11̄0]-direction between two atomic rows. Thus qx =

0.5 (4π a−1) and qy = 0.5 (
√

8π a−1) respectively denote row-wise antiferromagnetic spin
alignment.

In the following it is shown that the local ansatz (6.2) is sufficient to describe the
magnetostatic energy of the broad DL domain walls. It is assumed that M remains
constant in the real-space direction in-plane perpendicular to q. Therefore one can work
with a quasi one-dimensional model (as introduced in Chapter 5.2.1) and always sum over
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Figure 6.3: Magnetic moments of
the ML Fe atoms (integrated over
the muffin-tin sphere). The calcu-
lations are done for flat spin spirals
with different q-vectors in [001]-
direction.

In the DL domain walls there is
qx < 0.01 (4 π a−1) , on this q-scale
the DL Fe moments change by
less than 0.5% .

all dipoles within one atomic row perpendicular to q. Thus the applicability of (6.2) means
that the sum

E
(dip)
N =

µ2
B
2

N∑

j=−N

∞∑

i=−∞

(j,i)6=(0,i′)∑

i′∈ unit cell

(Mj,i·M0,i′) (rj,i−r0,i′)
2 − 3 ( (rj,i−r0,i′)·Mj,i ) ( (rj,i−r0,i′ )·M0,i′ )

|rj,i−r0,i′ |5

(at rj,i, Mj,i the index j labels the (atomic rows perp. to q) and i the atoms within one row)

converges on a length scale N where the magnetization does not change considerably.

In Fig. 6.4 the sum E
(dip)
N is evaluated in the ferromagnetic case. Obviously only the

interactions with closely neighboring rows are important.

0 1 2 3 4
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K(dip)

meV K
(dip)
001

K
(dip)
11̄0

Figure 6.4: Convergence of the DL
dipolar anisotropy constants. Each

data point represents the sum E
(dip)
N

evaluated over all atoms that in [001]-
direction lie within a certain range N
(in [11̄0]-direction the sum runs over
the entire atomic row). The horizontal
lines indicate the asymptotic limits (ob-
tained by summing over (2000× 2000)
unit cells).

The magnetic moments are ferro-
magnetically aligned.

But just from Fig. 6.4 one cannot estimate the effect of the spatial rotation of Mj

on the magnetostatic energy. This effect is investigated for homogeneous spin spirals.

Fig. 6.5 shows the difference of the total dipolar energy E
(dip)
tot (obtained with (4.3) )

and the approximation E(dip) = 1
N

∑
j S†

j · K(dip) · Sj obtained with (6.2). The energy

corrections to the sum over the entire spiral are negligible (at least for qx<0.01 (4π a−1),
i.e. for scales that are relevant for the broad DL domain walls). Fig. 6.5.c illustrates that
the local energy corrections are much higher, they just cancel in the sum over the entire
spiral. Even the local corrections to (6.2) are not important in the DL. In the ML the
magnetization rotates with much larger q, therefore one should work with (4.3) instead
of the approximation (6.2). But in Chapter 6.7.3 it is shown that the magnetostatic
interactions in the ML can be neglected entirely since the magnetocrystalline anisotropy
is much larger.
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Figure 6.5: Influence of curl(M) on the magnetostatic energy. The energies are calculated for

homogeneous spin spirals. (a), (b) show the deviation of the total dipolar energy E
(dip)
tot from the

energy evaluated by Formula (6.2). (c) shows the energy density resolved over one period of a spiral
with qx =0.01 (4 π a−1) in [001]-direction. The contribution of one pair-interaction is counted half
on both lattice sites.

The curves are labeled with the directions of the rotation axes.
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6.4 Effective exchange interactions

This chapter describes the calculation of the effective exchange parameters sketched in
Chapter 4.1, i.e. the calculation of the parameters describing the energy changes when the
spin-quantization axes of neighboring atoms rotate against each other. The Fe magnetic
moments remain fairly constant in these calculations (cf. Fig. 6.3), the magnetic structure
can be described just by the magnetization direction.

The effect of spin-orbit coupling is neglected in this chapter.

In the following (effective) exchange energy denotes the energy changes due to all ex-
change and correlation processes (and resulting changes in the occupation numbers) that
result from a Pauli-type Hamiltonian, i.e. when spin-orbit coupling and magnetostatic
interactions are neglected.

6.4.1 Spin stiffness

If the magnetization rotates on large length scales, the electronic structure can locally
be approximated by spin spirals (cf. Chapter 3.7.3). In this case no attempt is made to
decompose the spin stiffness energy (energy of the spirals) in terms of several exchange
processes. At small spiral vectors q the energy is proportional to q2 , the prefactor is the
spin stiffness constant A that enters the micromagnetic equation (5.3).

The results for the ML and DL Fe are

ML : A001 = 2.0 ( a
4 π )2 eV per surf. atom , A11̄0 = 2.6 ( a√

8 π
)2 eV per surf. atom ,

DL : A001 = 6.3 ( a
4 π )2 eV per surf. atom , A11̄0 = 2.5 ( a√

8 π
)2 eV per surf. atom ,

for comparison bcc bulk Fe: A100 = 1.1 ( a
4 π )2 eV per atom .

The corresponding data is shown in Fig. 6.6.
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Figure 6.6: Spin-stiffness energies. The points denote the ab-initio results and the solid lines
denote the fits with quadratic and constant term only.

6.4.2 Hopping parameters

In the case of one ML Fe the magnetization direction changes on very short length scales
(the domain wall width is smaller than 10 atomic rows), here the validity of a continuous
model is questionable. In order to find an adequate description of these magnetic structures
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the attempt is made to dissolve the magnetic interaction in a sum of hopping processes
between discrete atomic rows and to calculate the exchange parameters that can be fed
into a model Hamiltonian.

It is assumed that all atoms within one atomic row (⊥q) have the same magnetization
direction. Therefore, it is possible to work with effective exchange integrals between atomic
rows instead of exchange integrals between single atoms (cf. Chapter 5.2.1). Note that a
four-atom interaction contibutes to a three-row interaction, if two of the four atoms are
in the same row.

Furthermore, it is assumed that all magnetic moments rotate within one plane. This
reduces the degrees of freedom considerably.

The ansatz for the exchange energy, that is further investigated in the following, is the
expansion

E(xc) =
∑

j1, j1′
X

(1)
j1, j1′

(1− (Sj1 ·Sj1′) )

+
∑

j1, j1′, j2, j2′
X

(2)
j1, j1′, j2, j2′

(1− (Sj1 ·Sj1′) (Sj2 ·Sj2′) )

+
∑

j1, j1′, j2, j2′, j3, j3′
X

(3)
j1, j1′, j2, j2′, j3, j3′

(1− (Sj1 ·Sj1′) (Sj2 ·Sj2′) (Sj3 ·Sj3′) )

+ . . .

where Sj denotes the magnetization orientation of atomic row j .

(6.3)

This expansion is motivated by the description of the exchange in terms of hopping pro-
cesses, as mentioned in Chapter 4.1. But, (6.3) can be mapped to any symmetric function
E(xc)( {Sj}j ) , provided that all magnetic moments {Sj}j lie within one plane. No assump-
tions on the relevant hopping processes are made. Of course, if (6.3) cannot be reduced
to just a few dominant terms (i.e. a few parameters X), then it is not useful. This can be
the case, for example, if the changes in the occupation numbers cause significant changes
in the energy (cf. Chapter 4.1).

Some of the parameters X coincide due to symmetry reasons,

e.g. X
(1)
j1, j1′

= X
(1)
j1′, j1

= X
(1)
j1+n, j1′+n .

The Heisenberg model (i.e. the exchange term in Eqn. (5.2) ) is the leading term in
(6.3) with

X
(1)
j1, j1′

= 1
2 J|j1 − j1′| .

Here the factor 1
2 accounts for the double counting as the sum in (6.3) is understood to

count X
(1)
j1, j1′

and X
(1)
j1′, j1

.

In Appendix G it is shown, that the Heisenberg model can describe the major changes
in the exchange energy. The nearest-neighbor interaction is dominant, but in many cases
the consideration of the interactions between 2nd- and 3rd-nearest neighbors improves the
approximation. Thus, the exchange energy E(xc) is approximated by

E(xc) =
j′+N∑

j=j′+1

Jj−j′ (1− Sj ·Sj′) + const

with J1 = +54 meV
surf. atom

, J2 = −14 meV
surf. atom

, J3 = +14 meV
surf. atom

.

(6.4)

For the tests presented in Appendix G the error made by (6.4) is <∼ 10meV per surface
atom.
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It is not possible to improve the approximation by including the terms next to the

Heisenberg model (parameters X
(2)
··· ) in the expansion (6.3). In Appendix G.2 it is shown

that the corrections to (6.4) cannot be described with one fixed set of parameters {X(2)
··· }

for a general magnetic configuration.

Note, that (6.4) is a reasonable approximation for the large energy differences between
magnetic configurations of big discrepancy (e.g. between ferromagnetic alignment and an
atomically sharp domain wall), whereas the approach of the previous Chapter 6.4.1 is
suited well for the approximation of the (small) exchange energy in the ferromagnetic
limit. The approximations in these two regimes are not necessarily governed by the same
exchange integrals (cf. Appendix G.1).

6.5 Magnetocrystalline anisotropy in the ferromagnetic do-
mains

In the ferromagnetic domains the studied surface possesses two mirror planes that are rect-
angular to each other. In Appendix E it is shown that the magnetocrystalline anisotropy
tensor has local extrema (or saddle points) at the high-symmetry directions [001], [11̄0],
[110] . With the polar angles as defined in Fig. 6.1 the magnetocrystalline anisotropy
energy is approximated by

E(so)(ϕ, ϑ) = K
(so)
001 cos2 ϕ sin2 ϑ+K

(so)
11̄0

sin2 ϕ sin2 ϑ+ const . (6.5)

The parameters K
(so)
001 , K

(so)
11̄0

are calculated by comparing the energies for the magnetiza-
tion along the corresponding directions:

K
(so)
001 = E(so)(ϕ=0, ϑ= 1

2π)−E(so)(ϑ=0) , K
(so)
11̄0

= E(so)(ϕ= 1
2π, ϑ= 1

2π)−E(so)(ϑ=0) .

These magnetocrystalline anisotropy constants are very sensitive to small changes in the
atomic structure and to computational parameters. Fortunately the local force theorem
(cf. Chapter C) can be applied. The magnetocrystalline anisotropy constants are:

ML : K
(so)
001 = 0.39 meV per surf. atom , K

(so)
11̄0

=−2.42 meV per surf. atom ,

DL : K
(so)
001 = 0.36 meV per surf. atom , K

(so)
11̄0

= 0.43 meV per surf. atom .

As pointed out in [76] the ML anisotropy energies are remarkably high for the ML Fe
due to the high potential gradient in the vicinity of the first W-layer nuclei. The states of
unbalanced magnetic moment are mainly of (Fe3d)-character and only to a small amount
localized at the W-nuclei, but the SOC-term (2.15) in the Hamiltonian is proportional to
∇V and thus much larger in the vicinity of the W nuclei (that have 74

26 times more protons
than the Fe nuclei). The results in Fig. 6.7 show the contributions from the different atom
layers to the anisotropy energies. Note that the first W atoms have an induced magnetic
moment of 0.1µB in the case of ML or DL coverage alike. Nevertheless, in the case of ML
coverage the W nuclei have a much stronger impact on the anisotropy energy.

The applicability of the ansatz (6.5) is checked by calculating the anisotropy energy
not only in the three high-symmetry directions. The results are shown in Fig. 6.8, the
discrepancy between the cos2-ansatz and the ab-initio results is within the numerical
uncertainty. In the following it is assumed that Eqn. (6.5) (with parameters fitted to the
energies in the high-symmetry directions) is sufficient to describe the magnetocrystalline
anisotropy in the studied system.
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Figure 6.8: Magnetocrystalline
anisotropy of the Fe DL calculated
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high-symmetry points (with local force
theorem). The dots represent the
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cos2-ansatz according to Eqn. (6.5)
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high-symmetry points. [110] denotes
the direction out-of-plane.

6.6 Dzyaloshinsky-Moriya interaction in the DL domain

walls

The energy corrections due to the SOC-term in the Hamiltonian depend on the size of the
q-vector. For spiral structures these energies can be estimated by the method presented in
Chapter 3.9. In the ferromagnetic limit the energy density (averaged over an entire spiral
period) corresponds to the integral of the anisotropy-energy curves presented in Fig. 6.8.
If the DM interaction does not vanish, then the (averaged) SOC-induced corrections to
the energy density have a term that is linear in q. Of course, for large spiral periods (i.e.
small q) the SOC-induced corrections are dominated by their linear term. The size of this
linear term corresponds to the size of the D-vector.

In Fig. 6.9 the results for small q-vectors are given for the Fe DL. The curves allow
to estimate the value of the DM interaction for both wall orientations as well as the valid-
ity of some of the approximations made in the micromagnetic ansatz, namely that in the
relevant |q|-intervals the odd part of the curves can be approximated by the linear term
and the corrections due to the even part can be neglected against the spin stiffness that
is calculated in Chapter 6.4.1. For the rotation axes orthogonal to the ones chosen in the
figure the curves are certainly even and the DM interaction vanishes (cf. Chapter 5.2.2).

The linear fits that are indicated in Fig. 6.9 correspond to the values

DL :
D001 = (−25 ±10 ) ( a

4 π ) meV per surf. atom ; q ‖ [001] ,
D11̄0 = ( 14.5± 3 ) ( a√

8 π
) meV per surf. atom ; q ‖ [11̄0] .

In the case of the Fe ML the magnetic structure in the domain walls is far from the
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Figure 6.9: SOC corrections to the spin-spiral energies in the Fe DL. The curves show only the
contribution of the spin-orbit coupling to the total energy, i.e. they show the energies of the spin
spirals obtained with SOC included in the Hamiltonian minus the energies presented in Fig. 6.6 that
are obtained from the pure Pauli-type Hamiltonian (i.e. with the scalar-relativistic approximation).
In the left figure the spins rotate in the (x, z)-plane and in the right figure they rotate in the (y, z)-
plane, in both cases the spin rotation axis is parallel to the D-vector. The size of |D| is estimated
by the slope of the curves at q=0 (indicated with solid lines).

ferromagnetic limit. The experimental results do not rule out an atomically sharp wall.
It is not clear to what extend the effects, that arise from the interplay of non-collinearity
and spin-orbit coupling, can be described with the D-vector (and with the spin-orbit cou-
pling effects in homogeneous spin spirals respectively). Due to the immense computational
effort and the limited significance of the result the calculation of the DM interaction is
abandoned in the case of the Fe ML.

6.7 Modeling the domain-wall structure

6.7.1 Domain magnetization

In the domains the total anisotropy energy is the sum K(dip) +K(so) .

anisotropy const. / (meV per surf. atom)

K
(dip)
001 K

(so)
001 K

(tot)
001 K

(dip)
11̄0

K
(so)
11̄0

K
(tot)
11̄0

ML −0.10 0.39 0.29 −0.11 −2.42 −2.53
DL −0.28 0.36 0.08 −0.27 0.43 0.16

Table 6.1: Calculated
anisotropy constants. Note
that the error in K(so) is of
the order 0.1 meV , therefore
the relative error of the DL
K(tot) is huge.

For the ML Fe the easy axis can unambiguously be identified as the [11̄0]-in-plane-axis,
but in case of the DL the total anisotropy energy is too small to identify the easy axis (cf.
Table 6.1).
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6.7.2 Micromagnetic model for the broad DL walls

The broad DL domain walls can be described within the micromagnetic model that is
introduced in Chapter 5.2, recall Eqn. (5.3):

E =

∫
dr
(
A ṁ(r)2 + D·(m(r) × ṁ(r) ) + m(r)† ·K·m(r)

)
where m = M

|M| .

If q points along a high-symmetry line (i.e. [001] or [11̄0] ) then the D-vector is in-plane
perpendicular to q. From experiments it is known that the magnetization in the domains
points out-of-plane. As the easy axis is perpendicular to D, the walls that are oriented
along a high-symmetry direction correspond to Figs. 5.10, 5.12 (remember that in Chap-
ter 5 there is D ‖ ez ).

Even if the wall magnetization rotates within one plane, there are eight different com-
binations of the high-symmetry wall orientations and spin rotations. They are listed in
Table 6.2. The Bloch walls of opposite chirality are equivalent, but there remain six
configurations with pairwise different energies.

The model parameters A, D, K are obtained from the ab-initio calculations. They are
converted into areal densities and listed in Table 6.3. The spin stiffness A gets contribu-
tions from the exchange interactions presented in Fig. 6.6 and from the quadratic fit to
the DM curves presented in Fig. 6.9, the latter is rather small and neglected here.
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Table 6.2: Rotation paths and corresponding model parameters for the DL domain walls. In-
between the listed Bloch- and Néel-wall paths there are truly 3-dimensional rotation paths in
spin-space (cf. Figs. 5.10, 5.12).

001 11̄0

spin stiffness A / (meV ) 56.4 44.8
anisotropy energy K / (meV nm−2 ) 1.1 ?) 2.3 ?)

DM interaction D / (meV nm−1 ) −8.9 7.3

?) Note that the error in K is about 1.5meV nm−2 .

Table 6.3: DL model
parameters converted
into areal densities.

If the magnetization rotates within one plane the wall energy can be calculated by
Eqn. (5.15):

E = 4
√
AK − πD .

The error margins of the calculated model parameters leave some space for interpretations.

All walls that are observed in the broad DL stripes are oriented in [11̄0]-direction. The
experiments show that the rotational direction is the same in all these walls. It is most
likely that they are Néel walls, otherwise one would observe both of the two degenerate
rotation paths that are shown in Fig. 5.10. In the Néel walls the width is described by
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w=2
√
A/K ⇒ K=4A/w2 . The calculated spin stiffness and the measured wall width

are both of reasonable accuracy. This allows to estimate the anisotropy energy as

K001 = 4
A001

w2
≈ 4

56.4

7.32
meV nm−2 = 4.2 meV nm−2 .

If this value is inserted in Eqn. (5.15) then one gets (with the error bars of D001 that are
indicated in Fig. 6.9):

E(Neel)

11̄0
= 4

√
A001K001 − π |D001| ≈ 62 meV nm−1 − π |D001| ≈ (34± 11) meV nm−1 .

The contribution from the DM interaction is large enough to lower the wall energy con-
siderably. A hypothetical Bloch wall oriented in [11̄0]-direction has the energy

E(Bloch)

11̄0
= 4

√
A001K11̄0 ≈ 30

√
K11̄0 meV .

It is energetically more favorable than the Néel wall if K11̄0
<∼ 1 meV nm−2 . Of course,

the truly 3-dimensional walls that are described in Chapter 5.2.4 have lower energy
than pure Néel or Bloch walls. The coexistence curve in Fig. 5.12 can be approxi-
mated with K⊥ = 1− 0.75 |D⊥| , the domain walls are truly 3-dimensional if K11̄0 <
K001−0.75 |D001 |

√
K001/A001 ≈ (2.4 ± 0.7) meV nm−2 . But, K⊥ must be considerably

smaller than 0.75 |D⊥| if the deviation from the Néel-wall rotation path is detectable with
STM.

The next step is to compare E(Neel)

11̄0
with the energies E001 of the hypothetical walls

that are oriented in [001]-direction. The energy (per length) E001 is expected to be much
higher than E(Neel)

11̄0
since walls oriented in [001]-direction are observed only in very narrow

constrictions (i.e. only in cases where the wall length (⊥q) gets much shorter if the wall
is oriented in [001]-direction). A Néel wall that is oriented in the [001]-direction has the
energy

E(Neel)

001 = 4
√
A11̄0K11̄0 − π |D11̄0| ≈ 27

√
K11̄0 meV − (23± 5) meV nm−1 .

(The error bars of D11̄0 refer to the ones indicated in Fig. 6.9.) Thus, a Néel wall in [001]-
direction has higher energy per length than a Néel wall in [11̄0]-direction if K11̄0

>∼ (4.7 ±
3.2) meV nm−2 . A Bloch wall that is oriented in the [001]-direction has the energy

E(Bloch)

001 = 4
√
A11̄0K001 ≈ 55 meV nm−1 .

Again, if a truly 3-dimensional wall exists it has even lower energy than a pure Néel or
Bloch wall.

The terms of the magnetostatic energy that depend on the spatial rotation of M, are
not included in Eqn. (5.3). They are calculated with the procedure that is presented in
Appendix F.2.3. Their contribution to the wall energy is less than 5 meV nm−1 .

Obviously, the calculated parameters and specified error margins (in particular of K)
do not quite match with the interpretation given above.

But one should be aware of the meaning of these error margins. The error margin
that is given for D corresponds to the fits that are indicated in Fig. 6.9. The error mar-
gin of D001 is very sensitive to the fitting procedure, over and above the accuracy of
the computed data points is not known (cf. Appendix H.4). The accuracy of K(so) is
known better. The convergence is estimated with respect to important computational
parameters and with respect to the number of W-layers (cf. Appendix H.3). But, this
convergence tests do not tell anything about the discrepancy between the perfect LDA
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result (for the interlayer relaxations as given in Appendix H.1) and the real system.
The relevant energy differences reach the limit of the computational method (note that
1 meV nm−2 =̂ 0.035 meV per Fe atom ).

Furthermore, one should keep in mind that the micromagnetic model (5.3) is not exact,
though it is sufficient to describe the essential effects (cf. e.g. Fig. 6.8).

Some of the qualitative experimental results are quite distinct. One has to use them
as a basis for the interpretation. On the relevant energy scale one cannot expect that
the DFT results defenitely confirm the proposed explanation. The merit of the ab-initio
calculations is to estimate the order of magnitude of the interactions and thus to iden-
tify the relevant effects. In particular, the calculations show that the DM interaction is
large enough to compete with

√
AK and dominates the curl(M)-dependent terms of the

magnetostatic interaction. Furthermore, the ab-initio calculations show that the preferred
wall orientation cannot be explained just by the anisotropy of the spin stiffness: The
DFT calculations that do not include SOC are relatively stable and precise, moreover the
large uncertainties in K and E result from the partial cancellation of different quantities.
Without the DM term the magnetization rotation path would not depend on the wall
orientation and the energy of walls oriented in [11̄0]- and [001]-direction would be just
proportional to

√
A001 and

√
A11̄0 respectively.

All walls show the same rotational direction. Therefore, it is most likely that they are
Néel walls and

E(Neel)

11̄0
= 4

√
A001 K001 − π |D001| < E(Bloch)

11̄0
= 4

√
A001K11̄0 .

All walls are oriented in [11̄0]-direction. The terms 4
√
AK and π |D| are of the same

order of magnitude. Therefore, it is most likely that

E(Neel)

11̄0
= 4

√
A001K001 − π |D001| �





E(Neel)

001 = 4
√
A11̄0K11̄0 − π |D11̄0|

E(Bloch)

001 = 4
√
A11̄0K001

.

In the studied system the magnetostatic interactions decay fast. It is questionable,
whether the average domain size is determined by the interplay of magnetostatic energy
and domain-wall energies. Another explanation for a limited domain size in the ground
state is discussed in Chapter 5.2.4: According to Eqn. (5.11) the DM interaction (that
favors non-collinearity) wins against the exchange and anisotropy terms if

E(Neel)

11̄0
= 4

√
A001 K001 − π |D001| < 0 .

The values obtained by the ab-inito calculations do not support this scenario (see above),
but due to the large uncertainties it cannot be ruled out completely. One should be aware,
that the experimentally observed domain pattern is not necessarily the ground state. It
can depend on the dynamics during the domain formation (i.e. during the cooling of the
sample) which metastable state evolves.

6.7.3 Micromagnetic and discrete model for the narrow ML walls

In the case of the narrow ML domain walls the application of the micromagnetic model
is questionable. But it is a good starting point to calculate the ML wall width w with
Eqn. (5.7). With the results from Chapters 6.4.1, 6.5 one obtains

w11̄0 = 2

√
A001

−K11̄0
= 1.4 nm , w001 = 2

√
A11̄0

−K11̄0
= 2.3 nm
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where w11̄0 and w001 denote the width of the walls that are oriented in [11̄0]- and [001]-
direction respectively. These values are in contradiction to most experimental results, a
width below the experimental resolution (w <∼ 0.8 nm) is reported in [e.g. 13, 81, 83]. In
some recent experiments on very clean samples, however, a width of w11̄0 ≈ 1.5 nm is
measured [14].

In the following it is investigated, whether the formation of very narrow walls can
be understood on the basis of the ab-initio results. This investigation goes beyond the
micromagnetic model, it is restricted to walls oriented in the [11̄0]-direction and ideally
clean samples.

The discrete model (5.2) with the exchange integrals J1, J2, J3 given in (6.4), the anisotropy
constants given in in Table 6.1 and D = 0 is investigated with the method presented in
Appendix F.2. For the actual values of the parameters, the discrete model exhibits virtu-
ally the same domain wall profile as the continuous micromagnetic model: The simulation
of the discrete model do not show any (meta)stable solution of (5.2) but the domain wall
plotted in Fig. 6.10. In Fig. 6.10, this wall profile is compared with the wall profile (5.6)
from the corresponding micromagnetic model. In the micromagnetic model the three ex-
change integrals (6.4) are approximated by a spin stiffness A=2.4 ( a

4 π )2 eV per surf. atom ,
resulting in a wall width w=

√
A/K=1.6 nm (cf. Eqn. (F.1), note that in Appendix F.1

the exchange integrals Jj have the dimensions of energy and (eV per surf. atom) is an areal
energy density).

−1 0 +1

0 

π/2

π 

r / nm

ϑ
Figure 6.10: ML domain wall profile ob-
tained from the discrete model with 3 ex-
change integrals. The dots (•) represent the
magnetization orientation at the discrete lat-
tice points, the solid line represents the wall
profile obtained with the corresponding mi-
cromagnetic model.

As the next step, the influence of the magnotostatic interaction is investigated. So far,
this interaction is considered only in the anisotropy tensor K

(tot) = K
(so) +K

(dip) . The
neglection of K

(dip) introduces only a minor error in the wall width w ∼ 1/
√
K since√

K
(tot)
11̄0

/K
(so)
11̄0

=1.02 .

K
(dip) is calculated for a ferromagnetic system. But, if the magnetization rotates on

small length scales the contribution of the magnetostatic energy can be much larger than
in the ferromagnetic limit (for the DL this is already illustrated in Fig. 6.5.c ). Therefore,
the dipolar interactions are expicitly included in the discrete model with the use of For-
mula (4.3) (cf. Appendix F.2.3). The wall profile resulting from this extended model does
not show a significant deviation from the result presented in Fig. 6.10.

The inclusion of the DM interaction in the models cannot result in a smaller wall width: In
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Chapter 5.2.4 it is shown, that the neglection of the D-vector in the micromagnetic model
does not lead to a significantly larger wall width (there is an exeption if the anisotropy
difference between the easy and intermediate axis is large, this does not apply here). In
the numerical investigations of the discrete model (5.17) a significant decrease of the wall
width with increasing |D| has not been observed. For q parallel to the [001]-direction the
anisotropy energy between the easy and intermediate axis is very small (cf. Table 6.1). In
this case Fig. 5.16 applies for Eqn. (5.17). This figure shows that a wall cannot be sharp
for a certain J/K and D 6=0 if it is not sharp for the same J/K and D=0 .

Of course, if the domain walls are very narrow, it might be necessary to extend
Eqn. (5.17) not only by higher-order exchange-terms but also by higher-order terms that
depend on the spin-orbit coupling. The identification of these terms by ab-initio calcula-
tions requires further calculations in large supercells. These calculations reach the limit
of the currently available computing resources and are omitted in this thesis.

6.8 Summary

The purpose of this theoretical analysis is to show wich effects are relevant for the descrip-
tion of the domain walls in the atomically thin Fe films on the W(110)-surface.

The formation of domain walls in these ultrathin surface-films is significantly different
to those observed in bulk systems.

In Fe bulk the domain walls have a width of ≈ 40 nm [24]. The spin stiffness in
the bulk and in the studied surface films is of the same order of magnitude, but the
anisotropy energy in the bulk is much smaller. In cubic symmetry the leading term of

the magnetocrystalline anisotropy is K
(so)
bulk (x

2 y2 +y2 z2 +z2 x2) , for Fe it has the value

K
(so)
bulk ≈ 0.004 meV per atom [35]. But the magnetostatic interactions are very important

in bulk materials: the stray fields inhibit the formation of Néel walls and the anisotropy
energy depends on the mesoscopic domain structure. In the atomically thin surface films,
however, the magnetocrystalline anisotropy is large and from magnetostatic interactions
only the short-ranged contributions are relevant.

Furthermore, the DM interaction is an important quantity for the studied surface,
but irrelevant in most bulk systems. In particular, it vanishes in systems with inversion
symmetry and thus is absent in many bulk geometries.

Fe DL

The domain walls in the Fe DL can be described with the micromagnetic ansatz (5.3).
They are Néel walls with an in-plane rotation axis. On this rotation path the walls can
benefit most from the DM interaction. The observed walls are oriented in [11̄0]-direction,
their energy per length is

E(Neel)

11̄0
= 4

√
A001K001 − π |D001| .

It is expected that this difference is much smaller than

E(Neel)

001 = 4
√
A11̄0K11̄0 − π |D11̄0| and E(Bloch)

001 = 4
√
A11̄0K001 ,

either because |D001| > |D11̄0| or because K001 < K11̄0 . This can explain that all walls
are oriented in the same direction, although the single model parameters are for both
directions of the same order of magnitude.
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The Fe DL fits well to the micromagnetic model that is discussed in Chapter 5. The
magnetization rotates on a length scale where the discrete lattice structure is not relevant
and all interactions can be regarded as local. A linear term like the DM term in the energy
functional is of particular importance if the q-vector is small. On the other hand, a small
q-vector is connected with small K and thus with small spin-orbit coupling effects. In

the studied system q is smaller than it would be expected just from
√
A/K(so) , since the

magnetostatic anisotropy energy constant K(dip) happens to cancel a considerable part of
K(so).

Fe ML

The domain walls in the Fe ML are very narrow. This is mainly due to the large magne-
tocrystalline anisotropy, with the ab-initio calculations it is estimated as K(so)≈2.4meV
per surface atom. The theoretical results suggest a domain wall width w11̄0≈1.4 nm . On
this length scale the micromagnetic model that is discussed in Chapter 5 is sufficient to
describe the magnetic structure. The experiments, that report significanly narrower walls,
cannot be understood with the models that are discussed in this thesis.

The effect of the DM interaction is not investigated with ab-initio calculations, but
with the ansatz made in Chapter 5.2.1 the inclusion of the D-vector cannot explain the
sharp domain walls.

The magnetostatic interactions have only negligible influence on the magnetic structure
in the Fe ML.
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Summary

In this thesis the shape and size of magnetic domain walls in surface films is investigated.
The main focus is on the Dzyaloshinsky-Moriya (DM) interaction, since the influence of
this interaction on domain-wall structures is sparely discussed in literature.

The best known magnetic domain walls are the ones, that form the boundary between
two ferromagnetic domains with opposite magnetization direction. Domain walls can be
described by a competition between spin stiffness and anisotropy energy. If the magneti-
zation rotates on long length scales, then a micromagnetic model can be applied. In the
simplest case, the solution of this model is very elementary and known for 70 years. In
certain crystal symmetries, however, the energy functional can be extended by the DM
term that is linear in q (i.e. that favors a certain rotational direction). The inclusion of
this term in the micromagnetic model significantly increases the complexity of the domain
walls: The magnetization can rotate on a 3-dimensional path in spin-space, the different
rotation paths can be classified by several distinct phases. This thesis presents a systematic
overview of the resulting domain wall profiles and phase diagrams.

The effect of the discrete lattice structure is discussed within a Heisenberg-like model.
The DM interaction is included in this model and the solutions are analysed for some
exemplary cases.

The DM interaction vanishes if the crystal possesses inversion symmetry and, thus,
is absent in most bulk materials. Of course, the inversion symmetry is broken on every
surface. The DM interaction is expected to be particularly relevant for atomically thin
magnetic films on non-magnetic substrates: Usually, these systems are not governed by
stray fields. Furthermore, in ultrathin films the reduced symmetry (surface) is relevant in
the local environment and for the short range interactions of all magnetic atoms. Thus,
the DM interaction can play a considerable role in a class of materials whose importance
has increased over the last decade. Atomically thin films and other magnetic nanostruc-
tures attract some attention since it is possible to resolve their magnetic properties with
advanced experimental techniques (like spin-polarized STM). The variety of magnetic
properties makes these systems interesting from a purely scientific point of view as well as
for future spintronic devices.

The simple models are a very useful to understand the main mechanisms and to gain
an overview of the possible scenarios. But, the actual results depend on the values of the
model parameters, i.e. on A, D, K. In order to estimate the effects on real systems it is
important to know the size of these parameters. In this thesis the model parameters are
determined with electronic structure calculations. The calculation of the spin stiffness A
and magnetocrystalline anisotropy K

(so) in the framework of the FLAPW method has been
established over the last years. The D-vector can be obtained from the magnetocrystalline
anisotropy of homogeneous spin spirals. It requires some extensions of the usual ab-initio
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methods to calculate these spin spirals, since they consist of very many non-equivalent
atoms. In this thesis a perturbative approach is developed, that allows to estimate the
magnetocrystalline anisotropy of spin spirals with long periods and thus allows to estimate
the size of the D-vector with parameter-free calculations.

The theoretical model and the computational method are applied on the system
Fe/W(110), i.e. one or two mono-layer Fe coverage on the W(110)-surface. The range
of the model parameters depends significantly on the Fe coverage. Furthermore, the easy
axis depends on the converage. Thus, the rotation paths differ qualitatively from the
mono- to the double-layer Fe.

The double-layer Fe shows a large (A/K)-ratio. This implies broad domain walls
that are well suited for the description with a micromagnetic model (remember that this
model is justified for the limit of small q). It is shown, that the magnetic structure
can be explained by an interplay of spin stiffness, magnetocrystalline and magnetostatic
anisotropy and DM interaction. The magnetostatic interactions can be treated as a local
anisotropy. The DM interaction is strong enough to determine the rotational direction and,
strikingly, the orientation of the domain walls. The description of the magnetic domain
boundaries in the mono-layer Fe is more problematic. Due to the large anisotropy energy
they are much sharper than in the double-layer, but the precise magnetic structure is
revealed neither experimentally nor theoretically. The magnetization changes on a length
scale, where the discrete crystal structure might be relevant. Thus, one has to find a
description beyond the micromagnetic model. But, far from the small-q-limit and under
consideration of the discrete lattice structure there are many effects of possible importance.
The ab-initio calculations indicate that the exchange interaction can be approximated by
a Heisenberg model with three parameters. But further and more-accurate parameter-free
calculations are limited by the size of the supercells.

In summary, this thesis gives an overview of the magnetic structure of domain walls
under consideration of the Dzyaloshinsky-Moriya interaction. Simple models are presented
as well as computational methods for parameter-free calculations, thus a link is made
between the fields of micromagnetism and electronic-structure calculations. The relevant
effects are identified for the exemplary system Fe/W(110).



Appendix A

Applying GGA to non-collinear
magnetism

A.1 Construction of Vxc

Most of the LDA functions fxc(n, |m|) are constructed for general non-collinear config-
urations [e.g. 98], but so far all GGA functions fxc(n, |m|, |∇n|, |∇m|) have been con-
structed only for collinear configurations. Nevertheless one can try to approximate the
exchange-correlation energy of a non-collinear configuration by

∫
d3rfxc using the func-

tion fxc(n, |m|, |∇n|, |∇m|) that is known for the collinear configurations. In this case
the gradient of the scalar magnetization m is not well-defined. When choosing a local
z-axis parallel to the magnetization direction a straightforward generalization of fxc is to
interpret m and ∇m as mz and ∇mz (note that a pure rotation of the magnetization does
not give any additional energy contribution if ∇mx, ∇my are neglected). This procedure
is equivalent to the replacement of m and ∇m with |m| and ∇|m| in global coordinates.

Most of the advantages of GGA over LDA are already produced by functions of the
form fxc(n, |m|, |∇n|), not depending on the gradient of the magnetization [e.g. 79]. The
generalization of this functions to non-collinear configurations is clear. Nevertheless non-
collinearity is not regarded in the construction of this functions and it is as doubtful
whether they describe the non-collinear configurations well as it is for the previously
mentioned GGA functions that depend on |∇m| .

More sophisticated (but not necessarily more successful) ways of generalizing the stan-
dard GGA functionals to non-collinear magnetism are investigated in [20,21,49].

It is possible to construct an density-dependent exchange-correlation potential Vxc from the
energy functional Exc =

∫
d3rfxc(n, |m|, |∇n|, |∇|m|| ). Furthermore, the potential can be

written in the form Vxc = Vxc11 + Bxc σ · m

|m| where Vxc and Bxc = |Bxc| have the same

functional dependence on the densities n, |m| and their derivatives as they have on n and
m in the collinear case. The last point is of big practical advantage, since the variation of
the energy functional does not have to be recalculated and reprogrammed when extending
the computer code in order to deal with non-collinear magnetism.

To proove the last statements one has to show that the variation of Exc with respect
to ↑∗ν , ↓∗ν can be written in the form
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δ Fxc

δ↑∗ν
=

∂fxc(Φ)

∂ ↑∗ν
−

∑

s∈{x,y,z}

d

d rs

∂fxc(Φ)

∂ (d↑∗ν
d rs

)

= Vxc(N ) ↑ν(r) + Bxc(N )

(
mz(r)

|m(r)| ↑ν(r) +
mx(r)− imy(r)

|m(r)| ↓ν(r)
)

,

δ Fxc

δ↓∗ν
=

∂fxc(Φ)

∂ ↓∗ν
−

∑

s∈{x,y,z}

d

d rs

∂fxc(Φ)

∂ (d↑∗ν
d rs

)

= Vxc(N ) ↓ν(r) + Bxc(N )

(−mz(r)

|m(r)| ↓ν(r) +
mx(r) + imy(r)

|m(r)| ↑ν(r)
)

with

Φ=
{
↑∗ν′ (r) , ↓∗ν′ (r) , ↑ν′ (r) , ↓ν′ (r) , d

d rs
↑∗ν′ (r) , d

d rs
↓∗ν′ (r) , d

d rs
↑ν′ (r) , d

d rs
↓ν′ (r)

}
s ∈{x,y,z}
ν′∈[1,N]

,

N=
{
n(r) , |m(r)| , d

d rs
n(r) , d

d rs
|m(r)| , d2

d rs d rs′
n(r) , d2

d rs d rs′
|m(r)|

}

s,s′∈{x,y,z}
.

These formulas reduce to the ones used in the collinear case with the quantization axis in
z-direction and m ≥ 0. (Negative magnetization does not impose a problem since Exc is
isotropic.)

In the following the last formulas are verified by evaluating the variations explicitly.
The real-space derivatives will be indicated by upper indices,

e.g. d
d rs

n = n(s) =
∑

ν′

(
↑∗ν′

(s) ↑ν′ + ↑∗ν′ ↑(s)ν′ + ↓∗ν′
(s) ↓ν′ + ↓∗ν′ ↓(s)ν′

)
.

δ Fxc

δ↑∗ν
=

∂fxc

∂ n

∂ n

∂ ↑∗ν
+
∑

s

(
∂fxc

∂ n(s)

∂ n(s)

∂ ↑∗ν
− d

d rs

(
∂fxc

∂ n(s)

∂ n(s)

∂↑∗ν (s)

))

+
∂fxc

∂ |m|
∂ |m|
∂ ↑∗ν

+
∑

s

(
∂fxc

∂ |m|(s)
∂ |m|(s)
∂ ↑∗ν

− d

d rs

(
∂fxc

∂ |m|(s)
∂ |m|(s)
∂ ↑∗ν (s)

))

=

(
∂fxc

∂ n
−
∑

s

(
d

d rs

∂fxc

∂ n(s)

)

︸ ︷︷ ︸
= Vxc(N )

)
↑ν +

∂ fxc

∂ |m|︸ ︷︷ ︸
=B′

xc(N )

∂ |m|
∂ ↑∗ν

+
∑

s

∂fxc

∂ |m|(s)

(
∂ |m|(s)
∂ ↑∗ν

− d

d rs

∂ |m|(s)
∂ ↑∗ν (s)

︸ ︷︷ ︸
=C

)
−
∑

s

(
d

d rs

∂fxc

∂ |m|(s)︸ ︷︷ ︸
=B′′

xc,s(N )

)
∂ |m|(s)
∂↑∗ν (s)

.

The forms Vxc, B
′
xc, B

′′
xc,s as a functions of N do not depend on the particular choice of

the function m( {↑ν′(r), ↓ν′(r)}ν′ ).
It is C = 0, that can be seen by evaluating the derivatives and by noting that

ms′ =
∑

ν′

(
↑ν′

↓ν′

)†
σs′

(
↑ν′

↓ν′

)
⇒

(
∂ ms′(Φ)

∂ ↑∗ν
=
∂ m

(s)
s′ (Φ)

∂ ↑∗ν (s)
;
∂ m

(s)
s′ (Φ)

∂ ↑∗ν
=

d

d rs

∂ m
(s)
s′ (Φ)

∂ ↑∗ν (s)

)

and

∂ |m|(s)
∂ ↑∗ν

=
∂

∂ ↑∗ν
∑

s′

ms′ m
(s)
s′

|m| =

∑

s′

1

|m|2

(
|m|m(s)

s′
∂ ms′

∂ ↑∗ν
+ |m|ms′

∂ m
(s)
s′

∂ ↑∗ν
−ms′ m

(s)
s′
∑

s′′

ms′′

|m|
∂ ms′′

∂ ↑∗ν

)
=
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∑

s′

1

|m|2 |m|m
(s)
s′
∂ ms′

∂ ↑∗ν
−
∑

s′,s′′

1

|m|2 ms′ m
(s)
s′
ms′′

|m|
∂ ms′′

∂ ↑∗ν
+
∑

s′

ms′

|m|
∂ m

(s)
s′

∂ ↑∗ν
=

∑

s′

1

|m|2

(
|m|m(s)

s′ −ms′
∑

s′′

ms′′ m
(s)
s′′

|m|

)
∂ m

(s)
s′

∂ ↑∗ν (s)
+
∑

s′

ms′

|m|

(
d

d rs

∂ m
(s)
s′

∂ ↑∗ν

)
=

d

d rs

∑

s′

ms′

|m|
∂ m

(s)
s′

∂ ↑∗ν (s)
=

d

d rs

∂ |m|(s)
∂ ↑∗ν (s)

.

The remaining terms reduce to

∂ |m|
∂ ↑∗ν

=
1

|m|

(
mz

∂ mz(Φ)

∂ ↑∗ν
+mx

∂ mx(Φ)

∂ ↑∗ν
+my

∂ my(Φ)

∂ ↑∗ν

)

=
1

|m| (mz ↑ν +(mx − imy) ↓ν) ,

∂ |m|(s)
∂ ↑∗ν (s)

=
1

|m|

(
mz

∂ m
(s)
z (Φ)

∂ ↑∗ν (s)
+mx

∂ m
(s)
x (Φ)

∂ ↑∗ν (s)
+my

∂ m
(s)
y (Φ)

∂ ↑∗ν (s)

)

=
1

|m| (mz ↑ν +(mx − imy) ↓ν) .

The variations with respect to ↓∗ν can be calculated in the same way and the exchange-
correlation potential can be written in the desired form

Vxc(N ) = Vxc(N )11 +

(
B′

xc(N )−
∑

s

B′′
xc,s(N )

)
σ · m|m| .

A.2 Technical aspects

This chapter discusses numerical instabilities that are strongly connected with the ac-
tual implementation, the following discussion is surely not relevant for every DFT-based
computer code.

In the code that is used in this thesis, the interstitial densities n and m are calculated
and stored on a discrete mesh in reciprocal space (i.e. by their Fourier coefficients), but
the function Vxc(N ) is parameterized in real space (where it is local). In the collinear

case the method of choice is to calculate the real-space derivatives d
d rs

n, d
d rs

m, d2

d rs d rs′
n,

d2

d rs d rs′
m in reciprocal space analytically before transforming them to real space via FFT.

In the non-collinear case the derivatives of |m(r)| =
√
mx(r)2 +my(r)2 +mz(r)2 have

to be calculated. It would be a major task to calculate the absolute value in reciprocal
space, therefore each component of m is transformed to real space before |m| is calculated.

A straightforward and practicable way to obtain d
d rs
|m|, d2

d rs d rs′
|m| is to calculate the

derivatives in real space numerically. But it should be noted that it is not recommended
to transform |m| back to reciprocal space via FFT in order to calculate the required
derivatives analytically from the Fourier coefficients.

In reciprocal space the eigenfunctions ψν of the discrete Hamiltonian matrix (that is
used in actual calculations) are described on the mesh points within the kmax-sphere (i.e.

ψν(r) =
∑ |k|<kmax

k

(
c↑,k

c↓,k

)
e2 π ik r , cf. Chapter 3.4), each component of the magnetization

m =
∑

ν ψ
†
ν σψν is described within the (2 kmax)-sphere and m2

z is described within the
(4 kmax)-sphere. But the Fourier expansion of the square-root shows a considerably slow
(asymptotic) decay (Fig. A.1). |m(r)| is described well when this series gets truncated
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d z2 m
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Figure A.1: Test calculations of γ-Fe show the numerical problems concerning the evaluation of
d2

d z2 |m|. The first row shows the decay of the Fourier coefficients of m =
∑

k
ck exp(2πikr), the

weightening factor k2 is introduced to take into account the size of each |k|-shell. The Fourier
expansion of mx decays completely at 8 (a.u.)−1 = 2 kmax. The second row shows m along the
z-direction (i.e. along the line

[
1

4
, 0 , 0

]
,
[

1

4
, 0 , 1

2

]
). The solid line (−−) represents the evaluation of

the Fourier sum, the values that are on the discrete real-space mesh used by the code are marked
with (◦). The third row compares the 2nd order derivative of the Fourier sum (−−◦ ) and the 2nd
order derivative obtained numerically on the discrete real-space mesh (×) (note that the largest
mismatch between (◦) and (×) is outside the muffin tins).

at the usual cutoff (typically between 2 kmax and 4 kmax), but for the real-space deriva-

tives d
d rs
|m(r)| and d2

d rs d rs′
|m(r)| the Fourier coefficients are multiplied with 2π i ks and

−4π2 ks ks′ , thus giving more weight to the coefficients with higher |k|.
One should note that the (slowly varying) derivatives of |m| can be approximated well

by a Fourier expansion truncated at 2kmax, the problem is to evalutate these expansion
from the Fourier sum of |m| :

If a smooth and periodic function m(r) is evaluated on a discrete mesh {rj}j and FFT
is applied to the set {m(rj)}j in order to calculate the Fourier coefficients {ck}k , then
the resulting function m̃(r) =

∑
k ck exp(2π k r) is usually not the best approximation of

m(r) in the sense that the calculated set {ck}k minimizes ‖m − m̃‖ according to some
reasonable norm (like e.g.

∫
dr (m(r)− m̃(r))2 ), instead the function m̃ coincides with m

exactly on the mesh points {rj}j while it might deviate between the mesh points. Usually
the Fourier-transformed function still is a reasonable approximation to the original one
(there is e.g. no problem when transforming Vxc back to reciprocal space), but it shows

small oscillations and the derivatives d
d rs
m̃(r) and especially d2

d rs d rs′
m̃(r) at the points

{rj}j do not coincide well with the derivatives of the smoother function m(r).

Since these numerically induced oscillations are very sensitive to small changes in
{m(rj)}j the above described procedure in many cases leads to a very bad convergence of
the self-consistency cycle.
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0

0

m

∣∣∣∣
∆|m|
∆z

∣∣∣∣

z

z

b

Figure A.2: m can locally be
described as m(x, y, z) = ez b z .
At each grid point zj the mag-
netization mj = b zj (+) and

|mj | (◦) are evaluated.
∣∣∣d |m|

d z

∣∣∣ =

b is constant in the shown inter-
val, but its numerical approxima-

tion
∣∣∣ |mj+1|−|mj−1|

zj+1−zj−1

∣∣∣ (×) decreases

where m changes sign.

Unfortunately other inaccuracies can occur, when the derivatives of |m(r)| are evaluated
numerically in real space. The standard numerical differentiation techniques are disturbed

by discontinuities in d
d z |m| although

∣∣∣ d
d z |m|

∣∣∣ (what actually needs to be calculated) might

be smooth. The problem is further illustrated in Fig. A.2. In most real situations the error
is rather small, in practical use I did not encounter a situation where it is relevant.

In order to avoid these inaccuracies it is possible, first to calculate the derivatives of
each component mx, my, mz analytically in reciprocal space, then to apply FFT and to
calculate the derivatives (in the notation of the previous Chapter A.1) as:

|m|(s) =

∑
s′ ms′ m

(s)
s′

|m| ,

|m|(s1,s2) =

∑
s′

(
m

(s1)
s′ m

(s2)
s′ +ms′ m

(s1,s2)
s′

)

|m| −

(∑
s′ ms′ m

(s1)
s′

) (∑
s′ ms′ m

(s2)
s′

)

|m|3 .

This procedure requires special care at in the implementation to avoid errors at mesh
points rj with |m(rj)| ≈ 0.



Appendix B

SOC matrix elements described with the
LAPW basis

This appendix shows an explicit expression for the matrix elements of the spin-orbit cou-
pling operator Hso with spin-spiral states (i.e. for the elements of the matrix Hso as shown
in Fig. 3.4) in the framework of LAPW basis functions.

The spin-orbit coupling operator Hso is approximated according to Eqn. (2.16):

Hso =
∑

µ

Θ(µ)(r) v(µ)( |r−R(µ)| ) σ ·L̂(µ) with Θ(µ)(r) =

{
1 if |r−R(µ)| < R

(µ)
MT

0 else

( R(µ) denotes the center of the µth muffin-tin sphere, R
(µ)
MT the muffin-tin radius ).

The calculation of the Hso matrix elements is described within the LAPW basis functions.
The equations are written for one muffin-tin sphere, the summation over all atoms as well
as the atom index µ is dropped in the following. r is described in polar coordinates with
respect to the muffin-tin center: r−R(µ) = r ( sinϑ cosϕ ex + sinϑ sinϕ ey + cos ϑ ez )
with r = |r−R(µ)| . Thus, the spin-orbit coupling operator can be written as

Hso = v(r) σ · L̂ = v(r)

(
+L̂z L̂−
L̂+ −L̂z

)
.

The LAPW basis functions are described in Eqns. (3.5), (3.7). They are labeled with
the k-vector, the reciprocal lattice vector G and the spin index σ̃. The LAPW basis
functions in the muffin-tin sphere are written as

φ
(σ̃)
k,G(r) =

∑

`,m

Y`,m(ϑ,ϕ)
(
A

(σ̃)
k,G,`,m u

(σ̃)
` (r) +B

(σ̃)
k,G,`,m u̇

(σ̃)
` (r)

)

and the expansion of the wave function ψ̃j (with j=(kj , νj)) has the form

ψ̃j(r) =
∑

G




c
(↑̃)
j,G φ

(↑̃)
kj ,G(r)

c
(↓̃)
j,G φ

(↓̃)
kj ,G(r)


 =

∑

`,m

Y`,m(ϑ,ϕ)




a
(↑̃)
j,`,m u

(↑̃)
` (r) + b

(↑̃)
j,`,m u̇

(↑̃)
` (r)

a
(↓̃)
j,`,m u

(↓̃)
` (r) + b

(↓̃)
j,`,m u̇

(↓̃)
` (r)




with a
(σ̃)
j,`,m =

∑

G

c
(σ̃)
j,GA

(σ̃)
k,G,`,m , b

(σ̃)
j,`,m =

∑

G

c
(σ̃)
j,GB

(σ̃)
k,G,`,m .
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In the last equation the spinor is given with respect to the local spin coordinate frame of
the specific muffin tin (cf. Chapter 3.7.1). In this appendix the spin indices of the local
spin coordinate frame are marked with tildes (˜) in order to distinguish them from indices
of the global spin coordinate frame that is the same for all muffin tins. In the case of
spin spirals the global spin coordinate frame is chosen such that the spiral rotation axis
coincides with the z-axis, this simplifies the expressions for the wave functions and the
Hso matrix elements (cf. Chapter 3.9.2).

In order to identify the up- and down-components of ψ̃j in the global frame the spinor
is rotated by the spin rotation matrix UMT that transforms from the local to the global
frame:

ψj(r) = UMT ψ̃j(r) =



U

(↑,↑̃)
MT U

(↑,↓̃)
MT

U
(↓,↑̃)
MT U

(↓,↓̃)
MT



∑

`,m

Y`,m(ϑ,ϕ)




a
(↑̃)
j,`,m u

(↑̃)
` (r) + b

(↑̃)
j,`,m u̇

(↑̃)
` (r)

a
(↓̃)
j,`,m u

(↓̃)
` (r) + b

(↓̃)
j,`,m u̇

(↓̃)
` (r)




=
∑

`,m

Y`,m(ϑ,ϕ)




a
(↑,↑̃)
j,`,m u

(↑̃)
` (r) + a

(↑,↓̃)
j,`,m u

(↓̃)
` (r) + b

(↑,↑̃)
j,`,m u̇

(↑̃)
` (r) + b

(↑,↓̃)
j,`,m u̇

(↓̃)
` (r)

a
(↓,↑̃)
j,`,m u

(↑̃)
` (r) + a

(↓,↓̃)
j,`,m u

(↓̃)
` (r) + b

(↓,↑̃)
j,`,m u̇

(↑̃)
` (r) + b

(↓,↓̃)
j,`,m u̇

(↓̃)
` (r)




with a
(σ′,σ̃)
j,`,m = U

(σ′,σ̃)
MT a

(σ̃)
j,`,m , b

(σ′,σ̃)
j,`,m = U

(σ′,σ̃)
MT b

(σ̃)
j,`,m .

In the computer code that is used for this thesis the real-space z-axis is fixed normal to
the film plane. Therefore, further rotations are necessary in order to rotate the global
spin coordinate frame (with the spiral rotation axis in z-direction) with respect to the
real-space coordinate frame. The corrsponding spin rotation matrix is denoted with Ur-s ,
the Hso matrix elements have the form

〈ψj′ |U†
r-sHso Ur-s |ψj〉 =

∫

muffin
tin

d3r ψj′(r)
†
U
†
r-sHso Ur-s ψj(r) .

The angular-momentum operator L̂ commutes with the r-dependent (spherically symmet-
ric) functions. Therefore, the real-space integration of the matix elements can be split in
angular and radial integrations:

With the abbreviation

U
†
r-s (σ · L̂)Ur-s =



L̂(↑,↑) L̂(↑,↓)

L̂(↓,↑) L̂(↓,↓)




the angular integrals are denoted with

A(σ′,σ)
`,m′,m =

π∫

0

dϑ

2 π∫

0

dϕ (− sinϑ) Y`,m′(ϑ,ϕ)∗ L̂(σ′,σ) Y`,m(ϑ,ϕ) .

These integrals are evaluated analytically with the use of

π∫

0

dϑ

2 π∫

0

dϕ (− sinϑ) Y`′,m′(ϑ,ϕ)∗ L̂z Y`,m(ϑ,ϕ) = δ`′,` δm′,m m ,

π∫

0

dϑ

2 π∫

0

dϕ (− sinϑ) Y`′,m′(ϑ,ϕ)∗ L̂± Y`,m(ϑ,ϕ) = δ`′,` δm′±1,m

√
` (`+1)−m (m±1) .
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Note that A(σ′,σ)
`,m′,m needs only one `-label.

The radial integrals are denoted with

R(σ̃′,σ̃)
`,u,u =

RMT∫

0

dr r2 v(r) u
(σ̃′)
` (r) u

(σ̃)
` (r) , R(σ̃′,σ̃)

`,u,u̇ =

RMT∫

0

dr r2 v(r) u
(σ̃′)
` (r) u̇

(σ̃)
` (r) ,

R(σ̃′,σ̃)
`,u̇,u =

RMT∫

0

dr r2 v(r) u̇
(σ̃′)
` (r) u

(σ̃)
` (r) , R(σ̃′,σ̃)

`,u̇,u̇ =

RMT∫

0

dr r2 v(r) u̇
(σ̃′)
` (r) u̇

(σ̃)
` (r) .

A further abbrevation is introduced:

I(σ′,σ) =
∑

`,m′,m
σ̃′,σ̃

A(σ′,σ)
`,m′,m

(
a

(σ′,σ̃′)
j′,`,m′

∗
a

(σ,σ̃)
j,`,m R

(σ̃′,σ̃)
`,u,u + a

(σ′,σ̃′)
j′,`,m′

∗
b
(σ,σ̃)
j,`,m R

(σ̃′,σ̃)
`,u,u̇

+ b
(σ′,σ̃′)
j′,`,m′

∗
a

(σ,σ̃)
j,`,m R

(σ̃′,σ̃)
`,u̇,u + b

(σ′,σ̃′)
j′,`,m′

∗
b
(σ,σ̃)
j,`,m R

(σ̃′,σ̃)
`,u̇,u̇

)
.

With these definitions a Hso matrix element of two spin-spiral eigenstates |ψj′〉, |ψj〉 can
be written as

〈ψj′ |U†
r-sHso Ur-s |ψj〉 =





I(↑,↑) + I(↓,↓) if kj′ = kj

I(↑,↓) if kj′ = kj + q

I(↓,↑) if kj′ = kj − q

0 else

.

The calculation of the SOC matrix elements of spin spirals with long real-space peri-
ods is very time consuming. In many cases, it has to be done for thousands of k-points in
order to achive reliable results. Thus, it might be of high value for future applications to
analyse and exploit the symmetries of these matrix elements.



Appendix C

Local force theorem

In this appendix a derivation of the local force theorem is given. This derivation is mainly
oriented on [68].

Recall Eqn. (2.13) :

Etot =
∑

ν

ενwν + Edc .

Here the sum runs over all states and {wν} denote the occupation numbers. The Kohn-
Sham equation (2.11) that determines the single-particle energies (and occupation num-
bers) depends on the perturbation explicitly and implicitly (the latter as the potential
depends on the density, the selfconsistent solution for the density depends on the per-
turbation). The double-counting term Edc depends on the perturbation only implicitly.
When the perturbation is parameterized by X the functional of the total electronic energy
can be written as

Etot[X, n(X), m(X), V[n(X),m(X) ] ] =

∑

ν

εν [X, V[n(X),m(X) ] ] wν(X) + Edc[n(X), m(X), V[n(X),m(X) ] ]

where εν [X] denotes the dependency of εν on the explicit change of the Kohn-Sham equa-
tion due to X at fixed n,m . Here V labels only the density-dependent part of the potential
while the external potential might depend explicitly on X. The energies and occupation
numbers as well as n,m,V at fixed r are functions of the parameter X. With F denoting
one of these quantities one can introduce the nomenclature

F0 = F |X=X0

for the unperturbed function and

δXF = F |X=X0+δX − F0 =
dF

dX

∣∣∣∣
X=X0

δX +O
(
(δX)2

)

for the response to the perturbation. Then one gets by elementary differential calculus

δXEtot = Etot[X0 + δX, n0 + δXn, m0 + δXm, V0 + δXV ] − Etot,0

= ( Etot[X0 + δX, n0, m0, V0 ] − Etot,0 )

+ ( Etot[X0, n0 + δXn, m0 + δXm, V0 + δXV ] − Etot,0 )

+ O
(
(δX)2

)
.
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The first bracket on the right hand side simplifies to

∑

ν

εν [X0 + δX, V0 ] wν(X0 + δX) −
∑

ν

εν [X0, V0 ] wν(X0) ,

i.e. the difference in the sum of eigenvalues of the occupied single-electron states calcu-
lated with the unperturbed potential. The last expression has to be calculated when the
local force theorem is applied while the remaining terms almost cancel each other if the
perturbation is small.

In order to see this the remaining terms are divided in the single-electron and the
double-counting part:

Etot[X0, n0 + δXn, m0 + δXm, V0 + δXV ] − Etot,0 =

∑

ν

wν(X0) ( εν [X0, V0 + δXV ] − εν [X0, V0 ] ) + δXEdc .

The single-electron term can be approximated by first order standard perturbation theory:

εν [X0, V0 + δXV ] − εν [X0, V0 ] =

∫
d3r ψ†

ν δXVψν +O
(
(δXV)2

)
. (C.1)

With this expression and the notation

Bs = |Bxc|
ms

|m| = Bxc ·es , V = VH 11 + Vxc = (VH+Vxc) 11 +
∑

s∈{x,y,z}
Bs σs

for the density-dependent potential the sum over the (occupied) single-electron states can
be written as

∫
d3r

∑

ν

wν

(
ψ†

ν 11ψν δX(VH+Vxc) +
∑

s

ψ†
ν σs ψν δXBs

)

=

∫
d3r

(
n δX(VH+Vxc) +

∑

s

ms δXBs

)
.

With Eqn. (2.13) the response of the double-counting part can be written as

δXEdc = δX d
d X Edc + O

(
(δX)2

)

= − δX d
d X

∫
d3r 1

2 VH n − δX d
d X

∫
d3r (Vxc n+ Bxc ·m − flda(n, |m| ) )

+ O
(
(δX)2

)
.

The Hartree term can be simplified by renaming the integration variables:

d
d X

∫
d3r 1

2 VH n = 1
2

d
d X

∫
d3rd3r′

n(r′)n(r)

|r′ − r|

= 1
2

∫
d3rd3r′

(
n(r)

|r′ − r|
d

d Xn(r′) +
n(r′)
|r′ − r|

d
d Xn(r)

)
=

∫
d3rn d

d XVH .

After recalling the definitions of Vxc (cf. Chapter 2.3)

Vxc = ∂
∂ nflda(n,m) , Bxc ·es = ∂

∂ ms
flda(n,m) , s ∈ {x, y, z}
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the exchange-correlation term can easily be simplified:

d
d X

∫
d3r (Vxc n+ Bxc ·m − flda(n, |m| ) )

=

∫
d3r

(
n d

d XVxc + Vxc
d

d Xn + m·
(

d
d X Bxc

)
+ Bxc ·

(
d

d X m
)

−
(

∂
∂ nflda(n,m)

)
d

d Xn −
∑

s

(
∂

∂ ms
flda(n,m)

)
d

d Xms

)

=

∫
d3r

(
n d

d XVxc + m·
(

d
d X Bxc

) )
=

∫
d3r

(
n d

d XVxc +
∑

s

ms
d

d XBs

)
.

Now the response of the double-counting part becomes

δXEdc = −
∫

d3r δX

(
n d

dX VH + n d
d XVxc +

∑

s

ms
d

d XBs

)
+O

(
(δX)2

)

= −
∫

d3r

(
n δX(VH+Vxc) +

∑

s

ms δXBs

)
+O

(
(δX)2

)
. (C.2)

This term (C.2) obviously cancels with the sum of the single-electron energies (C.1). For
a smooth function V(X) (that is required by the perturbative approach anyway) one gets
O((δXV)2

)
= O((δX)2

)
and the response of the total energy to the perturbation can be

written as

δXEtot =
∑

ν

εν [X0 + δX, V0 ] wν(X0 + δX) −
∑

ν

εν [X0, V0 ] wν(X0) + O
(
(δX)2

)
.

Note that the changes in the occupation numbers lead to discontinuities in n(X) and thus
to discontinuities in V(X) . If these discontinuities cannot be neglected, then V(X) cannot
be regarded as smooth and the local force theorem is very inaccurate.

As pointed out in [68] the local force theorem does not hold if the perturbation changes
the size or shape of the unit cell, in this case not all 1st-order terms cancel.



Appendix D

Perturbation theory for the sum of
eigenvalues

This appendix describes a perturbative approach that allows to estimate the changes in
the spectrum around the Fermi energy and in the sum of eigenvalues of the occupied states
due to a small perturbation of the Hamiltonian. The method is a simple extension of the
Rayleigh-Schrödinger perturbation theory of quasi-degenerate levels as it is discussed in
many text books [e.g. 9]. The perturbation is assumed to be small, but its particular form
is not exploited. Only the sparseness of the perturbation matrix decreases the computa-
tional effort further since the below described sums do not have to include the terms with
zero-valued matrix-elements.

H0 denotes the unperturbed Hamiltonian (with known eigenstates and eigenvalues),
H0+Hso denotes the perturbed Hamiltonian.

It is assumed that the quantity λ = 1
∆ 〈m|Hso|n〉 is small and terms in O(λ2) can be

neglected in the Hamiltonian and in the eigenvalue spectrum for a fixed energy differ-
ence ∆ and for all relevant states |m〉, |n〉 (if the perturbation is not small, ∆ has to be
large and the method is not efficient).

The perturbation is split in four terms

Hso = H1+H2+H3+H4 ,

each term can be treated in a different way:

• H1 has to be treated with exact diagonalization, but the corresponding matrix is
relatively small since H1 mixes only between the states close to the Fermi energy.

• H2 can be treated with the standard perturbation approch since its matrix elements
are exactly zero if the distance between the energy levels of the corresponding states
is small.

• H3 mixes only between states well below the Fermi energy that remain occupied
after the perturbation. Therefore the sum of the energy corrections of these states
is simply the trace of H3 .

• H4 mixes only between the states well above the Fermi energy. The energy shifts
among these unoccupied states are irrelevant.
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Although these basic ideas are not complicated, it is quite cumbersome to formulate them
rigiously.

In the following derivation the four terms of Hso are applied successively, i.e. at first
the eigenstates of H0+H1 are determined, then H0+H1 is perturbed by H2, etc. .

In order to define the different terms of Hso

the following notation is used:

εF denotes the Fermi energy.

|n0〉, |n1〉, |n2〉 and εn,0 , εn,1 , εn,2 denote the
nth eigenstate and corresponding eigenvalue
of H0 , H0+H1 , H0+H1+H2 .

The set of eigenstates of H0 is divided ac-
cording to the energy e0 > 0 :

|n0〉 ∈A ⇔ εn,0−εF> +e0 ,

|n0〉 ∈M ⇔ +e0 ≥ εn,0−εF≥ −e0 ,

|n0〉 ∈B ⇔ −e0 >εn,0−εF .

H1 is constructed such that the eigenstates
of H0 +H1 are either a linear combination
of or orthogonal to all elements of M . The
subset of eigenstates of H0+H1 that consists
of elements of SpanM is divided according to
the energies e0 > e1 > e2 > 0 :

|n1〉 ∈Maa ⇔ εn,1−εF> +e1 ,

|n1〉 ∈Mab ⇔ +e1 ≥ εn,1−εF> +e2 ,

|n1〉 ∈Mm ⇔ +e2 ≥ εn,1−εF≥ −e2 ,

|n1〉 ∈Mba ⇔ −e2 >εn,1−εF≥ −e1 ,

|n1〉 ∈Mbb ⇔ −e1 >εn,1−εF .

?

6

εFM Mm

εF−e2

εF+e2

?

6

hh hh hh hh hh hh hh

εF−e0

?
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B

H0−−→ +H1−−→ +H2−−→

              

εF+e0
?
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A

ε ε

?

6

Maa

εF+e1

?

6
Mbb

εF−e1

?

6
Mab

?

6
Mba

Figure D.1: Sketch illustrating the defini-
tions of e0, e1, e2 and A, M , B, Maa, Mab,
Mm, Mba, Mbb .

In the following it is not distinguished between the Fermi energy of the unperturbed and
of the perturbed system. This inaccuracy can be compensated by choosing the relevant
intervals around εF a bit larger.

At first H1 is applied. It mixes only between the states close to εF:

H1 =
∑

n, m
|m0〉∈ M
|n0〉 ∈ M

|m0〉〈m0|Hso|n0〉〈n0| .

The exact solutions of H0 + H1 are obtained by diagonalizing the matrix
( 〈m0|Hso|n0〉 + δm,nεn,0 )m,n . Since the matrix elements of H1 with states /∈ M are
zero only a block of size (#M × #M) has to be considered. Certainly the elements of
A, B are solutions of H0 + H1 as well. It is desired to choose e0 as small as possible as
the exact diagonalization usually is the most time consuming part of of the calculations
(especially if most matrix elements of Hso are zero).

H2 has non-zero matrix elements only between states whose energy levels are separated
at least by e0−e1:
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H2 =
∑

n, m
|m1〉∈ A
|n1〉 ∈ B

|m1〉〈m1|Hso|n1〉〈n1|

+
∑

n, m
|m1〉∈ M \ Mbb

|n1〉 ∈ B

(
|m1〉〈m1|Hso|n1〉〈n1| + |n1〉〈n1|Hso|m1〉〈m1|

)

+
∑

n, m
|m1〉∈ M \ Maa

|n1〉 ∈ A

(
|m1〉〈m1|Hso|n1〉〈n1| + |n1〉〈n1|Hso|m1〉〈m1|

)
.

For e0−e1 > ∆ the corrections to the solutions of H0 +H1 can be estimated with the
standard 2nd-order perturbation theory:

|n2〉 = |n1〉 +
∑

m
|m1〉 ∈ X

|m1〉
〈m1|Hso|n1〉
εn,1 − εm,1︸ ︷︷ ︸

O(λ)

+ O(λ2) , (D.1)

εn,2 = εn,1 +
∑

m
|m1〉 ∈ X

|〈m1|Hso|n1〉|2
εn,1 − εm,1

+ O(λ2)

with X = B ∪M \Maa if |n1〉 ∈A ,
X = B if |n1〉 ∈Maa ,
X = A ∪B if |n1〉 ∈Mab ∪Mm ∪Mba ,
X = A if |n1〉 ∈Mbb ,
X = A ∪M \Mbb if |n1〉 ∈B .

The remaining terms of Hso are:

H3 =
∑

n, m
|m1〉∈ B
|n1〉 ∈ B

|m1〉〈m1|Hso|n1〉〈n1|

+
∑

n, m
|m1〉∈ B
|n1〉 ∈ Mbb

(
|m1〉〈m1|Hso|n1〉〈n1| + |n1〉〈n1|Hso|m1〉〈m1|

)
,

H4 =
∑

n, m
|m1〉∈ A
|n1〉 ∈ A

|m1〉〈m1|Hso|n1〉〈n1|

+
∑

n, m
|m1〉∈ A
|n1〉 ∈ Maa

(
|m1〉〈m1|Hso|n1〉〈n1| + |n1〉〈n1|Hso|m1〉〈m1|

)
.

The Expression (D.1) defines an one-to-one mapping from the eigenstates of H0+H1 to
the eigenstates of H0+H1+H2 . This allows the use of |n1〉, |m1〉 and |n2〉, |m2〉 in the
following definitions:

H3,1 =
∑

n, m
|m1〉∈ B ∪ Mbb

|n1〉 ∈ Mm

(
|m2〉〈m2|H3|n2〉〈n2| + |n2〉〈n2|H3|m2〉〈m2|

)
,
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H3,2 = H3 −H3,1 ,

H4,1 =
∑

n, m
|m1〉∈ A ∪ Maa

|n1〉 ∈ Mm

(
|m2〉〈m2|H4|n2〉〈n2| + |n2〉〈n2|H4|m2〉〈m2|

)
,

H4,2 = H4 −H4,1 .

Again, the idea of this decomposition is to separate a term like H3,1+H4,1 that can be
treated with the standard perturbation theory. If |n1〉∈Mbb then the 2nd-order correction
of |n2〉 leads to

|n3,1〉 = |n2〉 +
∑

m
|m1〉 ∈ Mm

|m2〉
〈m2|H3|n2〉
εn,2 − εm,2

+ ...

where
〈m2|H3|n2〉
εn,2 − εm,2

=
∑

m′

|m′
1〉 ∈ B

〈m′
1|Hso|m1〉

εm′,1 − εm,1︸ ︷︷ ︸
O(λ)

〈m′
1|Hso|n1〉

εn,2 − εm,2
.

For sufficiently large e2−e1 >∼∆ the last term is in O(λ2) . If |n1〉∈Mm or |n1〉∈Maa the
situation is analogous. Hence the eigenstates of H0+H1+H2+H3,1+H4,1 can be expressed
as |n2〉+O(λ2) , an according expression holds for the eigenvalues.

Therefore the matrix elements of H3,2+H4,2 with the eigenstates of H0+H1+H2+H3,1+H4,1

can be written as 〈m2|H3,2+H4,2|n2〉+O(λ2) , inserting the expressions for |m2〉, |n2〉 one
gets

〈m2|H3,2+H4,2|n2〉 =





〈m2|H4|n2〉+O(λ2) if |m1〉, |n1〉 ∈ A ∪Maa ∪Mab

〈m2|H3|n2〉+O(λ2) if |m1〉, |n1〉 ∈ B ∪Mbb ∪Mba

0 +O(λ2) else

.

As the terms in O(λ2) are neglected, H3,2+H4,2 separates in two blocks, one of them mixes
only states of the energy below εF−e2 , the other mixes only states of the energy above
εF+e2 . Under the assumption that these states do not change their occupation numbers
when they are perturbed by H3,2 +H4,2 , the sum of eigenvalues of these occupied states
is

Tr
{
〈m2|H3|n2〉+ δm,nεn,2

}

m,n

↑︷ ︸︸ ︷
|m1〉,|n1〉 ∈ B ∪Mbb ∪Mba

=
∑

n
|n1〉 ∈ B

〈n1|Hso|n1〉 +
∑

n
|n1〉 ∈ B ∪ Mbb ∪ Mba

εn,2 + O(λ2) .

Of course, the shifts of the unoccupied levels due to H4,2 are not important.

Now the influence of the total perturbation Hso = H1 +H2 +H3 +H4 has been calcu-
lated in O(λ) . In the following the steps that have to be done in the calculation are
summarized (note that e2 does not have to be defined explicitly):
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• Calculate the eigenstates { |n0〉 }n and eigenvalues { εn,0 }n and the Fermi energy εF
of the unperturbed Hamiltonian H0.

• Choose the intervals [εF−e0, εF+e0] and [εF−e1, εF+e1] such that

– the eigenstates of H0 with εn,0 /∈ [εF−e0, εF+e0] do not change their occupation
numbers when Hso is applied,

– the eigenstates of H0+H1 with εn,1 /∈ [εF−e1 +∆, εF+e1−∆] do not change
their occupation numbers when Hso−H1 is applied,

– e0−e1 is large compared to the relevant matrix elements of Hso .

Note that the computational effort is determined mainly by e0.

• Calculate the eigenstates { |n1〉 }n and eigenvalues { εn,1 }n of H0+H1 in the subspace
SpanM by exact diagonalization.

• Estimate the eigenvalues { εn }n of H0+Hso around the Fermi energy:

εn,1 ∈ [εF−e1, εF+e1] ⇒ εn = εn,1 +
∑

m
|εm,0 − εF| > e0

|〈m0|Hso|n1〉|2
εn,1 − εm,0

+ ... .

Determine the Fermi energy e
(so)
F of the perturbed system.

• Calculate the sum of the energies of the occupied eigenstates of H0+Hso :

E =
∑

n
|n0〉 ∈ B

〈n0|Hso|n0〉

+
∑

n
|n0〉 ∈ B

(
εn,0 +

∑

m
|m0〉 ∈ A

|〈m0|Hso|n0〉|2
εn,1 − εm,0

+
∑

m
|m1〉 ∈ M

εm,0 − εF > −e1

|〈m1|Hso|n0〉|2
εn,0 − εm,1

)

+
∑

n
|n1〉 ∈ M

εn,1 − εF < −e1

(
εn,1 +

∑

m
|m0〉 ∈ A

|〈m0|Hso|n1〉|2
εn,1 − εm,0

)

+
∑

n
|n1〉 ∈ M

|εn,1 − εF| ≤ e1

εn < e
(so)

F

(
εn,1 +

∑

m
|m0〉 ∈ A ∪ B

|〈m0|Hso|n1〉|2
εn,1 − εm,0

)

+ O(λ2) .



Appendix E

Relations between real- and
spin-space symmetries

E.1 Transformations in real- and spin-space

In this chapter it is shown, that for every real-space rotation or reflection R there is a
corresponding rotation or reflection S in spin space. When R and S are both applied,
then the orientation between real- and magnetic structure does not change and the energy
of the system stays the same. Furthermore, it is shown that the energy does not change
under spin inversion.

The analysis is done in the framework of the Kohn-Sham Dirac equation (2.14). The
same results can be obtained when using the Pauli equation extended by the spin-orbit
coupling operator Hso .

The Hamiltonian (in absence of an external magnetic field) can be written as

H = T + Vext + Vel with Vel = VH[{ψν}] + Vxc[{ψν}] , T = cσ ·p̂
(

0 11
11 0

)
.

R, RV denote operators that transform the real-space coordinates and S denotes an
operator that transform only the spin orientation. When all (occupied) eigenstates ψν of
the single-particle HamiltonianH are transformed by the symmetry operation S R then the
charge and magnetization densities are transformed as well. In the usual DFT approach
the transformation of the non-external potential Vel (that might include constraining fields)
can be described by

Vel[{SRψν}] = (SR) Vel[{ψν}] (SR)−1 .

In the following Vel denotes the selfconsistent potential that corresponds to the eigenfunc-
tions {ψν} of H . It is investigated, wich transformations SR leave the energy invariant,
if the external potential is transformed by RV , i.e. which transformations SR fulfill the
following condition:

∀ ν :
(T + Vext + Vel ) ψν = εν ψν

⇔ (T +RV VextR−1
V + (SR)Vel (SR)−1 ) SRψν = εν SRψν

. (E.1)

If [Vext,RV ]=0 then (E.1) defines the symmetry operations SR that leave the energy in-
variant for a given potential Vext . If [Vext,RV ] 6=0 then (E.1) defines the transformations
SR of the wavefunctions {ψν} that are induced by the transformation of Vext .
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The condition (E.1) can be simplified since

(T +RV VextR−1
V + (SR)Vel (SR)−1 ) SRψν

= ( SR (T + Vext + Vel ) + [T ,SR] +RV [Vext,R−1
V R] )ψν

= εν SRψν + ( [T ,SR] +RV [Vext,R−1
V R] )ψν .

Apart from accidental cancelations, (E.1) is fulfilled if

[T ,SR] = 0 , [Vext,R−1
V R] = 0 . (E.2)

The last condition is surely fulfilled, if R = RV . The condition [T ,SR] = 0 is further
analyzed for some special transformations SR , namely rotations, reflections and spin
inversion:

Spin inversion

The spin-inversion operator SI changes the sign of the magnetization, i.e. S†I σ SI = −σ .
If SI is applied to all states, the sign of the magnetization changes, i.e. m(r)→ −m(r) .
SI can be represented by SI = i σy K , where K denotes the operator of complex con-

jugation.

Straightforward calculations show, that

[σ ·p̂, i σy K] = 0 .

Thus, (E.2) is fulfilled for S= i σy K and RV =R=1 . This means, that a Hamiltonian (in
absence of an external magnetic field) always has two equivalent solutions with opposite
magnetization directions.

Rotations

The eigenenergies do not change if the same rotations are performed in real- and spin-
space. This is trivial, since the rotated system can be described equivalently as the original
system, just with a rotated coordinate frame.

Mirror-plane reflections

In time-independent systems, the eigenenergies do not change if the same mirror-plane
reflections are performed in real- and spin-space. But this is not as trivial as in the case
of rotations, since a mirror-plane reflection changes the chirality of the system.

The choice of the coordinate system is arbitrary, therefore it is sufficient to study the
reflections on the (x, z)-plane. Ry and Sy denote the corresponding real- and spin-space
operator respectively.

With p̂w = i d
d w , w ∈ {x, y, z} it is obvious, that

[Ry, p̂x] = [Ry, p̂z] = 0 , Ry p̂y = −p̂yRy .

Sy can be represented by

Sy =

(K 11 0
0 −K 11

)
.
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This can be seen easily when inserting ψν = (ϕν , χν)t and Sy ψν in the expression for m
that is given in Chapter 2.5.

Now, straightforward calculations show that

[T ,SyRy] =

[(
0 cσ ·p̂

cσ ·p̂ 0

)
, SyRy

]
= 0 .

E.2 Anisotropy energy tensor

In the micromagnetic model, the anisotropy energy tensor E(so)(m) describes the energy
depending on the local magnetization direction (cf. Chapter 5.2.1).

Usually, E(so) represents the crystal symmetry but does not show much further oscil-
lations. Therefore the energy can be approximated by an expansion in the polar angles
and neglecting the terms that do not reflect the crystal symmetry. The local extrema of
these expansions are possible orientations of the easy axis. The general expansion (as first
proposed in [1]) has the form

E(so) =
∑

j

kj mj +
∑

j,j′
kj,j′ mj mj′ +

∑

j,j′,j′′
kj,j′,j′′ mj mj′ mj′′

+
∑

j,j′,j′′,j′′′
kj,j′,j′′,j′′′ mj mj′ mj′′ mj′′′ + ...

with j = x, y, z .

Spin inversion symmetry requires that the coefficients with an odd number of indices are
zero.

The existence of one mirror plane already results in 2-dimensional spin-inversion sym-
metry in the mirror plane:
E(so)(mx,my,mz)

z-refl.
= E(so)(mx,my,−mz)

spin inv.
= E(so)(−mx,−my,mz) . This indicates a

local extrema (or saddle point) of E(so)(m) in the spin orientation normal to the mirror
plane.

The surfaces that are further investigated in this thesis possess two orthogonal mirror
axes (e.g. x, y). Then the coefficients of mxmy , my mz , mz mx must be zero and the
first relevant terms of the expansion are Kx =kx,x , Ky =ky,y , Kz =kz,z :

E(so) ≈ Kxm
2
x +Ky m

2
y +Kz m

2
z = m† ·K·m with K =



Kx 0 0
0 Ky 0
0 0 Kz


 .



Appendix F

Details concerning the domain wall
models

F.1 Derivation of the micromagnetic model

In this chapter the micromagnetic approximation

Ẽ =

∫
dr
(
Ã ṁ(r)2 + D̃·(m(r)× ṁ(r) ) + m(r)† ·K̃·m(r)

)
(5.3, Page 42)

is deduced from the discrete model

E =
∑

j<j′

(
J|j′−j| ( 1− Sj ·Sj′ ) + Dj′−j ·(Sj × Sj′)

)
+
∑

j

S†
j ·K·Sj . (5.2, Page 41)

In the discrete model E denotes the energy of one stripe of atoms. In film systems b
denotes the broadness (⊥ q) of this stripe (cf. Fig. F.1), in bulk systems b denotes the
cross-sectional area (⊥ q) of this stripe. In the micromagnetic model Ẽ denotes the
energy per length (in film systems) or per area (in bulk systems). Thus, if (5.2) can be
approximated by (5.3) then E ≈ b Ẽ .
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Figure F.1: Definition of ∆ and b in two
dimensions. In Eqn. (5.2) E denotes the en-
ergy of one line of atoms, i.e. of a stripe of
broadness b .

It is certainly possible to choose the continuous function m(r) such that

m(j∆) = Sj

where ∆ denotes the spacing between the lattice points on the r-axis (cf. Fig. F.1).
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All interactions in (5.3) are local, thus one needs to assume that m does not vary much
on a length scale where the interactions J, D are relevant. In the following all terms in
(5.2) are treated within the lowest relevant order of the Taylor expansion of m(r):

1− Sj ·Sj′ ≈ 1−m(j∆)2 − (j′ − j)∆ m(j∆)·ṁ(j∆)− ( (j′ − j)∆ )2 1
2 m(j∆)·m̈(j∆)

= ( (j′ − j)∆ )2 1
2 ṁ(j∆)2 ,

Sj×Sj′ ≈ (j′ − j)∆ m(j∆)×ṁ(j∆) .

For the exchange term it is used that |m(r)|=1 and therefore

1 = m(r)2 , 0 = d
d r m(r)2 = 2m(r) · ṁ(r) , 0 = d2

d r2 m(r)2 = 2 m(r) · m̈(r) + 2 ṁ(r)2 .

With this expressions (5.2) can be written as

E =
∑

j

∆

( j′>j∑

j′

(
1
2 (j′− j)2 ∆ Jj′−j ṁ(j∆)2 + (j′ − j)Dj′−j ·(m(j∆)×ṁ(j∆) )

)

+ ∆−1 m(j∆)† ·K·m(j∆)

)

≈
∫

dr
(
b Ã ṁ(r)2 + b D̃·(m(r) × ṁ(r) ) + bm(r)† ·K̃·m(r)

)
= b Ẽ

where Ã =
∆

2 b

∑

j>0

j2 Jj , D̃ =
1

b

∑

j>0

j Dj , K̃ =
1

b∆
K . (F.1)

The first sum in (5.2) runs over all pairs (j, j′) once. In (F.1) the summation over j > 0
avoids double counting.

F.2 Optimizing the magnetization numerically

This chapter introduces a procedure for the numerical solution of the discrete lattice model
that is described in Chapter 5.2.1 and is characterized by

E =
∑

j<j′

(
J|j′−j| ( 1− Sj ·Sj′ ) + Dj′−j ·(Sj × Sj′)

)

+
∑

j

(
Kx (ex ·Sj)

2 +Ky (ey ·Sj)
2 +Kz (ez ·Sj)

2
)
.

(5.2, Page 41)

It is straightforward to solve this model in the case D = 0 , but if the DM interaction is
relevant the magnetization of one atomic row j may take any direction in spin-space and
cannot be parameterized by a single angle.

In Chapter F.2.3 it is shown how the numerical procedure can be extended in order to
include magnetostatic dipolar interactions in magnetic films.

This procedure can also be used to solve the micromagnetic equations, if the lattice spacing
is small with respect to the change of magnetization. In this case it is certainly possible
to limit the row interactions to nearest neighbors.
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F.2.1 Outline

In Formula (5.2) each lattice point j corresponds to one atomic row and its magnetiza-
tion Sj can be described with two polar angles. The numerical calculations are restricted
to a finite lattice (and a finite range of pair-interactions Jj′−j,Dj′−j between the atomic
rows). The numerical procedure allows to vary the N spin orientations {Sj}1≤j≤N while
for j /∈ [1, N ] the orientation Sj is replaced with its boundary value at j→±∞ .

The energy E is minimized by an iterative process: In each iteration each spin is
rotated into the orientation that minimizes E for the current configuration of the other
spins. After all spins have been modified once the next iteration starts. The process stops
when each spin is virtually in an optimal orientation for the current configuration of the
other spins, here “virtually” means that the angle needed to rotate to the optimum is
smaller than the desired accuracy. It turned out to be useful in most cases to update the
spin orientations not simultaniously at the end of the iteration. Instead, the spins are
rotated in the succession of the atomic rows and each lattice point is updated before the
optimal orientation of the one is calculated.

It is obvious that a local minimum is reached when the process converges. But, one
has to check whether the resulting spin configuration depends on the starting configuration.

For the investigation of common domain walls the number of lattice points (in the calcu-
lation) does not need to match the number of atomic rows. The discrete lattice structure
is important only for narrow walls where the magnetization converges reasonably fast to-
wards its bulk orientation. Broader walls can be described with a continuum model. In
this case, the lattice points can be regarded just as numerical grid points. The model pa-
rameters J , D, K can be rescaled in such a way that the wall fits on the available number
of lattice points.

F.2.2 Optimizing the spin orientation at one lattice point

During the iteration process the spin orientation Sn at the lattice point n has be choosen
such that the energy E is minimized for a fixed set {Sj}j 6=n . According to Formula (5.2)
the energy contribution that depends on Sn can be written as

En =
∑

j 6=n

(
Jj Sn ·Sj + Dj ·(Sn × Sj)

)
+Kx (ex ·Sn)2 +Ky (ey ·Sn)2 +Kz (ez ·Sn)2

= cx xn + cy yn + cz zn + kx x
2
n + ky y

2
n + const ,

Sj = xj ex + yj ey + zj ez ,

cx =
∑

j 6=n

(
Jj xj + Dj ·(yj ez − zj ey)

)
( cy, cz are calculated analogously ) ,

kx = Kx −Kz , ky = Ky −Kz .

The relation z2
n =1−x2

n−y2
n has been used to eliminate the third anisotropy constant.

In the following the index n is dropped from x, y, z, E , i.e.
E = cx x+ cy y + cz z + kx x

2 + ky y
2 + const .

With an appropriate choice of the coordinate system kx, ky ≥ 0 and cx, cy, cz ≤ 0 . In
this case E surely is minimal for x, y, z ≥ 0 . The system has 2 degrees of freedom. The
energy E can be parameterized by x, y with 0≤x, 0≤y, x2+y2<1 and z=

√
1−x2−y2 .

The reason to work with the parameters x, y and the additional condition x2 +y2 < 1
instead of the polar angles is, that the numerical procedure gets particularly simple in this
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approach (see below). A necessary condition for a local minimum is that the derivatives
with respect to x, y vanish:

d

dx
E(x, y) = cx + cz

d z

dx
+ 2 kx x = cx − cz

x

z
+ 2 kx x ,

d

dx
E(x, y) = 0 ⇒ x =

cx z

cz − 2 kx z
,

d

d y
E(x, y) = 0 ⇒ y =

cy z

cz − 2 ky z
.

For kx, ky ≥ 0 and cz, cy, cz < 0 the last expressions for x, y are zero for z=0 and increase
monotonic with increasing z . Therefore the vector-length (x2 +y2 + z2) also increases
monotonic with increasing z and coincides with 1 exactly once for 0<z≤ 1 . Thus, it is
straightforward numerical iteration to solve the conditions

d

dx
E(x, y) = 0 ,

d

d y
E(x, y) = 0 , x2 + y2 + z2 = 1 .

Since the energy can be parameterized as E(x, y) only for z > 0 it is necessary to check
the limiting case separately. But for cz < 0 there exists no local minimum at z= 0 since
d

d zE(x, z) = − (cy y
−1+2 ky) z + cz

z ↘ 0
−−−→ cz .

The case cz = 0 has to be analyzed separately. In this case E does not depend on z .
The minimal E under the constraint x2+y2=1 can be determined with a procedure analo-
gous to the one described above. This value has to be compared with the local extremum
of E at (x= −cx

2 kx
, y= −cy

2 ky
) . Furthermore, it has to be checked whether the local extremum

is in the area x2+y2≤1 .

F.2.3 Including the dipolar interactions

In an ultrathin film the magnetostatic (dipolar) energy can be calculated easily by sum-
ming over the dipoles as the interactions decay reasonably fast (cf. Chapter 4.2). In the
system studied in Chapter 6 every atom lies on a mirror plane parallel to the q-vector.
Using this symmetry it is straightforward to include the magnetostatic energy in the for-
malism shown above.

In the next expressions the index j denotes the atomic rows and i, i′ denotes the atoms
within one row. The magnetic dipole moment of atom i in row j is

Mj,i = Mi Sj = Mi (xj ex + yj ey + zj ez) .

With the well-known formula for the dipolar energy the energy resulting from all interac-
tions between row n and all other rows can be written in a form that is suitable for the
procedure described in the previous chapter:

E(dip)
n =

(j,i)6=(n,i′)∑

j,i,i′

(Mj,i ·Mn,i′) (rj,i−rn,i′)
2 − 3 ( (rj,i−rn,i′)·Mj,i ) ( (rj,i−rn,i′)·Mn,i′ )

|rj,i−rn,i′|5

= c(dip)
x xn + c(dip)

y yn + c(dip)
z zn + k(dip)

x x2
n + k(dip)

y y2
n + const ,
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c
(dip)
x =

j 6=n∑

j

(
xj

∑

i,i′

MiMi′

|rj,i−rn,i′ |3

+
∑

s∈{x,y,z}
sj

∑

i,i′

−3MiMi′ (rj,i ·es − rn,i′ ·es) (rj,i ·ex − rn,i′ ·ex)

|rj,i−rn,i′ |5
)
,

k
(dip)
x =

i6=i′∑

i,i′

−3MiMi′
(
(rn,i ·ex − rn,i′ ·ex)2 − (rn,i ·ez − rn,i′ ·ez)

2
)

|rj,i−rn,i′ |5

( c
(dip)
y , c

(dip)
z , k

(dip)
y are calculated analogously ) .

The coefficient of each mixed product xn yn , yn zn , zn xn is zero. With an appropriate
choice of the coordinate system two coefficients are zero as one real-space coordinate is
constant within one atomic row, for the third coefficient the mirror symmetry is impor-
tant. This symmetry can be exploited further when evaluating the sum

∑
s∈{x,y,z}(..) . In

systems without this mirror plane the algorithm of Chapter F.2.2 needs to be extended.
As one is interested in the (finite) energy per two-dimensional unit cell the sum over

i′ runs over the atoms in one unit cell whereas the sum over i runs over the entire atomic
row (i.e. up to a numerical cutoff).

c
(dip)
x has to be calculated for each lattice point and each iteration. But the sums

over (i, i′) have to be calculated only once (for each distance |j−n| ). In each iteration

the calculation of c
(dip)
x is done by a single sum over the atomic rows (and x, y, z). One

should note that the magnetostatic interactions require a significantly larger cutoff (for
the number of rows) than the effective exchange interactions.

F.3 Period length of the rotating ground state

This chapter describes a simple procedure to determine the period length of the periodic
solutions of Eqn. (5.10). With the period length R the energy per period has the form

ER =

+R/2∫

−R/2

dr (A ϕ̇2 +K sin2 ϕ+D ϕ̇ ) .

In the following it is assumed that D< 0 , this implies that ϕ̇ is positive throughout the
entire rotation path. This allows to work with r(ϕ) instead of ϕ(r) , which will help to
simplify the expressions considerably. Further simplifications are obtained by rescaling
the parameters:

E =

√
1

AK
ER , R =

√
K

A
R , D = π

√
1

AK
D < −4 .

D <−4 follows from the condition D <− 4
π

√
AK (5.11) for the existence of a periodic

ground state. Now the energy per period has the form

E =

+R/2∫

−R/2

dr ( ϕ̇2 + sin2 ϕ+ 1
πD ϕ̇ ) =

2 π∫

0

dϕ ( r′−1 + r′ sin2 ϕ+ 1
πD )

=

2 π∫

0

dϕ ( r′−1 + r′ sin2 ϕ ) + 2D with r′ = d
d ϕ r .
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The last integral must be minimal if R is fixed to its optimal value. This leads to the
Euler-Lagrange equation

d

dϕ
(−r′−2 + sin2 ϕ)

!
= 0 ⇒ −r′−2 + sin2 ϕ = −c ⇒ r′ = (sin2 ϕ+ c)−

1
2 .

Negative values of c can be ruled out since the Euler-Lagrange equation must be valid for
all ϕ. Unlike in Chapter 5.2.3 the constant c cannot be set to zero since the boundary
conditions for r → ±∞ cannot be applied for periodic solutions. Instead one has the
condition r|ϕ=0 +R = r|ϕ=2π . Therefore the period length can be parameterized by c by
using r′=(sin2 ϕ+c)−1/2 :

R(c) =

2 π∫

0

dϕ (sin2 ϕ+ c)−
1
2 .

The energy functional can be parameterized by c as well if the last expression for r′ is
inserted:

E(c) =

2 π∫

0

dϕ
(
(sin2 ϕ+ c)+1/2 + sin2 ϕ (sin2 ϕ+ c)−1/2

)
+ 2D .

Now c can be determined from the condition that the (average) energy per length F=E/R
has to be minimal in the ground state.

dF(c)

d c
=

d

d c

E(c)
R(c)

!
= 0 ⇒ R(c)

d E(c)
d c

− E(c) dR(c)

d c
= 0 .

The last derivatives can be evaluated

d E(c)
d c

=
1

2

2 π∫

0

dϕ
(

(sin2 ϕ+ c)−
1
2 − sin2 ϕ (sin2 ϕ+ c)−

3
2

)
=

c

2

2 π∫

0

dϕ (sin2 ϕ+ c)−
3
2 ,

dR(c)

d c
= −1

2

2 π∫

0

dϕ (sin2 ϕ+ c)−
3
2 = − 1

c

d E(c)
d c

.

Therefore one gets

R(c)
d E(c)

d c
− E(c) dR(c)

d c
= 0 ⇒

E(c) + cR(c) =

2 π∫

0

dϕ
(

(sin2 ϕ+ c)+
1
2 + (sin2 ϕ+ c) (sin2 ϕ+ c)−

1
2

)
+ 2D = 0 ⇒

D(c) = −
2 π∫

0

dϕ (sin2 ϕ+ c)+
1
2 .

Thus R and D are both expressed as monotonic functions of c. The range of c is known as
(0,∞) . This reduces the problem of obtaining R(D) (Fig. 5.7) to the problem of accurate
numerical evaluation of the integrals. In practice this is not a difficult task since these
integrals are supported by most mathematical software. In the form

2 π∫

0

dϕ (sin2 ϕ+ c)±
1
2 = 4

π/2∫

0

dϕ (cos2 ϕ+ c)±
1
2 = 4 (c+1)±

1
2

π/2∫

0

dϕ
(
1−

√
1

c+1

2
sin2 ϕ

)± 1
2
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they are known as the complete elliptic integrals

E(ε) =

π/2∫

0

dϕ (1− ε2 sin2 ϕ)+
1
2 , K(ε) =

π/2∫

0

dϕ (1− ε2 sin2 ϕ)−
1
2

and D , R can be parameterized by

D(ε) = − 4

ε
E(ε) , R(ε) = 4 εK(ε) , ε∈(0, 1) .

F.4 Phase transitions of the micromagnetic ground state

F.4.1 Numerical procedure

The procedure that is explained in F.2 can be used to identify the phase transitions of
the micromagnetic model that are described in Chapter 5.2.4. In order to obtain Fig. 5.8
the magnetization is optimized and the energy E is calculated on a dense D-grid for each
K-point. The crital points of the second-order transitions are detected by evaluating
d

dD E for fixed K and identifying the kinks in these curves (cf. Fig. F.2). In the vicinity
of the first-order phase transitions it depends on the starting configuration whether the
procedure of Chapter F.2 converges towards the global or just a local energy minimum,
but the transition point can be identified by comparing the energies.

It is not advisable to localize the phase transitions by calculating order parameters like∫
dr |z| instead of d

dD E , it requires very large numerical cutoffs to calculate these order
parameters with sufficient accuracy.

The periodic states are calculated with periodic boundary conditions. The period
length of the non-collinear states depends on K,D . Therefore, it is necessary to find
the optimal period length for every fixed pair of K,D . In order to do this the energy is
calculated in unit cells of different sizes and the optimal period length is determined in an
iterative process. The size of the unit cell is varied by rescaling the parameters while the
number of real-space lattice points is kept constant for better numerical stability.

F.4.2 Second-order transition from ferromagnetism to non-collinearity

For large |D| the ground state of the quasi one-dimensional micromagnetic model under-
goes a phase-transition from the ferromagnetic to a non-collinear configuration. If the
D-vector points parallel to the easy axis, this transition is second-order. An analytic
expression for the corresponding critical point is deduced in this chapter.

In the vicinity of the critical point it is possible to describe the magnetization of the
non-collinear state by its lowest order Taylor expansion around the ferromagnetic state.
In this approximation it is straightforward to solve the Euler-Lagrange equations.

As in Chapter 5.2.4 the coordinate system is chosen such that

D = D ez , Kx , Ky > Kz

and as independent parameters are used

K =
Kx−Kz

Ky−Kz
, D =

−D√
A (Ky−Kz)

.
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Figure F.2: Behavior of E and d
dD E when D is varied at fixed K. The zero point of the energy scale

corresponds to collinear magnetization parallel to the easy axis. The critical points are defined
by the kinks in the ( d E

dD )-curve. The transition from the truly 3-dimensional to the flat rotating
state can be localized easily (Fig. b). The transition from the collinear to the truly 3-dimensional
state is less convenient from a numerical point of view: The period length of the non-collinear
state depends on D and needs to be optimized for each data point. In this thesis this is done with
an algorithm that is unstable in the ferromagnetic regime (where the period length is arbitrary),
therefore there are no data points calculated for small D (Fig. a). But for every D there is a
collinear solution of the Euler-Lagrange equations with E = d E

dD = 0 and Fig. c shows that E and
d E
dD at the same point connect continuously to this solution.

This figure is obtained for K=0.25 . In Chapter F.4.2 it is shown that the critical point for the
transition from the collinear to the non-collinear state is at D=

√
K+1=1.5 .

The range of K can be restricted to K∈(0, 1] , (cf. Chapter 5.2.4). In Cartesian coordinates
the energy functional (5.3) has the form

E =

∫
dr ( ẋ2 + ẏ2 + ż2 −D (x ẏ − y ẋ) +K x2 + y2 )

where the condition x2 + y2 + z2 = 1 reduces the degrees of freedom .

For K>0 the D-vector points parallel to the easy axis and in the ferromagnetic state
there holds x= y= 0 , z= 1 . In the ferromagnetic limit x, y can be used as independent
variables. With

z =
√

1− x2 − y2 , ż =
− x ẋ− y ẏ√
1− x2 − y2

the integrand of the energy functional can be written and expanded around x=y=0 as

L(x, y, ẋ, ẏ) = ẋ2 + ẏ2 +
(x ẋ+ y ẏ)2

1− x2 − y2
−D (x ẏ − y ẋ) +K x2 + y2

= ẋ2 + ẏ2 −D (x ẏ − y ẋ) +K x2 + y2 +O
(

(x+ y + ẋ+ ẏ)4
)

and the Euler-Lagrange equations become

1
2 Lx = −D ẏ +K x− ẍ +O

(
(x+ y + ẋ+ ẏ)3

)
!
= 0 ,

1
2 Ly = +D ẋ+ y − ÿ +O

(
(x+ y + ẋ+ ẏ)3

)
!
= 0 .

If the higher-order terms are neglected these equations have the general periodic solution

x = αx cos(ω r + px ) , y = αy cos(ω r + py )
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where the phases can be chosen such that

x = αx cos(ω r) , y = αy sin(ω r) .

In order to determine α =
αy

αx
and ω these expressions can be inserted into the Euler-

Lagrange equations

1
2 x

−1 Lx = −ω αD +K+ ω2 = 0

1
2 y

−1 Ly = −ω α−1D + 1 + ω2 = 0




⇒






α =
ω2 +K
ωD

2ω2 = D2 −K − 1±
√

(D2 −K − 1)2 − 4K
.

The next step is to find the area in the (D,K)-space where the last expression has a real
solution for ω. This area is defined by the conditions that the radicand is positive and
that 2ω2 is positive. It is useful to split this analysis in the cases D2>K+1 and D2<K+1 .

• case D2 > K + 1 :

At first the sign of the radicand is examined:

(D2 −K − 1)2 − 4K > 0 ⇔ D2 > K + 2
√
K + 1 =

(√
K + 1

)2
.

Under the assumption that the radicand is positive the last expression for 2ω2 is
positive as well, i.e.

D2 −K − 1±
√

(D2 −K − 1)2 − 4K > 0

is fulfilled for all K>0 , D2>K+1 .

• case D2 < K + 1 :

If the radicand is positive and D2<K+1 then the condition

D2 −K − 1±
√

(D2 −K − 1)2 − 4K > 0

cannot be fulfilled if “±” is replaced with “−”, if “±” is replaced with “+” then one
gets

D2 −K− 1 > −
√

(D2 −K− 1)2 − 4K ⇔ (D2 −K− 1)2 < (D2 −K− 1)2 − 4K .

The last equation cannot be fulfilled for K>0 .

Thus it turns out that the lowest-order expansion of the Euler-Lagrange equations has a
non-collinear solution in the case K>0 if and only if

|D| > Dc =
√
K + 1 .

This inequality defines the critical point for the transition from the ferromagnetic to the
non-collinear state, if the non-collinear state is lower in energy than the ferromagnetic
state: If |D| is smaller than Dc =

√
K+1 there cannot be any continuous transition into a

non-collinear state, if |D| is just larger than Dc the system can lower its energy by changing
to the non-collinear solution. The lengthy analytical evaluation of the sign of E =

∫
dr L

in the limit |D| ↘ Dc is skipped since the numerical analysis shows that the non-collinear
state lowers the energy. Of course one cannot completely rule out the possibility of a
first-order phase transition at |D| ≤ Dc that would prevent the system from reaching the
critical point, but this has not been observed in the numerical simulations.
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F.5 DM interaction in the discrete model

• Hard axis parallel to D

The coordinate system is chosen such that D = D ez and Kx < Ky < Kz . Then the
magnetization stays in the (x, y)-plane. By dropping a constant term in the integrand the
model ansatz (5.17) can be simplified to

1
KE =

∑

j

J
K (1− cos(ϕj+1−ϕj) + D

K sin(ϕj+1−ϕj) + sin2 ϕj (5.19, Page 56)

where K=Ky−Kx .

For D
K = 0 the sharp domain wall that is discussed in Chapter 5.3.1 is always an ex-

tremal solution of (5.19), although it is a minimum only for J
K < 3

2 . But for D
K 6=0 it is not

an extremal solution, that can be seen from the derivative with respect to one angle ϕj :

∂ ( 1
KE)

∂ ϕj
= J

K

(
sin(ϕj−ϕj−1)− sin(ϕj+1−ϕj)

)

+ D
K

(
cos(ϕj−ϕj−1)− cos(ϕj+1−ϕj)

)

+ 2 sinϕj cosϕj ,

at the sharp wall there is sin(ϕj−ϕj−1) = sin(ϕj+1−ϕj) = sinϕj cosϕj = 0 .

This suggests that the domain wall profile changes smoothly from a solution of left-handed
to right-handed rotation when moving in the (D

K ,
J
K )-parameter space and crossing the

(D
K =0)-line at J

K < 3
2 . For J

K > 3
2 one can assume a first-order transition since the walls of

opposite rotational direction are degenerate at D
K = 0 . These assumptions are confirmed

by numerical simulation of the system described by (5.19) and plotting d (E/K)
d (D/K)

∣∣∣
J/K=const

for several J
K : For J

K < 3
2 these curves are smooth, for J

K > 3
2 they show a discontinuity

and for J
K = 3

2 the curve shows the typical λ-point behavior at D
K =0 .

The coexistence curve for the ferromagnetic and the rotating ground state that is plotted
in Fig. 5.15 is estimated by numerically determining the points in the (D

K ,
J
K )-space where

the energy of the domain walls is zero.

• Easy axis parallel to D, plane normal to hard axis isotropic

The coordinate system is chosen such that D = D ez . Then the model ansatz (5.17)
becomes

E =
∑

j

(
J ( 1 − sinϑj sinϑj+1 cos(ϕj+1− ϕj)− cos ϑj cos ϑj+1 )

+ D ( sinϑj sinϑj+1 sin(ϕj+1− ϕj) )

+ ( (Kx−Kz) cos2 ϕj + (Ky−Kz) sin2 ϕj ) sin2 ϑj + const
)
.

The model is examined only for the case K=Kx−Kz =Ky−Kz . By dropping the constant
term the last equation simplifies to

1
KE =

∑

j

(
J
K ( 1− sinϑj sinϑj+1 cos(ϕj+1− ϕj)− cosϑj cos ϑj+1 )

+ D
K ( sinϑj sinϑj+1 sin(ϕj+1− ϕj) )

+ sin2 ϑj

)
.

(5.20, Page 57)



F.5. DM interaction in the discrete model 107

In analogy to the continuum case (ϕj+1−ϕj) remains constant for all j if 1
KE is minimal:

∂ ( 1
KE)

∂ (ϕj+1− ϕj)
= sinϑj sinϑj+1 ( J

K sin(ϕj+1− ϕj) + D
K cos(ϕj+1− ϕj) )

!
= 0 ⇒

tan(ϕj+1− ϕj) = − D
J

= const (if sinϑj′ =0 then ϕj′ may take arbitrary value) .

From Eqn. (5.20) it is obvious which branch of arctan(− D
J ) defines (ϕj+1−ϕj) : At minimal

1
KE there holds

sign cos(ϕj+1− ϕj) = sign J , sign sin(ϕj+1− ϕj) = − signD

tan(ϕj+1− ϕj) = − D
J




⇒

cos(ϕj+1− ϕj) =
J√

J2 +D2
, sin(ϕj+1− ϕj) =

−D√
J2 +D2

.

Inserting the last expressions in Eqn. (5.20) yields

1
K E =

∑

j

(
J
K ( 1−cos ϑj cos ϑj+1 ) −

√
( J

K )2 + (D
K )2 sinϑj sinϑj+1 + sin2 ϑj

)
, (F.2)

∂ ( 1
KE)

∂ ϑj
= J

K sinϑj (cos ϑj−1+cosϑj+1)−
√

( J
K )2 + (D

K )2 cos ϑj (sinϑj−1 + sinϑj+1)

+2 sinϑj cosϑj .

The last expression is zero for all j if sinϑj = 0 or cosϑj = 0 for all j. The first case
corresponds to a collinear state oriented along the easy axis, the second case to a spin
spiral (rotating around the angle ϕ). The numerical analysis of Eqn. (5.20) does not show
any further possible ground state. The next step is to compare the cases sinϑj = 0 and
cos ϑj =0 in order to identify the ground state of (5.20) depending on J

K ,
D
K .

For sinϑj =0 Expression (F.2) simplifies to

1
K Ecol =

∑

j

J
K ( 1− cosϑj cos ϑj+1 ) .

For J
K >0 the possible ground state is the ferromagnetic and for J

K <0 the antiferromag-
netic state oriented along the easy axis. For the ferromagnetic state 1

KEcol = 0 , for the
antiferromagnetic state 1

KEcol =
∑

j 2 J
K .

For cos ϑj =0 Expression (F.2) simplifies to

1
K Ess =

∑

j

(
J
K −

√
( J

K )2 + (D
K )2 + 1

)
.

This expression describes the energy of a spin spiral that is circling in the plane normal
to the easy axis. It is the ground state if the energy-loss due to the DM interaction can
compete with the exchange and anisotropy energy, i.e. if

J > 0 : J
K −

√
( J

K )2 + (D
K )2 + 1 < 0 ⇒ J

K < + 1
2

(
(D

K )2 − 1
)
,

J < 0 : J
K −

√
( J

K )2 + (D
K )2 + 1 < 2 J

K ⇒ J
K > − 1

2

(
(D

K )2 − 1
)
.
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In the micromagnetic limit this condition reduces to the one that is discussed in Chap-
ter 5.2.4 (cf. Appendix F.1 for the definition of Ã, K̃ ):

J
K < + 1

2

(
(D

K )2 − 1
)
⇒

|D| = |D̃| > 2
√

1
2J K +K = 2

√
Ã K̃ + K̃∆

∆→ 0−−−−−−−→ 2

√
Ã K̃ .

For J
K > 0 the ground state can be ferromagnetic. In this case the domain wall configu-

rations are considered. They show a second-order phase transition that is absent in the
continuum model and has been discussed already for the case D=0 .

The size of the Hessian matrix can be reduced by exploiting the real-space symmetry
ϑ(r)= π − ϑ(−r) . There is no lattice point at (r=0 , ϑ= π

2 ) but there is one at ±1
2∆ (∆

denotes the lattice spacing) since the anisotropy energy is maximal at π
2 . Therefore the

Expression (F.2) can be written as

1
K E = J

K ( 1−cos ϑ1 cos(π−ϑ1) ) −
√

( J
K )2 + (D

K )2 sinϑ1 sin(π−ϑ1)

+ 2
∑

j>0

(
J
K ( 1−cos ϑj cos ϑj+1 ) −

√
( J

K )2 + (D
K )2 sinϑj sinϑj+1 + sin2 ϑj

)
.

For a finite system with N independent spin orientations ϑj (and the boundary condition
ϑN+1 = π) the Hessian matrix becomes

(
∂2 (E/K)
∂ ϑj ∂ ϑj′

∣∣∣∣
ϑn=π
n=1...N+1

)

j, j′

=




b+4 b 0
b a b

b
. . .

. . .
. . .

. . . b
0 b a




where a = 4 J
K + 4 , b = −2

√
( J

K )2 + (D
K )2 .

The conditions for this matrix being positive definite is analyzed numerically with the
method described in Chapter 5.3.1. The results converge quickly with the number of
lattice sites N . Thus, the numerical results represent the thermodynamic limit to high
accuracy.

The locations of the different ground states and domain walls in the ( J
K ,

D
K )-parameter-

space are plotted in Fig. 5.16.



Appendix G

Calculation of the ML exchange
parameters

In this appendix the magnitude of the parameters of the expansion (6.3) is estimated.
The calculations are restricted to 1 ML Fe coverage and q pointing in [001]-direction.
It is assumed that all magnetic moments stay within one plane. Spin-orbit coupling is
neglected.

G.1 Heisenberg exchange integrals

The leading terms in the expansion (6.3) are the pair interactions of the form

(X
(1)
j,j′ + X

(1)
j′,j ) (1 − Sj · Sj′) = J|j−j′| (1 − Sj · Sj′) . If these pair interactions are suffi-

cient to approximate the energy, i.e. if the system can be described with the Heisenberg
model

E(xc) =
j′+N∑

j=j′+1

Jj−j′ (1− Sj ·Sj′) . (6.4, Page 66)

then there is a simple way to estimate the exchange integrals Jj and the cutoff N .

With ∆ denoting the distance between two neighboring rows (i.e. ∆= 1
2 a if q ‖ [001] )

the exchange energy of a homogeneous flat spin spiral can be written as (cf. e.g. [103])

Sj′+j ·Sj′ = cos(q j∆)
(6.4)

⇒ E(ss)(q) =
∑

j>0

Jj (1− cos(q j∆) )

⇒ Jj = − ∆

π

2 π/∆∫

0

dq E(ss)(q) cos(q j∆) . (G.1)

Thus, the exchange integrals can be calculated as the Fourier coefficients of E(ss)(q) . The
number of relevant parameters {Jj}j (and thus the required density of the q-grid) can
be estimated from the convergence of JN with respect to N . One should note that the
long-range pair interactions can be neglected if the sum

∑∞
j=N Jj (1 − Sj ·S0) converges

fast, this is certainly the case if the sequence Jj converges in O( 1
j2 ) .

The Ansatz (F.1) requires the convergence of the sum
∑N

j j2 Jj with respect to N .
This more stringent condition is introduced by the 2nd-order Taylor approximation: In
Chapter F.1 it is assumed that Jj decays on the length scale where Sj = m(r0 + j∆)
can be approximated by m(r0) + j∆ ṁ(r0) + 1

2 (j∆)2 m̈(r0) . In this regime the energy
contributions of the exchange terms are proportional to j2 ∆ Jj and 1 − Sj ·S0 is very
small for small j. Thus, if the magnetization rotates on large length scales then the
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exchange integrals between distant atomic rows are more important than they are if the
magnetization rotates rapidly. It is not recommended to calculate the spin stiffness A
with the approach presented here and Eqn. (F.1); the aim of this appendix is to determine
parameters for a model that can be applied in the regime of rapidly rotating magnetization
where the micromagnetic model is questionable and the interactions between nearby rows
are dominant.
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Figure G.1: Spin-spiral energies and Heisenberg exchange integrals for 1 ML Fe and q‖[001] .
The data points (•) in Fig. a represent the results of selfconsistent calculations of flat spin spirals.
Fig. b shows the exchange integrals that are obtained from the spin-spiral energies by the fourier
transform (G.1). The dashed and solid line in Fig. a represent the approximation (6.4) for N =3
and N = 5 respectively. Fig. c illustrates the convergence of (6.4): The exchange integrals Jj

converge in O(j−2) , hence the sum
∑

j Jj fj converges for { |fj | ≤ 2 }j . Note that the data in
Fig. c reaches the numerical accuracy, therefore no points are shown for |j−j′| > 20 .

The results of the Fourier transform (G.1) are shown in Fig. G.1. It has already been
mentioned, that the above approach implies the applicability of the Heisenberg model (6.4).
It is not possible to justify the ansatz (6.4) just from the spin-spiral calculations that are
presented in Fig. G.1.a.

G.2 Higher-order terms

In this chapter the applicability of the Heisenberg model (6.4) and the importance of
higher-order exchange parameters is investigated. This is done by by comparing the en-
ergies of several magnetic configurations that are degenerate within (6.4).

G.2.1 Setup

In the following the energies of different magnetic configurations are presented. The en-
ergies are obtained from selfconsistent calculations with constrained magnetic moments
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(cf. Chapter 3.7.2). The magnetic moments are rotated along special pathes that keep the
energy contributions of certain low-order terms constant. This allows to break down the
total energy into the contributions of the various parameters of (6.3).

Due to the structure of the (110)-surface the unit cell has to contain an even number
of atomic rows. An unit cell with just 2 rows does not have enough degrees of freedom.
Thus, most calculations are performed in a 4-row unit-cell (cf. Fig. G.2). It is possible to
describe the magnetic consiguration with 3 angles (ϕ1, ϕ2, ϕ3), since the magnetization
direction is kept within one plane. The angles are defined according to Fig. G.2.

row0 row1 row2 row3 row4 row5

m

m

m

m

ϕ1

ϕ1

m

m

ϕ2

ϕ2

m

m

ϕ3

ϕ3

m

m

m

m

ϕ1

ϕ1
Figure G.2: Setup for the calculation of higher-order
interactions.

The magnetic moments stay in one plane and do
not turn along the rows in [11̄0]-direction ⊥ q . The
solid lines denote the surface unit-cell, the angles are
given with respect to the spin orientation in row 0.

Obviously, this setup allows neither to separate the
interactions of 1st-, 3rd- and other (2j+1)th-nearest
neighbors nor to separate the interactions of 2nd-, 4th-
and other (2j)th-nearest neighbors.

Calculations with a 4-row unit-cell (with periodic boundary conditions) do not allow to
separate all parameters of (6.3). Therefore, a reduced set of parameters is introduced that
is sufficient to describe the energy in this unit cell:

E
(xc)
4at = − Y

(1)
1 ( (S0·S1)+ (S1·S2)+(S2·S3) + (S3·S0) )

− Y
(1)
2 2 ( (S0·S2)+ (S1·S3) )

− Y
(2)
1 ( (S0·S1)2 +(S1·S2)2 + (S2·S3)2 + (S3·S0)2 )

− Y
(2)
2 2 ( (S0·S2)2 +(S1·S3)2 )

− Y
(2)
3 ( (S0·S1) (S1·S2)+ (S1·S2) (S2·S3)+ (S2·S3) (S3·S0)+ (S3·S0) (S0·S1) )

− Y
(2)
4 2 ( (S0·S1) (S2·S3)+ (S1·S2) (S3·S0) )

− Y
(2)
5

1
2
( (S0·S1) (S0·S2)+ (S1·S2) (S1·S3)+ (S2·S3) (S2·S0)+ (S3·S0) (S3·S1)

+ (S0·S1) (S3·S1)+ (S1·S2) (S0·S2)+ (S2·S3) (S1·S3)+ (S3·S0) (S2·S0) )

− Y
(2)
6 4 ( (S0·S2) (S1·S3) )

− O( Y (3)) + const .

(G.2)

In the following the order of these terms denotes the number of factors (Sj · Sj′) , i.e. the

coefficients of the nth-order terms are the parameters {Y (n)
i }i .

O(Y (n)) denotes terms of nth- and higher order.
Of course, the parameters of the 1st-order terms can be expressed with the Heisenberg

exchange integrals:

Y
(1)
1 =

∞∑

j=1

J2j−1 , Y
(1)
2 =

∞∑

j=1

J4j−2 . (G.3)

G.2.2 Three-row interactions

The ansatz (G.2) can be simplified considerably if one can restrict the relevant interactions

to pair interactions (Y
(1)
1 , Y

(1)
2 , Y

(2)
1 , Y

(2)
2 , Y

(3)
··· , ... ). The importance of the other terms
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(that depend on the magnetization direction of more than two atomic rows) is estimated
by varying the magnetization along path 1 in the above described 4-row unit-cell. Path 1
can be parameterized by φ as shown in the following:

path 1 :

ϕ1 = φ
ϕ2 = π
ϕ3 = φ+ 1

2π




⇒ E

(xc)
4at = (+Y

(2)
3 − 2Y

(2)
4 − Y (3)

4row ) sin(2φ) + O(Y (4)) + const ,

along φ ∈
[

1
4π,

3
4π
]

all configurations are different .

Y
(3)

4row denotes a sum of exchange parameters, where the corresponding terms are of 3rd-
order and depend on the magnetization direction of 4 different atomic rows.

In 4th-order there are several non-constant terms with diverse dependence on φ. The
pair interactions have the form

(S0·S1)4 +(S1·S2)4 +(S2·S3)4 +(S3·S0)4 = 1
2

cos(4 φ)+ const , (S0·S2)4 +(S1·S3)4 = const .
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Figure G.3: Energy changes when the magnetic
configuration changes along path 1. It is obvious
that the data can be fitted neither with sin(2φ)
only nor with cos(4φ) only.

Fig. G.3 presents E
(xc)
4at obtained from selfconsistent calculations of the magnetic configu-

rations of path 1. The relevant energy scale of (1
46= 1.5) meV per surface atom is small

compared to the one shown in Figs. G.1.a, G.1.b. Thus, the three-row interactions that
do not vanish in path 1 give only a minor contribution to the exchange energy.

The shape of the curve in Fig. G.3 cannot be explained with the 2nd-order terms
(∼ sin(2φ) ). If one wants to use the expansion (G.2) in order to describe the exchange
energy on the scale relevant in Fig. G.3, then one has to take into account terms up to
4th- (or higher) order. Also, it is not sufficient to consider just the pair-interaction terms
up to 4th-order (∼cos(4φ) along path 1).

G.2.3 Pair interactions

In the following it is assumed that the three-row interactions can be neglected in the
expansions (6.3), (G.2). The influence of the higher-order pair-interactions beyond the
Heisenberg exchange integrals is investigated.
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With the restriction to pair interactions (6.3) simplifies to

E(xc) =
∑

n>0

∑

j>j′
P

(n)
|j−j′| (1− (Sj ·Sj′)

n )

with P
(1)
|j−j′| = J|j−j′| = 2X

(1)
j,j′ , P

(n)
|j−j′| = 2nX

(n)
j,j′, j,j′, ... .

(G.4)

For n > 1 these terms are neglected in (G.1). The interpretation of the data shown in
Fig. G.1 has to be altered if these terms are taken into account. For example, if one
allows for n > 1 in (G.4) and neglects interactions beyond the next-nearest neighbors

( |j−j′|>2⇒ P
(n)
|j−j′|=0 ) then the exchange energy of a homogeneous flat spin spiral can

be written as

E(ss)(q) = (P
(1)
1 + 3

4 P
(3)
1 + . . . ) (1− cos(2π q∆) )

+ (P
(1)
2 + 1

2 P
(2)
1 + 3

4 P
(3)
2 + 1

2 P
(4)
1 + . . . ) (1− cos(4π q∆) )

+ ( 1
4 P

(3)
1 + . . . ) (1− cos(6π q∆) )

+ ( 1
2 P

(2)
2 + 1

8 P
(4)
1 + 1

2 P
(4)
2 + . . . ) (1− cos(8π q∆) )

+ . . . .

The data points in Fig. G.1.b correspond to the coefficients of this expansion.

In the expansion (G.2) the leading pair-interaction terms next to the Heisenberg model
are the biquadratic terms

−Y
(2)
1 ( (S0·S1)2 +(S1·S2)2 + (S2·S3)2 + (S3·S0)2 ) , −Y

(2)
2 2 ( (S0·S2)2 +(S1·S3)2 ) .

(If the interactions can be restricted to next-nearest neighbors then Y
(2)
1 = P

(2)
1 ,

Y
(2)
2 =P

(2)
2 .)

In the following it is shown that the biquadratic terms do not dominate the terms of
2nd- and higher order.

In order to estimate the magnitude of Y
(2)
1 the magnetic moments are rotated along path 2

in the 4-row unit-cell. Path 2 can be parameterized by φ as shown in the following:

path 2 :

ϕ1 = φ
ϕ2 = π
ϕ3 = φ




⇒ E

(xc)
4at = (−Y (2)

1 + Y
(2)
4 − Y (3)

3row ) 4 cos2 φ + O(Y (4)) + const ,

along φ ∈
[
0, 1

2π
]

all configurations are different .

Y
(3)

3row denotes a sum of exchange parameters, where the corresponding terms depend on
the magnetization direction of at least 3 different atomic rows.

In 4th-order all non-constant terms are proportional to cos4 φ or cos2 φ . The pair
interactions have the form

(S0·S1)4 +(S1·S2)4+(S2·S3)4 + (S3·S0)4 = 4 cos4 φ , (S0·S2)4 + (S1·S3)4 = const .

The results of these calculations are shown in Fig. G.4.



114 Appendix G. Calculation of the ML exchange parameters

(0/4) π (1/4) π (2/4) π 
−1

0
0

10

20

φ

E
(x

c)
4
a
t

/
m

e
V

t
r
ia

l
fu

n
c
t
io

n
s

− cos2 φ

− cos
4 φ

path 2

Figure G.4: Energy changes when the magnetic
configuration changes along path 2.

The data points do not match well with the 2nd-
order terms. Apparently the energy contributions
of the 4th-order pair interactions (or other higher-
order terms) are larger. From least-square fits one
obtains:

E4at ≈ a2 4 cos2 φ ⇒
a2 = −4.6 meV ,

E4at ≈ a2 4 cos2 φ+ a4 4 cos4 φ ⇒
a2 = +1.0 meV , a4 = −5.6 meV .

In order to estimate the magnitude of Y
(2)
2 the energies of two different configurations

(α, β ) are added. This way the contributions from the 1st-order terms and from Y
(2)
1 are

kept constant:

path 3 :

ϕα,1 = φ

ϕα,2 = φ− arctan cos φ√
2− sinφ

ϕα,3 = arctan cos φ√
2− sin φ

+ π

ϕβ,1 = arccos( cos(ϕα,1)− cos(ϕα,1 − 2ϕα,3) )
ϕβ,2 = 0
ϕβ,3 = arccos( cos(ϕα,1)− cos(ϕα,1 − 2ϕα,3) )





⇒

E
(xc)
αβ = E

(xc)
α,4at − 1

4 E
(xc)
β,4at

= −Y (2)
2 4 cos2

(
φ− arctan

cosφ√
2− sinφ

)
− Y (2)

3row (...) + O(Y (3)) + const ,

along φ ∈
[

1
4π,

3
4π
)

all configurations are different .

The results of these calculations are shown in Fig. G.5. Note that the configuration β can
be calculated with a 2-row unit-cell.

The energy curves of path 2 and path 3 show that the contribution of the biquadratic
terms is small compared with the energy changes given in Fig. G.1.a.

Fig. G.4 shows that the nearest-neighbor biquadratic interaction (coefficient Y
(2)
1 ) is

not dominant at path 2: Fits to the energy curve show that the higher-order terms ∼cos4 φ
are more important (cf. Figure Caption G.4). The energy changes along path 3 (Fig. G.5)

are relatively high. The influence of the biquadratic interaction (coefficient Y
(2)
2 ) on the

energy curve of path 3 is not clear, a fit to the energy curve of path 3 with the biquadratic

term only gives Y
(2)
2 ≈ 8meV . But, the energy curve of path 4 (presented below) shows

that the biquadratic terms with of Y
(2)
2 ≈8meV are no reasonable correction to the Heisen-

berg model (6.4).
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) Figure G.5: Energy changes when the magnetic
configuration changes along path 3.

The above calculations indicate that the Heisenberg exchange integrals (i.e. 1st-order co-
efficients) are dominant: The energy changes of the flat spin spirals (Fig. G.1.a) are large
compared to the energy changes of the configurations that are degenerate in the Heisenberg
model (Figs. G.3, G.4, G.5 ; remember that these curves show the energy per 4 surface
atoms).

Further tests are necessary to see whether the dominant parameters {Jj} are inde-
pendent of the particular magnetic configurations. This is checked by calculations with

the 4-row unit-cell, path 4 allows to separate the contributions of Y
(1)
1 =

∑∞
j=1 J2j−1 and

Y
(1)
2 =

∑∞
j=1 J4j−2 :

path 4 :

ϕα,1 = 0
ϕα,2 = φ
ϕα,3 = φ

ϕβ,1 = φ
ϕβ,2 = 0
ϕβ,3 = φ






⇒






E
(xc)
β,4at = (−Y (1)

1 + Y
(2)
3row) 4 cosφ+ (−Y (2)

1 + Y
(2)
3row) 4 cos2 φ

+O(Y (3)) + const

E
(xc)
αβ = E

(xc)
α,4at − 1

2 E
(xc)
β,4at

= (−Y (1)
2 + Y

(2)
3row) 4 cosφ+ (−Y (2)

2 + Y
(2)
3row) 4 cos2 φ

+O(Y (3)) + const

,

along φ ∈ [ 0, π ] all configurations are different .

The results of these calculations are shown in Fig. G.6. The energy curves are approxi-
mated by the Heisenberg model (6.4) with the exchange intergrals {Jj} that are obtained
from the spin-spiral calculations and shown in Fig. G.1.b. The calculations show that
the dominant part of the exchange-energy differences can be described by the Heisenberg
model. Only a few exchange integrals need to be considered.

The curve for E
(xc)
αβ is “corrected” by the term −Y (2)

2 4 cos2 φ with Y
(2)
2 = 8meV as

estimated from path 3. The resulting graph illustrates that the derivations from the
Heisenberg model cannot be described by the 2nd-order pair interactions (cf. right panel
of Fig. G.6, compare with Fig. G.5).

A further test of the Heisenberg model is made on a less regular path. The exchange
energy of configuration α of path 3 can be written as

E
(xc)
α,4at = Y

(1)
1

(
cos

(
φ− 2 arctan

cosφ√
2− sinφ

)
− cosφ

)
+O(Y (2)) + const .
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Figure G.6: Energy changes when the magnetic configuration changes along path 4. The data
points (•) represent the results of the ab-initio calculations. The lines represent the approximations
with the leading terms of the expansion (G.2).

The left figure shows E
(xc)
β,4at and its approximation by the Heisenberg model E

(xc)
β,4at =

−Y (1)
1 4 cosφ + const . The parameter Y

(1)
1 is obtained from the spin-spiral calculations (cf.

Fig. G.1) with the Eqns. (G.1) and (G.3). In (G.3) the exchange integrals Jj are taken into
account for j≤N , the maximal neighbor distance N is given in the legend.

The right figure shows E
(xc)
αβ . The thick line represents the approximation by the Heisen-

berg model E
(xc)
αβ = −Y (1)

2 4 cosφ + const . Likewise, the parameter Y
(1)
2 is obtained from the

spin-spiral calculations. Here only the exchange integral J2 is taken into account, according to
(G.3) there is no contribution from J1, J3, J4, J5 . The thin line represents the approximation

E
(xc)
αβ = −Y (1)

2 4 cosφ− Y (2)
2 4 cos2 φ + const with Y

(1)
2 = J2 , Y

(2)
2 = 8 meV .

The ab-initio results of E
(xc)
α,4at and the approximations by the Heisenberg model are shown

in Fig. G.7.
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Figure G.7: Energy changes of configu-
ration α along path 3. The data points
represent the results of the ab-initio cal-
culations, the lines represent the approx-
imation

E
(xc)
α,4at =

Y
(1)
1

(
cos
(

φ − 2 arctan cos φ√
2− sin φ

)
− cos φ

)

+ const .

The calculation of Y
(1)
1 and the meaning

of N is identical as in Fig. G.6.

Fig. G.7 shows that the nearest-neighbor interaction dominates the exchange energy
and can be described by the Heisenberg model. But, contrary to path 4, the approximation
does not improve considerably if the interactions beyond the nearest neighbor are taken
into account. Note that the 2nd-nearest neighbor interaction vanishes when path 3α is
described by the Heisenberg model.

G.3 Conclusion

In this Appendix G the applicability of the expansion (6.3) is checked and the relevant
model parameters are estimated. The choice of the magnetic configurations, that are
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compared with the model, introduces some arbitrariness. With the current computing
resources it is not feasible to calculate many more configurations with the required accu-
racy. Nevertheless, the above results indicate that the Heisenberg model (6.4) describes
the dominant part of the exchange energy with

J1 = +53.8meV , J2 = −13.5meV , J3 = +13.8meV

( J4 = +1.8meV , J5 = −4.1meV ) .

In the above calculations the error made with this ansatz is <∼ 10meV per surface atom.
With this inaccuracy J4, J5 are irrelevant.

It is not possible to improve the model by including the terms of next higher order in
(6.3) while using one fixed set of model parameters for arbitrary magnetic configurations.
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Computational details

All ab-initio calculations apart the structre relaxations are performed within the local den-
sity approximation in the parameterization of Moruzzi, Janak, Williams [72]. All results
that are presented in Chapter 6 are done for the same surface geometry, i.e. the interlayer
distances and the in-plane lattice constant are not changed.

The most critical computational parameters describe the range of the basis functions.
They are specified in terms of Kmax and kdens . The basis functions are set up according
to Eqn. (3.7) with K< |Kmax| . kdens denotes the number of k‖-points that are used to
sample the surface Brillouin zone. kdens is given in terms of pbz, this denotes the number
of mesh points per reciprocal chemical unit cell (if symmetry allows to restrict the k-point
mesh to 1

n th of the Brillouin zone then the number of actually used k-points is 1
n kdens ).

The muffin-tin radii are chosen as RMT = 2.1 a.u. for the Fe atoms and RMT = 2.5 a.u.
for the W atoms.1

H.1 Structure relaxation

The in-plane lattice constant is set according the experimental value of aexp = 0.316 nm for
the bulk bcc W lattice constant. The out-of-plane interlayer relaxations are determined
from ab-initio calculations of the ferromagnetic system. These calculations are performed
with an one-atomic surface unit cell, thus the possibility of surface buckling is not taken
into account.

The local density approximation gives only poor description of the structural relax-
ations of the 3d transition metals [e.g. 6], therefore the structure is determined with a GGA
approximation as described in [78,80]. The interlayer relaxations are calculated with the
GGA in-plane lattice constant aGGA that is determined from calculations of W-bulk.

The final structure is obtained by keeping the relative distances constant and scal-
ing the whole structure by a constant factor of (aexp/aGGA) . The results are given in
Table H.1.

The structural optimizations are calculated with a slab of 7 layers of W sandwiched
between one or two layers of Fe on each side. A plane-wave cutoff of Kmax = 4.0 a.u.−1

and a k-point density of kdens = 100pbz are used.

1 1 a.u. = 1Bohr radius = 5.29·10−11 m
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ML Fe DL Fe

rz
nm

(GGA)
rz
nm
· aexp

aGGA

mag.mom.

µB

rz
nm

(GGA)
rz
nm
· aexp

aGGA

mag.mom.

µB

Fe −− −− −− 0.3752 0.3715 2.860
Fe 0.1938 0.1919 2.452 0.2024 0.2003 2.244
W 0.0 0.0 −0.108 0.0 0.0 −0.111
W −0.2256 −0.2235 0.005 −0.2256 −0.2235 0.004

Table H.1: Interlayer distances calculated with an in-plane lattice constant of aGGA = 0.3191 nm
and scaled to the experimental lattice constant of aexp = 0.316 nm. The distances rz are given
with respect to the top W atom, the spin magnetic moments are given for the GGA calculations
with the GGA relaxations.

H.2 Exchange interactions

DL geometry

The spin-stiffness energies (Fig. 6.6, right panel) are calculated for a structure with 2 layers
of Fe on one side of 7 layers of W. The local force theorem is applied, i.e. only the
ferromagnetic potential is calculated selfconsistently. The basis functions are confined
by Kmax = 4.0 a.u.−1 and kdens = 484pbz for the calculation of the potential and kdens =
7200pbz for the calculation of the spin spirals. The results for the spin-stiffness energies
are a byproduct of the calculation of the DM-interaction (Fig. 6.9), the latter required
7 layers of W and the high numerical cutoffs.

ML geometry

The spin-stiffness energies (Fig. 6.6, left panel) are calculated for a structure with 1 layer
of Fe on one side of 4 layers of W. The local force theorem is applied, i.e. only the ferromag-
netic potential is calculated selfconsistently. The basis functions are confined by Kmax =
3.6 a.u.−1 and kdens =576pbz for the calculation of the potential and kdens =2700pbz for
the calculation of the spin spirals.

The hopping parameters are calculated selfconsistently for a structure with 1 layer of
Fe on one side of 2 layers of W. The influence of the number of W-layers on the results is
estimated (cf. Fig. H.1).
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Figure H.1: Spin-spiral energies for one ML Fe
on a W slab. The number of W-layers is given in
the legend.

The convergence with respect to Kmax and kdens is tested carefully for the spin-spiral
calculations. The plane-wave cutoff is Kmax = 3.6 a.u.−1 . The k-point density is kdens =



120 Appendix H. Computational details

576 pbz . But, the points are not isotropically distributed. In [11̄0]-direction (⊥ q ) the
distance between the k-points is

√
2 -times larger than in [001]-direction (measured in

a.u.−1 , not per length of the Brillouin zone).
The 4-row unit-cell that is introduced in Appendix G is calculated with the same Kmax

and an equivalent set of k-points (i.e. the basis functions in both unit cells are labeled
with the same wave vectors {k+G} ; the unit cell for the spin-spiral calculations (with 1
surface atom) is calculated with 4 times more k-points than the 4-row unit-cell (with 4
surface atoms) ).

The exchange integrals presented in Fig. G.1.b are calculated from the data presented
in Fig. G.1.a. The spin-spiral energy curve E(ss)(qx) is approximated by connecting the
data points with straight lines. For each of these linear curve segments the Fourier inte-
gral (G.1) is integrated analytically and the results for all curve segments are added.

H.3 Magnetocrystalline anisotropy

It requires a major computational effort to calculate the magnetocrystalline anisotropy
constants with sufficient accuracy. In a surface film the symmetry is low and thus the
relevant anisotropy constants are higher than in most bulk systems. Nevertheless, in the
DL system they are well below 1meV per surface atom.

A large amount of the energy differences results from the bands close to the Fermi
energy, whose occupation numbers change with the magnetization direction. It requires
a dense k-point mesh to count eigenvalues of the occupied states correctly. Fortunately
these small changes in the occupation numbers do not influence the potential too much,
it is still possible to apply the local force theorem.

Besides the purely numerical difficulties one also has to take care how to model the struc-
ture properly. The semi-infinite W substrate is modeled with a two-dimensional slab that
is covered with Fe on one side. The thickness of the slab is quite important. Even though
the induced moments and the direct contribution to the anisotropy energy from the deeper
W-layers can be neglected, the potential of these layers is necessary to generate wave func-
tions that close to the surface approximate the wave functions of the semi-infinite crystall.

In the case of a DL Fe coverage the dependence of the anisotropy constants on the slab
thickness is studied systematically. The results are shown in Fig. H.2. Note that these
calculations are performed with a W slab that is covered with Fe on one side, the W atoms
on the other surface are far from their bulk environment. It is necessary to choose such a
setup for the calculation of the DM interaction.

In the case of one ML Fe coverage there is an energy difference of more than 2meV
per surface atom between the configurations magnetized perpendicular and along the easy
[11̄0]-axis. The anisotropy constants vary less than 1meV between slabs of 3, 4 and 10
W-layers, therefore the surface can be modeled with a slab of 3 W-layers in order to get
a rough estimation of the energy necessary to rotate the magnetization into the plane
perpendicular to the easy axis, but for more accuracy (e.g. for a reliable sign of K001) it
is necessary to use a thicker slab in the calculations. It is not as important as in the case

of the DL to reduce the absolute error of K(so), therefore the convergence of K
(so)
001 , K

(so)
11̄0

with respect to the slab thickness is not examined as careful as in the case of the DL.
From Table H.2 it can be seen that three layers of W are sufficient to predict the easy axis
but thicker slabs are needed to resolve the energies by less than 1meV .

The magnetocrystalline anisotropy energies are calculated with Kmax = 3.6 a.u.−1 . The
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Figure H.2: Anisotropy constants for a DL Fe on a W slab. The dots (•) represent calculations of
K(so) for slabs of different thickness, the crosses (x) represent calculations done with a slab of 11
W-layers but with no spin-orbit coupling in the last W-layers. The dashed lines indicate −K(dip)

(calculated from the moments of the Fe- and 1st W-layers), note that the major parts of dipolar
and magnetocrystalline anisotropy cancel. The energies are given per surface atom.

mag.mom.

µB
# W-
layers

K
(so)
001

meV

K
(so)
11̄0

meV
Fe 1st W 2nd W

2 1.39 −6.46 2.20 −0.12 −0.01
3 0.35 −2.23 2.32 −0.09 −0.01
4 −0.27 −2.52 2.30 −0.11 −0.00

10 0.39 −2.42 2.35 −0.10 −0.01

Table H.2: Anisotropy constants and
spin moments for a ML Fe on a W slab.
The energies are given per surface
atom. Note that the drastic changes
in the anisotropy constants cannot be
predicted from the spin moments.

potential is determined selfconsistently under the neglection of spin-orbit coupling with
kdens = 576pbz for the ML coverage and kdens = 100pbz for each of the slabs with DL
coverage that are shown in Fig. H.2. From these potentials the anisotropy energies are
calculated via the force theorem. In the case of the ML coverage the convergence with
respect to kdens is tested by calculations up to 10 000 pbz , the energies remain stable above
≈ 4000 pbz . But, due to the high ML anisotropy energy qualitative results can already
be obtained with much lower kdens , Fig. 6.7 is obtained with kdens = 404pbz [76]. The
DL coverage is calculated with kdens = 4900pbz .

The applicability of the local force theorem is checked by performing selfconsistent
calculations for a slab with DL Fe and 7 W-layers. The anisotropy constants that are
obtained from this calculations show only minor difference to the ones obtained with the
local force theorem.

H.4 DM interaction

For the DL Fe the size of the D-vector is calculated with the method that is introduced
in Chapter 3.9.

The surface is modeled with a slab of 2 Fe-layers on 7 W-layers. The contribution of
the outermost W-layer (opposite to the Fe) to the SOC term is unaccounted for.

The potential is determined selfconsistently for the ferromagnetic case with kdens =
484pbz and Kmax = 4.0 a.u.−1 . The spin-spiral eigenstates are constructed from this po-
tential with the generalized Bloch theorem. There are no further selfconsistent calculations
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necessary since there are only small q-vectors considered.
The curves in Fig. 6.9 are obtained with kdens = 7200pbz and Kmax = 4.0 a.u.−1 . Some

data points (in particular in the vicinity of the kink at qx = 0.04 (4π a−1) are recalculated
with Kmax = 3.6 a.u.−1 and Kmax = 4.2 a.u.−1 in order to estimate the effect of the basis
size on the curve. There are no considerable differences in the results for Kmax = 4.0 a.u.−1

and Kmax = 4.2 a.u.−1 . If Kmax is reduced to 3.6 a.u.−1 the curves are less smooth but the
positions of the main kinks at q ‖[001] remain the same.

For the perturbative procedure that is presented in Appendix D the size of the energy
intervals are chosen as e0 = 100mhtr and e1 = 50mhtr . For qx > 0.05 (4π a−1) and
qy > 0.05 (

√
8π a−1) tests with larger energy intervals are done. These tests do not show

a considerable deviation from the results that are presented in Fig. 6.9.
There is no experience with these calculations, therefore the accuracy of the method is

not known. With the currently available computing resources it is not feasible to test the
stability of the result with respect to changes in the geometry (e.g. number of W-layers).

Note that the calcualtion of the data presented in Fig. 6.9 requires an immense amount
of computing time. The method presented in Appendix D reduces the time needed to apply
the SOC perturbation drastically. Most time is spend in the calculation of the spin-spiral
eigenstates, since this has to be done for many k-points.
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[11] S. Blügel, First Principles Calculations of the Electronic Structure of Magnetic
Overlayers on Transition Metal Surfaces, PhD thesis RWTH Aachen (1988)
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