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Zusammenfassung

Schwingungsaufgeltste Photoelektronen-Spektren massenselektierter Cluster-
strahlen enthalten im Prinzip eine Fiille von Informationen {iber die elektroni-
sche und geometrische Struktur freier Cluster, bediirfen jedoch der Interpre-
tation durch quantenmechanische Rechnungen. Dabei werden hohe Anfor-
derungen an Genauigkeit und Effizienz des verwendeten Verfahrens gestellt.
Durch eine systematische Untersuchung von neutralen und anionischen §,-,
P,.-, und 5i,C,,-Clustern und Vergleich mit experimentellen Spektren zeigen
wir, daf} die lokale Spindichte-Niherung des Dichtefunktional-Formalismus
in Verbindung mit der Molekulardynamik-Methode von Car und Parrinello
beide Forderungen in hohem Mafe erfiillt. Zum einen liefert unser Verfahren
elektronische Bindungsenergien unter Beriicksichtigung von Relaxationspro-
zessen, zum anderen kann es mit Molekulardynamik-Simulationen bei endli-
cher Temperatur die stabilsten Clustergeometrien effizient bestimmen. Letz-
teres ist entscheidend fiir den Erfolg unseres Vorgehens, da die Strukturen
der Cluster die Bindungsenergien der Photoelektronen erheblich beeinflussen
kénnen. Das zeigen die Unterschiede der Elektronenaffinititen ring- und ket-
tenférmiger Schwefelcluster besonders deutlich. Experimentell becbachtete
Verdnderungen der Photoelektronenspekiren bei verschiedenen Einstellun-
gen der Clusterquelle lassen sich ebenfalls durch das Auftreten unterschied-
licher Isomere erkliren. Auch bei P,,”- und Si,C,, ~-Clustern entscheidet die
Form der Cluster iiber die Gestalt der Spektren, so k8nnen zum Beispiel
in einzelnen Fillen die Elektronenaflinititen verschiedener Strukturisomere
um mehrere Elektronenvolt differieren. Dariiber hinaus sind elektronische
Ubergange i.A. auch mit Ubergingen zwischen verschiedenen Schwingungs-
zustdnden verkniipft. Diese lassen sich, falis sie im Experiment aufidsbar
sind, durch Vergleich mit unseren theoretisch gewonnenen Werten ebenfalls
fiir die Strukturbestimmung nutzbar machen. Zwar ist unsere Methode auf
die Bindungsenergien der niedrigsten elektronischen Zustadnde jeder Symme-
trie eingeschrinkt, jedoch hat sich dies in fast allen Fillen als ausreichend er-
wiesen, um die experimentellen Daten konsistent zu erkliren. Damit eréffnen
sich zum Teil iiberraschende Einblicke in die Struktur nicht nur anionischer

Cluster.
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Chapter 1

Introduction

When Dirac discovered his famous equation that describes the dynamics of electrons, he is
said {0 have remarked “the rest is chemistry”. Whether or not he actually said this, most
physicists would agree that the quantum mechanics of electrons and nuclei contains the
principles that govern most of low-energy physics, chemistry, and biology. However, the
view that this is all that physics can say about the astonishing complexity of these fields
was certainly too pessimistic. Powerful numerical models based on guantum mechanies
are now used to explain and predict many properties of chemical compounds. It has
become increasingly apparent that a key to the understanding of the behaviour of complex
molecules is the geometrical arrangement of the constituent atoms. This is obvious in
molecular biology, where the enzymatic function of polypeptides or the effects of drugs
can be directly related to the three-dimensional arrangement of their atoms in space, and
was recognized early by researchers in this field. F. Crick wrote “If you want to study
function, study structure” [Cri88]. However, the structure also affects the properties of
chemical compounds on a lower, more immediate level of complexity. The boiling points
of alkanes C,Ha,.5, for example, are correlated both with the size of the molecules (i.e.,
n) and the amount of branching in the structures. Conversely, we cannot expect to be
able to predict the properties of a given compound correctly if we know nothing about its
structure. Therefore, the determination of the correct equilibrium structures has become
a major goal of computational physics.

This interest in the prediction of specific properties of individual systems might seem
to contradict the search for universal laws that dominates much of theoretical physics, but
is a necessary prerequisite for the understanding and prediction of more general trends and
relations in this field of research. While these remarks are valid for chemical compounds
in general, they are particularly important for atomic clusters, which can be expecied
to exhibit a large variety of different geometries as they span a larger size range than
molecules.

What are clusters? There seems to be some semantic confusion about their definition,
so let us consult a dictionary [Oxf93]. While a molecule is defined as “the smallest portion
to which a substance can be reduced by subdivision without losing its chemical identity”,
we learn that clusters are simply “compact groups of similar things”. According to this
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4 CHAPTER 1. INTRODUCTION

definition, which is less restrictive (with respect to size and to chemical stability) for a
cluster than for a molecule, a molecule might as well be regarded as a more or less small
and especially stable cluster. In fact, since clusters are characterized by a large number of
surface atoms with often strained and/or dangling bonds, most of them might be viewed
by chemists as free radicals rather than molecules. On the other hand, there are some
exceptional clusters that can exist in macroscopic amounts, such as small clusters of sulfur
and selenium [Don74] and several carbon structures such as Cgo [FSM™91). The borderline
that separates clusters from molecules is imprecise, and this is also true for the upper
bound of the size range (about 10° atoms) that distinguishes clusters from bulk matter.

Particularly difficult to describe and predict are clusters of elements that form covalently
bonded® molecules and solids [MRB80], such as C, Si, P and § in the first and second rows
of the main groups 14 through 16 of the periodic table. These elements are the focus of
the present work. The propensity to form covalent bonds has ¢rucial implications for the
complexity of the geometries of these clusters. Unlike rare gas and, from a certain size,
metal clusters, these are neither simple close packed arrays nor bulk-like, but exhibit a wide
variety of forms that challenge both experimentalists and theorists. These particles are
also interesting from a technological viewpoint, since the uniqueness of structural features
suggests that some clusters might be used as building blocks of new materials with novel
properties. For example, conferences are now held on Cgp alone, the most famous of a whole
new class of “Bucky” structures. This cluster can be assembled into a molecular solid,
yielding & third distinct crystal structure for bulk carbon that, doped as RbzCs;Ceg for
example, can even be made into a high temperature superconductor (7.=33 K [TES+91}).
The unique features met in the mesoscopic region between atoms or small molecules and
condensed matter are a serious drawback for the applicability of standard experimental
and theoretical concepts and models used successfully in either region.

Despite many efforts, structural properties of most clusters are difficult to obtain from
experiment, since the modest size and the comparatively high reactivity of these particles
restricts the applicability of traditional solid state methods, such as nuclear magnetic
resonance {NMR) or x-ray diffraction. Moreover, it is not yet possible to produce size-
selected clusters of a given composition in macroscopic quantities (with the exception of
Bucky-structures, see [KLFH90]). The deposition of clusters on a support or the embedding
into condensed matter (matrix) could facilitate their study, but the interaction with the
substrate changes the properties of the clusters and adds considerable complexity, both
experimental and theoretical. These difficuities apply to all experiments where supports
or matrices are used, although they can be studied by infrared, visible and ultraviolet
spectroscopy or by x-ray spectroscopy (for reviews, see [CS§94], [KQ94] and [DW94]). Only
a few experimental results have been published for, e.g., mass-selected supported clusters
(but see [EFC*90]) that allow for conclusions about their geometries, despite the obvious
technological importance in catalysis and nanostructured devices.

1The term “covalent bond” dates was introduced by Lewis [Lew16] {(in 1916, before quantum mechanics
was established fully) and refers to a directional chemical bond that results from & sharing of an electron
pair (as distinct from electron transfer) between the bonding atoms {see [Pau60]j. The directionality of
the electron distribution is alsc characteristic for covalent crystals [AMT6].




Experiments on clusters in the gas phase require sources that are able to produce
intense cluster beams, and two of the most common designs are discussed below. Gas-
aggregation sources [RMT*89, dHKCC87] vaporize clusters (mostly metals) continuously
into a flow of cold inert gas, and the most intense sources are of this type. Pulsed sources
[Sma83, SLF91] use a lager or an electric discharge to produce, for a wide range of mate-
rials, a plasma of neutral and charged particles that is carried away by an inert gas, and
high instantaneous cluster intensities can be reached. Among the various characteristics
of clusters studied in the gas phase are the size distribution (see, e.g., [KCd*84}]), the po-
larizability [dC89], the collision-induced modes of fragmentation (see, e.g., [RIBK90]} and
the fission upon charging [Sau90] and in Coulomb explosion experiments after a complete
removal of all valence electrons [VFK*91]. The clusters can also be investigated by optical
spectroscopy either by exciting the cluster with either one or two photons, where in the lat-
ter case {“two photon spectroscopy”) the second is used to probe the photo-excited states
by scanning their frequency {see [KM90]). The occurrence of photofragmentation has been
put to advantage in depletion spectroscopy, where the photoabsorption cross section is de-
termined indirectly from the photofragmentation cross section (see [BCC*95]). In infrared
spectroscopy, the clusters are mixed into a rare gas carrier and the absorption spectrum
probed by irradiating the mixture either in the gas phase (seeded rare gas clusters, for a
review see [AGL"94]} or in deposited form (matrix isolation spectroscopy, see [PMGS90]).
The spectra contain information about the vibrational states of the clusters.

Among the gas phase methods, electron spectroscopy has established itself in recent
years as & promising source of indirect structural information about clusters with up to
~100 atoms. This development has been facilitated by improvements in electronic detection
technigues. In electron spectroscopy, mostly negatively charged clusters that have been
ionized either during or after the generation process are mass selected and focused into
a beam that is irradiated by a laser. Photoelectron spectroscopy measures the kinetic
energy of photo-ejected electrons, which contains information about the electronically and
vibrationally excited states of the resulting neutral cluster. The energy resclution of the
electron spectrometers is typically ~5 to 50 meV, and in chapter 3 we describe in detail
a typical experimental setup and interpret the features contained in the spectra. Even
higher resolution is provided by the zero kinetic energy electrons (ZEKE) spectroscopy,
where the cluster beam is intersected by one or twe narrow band, tunable laser beams.
The laser frequency is tuned near to a threshold for electron production and only photo-
ejected electrons with very low kinetic energy are detected. The energy resolution can be
as high as 0.1 meV (for an application of both electron spectroscopy techniques to C and
Si cluster anions, see [KIN93]}.

Photoelectron spectroscopy has raised particular interest among theorists, since vibra-
tionally resolved spectra are now available for a large variety of clusters {e.g., Sb clusters
[PGHL92], Au clusters [TJC*90], Bi clusters [PHGLI1] and C/Si clusters [KCWNS0],
[KN93}, [HGKT95], [INTN*95]) that convey a wealth of information on vibronic excita-
tion properties and indirectly on the ground state geometries. A reliable interpretation
of these spectra is a major challenge for theory in the field of clusters. Traditional “ab
initio” computational methods of quantum chemistry are impracticable in the size range
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covered by the spectra, and the search for more efficient algorithms {see, for instance,
[ODMG95, MG94, HTP94]) is the subject of current research interest. Traditionally, the
understanding of the electronic excitations of atoms and molecules relies on configuration
interaction (CI) calculations, which, although highly accurate, are limited to systems with
relatively few electrons (less than 100). Recently, CI calculations have provided success-
ful interpretations of photoelectron spectra, such as in the case of anionic silver clusters
[BKC94], but the high computational cost restricts these calculations to a reduced ba-
sis set and consideration of valence s electrons only. It would be extremely expensive to
perform high-level CI calculations on systems like those considered here (see [RR92] for a
QCISD(T) calculation for one isomer each of Siz~ and Sig™).

On the other hand, atomic and molecular clusters are fields in which density-functional
theory in the local-spin density approximation, especially with the Car-Parrinello method
(see, e.g. [HICP88, JH%0a, RAPY94, BJ94]) has demonstrated its ability to determine
ground-state structural and electronic properties both reliably and efficiently. However,
while the ground-state properties can in principle be obtained exactly, the eigenvalues of
the Kohn-Sham equation cannot be interpreted as electron addition or removal energies,
such as those measured in photoemission. Instead, a possible calculation of the excitation
spectrum might start from local density approximation results for the ground-state and
then compute the quasiparticle (QP) energies of the system within many-body perturba-
tion theory. This is often done [HL85b, SL93] using Hedin’s GW approximation [Hed65].
Despite the approximations involved, this approach is computationally demanding, and
is restricted to relatively simple systems, such as Na and K clusters within the spherical
jellium model [SZLC89]. Application to systems such as those considered here is presently
beyond the scope of this method.

This has prompted us to develop & parameter-free and manageable scheme based on the
Car-Parrinello method that is able to calculate the electronic excitation energies of clusters
in terms of differences of self-consistent total energies (ASCF). The approach, which we
describe in detail in the next section, requires no approximations beyond the local spin-
density approximation. Many recent publications in the area of cluster science (see, e.g.,
[PMG92] and [Rit92], [Rit94] and [PMG84), [GKL*94] and [PMGRG95]) are the result of
close collaboration between theorists and experimentalists. We therefore suggested to the
experimental group in our institute led by Gerd GantefSr that they check the predictions
of the scheme by performing high resolution photodetachment measurements. This has
been done for S,,~, P~ and 8i,C,,” microclusters and the resulfs of the collaboration play
a central role in the work described in this thesis.




Chapter 2
The Car-Parrinello Method

In this chapter, we describe a manageable theoretical scheme that leads to a successful
interpretation of the photoeleciron spectra of small clusters. The crucial factor to bring
theory in close agreement with experiment is the accurate determination of the equilibrium
atomic geometries of anionic clusters. To this end, we use the method introduced by Car
and Parrinello (CP) [CP85]. The two key ingredients to the CP method are

e an accurate [Koh95) approximation to the Born-Oppenheimer (BO) potential pro-
vided by the local spin-density approximation (LSDA) of density functional theory

(DFT)

s a numerically efficient approximation to the true BO dynamics, i.e., the dynamical
evolution of the system of nuclei on the BO potential energy surface, provided by the
CP molecular dynamics (CP-MD) scheme.

The first two sections are addressed to an ocutline of both aspects of the CP method.
In section 2.3, the reader will be confronted with the unavoidable technicalities of the
implementation of the method. In the same section we will describe our steps taken to
make the method (that uses periodic boundary conditions) applicable to isolated, charged
clusters, especially to calculate total energies differences.

2.1 The Born-Oppenheimer Potential

2.1.1 The Adiabatic Approximation

The Car-Parrinello (CP) method as used in this work requires the validity of the quantum
adiabatic or Born-Oppenheimer {BO) approximation [BO27]. Within this approach, the
kinetic energy of the nuclei is considered as a perturbation of the electronic system

#=h({R) + 5 Y e, (2.)

7




8 CHAPTER 2. THE CAR-PARRINELLO METHOD

where x = {/m/{M;) serves as a formal parameter of the perturbation, {M;) being a suit-
able average of the nuclear masses involved. o; = (My)/M; are dimensionless parameters
of order one. The unperturbed (electronic) Hamiltonian reads

pf 62 1 2 ext
h({R;}) = . 5’n’£*¥21r-—r,-t“ ZV (r:)

ZrZjy
2.2
I; B, —Ry|’ (2.2)

- -2
D V) s
¥

and its eigenstates 3,
R{{R1})¥n = ea({R1})¥n

depend only parametrically on the nuclear positions. As a result of stationary pertur-
bation theory, it turns out that close to the extremal positions® of the nuclei, the total
wavefunctions of (2.1) factorize

@u({r:h {R1}) = 9ul{r:D)lm g X2 ({Re}) + O(6%),

i.e., the electrons follow the nuclei instantaneously in their stationary states (only the
ground state will be of importance here). This results from the good separation of the
time scales of the motions of the particles due to their high mass ratio, allowing the (fast)
electrons to follow immediately the (slow) nuclei (see the following paragraph). It is only
in the higher-order terms that transitions between the electronic states due to the nuclear
dynamics cause deviations from this simple form. As a consequence of the large mass
difference between the electrons and the atomic cores, these terms can safely be neglected,
provided that the gap between the ground and the first excited electronic state remains
smaller than typical vibration energies. This holds true, for instance, for semiconductors
and insulators, but is a more subtle issue for metals, where the effect of deviations on many
physical properties is at least less dramatic [Che61]. The functions x, of the nuclei might
in principle be obtained as solutions of the Schrodinger equation

(sz;f +en<{ﬁr}>) xal{Re}) = Eaxal{Ra}) + O(4),

where the eigenvalues of the electrons serve as effective potentials and the £, are the exact
eigenvalues of (2.1). But$ owing to the comparatively large ionic masses, it is possible to take
the classical limit on the nuclear degrees of freedom leading to the effective Hamiltonian

H{{R;,Pr}) = o T e.({Rr}), (2.3)

ldefined by e ({R;}}/8Ry =0, YJ
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where usually only ey , the ground state energy of an inhomogeneous electron gas in the
presence of fixed ions at positions {Ry} is considered. In its role as potential for the nuclei,
it will be referred to hereafter as the BO potential and its 3N, -dimensional graph as the
BO (potential) energy surface.

Dimensional Analysis So far, c.g.s. units have been used. However, in solid state
physics, expressions and calculations are commonly simplified by the use of atomic units
(a.u.), taking mass, energy and length as fundamental dimensions. One chooses the Bohr
radius ag = 0.520 A as unit of length and one Hartree ¢ = e?/ag = B?/(mal) = 27.212
eV as unit of energy. In this unit system, a time-dependent Schridinger equation with
Hamiltonian (2.2) takes the form

8 . Z12;
5t z<z 2err3f+zv (i) 2213,1-RJ|)

I#J

Hence “m = A = e = 1" in a.n. and 7 := fi/e = maj/h = 2.419 x 10775 is the natural unit
of time of the electronic subsystem. Writing out Newton's equations of motion resulting
from (2.3) in the same units, one finds 77 := /Mral/e as natural units of time for the
subsystems of the nuclei, which is, say for 5i, about 1000 times larger than r. Therefore, at
least two completely different time constants are present in the dynamics of the system. If
not otherwise stated, this unit system will be used throughout the remainder of this work.

2.1.2 The BO Potential in Density Functional Theory

The calculation of g would usually require the solution of a 3V,;-dimensional Schrédinger
equation, which is a completely hopeless task. Hohenberg and Kohn (HK) [HK64] and
Kohn and Sham [SK65] were able to recast this problem in terms of the electronic density
and an universal functional E.. of it. In view of the complexity of the many-body prob-
lem at hand, the task of deriving an exact expression for this density functional (DF) is
altogether intractable.

This section is devoted to the most popular — and necessarily approximate — expres-
sions for eg within and extensions to the DF approach [JGB89] as far as they concern the
present work. This means that we focus on the formulation of the theory as it applies
to the description of systems with a spin-paramagnetic elecironic ground state (GS), as
is appropriate for the investigation of small systems like atoms and molecules. Of course,
the HK theorem in its original form could also be used here, which demonstrates that all
information about a system is already contained in its GS density alone. An obvious conse-
quence would be, that the spin densities are functionals n,[n] of the GS density as well and
a separate description would be, at best, completely superfluous. In practice, however, the
spin-density functional formalism is advantageous, because, as experience has shown, at
least in the spin-polarized case a local functional Fin,,n.] can adequately describe effects
that would otherwise require a highly nonlocal functional F(n|.
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The HK Theorem for Spin-polarized Systems

The HK theorem, as it applies to a non-degenerate spin-polarized electronic ground state
(vBHT72, RC73] of an N-electron system, encompasses two statements.

The first one states that it is possible to replace the all-electron wavefunction g as
basic variable by its N.;-particle GS spin densities®

m ez Zfdrz Zjd!‘gvt 'qbg(ro' oy, . I'Nﬁ@’N,;)! ¥ o = +.

EN, el

Strictly speaking, it demonstrates, that the n,(r} uniquely determine the GS wavefunction
g, 1.e., there exists a bijective (fully invertible) map
(ny,n-) = lelny,n ).
Therefore, the GS expectation value of any observable of the system can in principle be
obtained as a unique functional of the spin densities.
The second one, the HK variational theorem, ensures the variational accessibility of the

new basic variables, without any recourse to the Schridinger equation. It demonstrates
the existence of an universal, i.e., V***-independent functional

F{nﬁ"?n’“] = <¢n{n+,fb_}lT+ Ke|¢e[ﬂ+sn-—]):

where T' and V.. are the kinetic and electron-electron interaction operators, respectively.
It is a direct consequence of the Ritz theorem that, for a given V*** the DF

Byenlig, o] = Flie, 5] + f Vet (2)i(r), (2.4)

being defined for all non-degenerate GS spin densities fi,, attains its minimum only at the
GS spin densities (ny,n_) belonging to V** and that

Z1Z
69({3[}) mm ) Evmt {n 3 n+, 2 % IRIi ;{J (25)
Although the HK theorem in this formulation has little practical significance, several au-
thors {Lev82, Lie83, EE83] have shown that the restriction to GS densities in the HK
theorem is a severe one, since not all well-behaved functions n.(r) can be realized as
GS spin densities of any external potential. To bypass this so-called problem of “V-
representability”, [Lev82, Lie83] have proposed to define an extension to Fn,,n.] by the
so-called “constrained search” approach
Flog,n.]=  min (T + Vel9), (2.6)
Y+{ng )
where the notation ¥ ~+ (ny,n.) indicates that the minimum be searched over all antisym-
metric, normalized functions 9¥(ryoy,...,rn,,0n,,) that yield the prescribed spin deusities.
This extends the domain of F to arbitrary non-negative functions n,(r), integrating to the
desired number of electrons [ZM83].

ZFor this review, the discussion may be restricted to the only case of practical importance, where the
(G5 spin density matrix has only nonvenishing diagonal components n, and n_.




2.1. THE BORN-OPPENHEIMER POTENTIAL 11

The KS Energy Functional for Spin-polarized Systerms

So far, we have assumed tacitly that V. = ;i— E# B r;|". In order to arrive at an inde-
pendent-electron picture, Kohn and Sham [SK65] also considered systems with vanishing
electron-electron interaction V., = 0. Their central assumption is, that for every system
of interacting electrons there exists an auxiliary system of non-interacting electrons with
a suitable potential V, such that the GS spin densities of both systems are the same. For
systems of independent particles, the simplest antisymumetric eigenstates (and the GS) are
Slater determinants ¥y = (Nu!) ‘det{¢;(r:y)} of orthonormal one-particle orbitals ¢,, and

the GS spin densities read
= 8a(r)". (2.7)

""I'EIer
Here, I, denote the sets of indices of occupied spin up and down orbitals, respectively. It
is possible to separate the restriction Fy[n,,n.] of the universal DF Fln,,n.] onto this
class of spin densities into

Flay,n_} =: Folny,n_| = Tolns,n fd’r SVER)(r)n(r) + Baclne,n-]. (2.8)

Ty denotes the kinetic energy DF of non-interacting electrons,

Tolny,n] = {é‘}w{w . Zjdrgﬁn (———) ¢n{r) + constraints {(2.9)

(the constraints ensure the orthonormalization of the orbitals ¢, during the minimization),
V# is the classical Coulomb potential for electrons, which is only defined up to a harmonic
function and may be chosen as
e fdri n(rf)
e -}’

and E,. may be viewed as a (admittedly somewhat indirect) definition of the exchange-
correlation energy. Calculating the total electronic energy using (2.8) and (2.4}, it becomes
apparent that all terms apart from E.. are formally identical to the Hartree approximation
and it might be tempting to identify E,. with the exact correction of the Hartree energy.
However, it should be kept in mind that the spin densities that enter {2.8) must be deter-
mined under the inclusion of E,.[n,,n_] and cannot be identified any longer with Hartree
densities. Instead, a more direct definition of E,. that holds for spin-unpolarized systems
may be found in the literature [HJ74, GL76]. The physical meaning of E,. is to favor such
spin densities that lower the electrostatic energy and the kinetic energy of independent
electrons by two dynamical effects:

e exchange: due to the Pauli exclusion principle, electrons of the same spin avoid each
other in r-space. This interaction is essentially short-ranged and therefore prevails at
high densities {r, < 20). It favors alignment of the electron spins, thereby lowering

o

their electrostatic energy at expense of their kinetic energy.




12 CHAPTER 2. THE CAR-PARRINELLO METHOD

e correlation: due to the Coulomb repulsion, electrons avoid each other in r-space,
irrespective of their spin. This interaction is essentially long-ranged and prevails at
low densities.

The HK variational theorem ensures now that Fyee is stationary for small variations
around the minimum spin densities {n,,n_) that preserve N

0= dEven,,n_]  dTy[ny,n_] 8 Epeny n.]
B 6na{r) T éng{r) dn.(r)

Since the corresponding variation applied to Ey of the postulated non-interacting system
yields at the same spin densities

0 = §EV[n+>n—} _ §Tg[n+,nwl
dn(r) dng(r)

Therefore, if the functional derivative §Ty[n.,n_}/dn,(r) exists, the postulated potential
V of the auxiliary non-interacting system also exists and has the form

Vo (r) = VE[nl(x) + V*[ny,n)(r) + V={x), (2.10)

+ VEn](x) + + V=¥{r).

+ V. (r).

where V*[ny,n_|{r) 1= §E..Jn.,n_]/én.{r} denotes the exchange-correlation potential.
The single-particle orbitals ¢, that enter the spin densities can be determined by solving
the set of Schridinger equations

ho @alr) = Endulr), by = =5+ Ve (r}, n € I,, (2.11)
that are connected with the independent-particle Hamiltonians h, with potential (2.10}.
For each spin ¢, < &, for n < m. A slight amendment must be made to ensure mathe-
matical rigor: the functional differentiability of Tp is guaranteed only for its extension® to
a wider class of densities than those given by (2.7), allowing for fractional eccupation of
the orthonormal one-particle orbitals ¢, (see [Jan78, DGS0])

no(r) = > faldal®)® > fa=Na (2.12)

neles

The occupation numbers {apart from £, € [0,1], as is necessary for fermions} follow from
the requirement that the GS spin densities shall minimize the Energy functional Ey of
the auxiliary non-interacting system with - as inspection shows — total energy 3., futn.
Consequently, in the case of a GS, the f, must satisfy for each spin o separately

{1} i en < po
Ynel,: faE < [0,1] i &, = o fo = rzéazx{snlfn # 0} (2.13)
{0y i e,> po e

$The only modification to the definition of Ty as given in (2.9) is that the sum over n has to be replaced

by 3. fa.ow
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As originally proposed by Kohn and Sham, the problem of determination of the BO po-
tential is thus converted into the solution of (with regard to V*°[n,,n_]) self-consistent
eigenvalue equations, the KS equations.

It is by no means necessary to go this byway in real calculations, since the KS equations
served only as a means to establish the existence of the auxiliary non-interacting system.
Having thus verified that it is permissible to use Fy[ny,n_] as universal DF to determine
the electronic GS, the BO potential may be obtained alternatively by direct minimization:

eo({R = min Eyln fdrV“* nr}
(me) = min AR ()
1 ZyZ
+5 2 TR H]
27 7 B J
among all non-interacting N,;-particle spin densities. Combining the constrained mini-
mization {¢;} — (ny,n.) and the subsequent minimization with respect to the (ny,n.)

into one minimization with respect to the electronic degrees of freedom that preserves the
orthonormalization of the orbitals, we arrive at

eosl{Rs}) = n’unE[{qﬁn} {R;}] + constraints,

{6a}
El{¢n}, {Rs}] = an f drg;,(r (mm)qsﬁ f drVEn)(r)n(r) + Eelny,n_)
ezt ZIZJ
jdr’f/ r)n(c) + = ;|RI“‘”RJ (2.14)

Hence, within this formulation, the determination of ea({R}) may be viewed as an op-
timization problem, with a variety of mathematical and physical methods at our disposal
for its solution (see section 2.1.3). This approach was originally proposed by Car and
Parrinello [CP85] and is completely equivalent to the solution of the KS equations (2.11},
as will be demonstrated in the following.

Convergence to KS eigenstates The electronic solutions are determined from the re-
guirement that they make the functional (2.14) stationary. If we incorporate the constraints
via Lagrange multipliers, the stationarity condition reads

{ (6o}, (R} - ZAﬂ, (fardsteromtr) — m)}

or, since §E/6d%(r) = foho@n(r) forn € Z,

FahoOalr Z Anmémlr),  nyme L. (2.15)
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Note that the orbitals of different spin are not constrained to be orthogonal to each other,
since they arise from different Hamiltonians k, and the corresponding A, .. are zerc. Since
the matrix of the Lagrange multipliers is Hermitian®, Eq. 2.15 is is equivalent to the KS
equation to within a upitary transform, if the occupation numbers are equal. In the case
that f, # f; for some n,[, this is not so obvious. Multiplying (2.15) by ¢; and integrating
over r yields

foldilho|@n) = Ans.

Subtracting the corresponding equation for [ and n exchanged, we arrive at

(fa — F}{dilho|dn) = 0,

i.e., {¢1|hs 0.y and Ay, must vanish if f; # f.. This means that the matrices are block
diagonal with respect to subsets of orbitals with different occupations and the previous
arguments can be applied to each of the blocks. Therefore, the minimization of (2.14) is
always equivalent to the solution of the KS equations {2.11) for the lowest occupied states.

On the other hand, it is well known that numerical errors introduced during the calcu-
lations may spoil the convergence to eigenstates whenever two states of unequal occupation
are separated by a small energy gap ([GHMC94]). As far as microclusters are concerned,
unequal occupation numbers have to be considered only in cases of degenerate electronic
states in molecules of high symmetry. If the convergence to eigenstates does fail, the sym-
metry of the orbitals, which can monitored during the iterations, will be destroyed. If such
a situation arises, it is sufficient to enforce the correct symmetry on the numerical orbitals
to overcome this difficuity.

Excited States Although we have focused in this section on the BO potential in the
(S 9 of the electrons, neither the BO approximation (see section 2.1.1) nor the spin-
density formalism is restricted to this case. There are basically two classes of methods
for calculating excitation energies within DFT. A possible calculation of the excitation
spectrum might start from local density approximation results for the ground-state and
then compute the quasiparticle (QP) energies (real parts of E; below) of the system within
many-body perturbation theory. This is usually done [HL85b, SL93] within Hedin’s GW
approximation [Hed65] to the nonlocal energy-dependent electronic self-energy Z, which
plays in the Dyson equation for the QPs ¢; of the system [HL69, JG89]

(__V; + VE(r) + Veor(r) — Ei) oi{x) + fcir'z(rg v, Ei)i(r') = 0

a similar role as the exchange-correlation potential in the Kohn-Sham equations of density-
functional theory (the expressions for the remaining terms are defined in chapter 2). The

“For complex orbitals, the constraints take the explicit form Y770 (A m{faldm) + AL (dmldn)). Ex-

changing the indices in the second sum, we srrive at 3 . {dnm + Ay }(@n|$m) and the expression in
brackets may be understood as the definition of Ay . which is obvicusly Hermitian.
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GW approximation consists in replacing the self-energy by a convolution

B(r,r\w) = 5%%% 5% dw'G(r, v’ w + " YW(r, v, w'e?
of the one-electron Green’s function & and the dynamically screened Coulomb interaction
W of the electrons. Actual self-consistent computations of QP energies can be performed
in first-order perturbation theory in Z(E) — V. on real physical systems with the local
density approximation results of density-functional theory for G and W [HL85b, GN89].
Despite the approximations involved in this procedure, the calculation of W and ¢ requires
summations over a large number of empty Kohn-Sham states [HL69, SZLC89], which has
restricted the use of this scheme to relatively simple systems, as for example to Na and K
clusters only within the spherical jellium model [SZLC89). Without doubt, an application
to systems as complex as these considered here would be beyond the scope of this method.

Another method for calculating excitation energies within DFT is the ASCF scheme
that uses no approximations beyond LSDA. ASCF refers to a procedure, where the GS
scheme is applied to both the excited state and the GS, and the energy difference is
calculated. Excitation energies are then given by the total energy differences between self-
consistent-field (SCF) calculations for both the excited state and the GS. This method
regts on an extension of the GS formalism to the lowest excited state of a given symmetry
that has been proven by Gunnarsson and Lundqvist [GL768]. In fact, all statements of the
preceding section can be recovered for the corresponding e, ({R;}}, n > 0, with the only
exception that E_, and consequently V7 now depend formally on the symmetry label. But
since the exact form of the corresponding quantities even for the GS is unknown, we are
reduced to use a single approximate functional in all cases and the symmetry dependence
of a state only enters via the prescription for constructing the charge and spin densities for
that state.

As von Barth [vB79] has demonstrated on multiplet energies of atoms, the naive use of
the GS functional for lowest excited states of a given symmetry leads to erroneous results
if these states cannot be represented by single Slater determinants. Inverting the relation
between multiplet states and their determinantal constituents, such Slater determinants
may be viewed as special (i.e., noninteracting) cases of what von Barth terms “mixed-
symmetry states” {MS)}, i.e., linear combinations of states of pure symmetry. Although MS
states are in general not eigenstates of the Hamiltonian, von Barth was able to generalize
the Hohenberg-Kohn theorem to the state of lowest energy (i.e., the state with the lowest
energy expectation value) of a well-defined mixture of symmetries 5;

|Tas) =) alSi,0), (2.16)

where |5;,0) are (non-degenerate) eigenstates of lowest energy with symmetry S;. If the
a; are chosen o that |y, reduces to a single determinant in the noninteracting case, its
density and energy expectation value may be found by solution of the corresponding KS
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equations. As follows from eq. 2.16, every determinantal state KS energy Earg gained this
way gives an estimate for a certain linear combination of term values

i

EMS P Z I&,’JEE(S.;) .

i=1

In general, although some of the equations might be identical, this set of linear equations
will be overdetermined and so the equations should be solved, on recommendation of
v. Barth, by a min-max fit. It may also happen that most or all determinants are degenerate
(at least in LSDA) and we may not obtain enough different energy terms to solve the
equations. Examples for both cases and a further discussion may be found in appendix B.

Local and Semi-local Approximations to E,. It is established tradition in many
branches of theoretical physics to study a simple (i.e., soluble) model system exhibiting
the same essential features as the class of physical problems in guestion. Example are
the harmonic oscillator in quantum mechanics and the Ising model in the theory of phase
transitions. In DF theory {as in the theory of many-fermion systems} the uniform (spin
polarized) electron gas plays a similar role, because it is the only many-fermion system, for
which E,. is known, at least to numerical accuracy. The results of extensive, high precision®
quantum Monte Carlo (QMC) simulations [Cep78, CA80, OB94| gave rise to analytic inter-
polation formulas [VWN80, PZ80, OB94] for e..(n;,n_), the exchange-correlation energy
per electron in the GS at constant spin densities ny,n_. The high-density limit, (r, — 0)
which is known exactly (GMBBY], is reproduced by these parametrizations. The famous
local spin-density approximation (LSDA) consists in adopting these results to arbitrary
inhomogeneous electron systems by the substitution

ol ,mo] =: f drnr) eae(ngs ) e (2.17)
where e..{ny,n.)} is evaluated at the local spin densities n.(r},n.(r}. In this work, the
formulas given by [VWNB80] and [PZ80] have been used.

As might be expected from the somewhat uncontrolled character of this approximation,
it suffers from several problems, despite its ability to describe the trends of many physical
properties reliably, as documented by a large and growing body of computations. Among
the problems that apply to finite systems, like molecules and clusters, are the following:

e Cohesive energies are often overestimated.

¢ Equilibrium bond distances are systematically overestimated and vibration frequen-
cies are often too large.

s Negatively charged systems Iike H™, O~, F~, Ca™, §7, ... are sometimes predicted
to be unstable, contrary to experiment.

5The estimsted error bars for the correlation energy per particle in the regime of valence electron
densities 0.8 < #, < 10 are ~ 0.01 ¢V [OCBY4].
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It seems to be natural to assume that the inclusion of gradients of the (spin-) densities into
the DF would result in an improved description of exchange and correlation for inhomeo-
geneous electron systems. However, early systematic attempts to develop formal gradient
expansions by perturbing a uniform electron gas with slowly-varying potentials have gener-
ally been disappointing in applications to realistic systems {JG89]. Semiphenomenological
gradient functionals, called “generalized gradient approximations” (GGA’s}, of the form

Eulny,n] =: f drn(e) foulns (5), - (v), V4 (£)], [V (2)])) (2.18)

seem to be successful in a number of cases [LM83]. The fact the gradient terms enter the
functional only by their modulus follows from the requirement, that E,. must be invari-
ant under rotations, for arbitrary, say spherically symmetrical n,(r}, since it is universal
(independent of V). The GGA’s of Perdew and Wang [PY86, Per86], [Per8l, PCV*92]
and Becke and Perdew {BP) (the exchange part is taken from [Bec88], the correlation part
from [Per86]) have been studied in a range of contexts, e.g., hydrogen bonded systems
[LCPY2}, cohesive energy and equilibrium distances in solids [PCV*92, GEZ*92], simula-
tion of clusters [DBB92, BJ94] and molecules [Bec92, JGP92, OBY1]. We have implemented
and successfully tested a spin-dependent BP GGA in the formulation of [WB94|, which
is specially suited for the use in a CP scheme, but an intended application to clusters of
carbon could not be completed during the course of this work and results are left to a
future publication.

2.1.3 Electronic Structure Optimization

The direct iterative minimization of the KS energy functional (2.14) with respect to the
electronic degrees of freedom would be superior to diagonalizing the KS Hamiltonian self-

consistently, since

e self-consistent diagonalization can lead to instabilities during the iteration, if the
density and therefore the potentials change too much from step to step

s in self-consistent diagonalization, one diagonalizes the whole Hamiltonian matrix
(which has dimension N x N if the basis set has N elements) and obtains all N
eigenvectors. This is in contrasi to iterative minimization, where only the occupied
states are calculated and stored, thus rendering feasible the treatment of larger and
more complex systems.

As experience has shown, only local optimization methods are needed that lower the KS
energy functional at every step of the iteration to reach the closest minimum nearby. This
is sufficient, because, if the nuclei are kept fixed, only a single minimum for the electrons is
encountered. Since alocal minimization is computational less demanding than a global one,
there exists a variety of traditional methods. Whereas the computation of the first deriva-
tives 6E[{pn}, {R1}]/ddm of the KS functional is relatively straightforward, the require-
ment of memory and computational time to build up the Hessian matrix (62 F/§60ddm )nm
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seems to be prohibitive, at least for a high-dimensional basis set such as plane waves. So
we are left with methods that require the computation of the gradient alone, among which
the guasi-Newton methods, as typified by the Davidson-Fletcher-Powell algorithm or the
Broyden-Fletcher-Goldfarb-Shanno algorithm [PTVF92], can be ruled out here owing to
their large storage requirement of order N2, where NV is the dimension of the basis, to build
up an approximation to the inverse Hesslan matrix. Nevertheless, they show the desirable
feature of superlinear® convergence {see [Fle87)).

Here we confine ourselves to the steepest descent (SD) and the conjugate gradient (CG)
methods that require storage of the gradients only. These methods may be explained using
an R-valued function f(x), x € RV [PTA92]. Close to a local minimum point z*, f may
be approximated by its Taylor series truncated after the quadratic terms

Flx) = e+ 5(x—x) - A+ (x—x) of(x = X)),

where .
& f

= 6$3‘6$J’ -

with a symmetric and positive definite Hessian matrix A. Starting from a point x', the
algorithms generate iteratively a sequence or points (x'}:en that converges to x* [Fle87].
They do so by providing at every point x* a search direction d° along which the value of
the function f is reduced. The next point x™™' = x* + X'd’ may be determined by line
minimization

c=fx") Ay

= 0 =Vix+Nd)- &

1 g

4 i i
a5 F0 +ad)

=:g

where the gradient at the point i + 1 has been termed g**'. Resolving the last equation
for A%, we find that o

i g-d&
This means that the line minimization contains information about the Hessian matrix that
can (and will) be exploited in the following. In the absence of any further information
about f but its gradient at x*1?, the optimum search direction would be the SD direction,
ie.,

gt = _gitl
because it is the direction along which f decreases most rapidly local to x**!. SD can be
shown to be globally convergent, but it exhibits only poor linear convergence [Fle87] (i.e.,

| — x*|/1x* — x*| < const. for all ©).

81n the terminology explained in the following, this means that [x{i+ 1) —x*|/ It — x* |0, fori — oo,
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But this is only the initial direction d* of the CG method. For the following directions
di*t, i > 1, CG exploits the (nonlocal) information about f contained in all previous line
minimizations. It does so by the further requirement that the overall decrease of f with
respect to all the line searches that lead to the point x**? = x! + 7% Akd*, i > 1, shall
be extremal, i.e.

. ) ¢ 0 1 i1 3k gk
ViSitls 0 = Sef(x 430040
% 41 g
= (x'—x"+ YY) A

Subtracting the corresponding conditions at z¥+!
Vi<i: 0 = (x!—x"+ L aFd¥)- A7
we are left with the equations

Vi<i: 0 = g4
=Vi#i: 0 = d-A-d, (2.20)

since A is symmetric. This is the condition that the directions d° be conjugate to each
other. Since (2.20) implies that the search directions d° form a linear independent set, N
of them would be sufficient to span the whole vector space and to determine the minimum,
if f would be an exactly quadratic form. Because this property, known as quadratic
termination, has been derived for guadratic forms only, it can not be expected to hold in
the case of an arbitrary function f, where it is recommended to reset d*+! periodically to
—g*t!, In this case, N-step superlinear convergence (|x{N+i)—x*|/|x*—~x*|—0, fori — oo)
can be guaranteed [Fle87].

Although it might seem as if (2.20) would require the knowledge of the Hessian matrix,
it is possible to eliminate A from the expressions for the d' by the assumption

ditt = gt L 4idE, (2.21)

Inserting this into (2.19) and using the fact that the iterated gradients are mutually or-
thogonal, which may be concluded inductively from (2.20), one finds that

gitt . gitt

g g
This is the Fletcher-Reeves formulation of the CG method, that has been implemented in
the present work. The determination of the CG at any step requires the previous CG and
the present SD direction. Both of these constitute an array of the same size as the vector
x* itself, so that the total storage requirement is of order 3N.

It is useful to examine (2.20) a little closer in order to understand why CG is so much
better than SD in minimizing a function. The easiest way to do so is to expand any given

1

")(:
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direction d' into the eigenvectors of the Hessian matrix A (which form in fact an orthogonal
basis of the N-dimensional space):

N
Cii = z&kak
fp1

If &' is multiplied by A, the directions with the largest eigenvalues ax of 4 will dominate in
the resulting vector. One could therefore say, that A turns d into these directions, which

Figure 2.1: Schematic comparison between SD (left) and CG (right)

are the directions of strongest curvature of f. Choosing the new direction orthogonal
onto A - d* means that the following step will proceed orthogonally to a direction of high
curvature. Consequently, subsequent line minimizations are performed on the average
along directions of successively lower curvature of f. This is particularly advantageous if
the minimum x* lies in & long narrow valley such as illustrated in Fig. (2.1). If the initial
SI} vector does not happen fo be at right angles to the axis of the valley, successive vectors
will point across rather than along the valley, resulting in a large number of iterations.
On the other hand, the second CG vector already points along the bottom of the valley,
because this is the direction of lowest curvature, and the need for iterations will be greatly
reduced.

As [SCPB89] have shown, the CG method can provide an efficient tool for locating
the minimum of the KS energy functional with respect to electronic degrees of freedom,
too. The relations derived above translate with only a few amendments. The KS energy
functional E takes the place of f and the vector x* is replaced by the wavefunctions {¢}}.
The occupied KS orbitals may then be updated by the prescription [SCPB89)

SE[{¢n}, {Ri}]

: = traint
grir) 5en(x) . + constraints
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- Zaf [l

S F Jarlgi (O

G () = —gitir) + 7 ()
FIUE) = di(r) + Ndi(r),

where the constrained functional derivative preserves the orthonormality of the orbitals.
The constraints may be imposed by application of the Gram-Schmidt orthogonalization
at every step. The SD step can be recovered by putting +* =: 0 in the equations above.
Furthermore, in the case of SD, the line minimization is in practice replaced by the choice
of a fixed reduced “time step” At/u instead of X', that governs the convergence rate of the
scheme {p is a ficticious electron mass).
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2.2 Born-Oppenheimer Dynamics

2.2.1 Simulated Annealing and Molecular Dynamics

With the advent of powerful supercomputers in recent decades, research interests have
shifted towards developing efficient techniques for finding absolute minimum values of &
function of very many variables. In a situation where there is a large number N of minima,
e.g., the number of different isomers that is consistent with a chemical formula [HM83],
none of the exact methods known require a computing effort that increases as any power
of N [WV85] (“NP-hard” problems [GJ79]) for determining the optimal one. Simulated
annealing has been successfully applied to this class of problems, such as the “traveling
salesman problem”, as a tool to find nearly optimal solutions in which the computational
effort scales as a small power of N [KGV83]. Simulated annealing adopts a statistical
mechanics approach. Its original formulation is the Metropolis Monte Carlo algorithm
IMRRT53], which generates iteratively new coordinates to lower the potential function
e({R;}), but avoids getting stuck in local minima by permitting occasional “uphill moves”.
This means that AE = e({R;({)}) — e({Ri{t — At}}) > 0 is also accepted with probability
p(AE) = exp{—AE/kpT). Initially, the “temperature” T is taken to be high compared
with the energy barriers separating the competing minima. As the temperature is gradually
Jowered, it is highly probable that the distribution of the variables becomes progressively
concentrated in the energetically favorable regions.

Because the evaluation of the BO potential for arbitrary, randomly generated {R;} is
very demanding (see section 2.1.3), a direct application of this algorithm to our problem is
out of question. Instead, physically reasonable configurations are generated if one integrates
numerically Newton’s equations of motion derived from the BO Hamiltonian (2.3)

_Oe

S (R)), (2:22)

P, =
by use of the Verlet algorithm (see below) or any other finite difference method, as is done
by the constant-energy (the total energy corresponding to (2.3} is conserved) molecular
dynamics (MD) simulations [AT87]. The instantaneous and mean temperature of the
simulations may be calculated using the equipartition theorem and may be reduced from
time to time by rescaling the atomic momenta. This combination of simulated annealing
and MD is sometimes referred to as “dynamical simulated annealing”.

Special care must be taken when calculating the forces, since according to the Hellmann-
Feynman theorem, the atomic forces can only be calculated in a straightforward way by
differentiating the {Ry}-dependent potentials in (2.14), if the {$.} are very close to the
exact eigenstates of (2.11). This requires expensive CG minimizations at every time step,
as the forces will otherwise be in error and the total energy of the nuclei will not be
conserved due to a steady dissipation into the electronic degrees of freedom [RM90]. On
the other hand, if the atomic forces are calculated to & high precision, comparatively large
time steps can be chosen for the dynamics and there are cases, especially in dealing with
metallic systems, where this procedure, called “conjugate-gradient molecular dynamics”
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[APJS2, PTA92] is appropriate.

Since the computation of the forces from the true BO potential is numerically demand-
ing, most early and many current conventional MD simulations resort to approximate
parameterized interaction potentials between the particles that are fitted to a given set
of experimental and/or theoretically calculated data. These potentials are functions of
interparticle coordinates and many include pairwise, three-body and higher-order terms,

eo({R}) =Y Vi(Br—Ry)+ Y Vi(Bp Ry Ri)+...

I<d I<i<K

whose functional forms are related to the nature of interactions and honding in the material
under investigation (see, e.g., [SW85, BH85]). The applicability and predictive power of
this approach is obviously limited in circumstances where the system evolves into regions
of phase space not covered by the fitted data. For example, the strength of the covalent
bond depends on the local environment, consequently potentials fitted to the bulk may
be inadequate for systems such as surfaces or clusters with lower coordination. Moreover,
serious difficulties are encountered in situations where electronic rearrangements occur,
such as in changes in the nature of bonding (e.g., a transition from covalent to metallic
behaviour as occurring in silicon upon transformation from the solid to the liquid state).

2.2.2 The Car-Parrinello MD

Car and Parrinello [CP85] have developed an alternative way to circumvent costly electronic
minimizations at every time step of the MD without sacrificing the universality of the
original BO formulation. In their approach, the determination of the potentials is an
integral part of the simulation rather than a separate preliminary step as in conventional
MD simulations. They achieved this by introducing a fictitious classical kinetic energy of
the KS orbitals analogous to that of the atomic degrees of freedom and by replacing the
BO potential by the KS energy functional (2.14) in the energy function corresponding to
(2.3):

B({gnt {dub (R B = S [drplda(m)P + 2 5 MR2 4 B4} (R (2.23)
" 2 I

This means that the orbitals no longer evolve parametrically as in (2.22), but serve as addi-
tional degrees of freedom subjected to a classical dynamical evolution. If the electrons are
initially in their GS and the fictitious electronic mass g is small enough, the deviations from
the BO Hamiltonian (2.14) and from adiabatic dynamics will be small, provided that the
energy transfer between the atomic and electronic degrees of freedom is insignificant during
the time scale of the simulations (see below). The advantage of this formulation is that the
electronic energy need not be minimized for each atomic position, with consequent savings
in time. The atomic and electronic “trajectories” are then integrated simultanecusly under
the {holonomic) constraints of orthonormalization, which are incorporated most easily into
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the Lagrangian formulation. The Lagrangian corresponding to {2.23) reads

L({¢a}, 1o, (Ra}, {Bur}) Z‘ e ileP + 5 3 M8 Bl ()
#30 hon [0 63(6)60(0) = G

and the Euler-Lagrange equations derived from it are

- OE
MRy = —zp-
. §E
Upa(r,t) = “SEGD + ZA m®m(T,t),  where (2.24)
SE
W fnh(,@ﬁn(r, t)% e I:,,

and h, is the KS Hamiltonian introduced in (2.11). The Lagrange multipliers can be
determined by differentiating the comstraint condition for orbitals n and m twice with
respect to the time and inserting the equations of motion (2.24}. The resulting equations
show that A can be chosen to be Hermitian, so that one obtains the expression

Cf (Fnt Fn)[2(alBolbm) = p{Baldm) H nymoE L,
A‘""“’“{ 0 fnel, melyoto %)

Note again that the ¢, of different spin are not constrained to be mutually orthogonal. If
the equations of motion would be integrated analytically, {2.25) would yield the appropriate
multipliers at any time, provided that the orbitals had been orthogonal at some initial time
t = {g5. However, the numerical integration is performed using the Verlet algorithm

bt + 80 = ~uleyi— A0+ 2608~ EL fhgue ) + i(ﬁjfﬁnﬂ%&,i)
=1 da(r,t + At) + i X on®en (T, £}, (2.26)

where n and m have the same spin (n,m € L,) and X, m 1= Ann(O8)%/p. This introduces
errors of the order O{A#*) in the numerical solutions and (2.25) is no longer valid for them.
But the appropriate Lagrange multipliers may be derived at each time step [RCB77] from
the requirement

bam = (Gnlrst + Ab)|Galr, & + AL))
= {galr,t+ At){@m(r t+ At)) + ZXM (n(r g);@m(r t+ At))

W.énm —B;m
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+Z I(ﬁnrtwﬁﬁ)iégrt -i—Zan

(A+ XB+B"XT + XX*)

.
0T

After some rearrangement and using the fact that X is Hermitian, we obtain the following
fixed point equation for X

X = %(1-—.4-1((3— 1) = (B=1)*X — XX*) = &(X),
which must be solved iteratively, starting from the initial “guess” X, = 1/2(1 — A).

Adiabatic Decoupling

The dynamical trajectories generated for {R;} by (2.24) are generally not identical to
the trajectories generated by (2.22). At equilibrium, if the forces on the orbitals vanish,
¢ = 0, the electronic equations of motion reduce to

Fahodn(r,t) Z[mequ(r t), mel,

which is equivalent to the stationary condition (2.15) and the XS equations (2.11) to within
a unitary transformation. Therefore, the dynamics (2.24) represent a physical system
exactly only when ¢, = 0. However, under certain conditions, it is possible to keep
the deviations of the orbitals from the KS solutions small, and one can expect that the
dynamics generated by £ are a close approximation to the K5-BO dynamics. Furthermore,
the conserved energy of equations (2.24) is given by Er = A{{¢n}, {¢n}, {Rs}, {R/}), as
can be seen by computing the total time derivative of (2.23) using (2.24), the fact that A
is Hermitian and the orthonormalify constraint. However, the total energy of the atoms,
i.e., the physical (if the electrons are in their GS) total energy

= 5 3 MR} + El{6.), R}, (2.27)
I

is conserved only approximately, due to fluctuations in the fictitious kinetic energy of the
electrons. Under certain conditions, these fluctuations stay bounded and small [PSBgi]
during typical simulation times. To provide some rationalization for these statements,
consider the following expansion of the CP orbitals with respect to the insfantaneous
eigenstates of the Hamiltonian (2.24) at time ¢,

Dnlt) = 2 (brpe + Gnel{t)) Xiy where  Ro|, Xn = €nXn, nE L. {2.28)
k

This is always possible, since the {y.} form an orthonormal basis of the Hilbert space. Let
us assume that the ¢,, had been initially in their GS and that we are now in a regime where
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the deviations of the CP orbitals from the KS orbitals are small, resulting in small ay, .
Let us assume further that all dependencies of the KS Hamiltonian on the o, .. can be
neglected at the first order. This is reasonable, since the error in the KS energy is second
order with respect to errors in the wave function. In this case, neither A, nor the {y,.}
depend explicitly on time and inserting the expansion {2.28) into the equations of motion
(2.24) yields the following differential equation for the deviation functions

b et & = Y Fatmem — ea)m

N“c
+ z & % fma“pm(eﬂ- ~ €m )} Xoms

m=1
where terms of the order of and &7 on the r.h.s. have been neglected. If the KS Hamiltonian
were & linear operator, i.e., the dependency of the eigenvalues on the o, . were negligible,
these equations could be inteprated immediately with the result that the deviation of the
orbitals from the KS solutions in this regime consists of harmonic modes with frequencies
equal to

o = VElE= e

Wi = Vo — fu)(ezz — ) /20
Here the state of occupation of the eigenstates has been indicated by a superscript. We can
conclude from the second equation that the system will be stable (pure real frequencies) if
the occupancies of states decrease as the eigenvalues increase. If we assume that this is so
and furthermore that the occupation numbers are equal for all occupied states, as is almost
always the case, then the first-order forces add only the frequencies wﬂ‘?n to the vibrational
spectrum of the electronic degrees of freedom. Only if the highest atomic frequency can be
separated from the lowest electronic frequency wfn,}ﬁ, an effective energy transfer between
the corresponding degrees of freedom by resonance can be prevented. If the energy gap
is not too small or zero, this can be achieved by reducing the fictitious electron mass p
and in that case, the MD generated by (2.24) provide meaningful statistical averages in
the microcanonical ensemble. But u cannot be reduced arbitrarily, because one needs
to compromise between the former requirement and the competing observation that the
maximum integration time step of the Verlet algorithm and g are proportional,

H
Abpmgn = 2 [ s, 2.29
fl(ﬁoo - 61) ( )

where €., and ¢; denote the instantaneous KS eigenvalues that belong to the highest and the
lowest bound KS orbital. This can be seen by inserting (2.28) into (2.26) (see [PTA92]}. If
such a procedure is not possible, as in metals, where there is no energy gap in the electronic
excitation spectrum, two Nosé thermostats [Nos84] can be coupled to the electronic and
atomic degrees of freedom, acting as heat baths that keep each system at a different
temperature so their average kinetic and potential energies are fixed [BP92]. The MD is
then able to sample the canonical ensemble.
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2.3 Practical Implementation

2.3.1 The CP method with a Plane Wave Expansion

The CP approach does not depend on a particular basis set and has been implemented
using, e.g., floating Gaussians [SK89], augmented-plane-wave-like schemes [SW90, YSK91],
the generalized valence bond method [HC92] and Wannier functions [ODMGY5]. In addi-
tion, several schemes have been employed where simplified, approximative descriptions of
the electronic problem are adopted such as tight-binding methods [SN89, WCH90, $J91],
Harris-functional methods [HH90] and localized orbitals [MGY4]. But for several reasons,
the plane wave {PW) expansion in connection with the imposition of periodic boundary
conditions (PBC) is the most widely used method:

e A PW basis set is attractive from a conceptional point of view, since it offers, as
the CP scheme itself, a general formulation applicable to different classes of systems.
Although designed for periodic systems such as perfect crystals, the PW expansion
can also be applied to disordered and finite systems by using supercells. These are
unit cells that are so large that the imposed periodicity does not affect the physical
properties of the configuration (for example a point defect, a cluster, ...} contained
in them to within a given tolerance.

e PWs are also particularly convenient from a numerical point of view, if advantage is
taken of the localized nature of nonlocal pseudopotentials and of fast Fourier trans-
form (FFT) techniques [PTVF92| for the calculation of the energy and the forces.
The evaluation of forces acting on atoms is much simpler than with Gaussian or other
localized basis sets, because the PWs do not depend on atomic positions and no Pu-
lay forces [Pul69] have to be evaluated [SVB85]. PW basis functions are orthogonal,
eliminating any considerations of an overlap matrix, and they are simple; in most
cases the expressions are analytic. Furthermore, the PWs form a complete basis set
and accuracy can be improved in an unambiguous way by including additional PWs
that correspond fo larger and larger reciprocal lattice vectors.

As a consequence of the imposed periodicity, the single-particle orbitals {¢,} have Bloch
form
Yo = Yrk(r) = €57 ) o (G (2.30)
@

The computation of the corresponding spin-densities requires an integral over the Brillouin
zone (BZ) of the reciprocal lattice

1 2
no(r) = ﬁwizjn f i fok s ()7 (2.31)

where {}p» denotes the volume of the BZ. This work is devoted to the study of microclusters
using supercells, where (2.31) can be approximated by

() & 3 Faemt) | Pneo) (0, (2.32)

nele
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because pz = (27)%/Q (where ( is the volume of the supercell) is very small and the
dispersion of the KS eigenvalues e.; becomes negligible as the overlap between electronic
states of different cells vanishes with increasing cell size. Therefore only the wavefunctions
at the D-point (k = 0} need to be considered in the following, and the index k may be
consequently dropped. The numerical cost can be reduced further, if we take into account
that at k = §, the KS orbitals can always be chosen real by an appropriate choice for the
global phase factor. In this case, the symmetry relation ¢,(G)* = ¢,(—G) for its Fourier
components holds, which we exploit in the calculation to reduce the number of PWs needed
by a factor of two. In principle, the sum in (2.306) extends over the whole reciprocal lattice,
but is truncated in practical calculations to include only those PWs with a kinetic energy
Eiin = G?/2 less than a given energy E.,; that determines the accuracy of the caleulations.
The choice of F.,. depends on the specific system and on the pseudopotential (PP) used.
The truncated Fourier space summations will be denoted by a superseript “cut”. Of course,
the errors introduced by the finite size of the supercell, the use of a single k point and
a finite K., have to be gauged by test calculations. It should, however, be mentioned
that we cannot increase the size of the unit cell arbitrarily, since this decreases the size
of the shortest reciprocal lattice vectors, which can lead to instabilifies in the calculation
of the Hartree potential and energy (2.43). The Hartree potential VZ(G) is proportional
to n(G)/G*, where n(G) is the Fourier transform of the charge density. Therefore, at
small reciprocal lattice vectors, small errors in the dynamics of the wave functions and
consequently the n{G) will produce large changes in the potential and lead to instabilities
in the calculation (“charge sloshing”), if the time step is too large.

Pseudopotentials

The pseudopotential (PP) approximation consists in replacing both the bare nuclear po-
tential and the effect of the core electrons on the valence electrons by an effective PP

- ~Zr
V t(r) — Z m‘l— — ;'{f;{r - RI),

thereby eliminating the core states from the calculation and leaving the chemically active
valence states as the only degrees of freedom, with corresponding savings in computing
time. This is justified by the following observations:

e Core-clectron wavefunctions change little when placed into different chemical envi-
ronments.

® Their only effect on chemical bonding is to influence the shape of the valence wave
functions in the bonding region via orthogonality constraints in the core region.

Further savings of the computational cost may be gained from a suitable idealization of
the valence functions inside the core regions, since one is mainly interested in describing
bonding properties (e.g., equilibrium structures, phase diagrams, ...) correctly, which are
insensitive to details even of the valence electronic structure within the core. The first
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observation above suggests that the PP may be generated in preliminary all-electron (AE)
atomic calculations. Within LDA this is done by solving self-consistently the radial KS
equation

< 1d2  Hi+1)

3 S Vi) + Val(r)

- %) rRu(r) = eurRu(r). (2.33)
A PP is then constructed to reproduce exactly the valence-electron states for all angular
momenta [ present in the GS and a few angular momenta present in excited states (since
there is only one valence state present for each angular momentum [, the principal guantum
number n may further be omitted for simplicity). This results in the following requirements
[HSC79, TM91]:

Requirement 1: AE and PP eigenvalues of the valence states must be equal, €] = ¢;.
Requirement 2: The eigenfunctions R]® of the PP should contain no nodes.

Requirement 3: The normalized AE and PP radial functions must be equal beyond a

chosen cutoff radius r.
RP(r) = Ri(r), T > T

Requirement 4 (Norm Conservation}: The total integrated charge inside r, of AE
and PP orbitals must be equal

[ arrtirre)r = f dre | By(r)P.
o g

The first requirement determines the energy zero, so that total PP energies always lack a
large additive constant representing the energy of the cores if compared with results of all-
electron calculations, and only energy differences can be reproduced correctly, which are the
experimentally obhservable anyway. Requirement 2 together with the elimination of the core
states is motivated by numerical considerations, because the oscillations associated with
the nodes of the wavefunctions would require a high F.,; in the PW expansion. In addition
to this, r. must be chosen to be larger than the outermost node of the AE valence orbitals,
since deviations from the AE orbitals are only allowed within the core region. Requirement
3 guarantees that the AE densities and the PP densities nP*(r) = 3.7% |RP*(r)[? of the
valence electrons are equal outside the core and consequently the (electrostatic) potentials
generated by them as well, which may be seen by solving Poisson’s equation and using
Gauss’s theorem. The form of the PP wavefunctions R}” inside the core region is, however,
by no means determined uniquely by the requirements {1-4} and in fact there exist many
recipes for the generation of PPs that differ at this point. But, once a PP wavefunction is
obtained, it defines the screened PP v (r) for angular momentum [ via the equation

1  l(I+1 ser . s
(W_z_?p (2?‘2 ) + Uf;s (T’)) T-Rzp (r) = E{T’R? (?“’}, (2~34)




30 CHAPTER 2. THE CAR-PARRINFELLO METHOD

With regard to the intended use of the PP in self-consistent calculations in various chemical
environments, the following separation of the screened PP into an ionic PP and the PP
Coulomb and exchange-correlation potentials suggests itself:

( 1d%  Wl+1)

— g+ s VEER(r) + V() + vé.gm) rRP(r) = e B (r).

The ionic PP may then be recovered by inversion of the radial Schrédinger equation

htr) == LY o e (R ) = V) - V).

Two conclusions are immediate: {a) if we wish the PP to be continuous, the PP wave-
function must have continuous derivatives up to and including the second, (b} if we wish
to avoid a hard-core PP with a singularity at the origin, the PP wavefunction R® must
behave as ' near the origin. A major consequence of the [-dependence of the PP is that
each angular momentum component of & general wavefunction on which it operates must
see a different potential. This is generally achieved by use of angular momentum projection
operators

!
Pife,r) = 8(r —r')/r 3 YRV (@),
trya=
where the Y™ denote the (normalized) spherical harmonics. The ionic pseudopotential
operator for arbitrary systems is then given by

vpe(T, 1) = OF(r)é(e — ) + v (r,r), where

v™eelp 1)) = Z Av;,(r}?’z(r,r’), sz;s(r) = vi,s(r) — vfjf(r). (2.35)

BE

The local part vgjf(r) introduced here can, in principle, be chosen arbitrarily, but a rapidly
decaying function of G is numerically most convenient, since the contribution of vf;}f to the
potential energy is calculated in reciprocal space, whereas the nonlocal part is evaluated
in r space, see section 2.3.1. For simple sp-bonding elements of the first, second and third
rows of the periodic table, it is then advisable to take the smooth vi7**(r} that belongs to
the finite {,..,, where the summation over [ needs to be truncated. This choice also has the
advantage, that the atomic scattering for all angular momentum channels with | > L. is
adequately reproduced. Of course, this choice is not optimal for transition series elements
and rare earths, where in general the s and/or p components are much smoother than
the d and/or f components. It turns cut that the form {2.35) of the nonlocal part (which
is in this context sometimes called semilocal since it is local in » but nonlocal in 1) is
computationally rather expensive (see section (2.3.4) for details). As a remedy, [KB82]
proposed a “truly nonlocal” form for v},

(r| Aoy, | R Y™ ) (RE Y™ | Do, r')

LA
<r:r>--—§ (RPY AL B V)

(2.36)
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that has been used in the investigation of S and P clusters. It is easy to show that
vie | REPY™) = Avpi|RY[™), ie., the two potentials will produce the same solutions
for the atomic reference configuration (but will produce different solutions in arbitrary
environments).

The modifications to the potential within the core have been dictated by “smooth-
ness” considerations (i.e., there shall be a rapid convergence of the systems properties with
respect to an increase of the cutoff E,,; of the PW basis set) and the requirement that
it reproduce exactly the AE results in the atomic reference configuration. On the other
hand, the final purpose of the PP approximation is to reproduce closely AE calculations
in different environments, i.e., we require a “transferable” PP. While a large core radius
r. enhances smoothness, the opposite is true for transferability. The choice of r, is then
a compromise between the two requirements, and a perfect transferability cannot be ex-
pected. A prescription that ensures transferability at least in an approximate way has
already been incorporated in the generation procedure by requirement 4 above, as we now
show. The logarithmic derivative dln R;/dr at any rq specifies uniquely (apart from a con-
stant factor) a solution of the radial Schrddinger equation for all 7 > 7y, since it is a linear
second order differential equation. By considering solutions for arbitrary ¢ in (2.33) and
(2.34) (in general no bound states), it follows from the Wronskian theorem [Mes69, §3.2.1]

that

a 1 e

ﬁgé;@ n R(r’ g) e, = WTERZ(TC,&) A. d’f‘T‘ZRz(T‘, Ef). (237)
Therefore, not only the logarithmic derivatives for ¢ = ¢; mateh at r = 7, as is required for
the equality of AE and PP solutions for r > 7., but the same holds also true for neighboring
energies ¢ at the first order. This is advantageous, since the atomic eigenvalues will shift
when the atom experiences different chemical environments. However, this result should
not be taken as an absolute criterion for transferability, since (2.37) has been derived under

the assumption that the potential is spherically symmetrical.
In the present calculations, two recipes for the generation of norm-conserving PPs have
been employed. The approach of Bachelet et al. [HSC79, BHS82] has been applied to the
investigation of charged S and P clusters. This scheme starts from a crude guess for the

screened PP ob2

8 (r) = (Vﬂ[nm + V=al(r) - 5) (1= F(Z) +af(X),  where f(r) = e,

8
F T . ¢

and ¢; follows from requirement 1 for the lowest nodeless eigenfunction RP* of this potential.
RP® is then modified to meet the remaining requirements {2-4) above in the form

R = (R + 65 )
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where the coefficients are adjusted numerically. The final PP obtained by inversion of the
corresponding Schrodinger equation has been fitted to the analytical form

2
v;?(f‘) = —-z? Z et ot} T4+ =1 {2.38)
=1
2 2
Aok (r) = > (Ai+riAusle™", (2.39)

fx=l

where z denctes the valence charge and the remaining parameters have been tabulated by
the authors [BHS82]. It should be noted that v is finite at the origin. A modification
to this method [Van85] to render the PP optimally smooth has not been considered in the
present work. An alternative recipe originally proposed by [Ker80] and then modified by
Trouiller and Martins {TM91] to be optimally smooth, has been applied in the investigation
of mixed C,.5i,. clusters. It involves an analytic expression for the PP functions inside the
core radius

Ri{r} if r>r.

il
— 2m
Wexp(p(r) i r<r, 0 RR) =D oy

s
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The seven unknown coeflicients ¢, (odd powers of r have been discarded for smoothness
considerations) are determined from the conditions of norm conservation (1), the continuity
of R*(r} and its first four derivatives at r. {2-6) and zero curvature of the screened PP
at the origin, v4*"(0) = 0 (7). We have generated PPs for C and Si within this scheme,

ps

choosing 1.17/2.24 a.u. and 1.84/1.89 a.u. as sp/d {{=0,1/I=2) cutoff radii for C and 5i,
respectively. The PPs are provided to the MD /DF program in numerical form, i.e., they
are tabulated on s logarithmic radial mesh, without any further fitting procedure.

The K8 Energy Functional in the PW expansion
Within the PP approximation, the KS energy functional (2.14) takes the form

Bi{é.} (R} — B[}, {(Ro}]
val
P (B = Y1 j'ezwp (~W)¢P" fa*n (2)VEn)(e)

+ Ege n+7 nZ] fdrn*”‘ va’ -R))
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+ = Z R . *fRnl (2.40)
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where the last line contains abbreviations of the terms given explicitly above (in order
of their appearance). z, is now the number of valence electrons of the atom located at
R := R® + R,, where R*® are vectors of the direct lattice and R, denotes the position of
ion v within each supercell. The prime in the expression for the ion-ion Coulomb energy
indicates that ionic self-interaction terms are excluded from the summation. In practice,
some mathematical manipulations are necessary, since E,., E:;c and Eyy are individually
divergent quantities. Only their sum is well defined [IZC79] and may be evaluated using
Ewald’s summation method [MMWI71]. An elegant trick to avoid the explicit evaluation
of Ewald sums has been used by Car and Parrinello (see, e.g. [GP91]}). Instead of E..
they consider the (finite} electrostatic self-interaction of a neutral system of electronic and
fictitious smeared Gaussian charges centered at the ionic sites

- . atv o at - i — .E_ 2
iifr) = n Zn ~ Ry} nE(r) = (ER) exp (R:) .

The fictitious Gaussian charges give rise to the following Coulomb potentials (apart from

arbitrary constants):
; nat,u(rf} _ zu 7
fdr - (),

as may be seen by straightforward integration. This introduces spuricus interaction ener-
gies of the Gaussian density with itself and with the electronic {pseudo-)density that are
compensated for by fictitious contributions of equal amount and opposite sign to Ery and
E'ec respectively. In all, the above terms are replaced by

ps >
. 1 i -
Ep — Eg:= 5 dr (r}V=[R|(r),
EZX - Elee .= / drnP*{r} Zvi"c”’(r

where v‘“"’(r) = vl“’ {r )—i— - rf(w-ﬁ;) (2.41)
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where the last, approximate relation results from the rapid convergence of the error function
] cxp-w-:z':
to unity, i.e., for 0 < z, we have § < 1 —erf(z) < vy ooy (see [AS72]). The last term

23 B 1 atw , nae,v(r: . R,,,)
; Tt 5;!&% (rwRy)fdr =Y
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represents the self-energy of the Gaussian charges, which has been omitted in the preceding
sum. All the resulting energy terms are separately finite quantities and are evaluated using
a dual-space method [MC88], i.e., both real- and momentum-space representations of the
wave functions are used. The following terms are most easily evaluated in Fourier space:

wal  out
B = Q3 3 f.G%ea(G)) (2.42)
n G
1 4m
.1 e
E., = 29§|R(GH = (2.43)
Elee = QZ%(G zv‘% Jer SRy, (2.44)

The superscript “deut” indicates that the cutoff for the expansion of the electronic density
has to be larger than the one used for the expansion of the wavefunctions. The convolution
theorem would require a factor x = 4 between the two cutofl energies, but one usually
resorts to smaller factors in practical calculations [MC88| (factors used here are z = 2 (85,
P) and z = 3.36 (C, Si}, see section 3 for details). The expressions for Ej; and E.. are
evaluated in real space in a straightforward way, while the integral in eq. 2.17 or 2.18 is
replaced by a sum over the FFT grid. The remaining term E;?"C depends on the form of
the nonlocal PP used. If {2.35) is employed, we obtain

val 2

| eut
Eriec Z Fa fdrrgz&v"" )30 damilgr) Y (Qe) B (G| L (2.45)
23 e

The upper integration limits are largely arbitrary, since the Avl, are short-ranged (cf. eq.
2.39) and may safely be assumed to have vanished at the cell boundaries. The choice made
above allows to use a Gauss-Hermite integration formula (i.e., abscissas are the roots of
the Hermite polynomials, orthonormal in (—o0, c0) with welght function e~** [PTVF92]),

fdr rAdt o (rYir(gr)alg'r) ng xze” Av “z)algzd)qlg'es). {2.46)

This is appropriate, since the A*vg;;’ have approximately Gaussian shape (see also eq. 2.39].
On the other hand, if the separable form {2.36) had been chosen to represent the nonlocal
part of the PP, we find
o cut 2
[drr? 3 Avl(r) B () T dngilgr)Y T (e ) b (G)e ™
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The forces on the expansion coeflicients of the electrons may be calculated from either side
of the equation
_10EP{(G)}, {Ry}]
Q ac {(G)*

-t f dr (ho ") (r)e™".

The former is better suited for contributions to the forces arising from E:, and E7* that
are analytic expressions in the ¢2*(G). It is not appropriate for contributions from the
remaining energy terms, since they are analytic in the n?*((), which are convolutions of
the ¢2*((z). This would make their evaluation in Fourier space cumbersome. On the other
hand, their contribution to the forces is a simple product in direct space,

~fa ( [ }(r) n-%— Y, nt (r + Zvﬁx’y ) $nlr )

so they are more conveniently calculated there using the second expression above and
FFTs to switch between the dual spaces. The forces on the atoms are calculated in s

straightforward way as the analytic derivatives —& (Eee -+ Eé‘f + Egj"“ +E H) JOR,, of the
energy terms given above.

2.3.2 Charged Systems

PW calculations imply periodic boundary conditions (PBC). This is appropriate for erys-
tal calculations, and neutral clusters can also be treated by use of the supercell method
described above. However, this approach leads to serious problems if charged clusters are
to be investigated. In order to avoid a divergence of the electrostatic energy, any practical
calculation using PBC [YOBC90, Jon93, MPC895] must resort to an artificial compensating
charge density that is spread uniformly throughout space to maintain neutrality in each
unit cell. This amounts to a constant (albeit infinite} shift in the potential that rules cut a
direct calculation of electron addition or removal energies from energy differences between
differently charged systems within the ASCF scheme. The application of the ASCF scheme
requires that the constants in the potentials of differently charged systems are chosen in a
consistent way. We can achieve this if we assume that the electron density is nonzero only
in an isolated cell Q. containing the cluster, say the region of space of volume {1 defined by

£, = {r(r = i)\g&;, <M< 1},

g}
and solve the Poisson equation
AVE(r) = fic(r),
subject to zero boundary conditions at infinity (instead of PBC}. Its solution is the Hartree
potential, given by

: (2.48)
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where the density #. introduced here is identical to the periodic dengity 7 inside (. and
zero outside. As far as the calculation of the total energy of such an isolated system is
concerned, we must recalculate only this term (the Hartree potential) and its contribution

E... to the total energy, because these are the only terms of long-range form, as we can
see if we analyze the individual terms in the expression for the total energy. E,., E;f""

and Ey; can be used unchanged, because they involve only contributions from real-space
sums and/or integrals over a single unit cell. Ey, (2.42) can be calculated as before if we
alsc assume that the wavefunctions are nonzero only in .. This is reasonable, since the
exact electronic density decays exponentially to zero outside a cluster [LPS84] and both the
density and the wave functions should be negligible at the cell boundary. The only terms
that are affected by the abandonment of PBC are E.. and, to lesser extent, Ef;‘, for their

evaluation in reciprocal space (2.43), (2.44) relies on periodicity. The computation of ﬁ;‘:’
is less critical, because ﬁ;‘;‘“" is short-ranged in direct space, and it may be assumed that
its periodic images are negligible inside {1,. We have verified this assumption by numerical
tests (see below). Furthermore, we always have 55°¥(G = 0) = 0 in reciprocal space (see
equation 2.41), and there is no divergence for either charged or neutral unit cells.

The calculation of the modified Hartree energy of an isolated cluster, denoted by E...,
can be done in r-space, for example by calculating multipolar charges and the corresponding
potentials of 7., as has been proposed by [YOBC90], who included terms up to [ = 3 in
their expansion with respect to Legendre polynomials. An alternative approach proposed
here proceeds in Fourier space and uses FFTs to compute both the potential and E....
The method implemented is similar to the approach presented in [BL93] and uses some
ideas of the so-called “partial FFT” introduced in [KTMS87]. Of course, our procedure
cannot offset the influence of residual interactions between images in periodically repeated
cells on the charge density, e.g., in the presence of large multipolar moments, where other
methods should be employed [BL93].

The evaluation of the Hartree energy is especially convenient in reciprocal space (see
equation 2.43) if a compensating charge density is used to guarantee neutrality. We can
maintain this convenient description to estimate the Hartree energy of an isolated cluster,
if we consider a sequence of periodic arrays where the clusters are separated by increasing
lattice constants la,.. If we then take the limit [ — oo, the corresponding densities #; and
Hartree energies E,.; should converge to their values for the isolated system. The densities
#i; can be obtained from the original density # subjected to PBC by the description

[ ) - 2/(BQ) f re
fu(r) = { —z/(PQ) (;’(;hezﬂwisiz3

where the neutrality of the lattice is always maintained by adding a uniform positive
background charge —z/(I°Q2) to the density (z denotes the electronic excess charge of the
cluster). () is the region of space enclosed by the separated supercells, i.e.,

3
Ql:;: {r r:ZER“—PZ)\;&g, 8§}t, <1}.
n =1
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In real applications, we use FFTs to calculate the Fourier components of the densities #;.
The expansion of the periodic lattice enlarges the r-space FFT mesh to

3 v
{r}l - { Zj%, 0<ji< IN,} (2.49)
i=1 :
and refines the conjugate FFT-mesh in reciprocal space to
b IN IN;
{G}{ - {Zm;—i—, —St<mi < ““5‘} (2.560)
=1

(where the original meshes are recovered for [ = 1}. Under the condition that # vanishes {(or
is negligibly small) at the boundaries of the original cells (which can always be satisfied by
increasing the dimension of these cells and/or by translating and rotating the system inside
the cells} the FFT coeflicients (for G # 0) can be related to both the Fourier coefficients
of fi; and the Fourier transform 7 of . (see appendix A):

AHG) = Y Ar)e %" = BNA(G), G € {G}\ {0}
{h

N,
= 'ﬁ"n(@).

Using these relations, the Hartree energy of f; may be calculated from

.10 314(G)
Ece,f = iﬁ Z
{GH\{0}

? 4

G?

and may alternatively be expressed by

= _ 1 (2?7)3 i . ¥ 4:77'
Eee,l = § 30 Z (271_)3 IR(G) E_ﬁ" (2“51)
{GhH\{o}

As we show in appendix A, the Hartree energies E..; converge to the Hartree energy E...
of the isolated density, which may be expressed by a k-space integral (see, e.g. [Jac78,
§3.13, (3.164}}))

= 1 dk .. 947 -
Eeet |7 5 j @y (k)" 55 = Beee- (2.52)

In the practical implementation, FFT components and Hartree energies for several [; <
{; < ... are calculated and are extrapolated pelynomially to the limit [ — co. Choosing
I, = 2l,.1, all the components of the previous steps can be used, since {G};,_, C {G}..
For all results presented in section 3, [, = 8 has been used.

The FFTs above may be confined to the original r-space mesh since the uniform positive
background charge that is alone present at the additional FFT points r, ; > N, contributes
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only to the G = 0 component (which is thereby eliminated). This fact may be exploited to
reduce the effort for the computation of the #((G) by taking into account that each vector
of the finer k-space mesh can be decomposed unambiguously into a sum of a vector G’ of
the coarser original mesh and some vector ~:

3
b; /
G=G'+y, y=) m7,mi=0,.,1-1 Ge{Gh G €{Gh
i=1

The set {+} contains /* vectors. The FFT components on this mesh can be written as

AHG) = AG +)
= Zﬁ,(r)exp -G+ v)r

= Y [Alr) exp —rrlexp G, G € {G}, G'€ {Gh.  (253)

r

This means that we need {® FFT’s, each of length N := NyN; N3, to compute all the PN
FFT-components of the entire set {G};. The number of operations for one large FFT
is O(I°Nlog,(I*N)), while the present procedure needs O{[*Nlog,(2N) — N) operations
(including O({{® — 1) V') operations to compute the quantities in the brackets in (2.53). As
usual in this context, only multiplications and/or divisions are considered.

Obviously the largest contribution to the error in approximating (2.52) by (2.51) stems
from the omission of the G = O-term. It is possible to increase accuracy and to improve
convergence if a more accurate description of this contribution to the integral is used,
as indicated at the end of appendix A. To assess the accuracy of the resulting method,
we have applied it to analytically soluble test cases and experimented by changing the
size of the original supercell and/or changing the energy cutoff of the PW expansion (see
section 3). The results were both accurate and stable. The tests indicated further that
an extrapolation of El2 analogous to the above for E.,; made 2 negligible difference (the
total energy differences changed always less than 0.01 eV} if a value of Ey., large enough
to achieve convergence has been used. Therefore such a correction has only been included
if the computational effort (of memory and CPU time) fo calculate the additional FFT
coefficients of the PP seemed feasible, i.e., only if analytical PPs [BHS82] have been used
(S, P), whereas it has been omitted if numerical PPs were employed {C, Si}, where the
FFT components require demanding numerical integrations.

2.3.3 Vibrational Spectra

Within the framework of Car Parrinello MD, a natural source of information about the
vibration frequencies of the eigenmodes of a given (local) minimum structure under inves-
tigation is provided by non-thermally equilibrated MD trajectories at low temperatures
(< 300 K). In particular, the frequencies may be determined as the peak positions of the
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vibrational density of states (VDOS) computed by Fourier transforming the (normalized)
velocity autocorrelation function c,,{f} [AT87] in a harmonic regime ({v} = 0)

boo (W) = jiw dt cuo(t) expuwt, where ¢,,(t) = M- {2.54)

Here, v encompasses all 3N,,,, components of the ionic velocities Ry, I=1,..., Ny, of the
system and the brackets denote the microcanonical ensemble average. In MD calculations
however, the ensemble average is replaced by a time average (assuming ergodicity} and the
discretization of time {¢, = nAt, n = 0,..., N - 1}, introduced, e.g., by (2.26), must be
taken into account. The numerator of c,,(¢) (2.54) is therefore replaced by

N-m-}
(Vltm) V(0)) = Jim =T 3 V{tasm) - vita) (2.55)

and the denominator is substituted correspondingly. The resulting discrete ¢y, {£,) is called
an autocorrelation sequence (ACS). In practice, instead of extrapolating N — oo, the
length of the MD run T := NAt is chosen to be reasonably large (for the results presented
in section 3, the trajectories have been followed for 2000 — 8000 time steps, depending on
the size of the cluster). A direct application of FFT to ¢,u{tm) to obtain the VDOS

gl N N
; = " 2 N, ——<k<—
Epu( 27k [T .&tgcw(i Jexpi2wkn/ 5 <k< 5

suffers mainly from two limitations:

e Due to the discretization of frequencies, the frequency resclution is limited to 2x /7T,
i.e., by the length of the MD run.

e The strength of the peaks is proportional to the weight of the modes in the original
data set. An efficient energy transfer between the modes would then be required to
ensure that all of them would be excited sufficiently to be discernible from numerical
noise. This condition is seldom met during typical simulation times, since anhar-
monic terms in the potential that account for thermal equilibration are weak at low
temperatures.

The multiple signal classification (MUSIC) analysis method [Mar87] is able to overcome
these difficulties to a large extent by constructing a frequency estimator, i.e., a continuous
function of frequency that exhibits sharp peaks at the frequencies of the eigenmodes, even if
their amplitudes in the incoming trajectory are small or even comparable to the numerical
noise. It should be noted, however, that a frequency estimator function, unlike power
spectral density estimators {e.g., the maximum entropy estimator [PTVF92]) does not
preserve the weight of the eigenmodes in the trajectory, nor can the ACS be recovered by
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Fourier transforming the frequency estimator. To get the essence of the method, let us
assume the following idealized form of an ACS:

1
N -—~m

P

Cou (b} = > aw)’ exp —uomAt + pudme, m=0,...,L, L<N. (2.56)
1

The last term has been added to account for numerical uncertainties. It is called white

noise, justified by the fact that its FFT is a constant {Afp,) for all frequencies. The

remaining terms may be imagined as being produced by, e.g., a linear combination of

complex sinusoidal functions

P
v(t.) = 3 a{w)exp —uomAt, (2.57)

where the case of a real v would be contained by the requirement that, for every w;,
there is & wy with wy = —w; and a(—w;) = a*(w). Applying (2.55) to this sequence
for a large but finite N and a complex scalar product then would yield {2.56) with
di{w) = ai{wr}/+/ > par(wy)? apart from corrections of O(1/N}). The number of inde-
pendent vibrational modes would then be P/2 = 3N, — 5 for linear and P/2 = 3N, — 6
for non-linear molecules, respectively, since they occur in pairs {wy, —w;}. So far, the fre-
quencies have not been specified, but they may be determined by diagonalizing the complex
L x L autocorrelation matrix defined by

Rﬂ,m L= cw(tn—m) - Sﬂ,m + pwén,m-

The decomposition reflects the assumed form (2.56) of the ACS. By construction, R and §
are Hermitian and consequently all eigenvalues are real and their (common) eigenvectors
constitute an orthonormal basis {q;,...,ar} of C¥. A perfectly sinusoidal signal, such as
the harmonic part of the ACS (2.56) may be represented in this space as linear combinations
of complex sinusoidal vectors

e(w) := (1,exp —wAt, ..., exp ~w(L — DAHT

which may also serve to write a compact expression for the signal matrix S

S = e(wz)é;(wz)ze(w;)g.

P
IE3 1

We may safely assume that for small microclusters P < L is always valid. In this case, it
can be shown (see [Mar87]) that 5 has rank P and therefore only P nonzero eigenvalues
Al ... Ap, such that the eigendecomposition of R is given by

P £
R=3 (+poaal + Y poarar-
k=1 k=P+1
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The eigenvectors {qps1,...,qr} that span (part of} the noise subspace all have the same
eigenvalue and should therefore easily be distinguishable from the q, of the signal subspace.
In practice their eigenvalues will show dispersion due to the fact that a finite number of
steps has been used to estimate ¢,,, but their moduli are usually markedly smaller than
those of the signal subspace eigenvalues, provided that L is sufliciently large. As soon
as the qi of the noise subspace are known, they may be used to construct the MUSIC
frequency estimator function by the definition

L |
Puysic(w) = LZ ieH(w)kuQ} . (2.58)

=FP41

Whenever a signal vector e(w) happens to lie within the signal subspace, Pyysro{w) should
diverge by virtue of the orthogonality of noise and signal subspaces. In practice, estimation
errors will cause the function (2.58) to be finite, but with very sharp peaks at the frequencies
wi. On the other hand, if e(w) belongs to the noise subspace, it is desirable to choose L as
large as possible, in order to maximize the overlap with the noise subspace eigenvectors,
since this results in a large signal-to-noise ratio. In practice, a value I > 5P seems to be
recommendable {[Koh94}}.

However, it has been observed [FAPC91], that the stability of the MUSIC algorithm
is reduced in the presence of anharmonicity and/or a short run, causing frequencies to
move significantly when varying the sampling interval At and/or L. In order to improve
the stability of the MUSIC algorithm in such situations, Kohanoff {Koh94] proposed a
combination of MUSIC with a projection technique that singles out the normal mode
components of the trajectories. For this purpose, a first MUSIC estimate of the frequencies
wy is used to perform a least-squares fit of the MD velocity sequence (2.57) to a linear
combination of sinusoidal functions at these frequencies

F
F(ta) = ) bifysin (WAt + ¢r) -

=1

The amplitudes and phases of the eigenmodes as well as the eigenvector components are the
fitting parameters. The variance of the fit is minimized using the SD algorithm, imposing
orthogonality on the eigenvectors £; of the modes at every iterative step using the Gram-
Schmidt algorithm. Then the velocity sequence is projected onto the eigenvectors

Vi(ts) = & (&7 v (tn)

to filter out a large amount of both other modes and the noise that usually bias the
estimator (2.56). Depending on the quality of the first estimate, a further application
of MUSIC to every projected sequence v' will either yield an improved estimate of the
frequency w, or it will show several peaks, none of them close to the original, indicating
a spurious frequency. Applying in turns MUSIC and then the projection of the ionic
velocities onto the eigenmodes, the scheme may be repeated until self-consistency in the
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variance of the fit is reached. It is possible to improve the signal-to-noise ratio further
by performing a symmetry decomposition of the MD trajectory by conventional group
theoretical analysis using projection operators [MSB94] and applying the scheme to the
symmetrized trajectories. The final accuracy of the procedure can be assessed from the
residual deviation of the fit and a more extensive simulation should be performed, if it does
not prove satisfactory. This approach has been successfully applied to the determination of
the vibrational spectra of Ceo [KAP92], Crp [OAKP4] and ferrocene [Fe{CsH; o] [MSBY4].
The results presented in section 3 have been obtained with a version of Kohanoft’s program
modified by Margl ef.al. [MSB94..

2.3.4 Computational Cost

It is apparent that the CP method as described in the previous sections offers several
advantages over approaches based on matrix diagonalization:

e It does not require the evaluation and storage of the full Hamiltonian (O(Niy)
words of memory, where Npyw denotes the number of PWs in the expansion of the
wavefunctions).

¢ It avoids matrix diagonalization, which is computationally very expensive, as the
number of operations indeed grows as O(Ny ).

s It offers the particular attractive feature of being an iterative scheme; once EP*[{¢¥*}]
has been minimized for a given ionic configuration, it is straightforward to use the
solution as a starting point for another {not very) different geometry. Furthermore,
the calculation can be started with a low E. and then be improved by adding more
PWs.

However, the CP scheme requires only the storage of the wave functions, i.e., O(N,uNpw)
words (N, is the number of valence electrons), plus the storage of the local potential

Viee(r) := (VI[R] + Vo (05, n] + 57 (1), 5(x) = ) 5" (r — RY),

which requires O(XV,,) words. N,, denotes the number of points of the FFT mesh (both
real-space and reciprocal space), which is N,, ~ z%/?Npy (2 has been defined in section
2.3.1 as the ratio between Eg., and F.,.). The basic steps in the computation of EPs[{¢E"}]
and 8E/8cE*(G)* are illustrated in Fig. 2.2; this shows the most convenient space (real
or Fourier space) chosen for the evaluation of different terms, and the order of operations
needed for the calculation of the varicus contributions. It is common practice [EMR93]
to consider only multiplications and/or divisions as contributions to the operation count,
since they are the most expensive elementary operations on & computer. As indicated in the
diagram, direct (—) or inverse (+) FFTs are used to transform between real and reciprocal
space. The transforms are handled by a standard fast Fourier routine and need not to be
discussed here. From results of computational analysis (see, for instance [PTVF92]) it is
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Figure 2.2: Block diagram illustrating the basic steps making up one iteration in the computation
of the energy and the forces on the electrons, together with the number of operations needed in
their calculation. See text for the definition of the various quantities.

known to require Nppr =~ N,,log, N,, operations. Depending on the form of the nonlocal
PP used (eqs. 2.45 or 2.4?}, N,,zm jay NGH’NLNINWINPW and Ntn_goc 4 NLNIN,)mszW
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operations are required respectively for its contribution to the energy and the forces, where
N7 is the total number of atoms, Ny = Eﬁ’_’_jg’(% +1) and Ngg is the number of integration
points of the Gauss-Hermite integration formula. For systems where N,o; is much smaller
than Npy, the most time-consuming steps are then the 2N, FFTs needed to set up the
density in real space and the contribution of Vi, to the forces on the electrons in reciprocal
space. For sufficiently large systems the orthogonalization of the wavefunctions (first line
of the uppermost block in Fig. 2.2) which grows as N2, Npw, dominates and the numerical
cost of the algorithm still grows with the third power of the system size. The search for
algorithms that scale quadratically or even linearly with system size (see, for instance,
[ODMG95, MG94, HTPY4]) is the subject of continuing research interest.

The various terms shown in Fig. 2.2 are updated once during an SD or MD step.
Or the other hand, in a single CG step, E®*[{¢?°}] and n?® are evaluated three times
to minimize EP* along the conjugate direction d, (see section 2.1.3). This leads to an
increase of the absolute computational cost of a CG step by about a factor of 2 — 3 with
respect to an SD and/or MD step, but the difference in cost is greatly reduced and is
more than counterbalanced by the better efficiency of the former method. It is well known
[SCPB8Y, BG:90], and has been verified in the present calculations, that the CG algorithm
reduces the number of iterations by a factor of 5 — 10, depending on the system in study.
Some absolute figures to assess the demand of the programs for computing time for the
class of systems studied here may be found in section 3.




Chapter 3

Results

Up to now, there is little structural information about microclusters (i.e., clusters with
up to ~ 13 atoms) available from experiments [MPC395]. One reason for this situation is
simply given by the size of these particles, which are too small for traditional solid state
methods as nuclear magnetic resonance (NMR) or x-ray diffraction to be directly applica-
ble. The formation of single crystals of microclusters is, however, severely hampered by the
often high reactivity of these molecules already present at room temperature, which results
from “dangling bonds”. Exceptions are rare, consisting of clusters with saturated bonds,
such as small clusters of sulfur and selenium [Don74] and several carbon clusters such as
Ceo [FSM*81]. On the other hand, photoelectron detachment spectroscopy (PE) is now
a well-established experimental tool for the study of structural and electronic properties
of size-selected clusters. These experiments usually investigate charged clusters, which al-
low for highly selective mass-separation in mass spectrometers by simply applying electric
and/or magnetic fields. The spectra convey a wealth of information on electronic excitation
properties that have the potential to provide a valuable source of structural information,
where opportunities for direct comparison with experiments are rare. The interpretation
of these spectra still remains a prominent task in the field of cluster physics. To clarify
the origin of the various features contained in these spectra a close collaboration between
theoretical and experimental physicists would be desirable, as these spectra depend usually
on (and can be modified by) many experimental parameters. An experimental group at
the Forschungszentrum Jilich led by Gerd Gantefér has been able to check our theoretical
predictions by highly resolved photoelectron detachment measurements [GPS96]. There-
fore, after presenting some computational details of our method in section 3.1, a short
summary of the experimental setup will be given in section 3.2 to provide the reader with
some information that will be needed for the discussion of our results in sections 3.3-3.5.

45
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3.1 Computational Details

As already mentioned in section 2.3, we use a repeated-cell scheme and consider only Bloch
waves at the k = 0 point of the BZ. In the calculations for clusters of sulfur and phosphorus
a large face-centered cubic unit cell with lattice constant 30 a.u., was used, while a simple
cubic unit cell with lattice constant 20 a.u. was used for the Si,C,,” molecules. No further
symmetry restrictions have been applied to the MD simulations. The calculations for the
larger clusters were repeated using a larger cell (lattice constant 36 a.u. for 5,7 clusters,
30 a.u. for $i,,C,,~ clusters), which resulted in negligible changes (less than ~ 1%} in
bond lengths, bond angles and dihedral angles. As already mentioned in section 2.3.1, for
clusters of sulfur and phosphorus we use the PP parameters of Bachelet ef ol [BHS82]
with sp nonlocality {lnee = 2) and energy cutoff E.. = 14 Ry for the orbital functions.
For the density, we chose Eg.: = 28 Ry, which results in ~3200 and ~9000 plane waves in
the expansion of the wave functions and the density, respectively. As has been shown in
previous calculations on neutral sulfur [HJCP88, JHS0b] and phosphorus [JH90c] clusters
carried out at our institute, this provides a reliable description of structural parameters and
binding energies less than 1% from the convergence limit. Test calculations on C; indicated,

PP F.: Ry) D.(eV) r.(an) wlem 1)

BHS 18 -5.96 2.54 1560
BHS 27 -6.76 2.41 1853
BHS 35 -6.95 2.37 1868
BHS 54 -7.05 2.36 1871
BHS 70 -7.11 2.35 1883
™ 18 -6.12 2.47 1537
™ 27 -6.91 2.37 1847
™™ 33 -7.06 2.35 1878
T™ 39 -7.15 2.34 1899
T™ 53 -7.18 2.34 1897
™ 70 -7.19 2.34 1896
AE-LSD* -7.19 2.35 1869
Ccr -5.8 2.35 1940
exp.° -6.21 2.34 1855

“Ref. [PA82].

*Ref. [RB8Y].

*Ref. [HH79].

Table 3.1: Spectroscopic parameters (see text) of Cy, '27. The frequencies have been determined
from the second derivatives of the potential energy curve.

however, that an application of the same kind of PP to compounds of this element is not
desirable, as its use would require an comparatively high cutoff of more than 56 Ry to
obtain a comparable level of accuracy. The results for the well-depth D., the bond length
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re and the vibration frequency (w) for the 'EF GS of C, are given in table 3.1 (see the
values labeled “BHS”). This led us to test sp nonlocal PPs of Troullier and Martins [TM91]
on the mixed C-Si clusters. As can be deduced from table 3.1 (values labeled “TM”), this
PP shows more favourable convergence properties. Full convergence, however, cannof be
claimed with cur choice for E.., i.e., 30 Ry, although all parameters shown deviate by
less than 2% from their values at E.. = 54 Ry (which may serve as a reference point).
Further tests included several other states of Cy, Siz and SiC, which all showed a less
critical behaviour. Our choice for the parameters leads to ~ 11000 and ~ 31600 PWs in
the expansion of the wave functions and the density, respectively. For clusters of 5., and
P,.~, the factorized form (2.36) of the nonlocal part of the PP was adopted to speed up
calculations, whereas, in the case of Si,C,.~ clusters, a Gauss-Hermite integration with
Ngg = 13 integration points was used to evaluate contributions from the nonlocal parts
(2.35) of the PP to the energy and the forces.

With appropriate values of the artificial mass for the electronic degrees of freedom
g = 300 a.u. and the integration time step Al = (2-7) x 2.419 - 10717 seconds, the
deviations from the BO energy surface during the MD runs have always been less than
§.005 eV per atom for times of the order of ~ 2000 time steps.

Before applying our extrapolation scheme to calculate the total energy of charged clus-
ters, we ensured that the density was always small near the cell boundaries by translating
and/or rotating the clusters within the cell. We tested the energy extrapolation mainly on
several sulfur clusters. The change in the energy of S~ using an extrapolation parameter
of 16 instead of 8 (see section 2.3.2) was only ~3x107°% eV, so that our choice of this
parameter should be very reliable. Further tests involved increasing the FFT mesh from
32% to 48 points and the energy cutoff from 14 to 37.8 Ry, with an increase in the number
of plane waves in the expansion of the density to over 33000. The change in the electron
affinity of S~ (2.42 eV to 2.37 eV} indicates that further expansion of the basis set will
change little. We have also tested the effect of increasing the dimensions of the unit cell
on our extrapolation scheme. For the O isomer of S; discussed below [Fig. 3.12(a}], we
increased the lattice constant from 30 to 36 a.u., enlarged the FFT-mesh to 36° points
and the number of plane waves in the expansion of the density to ~16000. The calculated
vertical detachment energy (VDE) decreased by only 0.02 eV.

For the exchange-correlation functional of the electron gas, we have used the Vosko ef.
al. [VWN8G] {for 5,7, P, } and Perdew-Zunger [PZ80] (for Si,C,.™ ) parametrizations of
the Monte Carlo numerical results of Ceperley and Alder [CA80], respectively.

GS and local minima are found by selecting initial geometries of sulfur, phosphorus
and silicon-carbon clusters from those suggested in the literature ([HICP88, JH90b] for
8., [JHS0c, J592] for P,.) and/or found upon MD simulations on isomeric structures of
the neutral clusters {all Si,C,, clusters). Taking the neutral local minimum shapes as trial
initial states, we perform an extensive MD search for the anionic clusters finding several
close local minima by means of a dynamical simulated annealing strategy. First we relax
the electronic degrees of freedom to their GS and then run repeated cycles of CG (less
than ~ 100 time steps), combined SD (electrons and ions, ~ 10 time steps} and CP-MD
{~ 1000 time steps). As described in section 2.2.1, we keep the instantaneous temperature
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of the simulations during the MD runs at constant values in the range of 400-1000 X to
within a certain toleance (10 K). The temperature is then reduced to 100-306 K in the
vicinity of local minima. Depending on the size of the system and the quality of the initial
geometry, about 5000-20006 MD steps are needed to find the most prominent low-lying
local minima nearby. The CPU time required for each time step was in the range of 1-9
seconds on a Cray YMP8/864 computer, depending on the number of occupied electronic
states and the energy cutoff used.

For the comparison with experimental PE spectra, we focus on vertical excitation pro-
cesses; i.e., we keep the atomic geometry unchanged. For every anionic cluster in its GS,
we consider all the final states corresponding to the removal of a single electron that are
covered by the DF formalism, i.e., the lowest states of every symmetry only. These are
not GSs and sometimes require calculations for determinantal states that have holes below
the Fermi energy, which cannot be obtained by straightforward total energy minimization.
Therefore, in order to compute the total energy of the final states, we have adopted a
constrained minimization procedure, in which we relate the occupation numbers and the
order or symmetry of the orbitals.

3.2 Experimental Setup

The present section is devoted to a brief description of those aspects of the experiments
accompanying our calculations that concern the discussion of our results in the following
sections., A more detailed description of the apparatus may be found in [CGES2|. The
experimental setup as depicted in Fig. 3.1 consists of a pulsed arc cluster ion source
(PACIS) [GSLMB90, SLIT91], a time-of-flight (Tof) mass spectrometer, an excimer laser
for electron detachment, and a time-of-flight electron spectrometer. The sulfur clusters are
generated by pulsed ignition of an electric arc, the lower electrode of which has the shape of
a crucible containing the material under investigation. About 10% of the emitted material
is charged. Reactive materials such as phosphorus require special treatment to avoid direct
contact with air. In this case, the source chamber is designed as a glove box that is flooded
with an inert gas (N;) during manipulation and evacuated during the measurements. For
the same reason, phosphorus must be stored under water outside the chamber, which is a
source of oxide and hydride impurities in spite of the efforts to minimize contamination (see
section 3.4 for a discussion of the implications on the measurements). During ignition, a
puise of He gas is flushed through the gap between the electrodes and carries the vaporized
material into an extender, where clusters grow on cooling. After leaving the extender, the
gas containing the neutral and ionic clusters passes through a conical nozzle into vacuum
and forms a supersonic jet. After passing a skimmer, the anions in the beam are accelerated
in a pulsed electric field (time-of-flight {(ToF) mass spectrometer), where the clusters are
accelerated to the same kinetic energy Er, = eU and thereby separated according to their
time-of-flight or their masses, respectively. A typical mass spectrum [see, e.g., Fig. 3.3(II)]
contains lines corresponding to every size of clusters present in the beam. The overall
shape of the spectrum depends on the following parameters of the source:
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Figure 3.1: Schematic experimental setup.
e the intensity of the He gas pulse (stagnation pressure},

e the time-delay (Afm4) between the opening of the He valve and the ignition of the
are,

e the time-delay (Af4x) between ignition and the switching on of the electric field,

the voltage of the are, and
e the duration of the arc.

It is important to discuss the effect of changing these parameters, since this can result in
the preferential generation of different isomers. A lower intensity of the He pulse results
in a slower transport of the clusters through the extender and favours the formation of
larger clusters. The time delay Afg 4 has a similar influence, because at the beginning and
the end of the He pulse its intensity and therefore its flow velocity is low. The parameter
At s determines whether clusters leaving the source first or later are detected in the mass
spectrum. Clusters leaving the source immediately after ignition have spent a short time
in the extender and are smaller. The voltage of the arc determines the rate of vaporization
and the partial pressure of the material, a large value of which results in more collisions and
larger clusters. The duration of the arc has only a minor influence on the mass spectrum,

Finally, the anion beam is directed into the interaction region of a “magnetic bottle”
ToF electron spectrometer. A selected bunch of phosphorus clusters of a particular size
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is irradiated by a UV-laser pulse of energy 100 pJ-1 mJ (second, third, and fourth har-
monics of a Nd-Yag laser, corresponding to Ar=2.33, 3.49, and 4.66 eV, respectively).
The detached electrons are guided towards the electron detector by magnetic fields, and
their kinetic energies Fyy,. are determined from the measured time-of-flight. Their binding
energy K, in the cluster is then determined by the equation of the photoelectric effect

E{, == hl’ - Ekgw

The energy resolution, which is limited by the Doppler effect due to the velocity of the
anions, increases with decreasing electron kinetic energy and increasing mass of the anions.
In the measurements presented in sections 3.3-3.5 it varies between 0.02-0.1 eV. There is
also an uncertainty in the absolute value of the BE of £0.05 eV.

3.3 Sulphur Cluster Anions

8.~ clusters constitute an ideal starting point for the determination of cluster structures
from PE data, since the structures of their neutral counterparts are among the best char-
acterized of all atomic clusters. One reason for this is the fact that sulfur is exceptional
in that many S,, microclusters either occur as or may be prepared as molecular crystals
(n=6-8,10-13,18,20) {Don74, Ste84], which allows for the application of x-ray structural
analysis.

In recent years there have been studies of the neutral clusters using a range of ex-
perimental techniques. Raman spectroscopy of sulfur vapor up to 700°C [Ref. [LPC*88]]
indicates the presence of chainlike species of Si, two isomers of Sy, chainlike helical con-
formers with n > 4, and cyclic species with n=6,7.8. Infrared studies of matrix isolated
sulfur clusters [BMA91] have also been interpreted to imply the presence of two Sy isomers.

The characterization of the structures of the cluster ions (SF) is more difficult, although
there has been much evidence for their existence. The cations 5! were detected up to
n=56 several years ago [Mar84]. The sulfur anions S, have also been the subjects of many
studies. §~, §7, and S; have been identified in single crystals {LJ73] and their electron
affinities in the gas phase have been determined by photoelectron spectroscopy to be 2.077
eV [HL85a], 1.66 eV [CBHT74], and 2.09 eV [NE86], respectively. The reactivities of S7
ions up to n=6 with several molecular species have been measured by Fourier transform
ion cyclotron resonance (FT-ICR) [SBNSB92], and reactions with NO; were observed in
all cases. For n=2-5 there is a direct transfer of an electron to nitric oxide, indicating
that the affinities of these ions are less than that of NO; (2.28 eV, Ref. [WHMPS81]}. The
reaction of Sy with NOQO; led to a considerable yield of Sy, which was viewed as evidence
for a chainlike rather than a cyclic structure [SBNSB92]. The reactivity of the cations S}
with NO, showed a drop at n=>5, suggesting that there may be a structural transition from
chaing to rings [SBNSB92|. The wide range of measurements on sulfur clusters documents
both the interest in their properties and their structural flexibility. There have also been
numerous theoretical studies. Hohl ef ol [HICP88! - using a combination of density
functional (DF) calculations with melecular dynamics (MD) — and Raghavachari et al.
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Figure 3.2: Binding energies per atom Ey/n for 57 clusters as a function of n.

[RRBY0| -~ using Hartree-Fock calculations with fourth order Mpller-Plesset corrections
— studied neutral clusters up to n=13. In the case of S, there are several isomers with
comparable energies. The two most stable are singlet states with cis-planar {C3,) and
rectangular (Dgy,) symmetries, with most calculations showing the former to be slightly
more stable [QSM90, vIN91] (see Sec. 3.3.1 ). There have been fewer studies of charged
sulfur clusters. Zakrzewski and von Niessen [ZvN94] have recently considered S;, Ss, and
Ss and their positive and negative ions. Their results for the vertical attachment energies
of the neutral clusters at their optimum geometries complement our own.

3.3.1 Optimal Geomeries, Vibration Frequencies, and Vertical
Excitation Energies

We present the structures of energetically low-lying isomers of sulfur cluster anions in
Figs. 3.5-3.15 and Tables 3.6-3.11. Distances and bond angles not given explicitly are
related by symmetry to values in the tables. Angles are given to the nearest degree,
and the sign of the dihedral angle v has been chosen in accordance with the convention
of Ref. [KP60]. Apart from the distances between the end atoms in the “broken ring”
structures, we include in the figures and tables only interatomic distances shorter than
5.3 a.u., the minimum in the pair correlation function of liquid sulfur between the first
peak for covalently bonded pairs and the second peak for non-bonded pairs [SWLS6].
“Bonds” are shown black for distances <4.8 a.u. and white from 4.8 to 5.3 a.u.

We have estimated the relative stabilities of equally charged clusters using self-consis-
tent energies without extrapolation. The calculated binding energies per atom

E;/n = [(n—1)E + E; — E]
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Figure 3.3: Mass spectra of S, clusters generated by the PACIS. I: slow cooling of the sulfur
plasma, II: more rapid cooling.

are plotted in Fig. 3.2 for all anionic structures considered here. The stability increases
with increasing cluster size n, so that S clusters should be observable for all n in the
range studied here. With the exceptions of the upper €y, and D isomers of 53, there are
numerous minima in the potential energy surface of the anion clusters with similar energies.
Most features contained in the PE spectra 3.7-3.13 provided by [GPS96] can be interpreted
approximatively according to the Franck-Condon principle. This is the approximation that
the transition is vertical, i.e., the transition takes place from the minimum of the BO energy
surface of the anion to vibrationally excited states on the BO energy surface of the neutral
species without change of the geometrical structure. As the BO-approximation, this is
based on the view that the nuclei move much more slowly than electrons. The nuclei
respond only after the transition by breaking into vigorous vibration. Some of the spectra
(see, e.g., Fig. 3.7} also contain features that do not originate in electronic transitions, such
as a feature at very low kinetic energy (4.4-4.5 eV BE, denoted BG) that corresponds to
background electrons. These are generated by scattered light striking surfaces within the
spectrometer. The laser flux is also high encugh to allow fragmentation to take place via
multi-photon processes, and features of the spectrum of S~ were found in the spectra of
several S clusters. These result from the process

S; ’”{"‘ h«y B Sﬂml +S—.

A second photon can detach the electron from the monomer, resulting in a superposition
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Figure 3.4: Vertical detachment energies of suifur anions S, n=1-9. Circles: experiment,
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structures.

of the spectra of the monomer and the cluster. These peaks (~ 2.1 eV, denoted A) are
relatively small and easy to identify. The spectra for S,;, n=1-3 are also in good agreement
with earlier experimental results [HL85a, CBHT74, NE86).

The two photoelectron spectra for S; and S; displayed in Fig. 3.13 have been obtained
at two different adjustments [(I), (II}] of the cluster source and are of special interest,
because they differ completely. As we will show in the following, this indicates the genera-
tion of different isomers with different source adjustments. The effect of the corresponding
adjustments on the mass spectra is shown in Fig.3.3.2. In case (I} the source is adjusted to
favor small clusters with n=2-7. With the exception of the trimer, clusters with n <6 have
a very low intensity in spectrum (II}. The progression starts at 57 and reaches a maximum
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n_ A B C D E
3 L.B4(0.05) 181 2.3(0.1) 2.45 2.73(0.1) 2.98 4.4(0.15)

3 TFrag 2.50(0.05) 2.64 3.7(0.1) T3 3.9(01) 3.5

4  TFrag 2.42(0.05) 2.49 2.7(0.1) 2.96(0.05) 3.19 3.87(0.1) 3.96
5  Frag 2.97(0.03) 283 39001) 3

6(I) 2.62(0.1) 2.61 3.3(0.15) 3.17 41(0.1)  3.80

6(I) 3.35(0.05) 3.55

7(I) 2.66(0.05) 2.69 3.47(0.07) 3.88 4.14(0.07) 4.15 4.4(0.1) 451
7(1) 3.38(0.05) 3.52 3.6(0.2)  3.62

Table 3.2: Binding energies (at the maxima) of transitions in the photoelectron specira of S,
n=1-7 {eV). Assignments A-D correspond to those in the spectra [Fig. 3.7}, experimental numbers
are given in the left column with uncertainties in brackets, calculated values in the right column.
“Frag” denotes features assigned to photoemission from S ions generated by photofragmentation.

at S7,- Only S;, S; and S; have relatively high intensities in both spectra. Since all the
adjustment parameters differ in the two cases and each spectrum can be obtained using
more than one set of parameters, it is difficult to analyze the growth processes responsible.
However, spectrum (I) is probably the result of a slower process similar to an annealing of
the clusters, and spectrum {II} the result of a more rapid cooling process. In spectrum (II),
the He pulse is more intense, which increases the jet velocity, so the clusters have shorter
times-of-flight than in {I) and spend less time in the extender. If all other parameters were
the same, the average cluster size would be smaller in (II) than in (I}. However, using a
higher arc voltage increases the rate of vaporization and the partial pressure of sulfur, and
larger clusters can result. We will provide evidence for this assumption in the following,
when we discuss the photoelectron spectra of the individual clusters.

It should be noted that the DF formalism applies to the lowest state of a given symmetry
and not just to the ground state of a giver molecule, and we use the fitting procedure of von
Barth [vB79] to obtain the corresponding physical multiplet energies. The resulting spin
multiplets of the atom and the neutral clusters with the optimal geometries of the atom
and all jons from S; to S5 shown in the figures are given in appendix C. Fig. 3.4 shows a
comparison of the calculated VDE with values extracted from the photoelectron spectra,
including values for S; and S7 found in both spectra. In the case of ions with » > 5, there
are a variety of chain structures that are local minima on the BO energy surface and we
show both the range of VDE values and the result for the helical ‘chain. The curves show
that the VDEs depend strongly on the geometry. The overall agreement is remarkably
good, indicating a high probability, although no guarantee that the most stable structures
were found. Moreover, transitions into excited states of S,, can be identified and provide
valuable additional information. Details are given in Table 3.2, where we list the VDE
and the binding energies corresponding to different transitions for the spectra shown in
Figs.3.7, 3.8 and 3.13.

Furthermore, vibrational fine structure is resolved in the spectra of S, with n=2,3,4,6.
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Molecule  Symmetry Method Frequency w,

Sy Dun(®T;) Expt®  725.65 (o,)
Expt® 725+ 12
here 691 (og)
cre 778 (o,)
S5 3.9(a)  Cau(*41) Expt? 256 (a1), 575 {a1), 656 (by)
here 247 {a;), 583 (a1), 660 (&)
DF* 257 {a1), 602 (a1), 690 (bs)
MP2Y 263 (a;), 577 (a1), 758 (by)
Sz 3.9(b} Dg here 478 (€'}, 625 (a})
DF# 478 (€}, 619 {a})
Ss 3.9(c)  C3,(*4;)  here 111 {ay), 238 {a2), 334 (by),
336 (a1), 652 (b}, 689 (ay)
Crh 141 {ay), 222 (a3), 353 (b3},
421 (a;), 693 {bs), 701 {e1}
Ss3.9(d) Don(*4;)  here 67 (b3u), 249 {a.), 322 (ay),
335 (by), 668 (bay), 697 (ag)
(031 1204 (Bg,.), 262 (@), 334 (a,),
355 (bay), 782 (b}, 877 (a,)
S4 3.10(a) Con(4,) here 98 (ay), 107 (by), 216 (a,),
462 {a,), 638 (b}, 648 (a,)
Cr+ 101 (@), 140 {b,), 252 (ay),
528 (a,), 678 (a,), 681 (b,)

“Ref. (HHTY].

bPresent work, photoelectron detachment

“Ref. [QSMS0], CISD(TZ2P+f).

“Ref. [LPLCS6].

‘Ref. [MHAS3], TZ2P+1f, LSD.

fRef. [RAHT86], quoted by Ref. [MHASS], MP2, 6-31G*.
IRef. [MHAGE], TZ2P+f, LSD

hRef. [QSMO0], CISD(DZP).

Table 3.3: Calculated vibration frequencies w, {cm™}) of selected isomers of neutral §,, n=2-4.
Additional labels refer to the figures.

As already mentioned in section 2.3.3, we have used the self-consistent multiple-gsignal
classification (MUSIC) procedure described by Kohanoff {Koh94] to calculate the vibra-
tion frequencies of local minima on the BO energy surface of the neutral clusters closest
to the geometry of the most stable isomer of the anion. The calculations require non-
thermally equilibrated MD trajectories for the system in question. We remove an electron
from the anion and allow the systems to evolve in MD runs (at ~ 300 - 500 K) to find
the closest minimum on the energy surface of the neutral cluster. The resulting strue-
tural parameters are given in Table 3.12. The cluster atoms are then displaced by small
amounts, either randomly or according to the eigenvectors of the expected normal modes,
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Molecule  Symmetry Method Frequency w,.

Se 3.10(6)  Dan here 108(e"y, 161 (al), 207 ('),
249 (af), 271(a}), 301 ("),
672 ('), 710 (a})
Sg 3.10(c) Dag Expt* 180 (ey), 203 (ey), 265 (az,),
312 {az.), 390 (1), 451 {eu),
462 (ey), 477 (a1,)
here 160 (ey), 187 {e;), 255 (a1,),
303 (azu), 347 (G14), 458 (eu),
474 (e,), 476 (a1,)
Sg 3.10(d) &y Expt? 100, 104, 111, 117, 151, 155,
161, 181, 188, 215, 222, 245,
256, 207, 416, 436, 442, 454,
455, 463, 477
here 89{a), 119(b}), 135(b}, 148 (a},
1706(a), 201(B), 218(b), 230(a),
230(5), 242(b), 295(a), 393(a),
419(a), 42%(a}, 435(b), 454(a),
465(a), 483(a)

*Ref. [Ste75a].
ba.8g from Beference [SSS85).

Table 3.4: Calculated vibration frequencies w, {em™1) of selected isomers of neutral S, n=6,9.
Additional labels refer to the figures.

and the trajectories are followed for 2000 to 8000 time steps at 300 K. The results for
selected clusters are given in Tables 3.3 (2-4 atoms) and 3.4 (6 and 9 atoms), together with
experimental frequencies. For the clusters with n=2-4 atoms, the agreement is generally
better than found with other methods of calculation.

Adiabatic energy differences, i.e., the energy differences between the optimized struc-
tures of anion and neutral cluster, will be discussed where appropriate.

Sy

In the case of sulfur, or for any atom with the valence configuration p? or p*, the energies for
the multiplet 3P, 1D and *S can be obtained by von Barth [vB79] fits to the corresponding
equations and their energies together with energies of higher excited states with respect to
the GS of the anion are given in appendix C. The limits on the reliability of the procedure
are shown by the results for the (single determinant} state P, where a direct ealculation
gives a VDE of 2.42 V. A fit using all three determinants gives 2.21 eV, while the measured
value is 2.08 eV [HL85a]. The photoelectron spectra of 57 [Figs. 3.7(a), 3.8(a)] show a
feature assigned to this transition as well as a further feature assigned to the transition info
the 1D state of neutral S at 3.222 eV BE, which is also overestimated by our calculated
value {3.63 eV).
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Molecule Symmetry w,.

S5 Doohy 2T,  Expt® 589.4 (o)
here BT7

87 3.5(a) Cav 2B: Expt® 2355 (ay), 535 {(a1), 571 (by)
here 216 {a1), 529 {a1}, 557 {by)

*Ref. [CC78} (S in ultramarine green).
*Ref. [CC78] (from blue and red sulphur solutions in dimethylfor-
mamide and hexamethylphosphoramide}.

Table 3.5: Calculated vibration frequencies {w., cm™2) of S; and S3.
7
The attachment of an additional electron to the neutral sulfur isomers generally leads to
an appreciable increase in the bond lengths. The caleulated value for 5 (see Table 3.6)
is ~ 6% larger than that in the neutral dimer (3.61 a.u.} and slightly larger than that
reported below for S7. In S7 the added electron occupies an antibonding }(3p) orbital
and the strength of the double bond in S, is reduced accordingly.

As explained in section 2.1.2 and appendix B, the transition energies into some multiplet
states, such as the 127, 57, 387, 387, A, and 3A, of the ...5022x3273 configurations
of S;, cannot be computed with the von Barth fitting procedure, since the orbitals in
the determinants required differ only by phase factors. However, the remaining calculated
excitation energies to the L~, 'A,, and 'I7 states of Sy (1.91, 2.45, 2.98 V) are in
satisfactory agreement with the the first three peaks ({1.84, 2.45, 2.73 eV) observed in
Fig. 3.7(b).

A single vibrational progression with a frequency of 72512 cm™! is assigned to fea-
ture A in the spectrum, in accordance with earlier measurements (725.65 cm™ [HHT79]).
Although the calculated value [691 em™! (o,)] deviates noticeably from these results, the
agreement is better than that achieved by CI calculations (778 em™%, [QSM90]). The
measured frequency of Sy (Table 3.5) is for solutions. The dependence on the host is
shown, for example, by the Raman frequencies of S; in Nal, KI, and Rbl (594.8, 600.0,
and 605.7 cm™!, respectively) [SF76]. Data for S; in ultramarine green {CC78] is given in
Table 3.5.

S3

We have found three local minima in the energy surface for this ion (Table 3.6). The open
ground state [2Bi, Ca,, Fig. 3.5(a)] with valence electron configuration 1a}1512a226230215}
1a34a33b32b} differs from the Oy, singlet ground state of S; by having a {~ 3.6%) longer
bond and a {~ 20%) smaller bond angle. The present values (see Tables 3.6 and 3.12) agree
well with recent CI calculations (3.58 a.u., 117° for S3; 3.76 a.u., 115° for S7 ) [ZvNO4].
The bond length in the matrix isolated anion has been estimated by electron paramagnetic
resonance (EPR) to be 3.97 a.u. [LL78] The calculated dissociation energy (into S; and
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Molecule Symmetry State AFE
Sy Do M, 0.0
dy19=3.81
S5 3.5(a) Cay B, 0.0
dy2,13=3.79; @;=115°
Sz 3.5(b) Ca B, 1.73
di13,12=24.17; da=4.20; ey =61°; oy 3=60°
Sy 3.5(c) Dok M, 2.22
dy2,13—4.06
S; 3.5(d) Cao 24 0.0
d19,24=3.T1; d14=5.83; d33=4.28; ; 4=78°% a33=102°
5; 3.5(e) Day, ‘4, 0.5
dy9,34= 3.69; dy4,23=4.92
57 3.5(f) Con *B, 0.13

di2,24=3.76; dya=4.03; g 3=108°

Table 3.6: Structure parameters for isomers of S, n=2-4, with energies AF relative to the
ground state {eV). Bond lengths d;; in a.u., bond angles o; and dihedral angles -y;; in degrees.
Additional labels refer to the figures.

S} is 4.4 eV /molecule {experimentally 3.3 eV/molecule} [NE&6], somewhat larger than the
estimate found for the dissociation of S; [HJCP&8]. The second (s, structure [Fig. 3.5(b)
and Table 3.6] is a Jahn-Teller distorted version of the Dsy, structure {equilateral triangle)
of S; and has an energy much (1.73 eV) higher than the first and much longer bonds
(4.20 a.u.). The structure of a high-lying linear [D.n, Fig. 3.5(c)] isomer is also given in
Table 3.6.

The measured excitation energies (2.50, 3.7, 3.9 eV) are consistent with transitions for
the open structure [Fig. 3.5(a)] to the *4;, 34,/°B; and 3B, state of the neutral cluster
(2.64, 3.73/3.77, 3.95 eV), but not with excitations for the ring structure [Fig. 3.5(b)]
(1.34, 2.93, 2.84 eV for the Y4;, *A,, B, states, respectively). The calculated adiabatic
electron affinity (2.50 eV) for the €5, ground state of 85 is in acceptable agreement with the
experimental value (2.3964-0.02 eV). Minor deviations between the VDE (2.50 =+ 0.05 eV)
and the adiabatic electron affinity (EA, 2.396 & 0.02 eV) obtained from spectrum 3.7(c)
and the values found in an earlier work {{CBHT74|, VDE=2.4140.03, EA=2.106£0.014 eV)
are attributed to different vibrational temperatures of the anions.

As explained above, the interpretation of the vibrational structure contained in the
spectrum requires the calculation of the fundamental modes of the local minimum strue-
tures on the BO energy surface of the neutral trimer at the GS geometry of the anion.
Meyer et al. [MSHO72] assigned a band in the gas phase absorption spectrum at 590 cm™!
to the a; stretching frequency of S;. Raman bands at 651 and 585 ¢cm™! for S; in an 50,
matrix and at 662 and 583 cm™?! in solid argon [TB75] were assigned to the b, and o
stretching modes [HTB73]. A Raman study of sulfur vapor [LPLC86] identified three fun-
damental modes at 656, 575 and 256 cm™!, and a more detailed investigation by the same

group assigned the a; bending and stretching modes to wave numbers of 281 and 581 cm ™,
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respectively [PECS93]. In the infrared spectra of S; in solid argon, the by stretching mode
has been identified [BMA91], although the wave numbers reported (674.5, 676.2 and 680
cm™') depend on the trapping site. While there is some scatter in the measured frequen-
cies, our calculated values of the harmenic vibration frequencies are in overall agreement
and deviate least {less than 4 %) from the results in Ref. [LPLC86]. The reoptimization
after ionization of the Oy, structure [3.5(b}] of 53 gave the Dy isomer of S; [Fig. 3.9(b),
Table 3.121, to which no measured spectral features have been attributed. Vibration fre-
quencies calculated for these two isomers of S; using other methods (RAH'86, MHA93]
are also given in Table 3.12. The vibration frequency (570:+:24 c¢m™!) encountered in the
photoelectron spectrum is larger than that in Ref. [NE86] (500:£48 c¢cm™%), which might
be due to the difference between hot and cold bands. It agrees well with the calculated
value 583 (a4} of the Cy, isomer, but falls in a pronounced gap of the spectrum for the
Dy, isomer. There is no evidence that the latter is generated by the PACIS. The measured
frequencies of S7 are for solutions [CC78] and agree well with the values calculated here
(Table 3.5). The structures of both S3 isomers [3.5(a) and 3.5(c)] relax on ionization to
the (3, isomer of 53 [Fig. 3.9(a)], whose structural parameters are given in Table 3.12.
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S¢

Three structures of the anion [Fig. 3.5(d-f)] have very similar energies [Table 3.6]. The
most stable ~ a cis-planar structure with Cs, symmetry [Fig. 3.5(d}] ~ was also found in
a recent theoretical study [ZvN94], with bond angles ~ 12% larger and the “long” bond
distance ~ 9% smaller than ours.

We have noted that recent thecretical [QSMS0] and experimental work (BMAY1] on
neutral S, indicate that the most stable isomer has cis-planar {C,) symmetry. This is
supported by calculations using the present method, where we find that this isomer is
0.05 eV more stable than the planar rectangular ring structure [Fig. 3.5(e), D] discussed
previously. [HJCP88] The energy extrapolation scheme lifts the near-degeneracy between
these two forms, the final separation being ~ 0.11 eV. The Dy form of the anion is not
stable, as the additional electron causes one of the longer bonds to open. A third structure
0.13 eV above the (s, isomer is a planar #rans isomer with Oy, symmetry [Fig. 3.5(f)]. A
preference for the cis form is also evident in the larger anions. Other structures considered
here — planar and nonplanar — had higher energies and were unstable on annealing at
300-500 K.

The measured binding energies in the spectrum of §7 (Table 3.2) are consistent with
the calculated multiplet structures of the Cy, [3.5(d)] and Dy {3.5(e)] gecmetries, but
incompatible with the sole presence of the Cyy, form [3.5(f)] {with multiplet energies 2.89,
3.36, 4.07 eV for *A,, ®*B,, 'B,, respectively). On the other hand, neither the Gy, nor the
Dy, isomer can account for feature C in the spectrum at 2.7 eV BE (see Table 3.2}, which
in turn compares best with the VDE of the Oy, form [2.89 eV (*4,)]. Therefore, we cannot
rule out a contribution of the Cy, isomer to the photoelectron spectrum on the base of the
present data.

This ambiguity is not removed by the analysis of the vibrational fine structure in the
spectrum, although the lower frequency (250 + 16 cm™') at feature B assigned to the
ground state transition lies closer to the calculated values for the Cy, [238 cm™ (a1)] and
Dy (249 em™! (a,)] isomers than to any obtained for the Oy, form. On the other hand,
the second feature termed € in Figure 3.7(d) and Table 3.2 shows a more proncunced
vibrational progression corresponding to a vibration frequency of 630 + 24 cm™'. This
value agrees better with the calculated frequencies for the Cyy, isomer [638 cm™", (b,)] than
with frequencies calculated for the Cy, [6562 cmn™! (bg)] and Dy [668 cm™ (boy)] isomers,
although the Cy, value is still within the error bars. The comparatively large vibrational
progression observed at this feature is also more compatible with the Cy; structure than
with the others, since this structure differs most between the anion and the neutral species
(the deviations in the bond angles and the bond lengths are ~ 4% and ~ 5% respectively
for the Oy, isomer compared to less than 2% and 3% respectively for the C, and Dy
isomers). This is consistent with the observation that feature C (at binding energy 2.7+0.1
eV) cannot be assigned to any of the electronic transitions of the Cy, and Dy isomers, but
fits better to the calculated VDE of the Oy, isomer {2.89 eV). As the calculations predict
that the O, isomer is only 0.13 eV less stable than the GS, it is likely that both C;, and
Ca, geometries or all three isomers of S, considered here contribute to the spectrum.
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Figure 3.7: Photoelectron spectra of 57-
clusters (n=1-5) recorded at Arv=3.49% eV
photon energy. See text for a discussion of
the features marked.
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Figure 3.8: Photoelectron spectra of S7-
clusters {n=1-5) recorded at hr=4.66 eV
photon energy. See text for a discussion of
the features marked.

The fundamental vibration modes of S, have been studied in both Raman and infrared
spectroscopy. Clark and Cobbold [CC78] reported Raman bands at 352 cm™! and 674
cm™!, and Brabson et al. [BMA%1] measured infrared spectra of sulfur in an argon matrix.
Absorptions at 661.6 and 642.4 cm™! behaved differently on annealing and photolysis,
and were identified with the (', open-chain [Fig. 3.9(c}] and the branched ring nonplanar
isomers of 84, respectively. We compare the vibration frequencies found in the present
investigation alsc with these values and with those of Quench ef al. [QSMY0] in Table
3.3. While it is not possible to make a definite assignment on the basis of these results,
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©C,, @D,
Figure 3.9: Structures of selected isomers of Figure 3.10: Structures of selected isomers
neutral S; and Ss. of neutral S4, Sq, and Sg.

particularly as the measured values are in a matrix, our calculations show modes at 652
and 689 cm~* for the Oy, isomer [Fig. 3.9(c)].

We note that the caleulated value for the adiabatic electron affinity of the (s, isomer of
S; (2.38 eV} agrees very well with the results of a CI calculation with Davidson correction,

2.46 eV [ZvNO4].

5
The most stable isomer in S; (Table 3.7) is a broken ring with C, symmetry [Fig. 3.6(a)],
reminiscent of the C, “envelope” predicted for Sy [HJCP88], with one bond broken by the
additional electron. This has also been found in CI calculations of Sy [ZvIN94], where the
large interatomic separation (5.70 a.u.) is 10% shorter than ours (6.35 a.u.}. The extra
electron occupies an antibonding orbital with a large amplitude in this region. We show
below that the same is true for S5 and S;, where the addition of an electron to neutral
rings also leads to bond breaking. The next local minimum in the energy surface (0.04 eV
higher) is a cis-trans (C;) form [Fig. 3.6(b)] that can also be derived from the C, isomer of
Ss by breaking another bond. The comparatively small dihedral angle in this cluster can be
viewed as a remnant of the pattern already encountered in the cis-planar (Cs,) structure of
S;. Another isomer {(0.09 eV above the most stable) is a helical chain [Fig. 3.6{c}] with C»
symmetry. The terminal bonds in this structure have a similar length to the bonds in 53,
indicating a bond order between one and two. The central bonds are longer, approaching
the value in catenapolysulfur S, (3.90 a.u.) [Don74]. A similar pattern is observed in the
bond lengths of longer helical chains., A gap of 0.18 eV separates these structures from a
cis-trans planar (C,) form [Fig. 3.6(d}]. This also contains the motif of the cis-planar {Cy. )
isomer of §; and was found by annealing the C, isomer of neutral Sg considered previcusly
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Molecule Symmetry State AE
S; 3.6(a) C, A" 0.0
d12,45m3.76; di5=6.35; d23'3423.98; 61,53370; (Ig‘.g:iﬁgo;
a3=95; 712, —745=40% v15=0° 723, —~Y3¢4=—T76°
S; 3.6(b) Ct A 0.04
d12=3.79; d23:3.85; d34$4.23; 54533.71; azm111°;
03=100°% a=105% 7o3= —62°; Yag= ~11°
S5 3.6(c} Cy 2B 0.09
dy3.45=3.75; d23 34=3.98; g 4==112°% r3==08°; 43 34==—112°

Table 3.7: Structure parameters for the isomers of S;, with energies relative to the ground state
(eV}. Bond lengths d;; in a.u., bond angles o; and dihedral angles v;; in degrees. Additional
labels refer to the figures.

[RRB99].

The pronounced peak B in the spectra [Figs. 3.7(e}, 3.8(e}] of S; (2.67+0.03 eV) (feature
A is assigned to fragmentation into ST) is closest to the value calculated for the 3.6(a)
structure (2.85 eV}, but two other structures [Fig. 3.6(b), Fig. 3.6(c)] have excitation
energies only 0.04 and 0.09 eV higher. While the VDE of structure [Fig. 3.6(b), 2.80 eV}
is also close to the experimental result, the VDE (3.21 eV} and especially the lowest-
lying triplet state (3B, 3.34 eV) of structure [Fig. 3.6(c)] fall in a gap in the photoelectron
spectrum of S; , and there is no evidence that the latter isomer is generated by the PACIS. A
tentative assignment of the features in the spectrum to either 3.6(a} or 3.6(b) would require
that peak B stems both from the GS transition and the transition into the corresponding
lowest excited states at 3.28 eV [34", 3.6{a)] and 3.30 eV [24, 3.6(b)], respectively. This
slightly favors structure 3.6(a), whose transition energy is 0.3 eV higher than the observed
peak position, but still lies within the first intense band. While no higher excited states
of 3.6(b) can be obtained within LSDA, the broad unstructured feature around peak C at
3.9 eV is compatible with transitions into excited states of 3.6(a} at 3.81 eV (1A") and
3.92 eV (3A"). Since the calculations predict that 3.6{a) and (b) are almost degenerate
(AE = 0.04 eV) and no vibrational fine structure could be resolved, the interpretation of
the measured spectra is not altogether conclusive, and in view of the uncertainties in hoth
experiment and theory, either (or both) of these structures could be present.

S¢

The structure of S; [Cs, Fig. 3.6(e), Table 3.8] was found by annealing a chainlike ge-
ometry and can be seen as two overlapping Ch, cis-planar sections. The dihedral angle
(see Sec. 3.3.2) between the bisecting planes is ~80°. A puckered chairlike §7 ring with C,
symmetry [Fig. 3.6(f})] is only 0.02 €V higher in energy. The increase in the bond length (to
5.09 a.u.) caused by the additional electron is less than in the S; ground state ring. The
remaining structural parameters deviate little from the experimental values in S¢ [Don74],
the bond lengths by at most 2%, the bond angles by less than 5%, and the dihedral angles
by ~2%. Another C; boat structure [Fig. 3.11(a)], consisting of two weakly bound sulfur
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trimers, lies 0.10 eV above the isomer in Fig. 3.6{e}. The energy minimum is shallow and
the structure distorts readily to lower (C;) symmetry on annealing. We also found a &
isomer {Fig. 3.11(b)}, a helical (Cy) chain [Fig. 3.11{c})], and two structures containing the
cis-planar metif of Sy [Fig. 3.11(d),(e)], with energies 0.12, 0.17, 0.20 and 0.25 eV above
the most stable isomer. The all-trens chain [3.11{c)] is slightly less stable {by 0.05 eV)
than the eis-frans chain [3.11(b}]. Annealing of an all-cis chain also led to the puckered
ring [Fig. 3.6(f)].

The calculated VDE (2.61 eV) of the most stable isomer of S¢~ [Fig 3.6{(e)] is in
excellent agreement with the measured value for ground state transition in Fig. 3.13(a)
{2.62+0.1 eV). Apart from the virtually degenerate structure Fig 3.6(f}, whose VDE is
2.70 eV, the other structures have VDEs in the range (2.87-3.55 ¢V) and their appearance
in the spectrum can therefore be ruled out. Although the structures 3.6(e) and 3.6(f) have
almost equal energies, the VDE (see above) and higher vertical excitations of the former
isomer [3.17 eV (3B}, 3.80 eV (1B)] agree better with the peak positions in Fig. 3.13(a)
(3.3£0.15 eV, 4.140.1 V) than those of the latter isomer [3.51 eV (3B), 3.89 eV (*B}].
This view is also supported by the comparatively small theoretical AEA for 55 (1.86 eV),
which is compatible with the large difference between the structures of the ground states
of the anion (C;) and the corresponding neutral prismane cluster [Fig 3.10(¢}(Dag)l. This
is an example, which illustrates that neutral and charged clusters might have substantially
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Molecule Symmetry State AFE
S5 3.6(e) C: A 0.0
d12,56=3.69; dag 45=4.53; dag=3.65; crg 5==99°; avg,¢=97%;
Yz3,45=—8%; Yag=—T73°
S; 3.6(f) Cy B 0.02
di2,56=3.80; d16=5.09; dys,45==3.96; d34=3.98;
a116*~“132°; ag,sﬂ'ig?e; a3,42106°;
Y12,56=64°; v16=—62°; 723,45 —T6°; ¥34=T75"
S; 3.11(a) c, 247 0.10
d12=4.97; d1g23=3.80; das 56=3.81; dyg5=4.71;
y,3=95% 3,55112°%; 597
v12,45=0°; 716, —723=81°; Y34, —756=82°

Table 3.8: Structure parameters for isomers of Sg, with energies relative to the ground state
(eV). Bond lengths d;; in a.u., bond angles oy and dihedral angles v;; in degrees. Additional
Iabels refer to the figures.

different geometries. The photoelectron spectrum Fig. 3.13(b) of S¢™ is the first of a se-
ries of spectra of larger S clusters up to n=6-9 that have been generated with source
adjustment (II). These clusters have relatively high VDE and show at most two clearly
resolved transitions at relatively high BE. The only observable peak in Fig. 3.13(b) at
3.35:£0.05 eV lies in the range of calculated vertical excitation energies of the chainlike iso-
mers, Figs. 3.11(b-¢) (i.e., 3.13-3.55 eV). It may in general be assumed that a comparatively
sharp envelope in the spectrum as in Fig. 3.13(b) indicates a similarity in the structures of
the anion and the neutral, although this individually depends on the local shapes of both
energy surfaces. We therefore searched for the minima on the energy surfaces of the neutral
Se closest to the chain isomers in Figs. 3.11(b-d). While the chain isomers Figs. 3.11(b,d)
readily distort to the ring isomer Fig. 3.11(a)}, the helical chain Fig. 3.11{¢) is the only iso-
mer that preserves both its chain topology and the all-frens pattern of its dikedral angles
in the neutral species. Relaxation of the neutral chain from the anionic C; structure to a
rather close C, form (not included in the figures) results in an energy lowering of only 0.37
eV. We observed also the reverse transition from the neutral C; isomer into the anionic
Cs chain upon charging. The Cy isomer is stable against MD runs up to 300 K, and its
all-trans pattern might be stabilized by a rotational energy barrier against distortion to
cis-trans or all-cis patterns that are encountered in the ring isomers (a detailed discussion
about rotational barriers in sulphur compounds may be found in [Ste75b, Ste83] the latter
also estimates the barrier to be ~0.9 eV high). Although the helical chain matches best
the features contained in the spectrum, we do not attempt any definite assignment here,
since we assume that the clusters generated by the PACIS with source adjustment (II)
are the result of a rapid quenching process and do not necessarily represent energetically
favourable structures (see the discussion in section 3.3.2).

The S; structure [Fig 3.6(e)] relaxes to the prismane (Dg) form [Fig 3.10(b}] of the
neutral cluster after electron removal, which is a local minimum on the energy surface of
the neutral cluster. If the structure [Fig 3.6(f)] is taken as the starting geometry for S,
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it relaxes to the {Dj,) ground state [Fig 3.10(c)]. The vibration frequencies calculated for
both Sg structures are given in Table 3.4 together with measured values of the latter. The
only frequency measured for the Sg structure (570::32 cm™') is significantly higher than
both the calculated and Raman frequencies of the D, isomer and falls in a pronounced
gap of the spectrum for the Dy, isomer. Since the vibrational structure was only observed
in spectrum Sz (II), where the anions are supposed to be chainlike, this is evidence that
the neutral cluster does not have time to relax to one of the more stable isomers during
the measurement. It is also consistent with the observation [LPC¥88] that all unbranched
sulfur rings regardless of the size have no fundamental frequencies above 530 em™'. To
examine this point further, we have studied the vibrations of Sg by performing thermally
non-equilibrated MD-runs starting from the helical (O3} geometry found for the 57 anion.
The existence of a totally symmetric {e) vibration with frequency 619 em™! provides further
support for the above picture.

S7

As in the case of 57, there are no structures consisting entirely of planar sections, and
the most stable isomer is a distortion of the neutral S; ground state, a chairlike ring
with C, symmetry [SRS77a, SRS77b, SSP*80]. The “long” bond in S; (experimentally
4.12 a.n.) opens to give a distorted chairlike €, form [Fig. 3.11(f) and Table 3.9] with
a broken “bond” of length 5.47 a.u.. This structure was found by annealing an all-cis
chain. The other changes in the structure of S, are also small, with bond lengths changing
by less than ~ 1%, and angles by less than ~5%. The second longest bond of the S,
chair [experimentally 3.97 a.u.] can also open in the anion, leading to another C; isomer
[Fig. 3.12(b}] only 0.02 eV less stable than the first. The additional charge is localized on
a “bond” of length 5.59 a.u. Another isomer that is virtually degenerate (AE ~ 0.005 eV)
with Fig. 3.11(f) is a distorted boat (1) structure [Fig. 3.12(a)] derived from a C, isomer
in neutral S; [HICP88] by breaking its longest bond. Other isomers [Figs 3.12(c)-(e}] show
the planar sections familiar from the cis-planar (5, ) structure of 57 and have energies in &

Molecule Symmetry State AE
Sy 3.11(f) C, ‘4" 0.0
dj_z,e?x?u?s; d17m5.47; d23,55=4‘00; d34,4523.91;
01.3,5,7=107%; crg6=110° a4=109°;
Y12, —Yer=74°; Ta3, —Ys6="104%; v34,—745=82°
87 3.12(a} Cy 4 00
di1o=3.71; d17=5.75: dya=4.13; das=—3.83; dy5=3.94;
di6=3.99; dg7=3.74; o3 =100%; a;=108% a3=103°; ag=109°%
a5=104° ag=110° ar=93° ¥12=86° y17=-10%;
ya3==—37%; Yaa=—80°%; Ya5=70° ¥56=58"; yer=—84°

Table 3.9: Structure parameters for isomers of S7, with energies relative to the ground state
(eV). Bond lengths d;; in a.u., bond angles ¢; and dihedral angles 7;; in degrees. Additional
labels refer to the figures.
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s, (1) Figure 3.13: Photoelectron spectra of
Sg and S, recorded at Ar=4.66 eV
photon energy. Spectra are shown
for each cluster for two source adjust-
ments corresponding to the mass spec-
tra shown in Fig. 3.3. Adjustment I
Sg (a) and 87 (c), adjustment II: S
(b} and 87 (d).

Intensity (arbitrary units)

Binding Energy (eV}

narrow range (0.02 eV wide) starting 0.28 eV above the ground state. A helical (C;) chain
[Fig. 3.12(f)] Lies 0.36 ¢V above the most stable isomer. Hybrids of planar and chainlike
sections tend to become more stable than helices as the cluster size increases.

The photoelectron spectrum of 57 with source adjustment {I} [Fig. 3.13(c) shows rather
broad peaks with unresolved vibrational fine structure at 2.66+£0.05 (VDE), 3.47-0.07,
4,14+0.07 and 4.4£0.1 eV. The overall agreement with the corresponding values for the
most stable isomer [Fig. 3.11{f)] (see Table 3.2} is rather good, especially for the VDE (2.69
eV}. While the results {2.52 and 3.81 eV) for the isomer [Fig. 3.12(a}] are less compatible
with the peak positions, the vertical excitation energies of isomer [Fig. 3.12(b)] correspond
well with the experimental values. The remaining isomers have all VDEs above 3.4 eV and
can therefore be ruled out from consideration. As might be expected from the preceding
discussion, the peak positions (3.38+0.05 and 3.6::0.2 V) in the spectrum Fig. 3.13(d)
generated with source adjustment (II} lie in the range of the calculated vertical excitation
energies of the chainlike isomers Figs. 3.12{c-f} and agree best with the values for the
helical chain Fig. 3.12(f) [3.52 eV (*B), 3.62 (*A4)]. As for the helical chain isomer of S,
we found also a close local minimum on the energy surface of Sy, just 0.29 eV more stable
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Molecule Symmetry State AFE
S; 3.14(a) Dy By 0.0
d12,563.86; dy5,457=3.97; daser=4.00; dyg 75=4.07;
or1,2,5,6=109°; a3 4,7,8=116°
Y12,56=—80°%; Y23,67=94°; 7118,45=92°} Y34,75=—107°
Sy 3.14(b) Caw B, 0.06
d23,67=4.40; di3,34,56,78=3.66; d1g 45=5.25; ap 3,6,7=101°;
a1,4,5,8=95% 718,23,45,67=0°; 12,56, ~734,78=89°

Table 3.10: Structure parameters for isomers of S;, with energies relative to the ground state
(eV). Bond lengths d;; in a.u., bond angles o; and dihedral angles 7;; in degrees. Additional
labels refer to the figures.

than the geometry in Fig. 3.12(f). It is a {with respect to its long axis) contracted C,
helical chain.

Sg

The best known of the neutral sulfur clusters is the Dy crown shaped ring [Ste84, Ste85],
and our calculations indicate that the most stable S; isomer is a distortion of this struc-
ture to Dy symmetry [Fig. 3.14(a)]. Compared with the experimental data for (neutral)
orthorhombic (a-) Sg at 100 K [CYB*77], the additional electron induces an approximately
uniaxial stretch, with two bonds on opposite sides of the ring increasing in length by 5%. A
Cs, isomer [Fig. 3.14(b)] is only 6.06 eV higher in energy than the ring. It may be viewed as
two loosely bound cis-planar {Cs,) tetramers, such as found in 87, since the bond lengths
[Table 3.10] deviate by only ~3% from those in Sy, and the orbitals along the shortest dis-
tance (5.25 a.u.) between the tetramers are weakly bonding. Since the LSD approximation
often overestimates the strengths of bonds between closed shell systems [JG89], the long,
weak bond between the tetramers may be an artifact of this approximation. The cis-planar
tetramer is found as a structural unit in other isomers. For example, a O, structure with
slight distortions from (b, symmetry [Fig. 3.14(c)] lies 0.34 eV above the ground state
and differs from Fig. 3.14(b) only in the relative orientation of the planar segments. An
isomer with O, symmetry and a planar section [Fig. 3.14(e)] lies 0.02 eV above the ()
structure. Two others with terminal planar sections, including one with C; symmetry and
planar units at each end, lie a further 0.07-0.08 eV higher. In addition o the most stable
all-cis ring isomer [Fig. 3.14{a})|, we considered a ring derived from it by inverting two
dihedral angles. The energy of the resulting C; species [Fig. 3.14(d}] is 0.35 eV above that
of the ground state ring. This structure is more compact than that in Fig. 3.14(a), and the
increased strain caused by the additional electron results in one weak bond of length 5.19
a.u. There are numerous chain structures derived by the addition of a single atom to Sy
chains. The lengths of the central bonds of the all-frans helical chain {0.56 eV] are close to
the measured values in catenapolysulfur (S, 3.90 a.u.) [Don74], the bond and dihedral
angles are ~ 3% larger and ~10% smaller, respectively. Several chainlike structures differ
from the helix in the sign of one or more dihedral angles and have energies within 0.12
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(6;C mo,

1
Figure 3.14: Structures of S;. (a-d) Figure 3.15: Structures of Sg.
“Closed”, {e-f) “open”.

eV below and above this isomer. Of particular interest are structures with one and two
terminal planar tetramers (Cy and C; symmetry, respectively} that are 0.12 eV more stable
than the helical chain.

There are only two peaks A and B observable in the spectrum shown in Fig. 3.16 at
3.87+0.07 and 4.340.07 eV, respectively. These values are again in the same range as
those for the chainlike isomers, but, as already pointed out, we do not attempt to make
a definite assignment here. The excitation energies calculated for the helical chain isomer
(not shown in the figures) are at 3.62, 3.89 and 4.12 eV and cannot account for the features
contained in the spectrum. Nevertheless, we found, as for the helices of S5 and S7 that
a Cq all-frans chain {not shown in the figures) is the closest local minimum on the energy
surface of the neutral isomer, just 0.82 eV more stable than the anion structure. The origin
of a weak feature at ~3.2 eV BE is unclear, and it might due to the presence of a further
isomer.
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Figure 3.16: Photoelectron spectra of S, -clusters (n="8,9) recorded at hv=4.66 eV photon energy.
See text for a discussion of the features marked.

Sy

The rapidly increasing number of isomers with cluster size rules out any attempt at com-
pleteness for larger clusters, but we have studied several isomers of S to see whether
trends in the smaller anions continue. The experimental geometries of Sg and its ions are
not known [SSS585], but the theoretical prediction [HJCP88, RRBY0] of a C; ring as the
most stable form of Sg is consistent with the Raman spectra of microcrystalline samples
[$S985]. The corresponding structure obtained with the present basis set is given in Table
3.12. The most stable isomer of S; encountered is a C; distortion of the neutral ground
state [Fig. 3.15(a) and Table 3.11], where one interatomic separation increases from 3.94 to
5.28 a.u.. The anion structure related to the C, boat isomer of Sg [Fig. 3.15(b)] lies 0.06 eV
higher. It also has C, symmetry, and can be derived from the Sg isomer [Fig. 3.14(b}] by
inserting a single atom in place of one of its longest bonds. The cis-planar (CY,) tetramers
are distorted, the dihedral angle being 35°. A C, chair isomer [Fig. 3.15(c)] is 0.10 eV
higher in energy, with structural parameters similar to those reported previously for an
isomer of Sg [HIJOP88]. The all-trans helical chain [Fig. 3.15(d}, C;] lies 0.40 eV above the
ground state and has a pattern of bond lengths and angles that is similar to that found
in the helical isomer of S;. As in the case of the smaller clusters, isomers with one (Cy)
and two () terminal planar tetramers are more stable than the helix, in 55 by 0.02 eV
and 0.12 &V, respectively. The energy of the last structure that we considered, a C; cage
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Molecule Symmetry State AFE
Sy 3.15(a) Cy ‘A 6.8
di2,89=3.76; d15=5.38; da3=3.97; daq 56=3.92; dys=3.91;
der,76=3.95; 011.5,6,9=109°; €r2,4=110°% 3=105°%; a7=107";
ag=112°% y12==—T7°; 7197 —B5°; 793=667; 734=84°;
T45=—T8% v56=—T5% 767=108% Y7g=—T79°; 7g9p=105°
Ss 3.15(b) C, 24" 0.06
du,ggz&'i’l; d}g=5.72; d23‘73“—”4.{}9; d34,3723.84§ d45‘5623.95;
a1,9=95%; 25=108%; a3 7=105° g 6=111°; a5=110%
Y12, —Yse=112° a3, —yre=—35°% yaq, —Yer=—95°%
Y45, —756=101°

Table 3.11: Structure parameters for isomers of Sg, with energies relative to the ground state
{(eV). Bond lengths d;; in a.u., bond angles ; and dihedral angles v;; in degrees. Additional
labels refer to the figures.

[Fig. 3.15(e)] very similar to a C, isomer of Sy described in Ref. [HICP88], was 0.14 eV
above the helix. The additional electron causes the longer bonds between the atoms la-
beled 3,4 and 7,8 in Fig. 3.15(e)} to increase to 4.61 and 4.74 a.u., respectively, significantly
larger than the longest bond in the cis-planar (Cy,) tetramer unit (~ 4.28 a.u.}.

The peak positions obtained from the analysis of the photoelectron spectrum in Fig. 3.16
(3.90::0.1 and 4.310.1 eV) are closer to the values of the Cy chain (3.68, 3.94 and 4.24 eV)
than to any of the values computed for the ringlike structures (2.63-2.86 eV}, but no definite
assignment is possible nor attempted in this case {see the discussion above and in section
3.3.2). Again, we found a close minimum (0.91 eV meore stable than the anion structure)
with C; symmetry and all-frans motif (not shown in the figures) on the energy surface of
the neutral species.

Although the photoelectron spectrum of Sg~ exhibits no vibrational fine structure,
we have calculated vibration frequencies of the most stable (C,) isomer of Sg shown in
Fig. 3.10(d), since its vibration frequencies are of particular interest. Two different forms of
Sg have been identified, but it has not yet proved possible to prepare single crystal samples
[S5585]. The essential details of the structure could nevertheless be determined from the
Raman spectra, since the distribution of the vibration frequencies was quite different from
those of other sulfur rings. In particular, there were gaps in the frequency distributions
betwees 310 and 410 cm™ and 490 and 600 c¢cm~*. The frequency spectrum was only
consistent with Cy or C, symmetry, and with relatively narrow ranges of bond lengths
(3.84 - 3.95 a.u.) and dihedral angles (70 — 130°). We have performed a detailed study
of the vibration frequencies of the most stable isomer found in the MD/DF calculations
[HICP88], and compare the results with the measured Raman frequencies [SSS85] in Table
3.4. The low symmetry of the molecule and the relatively large number of modes (21)
complicate the calculations, and we include only modes whose symmetries can be identified
unambiguously. The differences between the frequencies in the o~ and B-forms of Sg [SS585]
— the symmetric ring deformation, for example, leads to intense Raman lines at 188 and
181 cm™!, respectively — indicate that we cannot expect detailed agreement between theory
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and experiment. Nevertheless, the overall agreement is satisfactory, particularly concerning
the frequency gaps mentioned above. We have little doubt that the most stable isomer in
Sg is the O structure shown in Fig. 3.10{d).

3.3.2 'Trends and Discussion

The planar C, motif first encountered in S; also appears in planar sections of the larger
anions. Structures consisting entirely of this pattern exist only for even values of 7, in which
case they are among the most stable isomers. Its presence is also apparent in Fig. 3.17,
which plots bond length against dihedral angle v for all anion structures shown in the
tables. A similar relationship has been observed by Steudel and coworkers [Ste84, Ste85,
Ste75b, Ste75¢, Ste77a, SteT7b, Ste83] for neutral sulfur clusters. Apart from a cluster
of points near 90° reminiscent of the “pormal” dihedral angle distribution [Paud9] (this
configuration minimizes the repulsion between the lone pair 7 orbitals at the S atoms),
there is a second cluster of values near v = 0°. The elongation of the central bond as v
decreases from 90° to 0° is favorable for a negatively charged molecule. A second trend
noted by Steudel and coworkers for the neutral clusters is the inverse relationship between
bond length and the mean of the lengths of the neighboring bonds. This trend is also found
in the anionic structures (Fig. 3.18, for all anion structures shown in the tables}. Another
family of anion geometries of low energy consists of the opened or puckered rings of the
neutral clusters, where at least one of the bonds is strained or broken due to the presence
of the additional electron. The ground states of S7, 57, Sz and Sy belong to this family.
Open chainlike siructures without planar sections also occur, and their stability relative to
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Figure 3.19: Isosurface plot of the electron Figure 3.20: Isosurface plot of the magne-
density of the chain isomer of S5 shown in tization density of the chain isomer of S5
Fig. 3.11{c). The density on the surface is shown in Fig. 3.11(c). The magnetization
0.007 a.u.. density on the surface is 0.0008 a.u..

the most stable isomers decreases with increasing cluster size. Hybrids of all-trans chaing
with the Cy, cis-planar unit of S] occur in S5-5; and are on average ~0.1 eV more stable
than their all-frans counterparts.

The comparison between theory and experiment [Fig. 3.4 and Table 3.2] indicates that
clusters generated by the source are ringlike up to S; and chainlike for S5 and 55 . 57 and
S; can occur in both forms, with source adjustments J and I7J favoring rings (low VDE}
and chains {higher VDE), respectively. In Fig. 3.4 we plot the VDE values for the cage- and
ringlike structures found for the anions. For n > 5 there is a variety of chain structures,
and the ranges of VDE values are shown by bars for n=6-8. The difference between the
VDE of the two classes of structures is striking. Apart from a small peak at S, the broken
ring structures show almost constant or even decreasing VDE with inereasing cluster size,
while the values for the chains increase at first and then saturate near 5;. The outermost
electron is more tightly bound in the chains, an effect that has also been observed in carbon
clusters [YTCV88]. The eigenvalue spectra support this view, since there is a relatively
small gap between the uppermost two occupied orbitals in the chain isomers. Since the
sum of the eigenvalues is one contribution to the total energy, a small gap leads to a high
VDE. The gap decreases continuously with increasing cluster size from 0.83 eV in the
chain isomer of S; to 0.06 eV in the C, helical chain isomer of S;. The charged broken
rings and planar structures are more compact, and both the energy of the highest occupied
electron state remains high and its separation from the next occupied orbital remains large
as the cluster size increases. Consequently, the VDEs are considerably lower than in the
chain isomers. Apart from S7, S5 and the Dip and Doy, rings of 55 and 57, the largest
eigenvalue gap (2.23 eV) and the lowest VDE was found in the first genunine ring in S;. The
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Figure 3.21: Isosurface plot of the electron Figure 3.22: Isosurface plot of the magneti-
density of the isomer of 55 shown in Fig. zation density of the isomer of S5; shown in
3.6(f). The density on the surface is 0.001 Fig. 3.6(f). The magnetization density on
a.U.. the surface is 0.0008 a.u..

exceptionally low VDE of S; is not surprising, since the additional electron must occupy
an antibonding orbital with a relatively large amplitude.

These differences in the KS eigenvalues and the VDEs can be related to differences in
the electronic structure. Representative for all (helical) chains, we show in Figures 3.19 and
3.20 isosurface plots of the electronic and magnetization density, respectively, of the chain
isomer of S; shown in Fig. 3.11(c). Both pictures are taken from the same perspective.
As inspection shows, the magnetization density m.(r) = (n4 —n_)(r}/2 (a.n.) of all anion
clusters is, within the numerical accuracy, identical (apart from a factor %2) to the single-
particle density of the excess KS-electron. As in this case, a detailed study of the densities
of all chain isomers shows that the additional electron occupies an antibonding orbital
localized mainly on the terminal bonds of the chain. The potential energy is then lower
in longer chains with larger distances between the ends. This picture is consistent with
the saturation of the VDE found in longer chains. As a typical example for the electronic
structure of the ring isomers, we reproduce in Figures 3.21 and 3.22 isosurface plots of the
electronic and magnetization density, respectively, of the ring isomer of S¢ shown in Fig.
3.6(f). Again, both pictures are taken from the same perspective. The surplus electron
(whose demsity is proportional to the magnetization density in Fig. 3.22) occupies an
antibonding orbital with comparatively high amplitude in the region of a strained bond
between atoms labeled 1 and 6. A high degree of localization of the excess electron can
also be observed in the remaining ring isomers that leads to the presence of strained
and/or broken bonds in all ring isomers considered. For simple electrostatic reasons, this
is energetically less convenient for the excess electron than the situation encountered in
the chain isomers.
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Molecule Symmetry AFE
84 Do 0.0
di»=3.61
Sg 309(&) Cz,_, 8.0
dy2,23=3.66; cp=118°
S5 3.9(b) Dy 0.27
d12,23,12=23.94; ay 2,3=60°
S4 3.9(c) Co,, 0.0
d12’34x3.61; d23=4.21; Ctgg-—“‘»iﬁﬁo
S¢ 3.9(d) Doy 0.03
d12,34=3.60; di4,23=4.71; 0,3 3,4=90°
S4 3.10(&) Cop .44
@12=3.97; d13,94=3.65; oy 9=111°
Se 3.10(6) Dy 6.0
dy2y ..=3.92; @y, ...=103°% Y23,18,45 = —Y12,34,56=74°
Se 3.10(b) Dap, 8.21
d14,25,26=3.59; dig, ...=5.07; o903, ...=60° aygs,...=980°
Se 3.10(d) (e 6.0

dy2,45=3.88; dyg 56=3.94; daa, 34=3.92; dar 89=3.90; dr=3.91;
01‘5—“—1070; az,,;:lw"; 0:321330; ag,g;::iﬂb“’; 67'321990;

Y23, ~V45=75% Y12, —734=—T76°; “y19,56=—63°; Yse,67=113%;
Yyg=--85°

Table 3.12: Structure parameters for isomers of S,,, n = 2,3, 4, 6,9 with energies relative to the
ground state (eV). Bond lengths d;; in a.u., bond angles o; and dihedral angles v;; in degrees.
Additional labels refer to the figures.

The transition from closed to open structures as » increases through 6-7 is interesting,
since the calculations predict that the most stable isomer is closed for all cluster sizes.
Although an unambiguous analysis of the growth processes of the clusters would require
careful measurements of the partial pressures, temperatures and flow velocities at various
points in the source, we now show that energetic stability is not the only criterion for the
occurrence of particular structures in a cluster beam. The higher conformational freedom
and/or the greater number of low-energy vibrational modes of the chains means that they
are favored by entropy, or, likewise, by the {Helmholtz) free energy at higher temperatures,
an effect also found in carbon clusters [BMB88, ASG90]. Correspondingly, we also observed
in our simulations that the number of local minima on the BO energy surface of the larger
anions (i.e., at T = 0) with chainlike geometries is much greater than the number of
isomers with closed structures. The statistical weight of the chain isomers in the ensemble
of S clusters in the source will be raised by the fact that their comparatively high VDE
immunizes them against discharge processes. If charge transfer processes occur, all-frans
chains could be further stabilized compared to other chain isomers, as our results indicate
that these geometries are local minima in the anion and the neutral cluster. Furthermore, if
the S, clusters grow as chains {i.e., through the addition of terminal atoms), ring formation
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by bonding between the terminal atoms will be hampered by the negative charge localized
on these atoms. Accordingly, the (hot) cluster beam leaving the source should be imagined
as an ensemble of different isomers with predominantly chainlike structures, at least for
the larger anions S.”, n>6. A more rapid cooling process or “quenching” would then
freeze the structures of the isomers into geometries of close local minima on the BO energy
surface, whereas a slower process, including many subsequent heating and cooling cycles
induced by collisions similar to an annealing of the clusters, would result in a distribution
of geometries that is dominated by the absolute minimum structure. We note that similar
[GHB95] observations have been made in beams of carbon clusters, where rapid cooling
can result in the production of several isomers that are not necessarily the most stable.
For example, most Cgo clusters have ring and double ring structures, and the cagelike
fullerene isomer dominates only if slow annealing is allowed. Accordingly, for Sg and 57,
rings are observed when conditions allow a slower cooling of the plasma and more time
for the nuclei to rearrange. There are fewer isomers in the smaller clusters, the time
required for structural relaxation is shorter, and only the most stable ringlike structures
are observed. It is possible that ringlike structures could also be generated for 5,7, n>8,
if the cluster beam is annealed suitably, as found in C, clusters [GHB795]. Together with
our results, the photoelectron spectra [Fig. 3.13(a-d)] provide direct spectroscopic evidence
for the existence of different cluster isomers in the gas phase. The existence of multiple
isomers can also be inferred from measurements of reaction kinetics (see [MDO8Y, CJ90]
and references therein).
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3.4 Phosphorus Cluster Anions

The cluster structures of phosphorus, the neighboring element of sulfur in the periodic
table, have been particularly difficult to characterize. Although experimental data on the
dimer and the tetramer have been available for over sixty years [JH90a], it is less than
ten years since P} ions were identified mass spectrometrically up to n = 24 [Mar86]. The
dominant components in the vapor phase of the group Va (group 15) elements (P, As,
Sh, Bi) are tetramers, and clusters with multiples of four atoms dominate in the mass
spectra obtained, for example, in photoionization measurements of Sb,, with n up to 300
[BCC*95]. Phosphorus clusters have often been studied as components of organometallic
and other molecules [Sch90, BG93]. However, although there have been several theoretical
studies of charged and neutral phosphorus clusters, and systematic trends in the structural
patterns have been discussed by several authors [BG93, vSH88, Hés84], there has been an
almost complete lack of experimental studies that provide structural information about the
isolated clusters. Here, we try to provide further information by comparing our CP-MD
results on phosphorus cluster anions P, up to n=9 with photoelectron spectra obtained
from [GPS96].

We perform calculations for neutral clusters at the anionic and other geometries, and
we have identified new P, isomers, including one for the heptamer that could be the most
stable.

Earlier calculations on neutral and charged clusters with up to 11 atoms [JH90¢, 5192,
JS92] predicted that the most stable isomers found for Py, Pg, and Py were derived from the
“roof” or “butterfly” structure of Py (Cy,) by the addition of one, two, and three atoms,
respectively, and for Py a wedge-shaped (Cy,) structure related to the cuneane isomer of
(CH)s {JHS0c].

Phosphorus cluster anions up to n=9 have been detected previously by Snodgrass et
al. [SCF*85], who also performed photoelectron spectroscopy on P;. Photoelectron spec-
troscopy on cluster anions of other group Va (group 15) elements has been carried out by
Polak ef al. [PHGLY1] (antimony Sb, and bismuth clusters Bi,, to n = 4} and by Gausa
et al. |GKS*] (Sb; and Bi; to n=9, comparison with density functional calculations to
n=>5). These and other works will be discussed below. As in the section 3.3, the compar-
ison of the measurements and calculations focus on the vertical detachment energies and
the vibration frequencies.

3.4.1 Optimal Geometries, Vibration Frequencies, and Vertical
Excitation Energies

In this section we discuss the structures of phosphorus anions and the excitation energies to
states of the neutral clusters. We focus on the vertical detachment energies (VDE}, where
the geometrical structure is unchanged, but adiabatic energy differences will be discussed
where appropriate. Structural parameters of the anions are given in Tables 3.13-3.16, and
vibration frequencies in Table 3.14.




78 CHAFPTER 3. RESULTS

P;

The energy differences between the ground state of the phosphorus anion and the low-lying
states of the atom are calculated to be 0.85 eV (45), 2.3% eV (D) and 2.96 eV (*P) using the
scheme described in sec. 2.1.2. This is in acceptable agreement with the measured electron
affinity of phosphorus (0.7465 eV) [HL85a| (one of the lowest of any element, reflecting
the half-full shell in the atom) and the lowest excited states of the atom at 2.16 eV (2D,)
and 3.07 eV (2P} [MZM85] above the GS of the anion. The photoelectron spectrum {not
included in the figures) shows these three peaks clearly, although the spin-orbit splitting
is not resolved in the present experiment.

Py

The calculated VDE of P; (0.86 eV) corresponds to the excitation to the ground state of
P;, measured to be 0.684:0.05 eV in the spectra. The energies of states derived from the
ground state configuration of Py (o275, 'E7) by the excitation ¢, — 7, (o,7in,; *1I,, 'TI,)
are accessible to LSD calculations using the approach of von Barth (2.1.2), and we discuss
these energies below. However, states arising from the excitations m, — m, (¢2n3x,; °EF,
57, *A,, and related singlets) [Her50] are indistinguishable in an LSD calculation, as is
explained in section 2.1.2 and in appendix B. The only “mixed-symmetry” determinantal
KS state of this configuration has an excitation energy of 3.98 eV. Information about
these states can nevertheless be found from experimental measurements on other group Va
(group 15) dimers or could be gained by CI calculations, where it is possible to distinguish
between states with “+” and “-” symmetry, i.e., the symmetry according to reflection in
a plane containing the molecular axis. Observed intensity maxima in the PE spectra lie
at 3.03, 3.65, and 4.10 eV binding energy and the measured energy differences (7.} for the
(shorter) equilibrium separation of the ground state of P, are 2.33, 3.53, and 3.50 eV for
3%+, 3%, and 3T1, states, respectively [HH79]. The calculated vertical excitation energy
(MD/DF) for the *II, state is 4.22 eV, with an energy 3.30 eV above P, (1Z7) at the
energy minimum for P;. The narrow range of energies of the 357, ®A., and *II, states
makes an assignment difficult. Nevertheless, while the *A,, state has not yet been observed
in P, there is evidence that it lies between the 3} and 3T states in the other group Va
(group 15) dimers N, [HH79, LG91}, As, [HCR'85], and Bi; and Sb, [PHGLS1, BL89].
Vibration frequencies of Py (730 £ 80 em~') and Py~ (560 & 120 ¢m™!) can be observed
in the spectra. These vibration frequencies differ somewhat from those determined by
Snodgrass ef al. (w.(P3) 77448 cm™!, w.(Py) 630450 cm™ [SCF*85]). The calculated
values {MD/DF) in Table 3.14 (781 and 659 cm™'), however, are in good agreement with
all available experimental data for Py and P3.

Py
The trimer anion P; has been investigated previously by Burdett and Marsden [BMC88]

and Hamilton and Schaefer [HS90]. Both sets of workers found three low-lying minima: an
equilateral triangle {Day, 2A}), & linear closed-shell singlet (Do, 12;), and a bent (Cs)
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(©)
Figure 3.23: Structures of (a-c) Py, (d) Py, Figure 3.24: Structures of (a-c) P7 and (d-f)
and (ef) Py P . Labels in (f) are as in (d).

triplet. The first two were found to be so close in energy that a definite prediction of the
ground state was not possible. In the present MD/DF calculations the linear structure
has the lowest energy, but the Dy, and (5, structures are only 0.06 and 0.27 €V less
stable. The vertical detachment energies of the three structures (Fig. 3.23(a-c)) show
striking differences, however, being 3.00 eV, 1.88 eV, and 1.73 eV, respectively., There are,
of course, higher-lying states of P3 corresponding to each of the three structures found
for P;. They will contribute to the measured intensity near peaks (D,E) in Fig. 3.26,
but all occur at binding energies well above 3.0 eV. The lowest quartet state for the
Dysy, structure, for example, has a vertical excitation energy of 4.08 eV. All calculations
performed to date on P; give a consistent picture: The linear and equilateral triangular
structure are virtually degenerate, and the bent ((4,) form is only ~0.2 eV higher in
energy. It is very likely that more than one isomer can be generated, depending on the
experimental conditions. The spectra (Figs. 3.25 and 3.26) show five peaks at 1.68, 1.96,
2.89, 3.91 and 4.32 eV binding energy. The calculated vertical excitation energies to the
first two states in Py are (1.73 eV, 3.70 eV for C»,) and (1.88 eV, 4.08 eV for D). In view
of the uncertainties in both experiment and theory, either {or both) of these structures
could be present. We note, however, the large gap in the excitation spectrum for both
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Molecule  Symmetry AE
P; Deoon, L, 8.0
dyo=3.72
P; 3.23(a) Doon, 157 0.0
d=3.68
P; 3.23(b) Dan, 34} 0.06
d=4.08, a=60°

P; 3.23(c) Ca, *4; 0.27
di3.25=3.90, r123=72.6°
P; 3.23(d)  Cu 0.0
dlgm-‘i.lg, dzgm‘@.ﬁg, 0213:‘——58.6% Gryps=77.1°

Py 3.23(e) Dss, 4.6
d= 3.96, ¢=108°

P; 3.23(f)  Cu 1.44
d12:4.28, ézg:‘i.lg, d15=4.}.6, 0213258.50, (2124-’”‘3’:75.20, 0!154m77.5°
P; 3.24(a)  Ch 0.0
dya=4.24, dya=4.18, d;g=4.08, d5e=8.96, ap13==59.1, ¢124=90.1°, @916=108.2°, or345=104.5°
P; 3.24(b)  Ds 0.30
dis= 4.14, d1g=4.80

P; 3.24(c) Cn 0.35

di25-4.06, d12=4.18, d34=4.45, 193=62.3° | x234=99.8°

Table 3.13: Structure parameters for isomers of P, n=2-6 with energies AFE relative to the
ground state (eV). Bond lengths d;; in a.u., bond angles o; in degrees. Additional labels refer to
the figures.

isomers, which means that the strong peak at 2.89 eV must come from another structure.
Since the linear isomer gives a vertical excitation at 3.00 eV, the measured binding energy
curves are consistent with the existence of at least fwo isomers, one of which is linear. The
photoelectron spectrum of Py at Ar=3.49 eV shows evidence for photofragmentation intc
P; and Py, with different relative intensities of the features corresponding to peaks (A-C)
observed here. This indicates that peak C might be arising from a different isomer than
from peaks A and B. This is consistent with the results of the calculations. According
to the above assignment, peak C in the spectrum of P should exhibit vibrational fine
structure corresponding to the vibrational modes of linear P;. The calculations indicate
that the neutral and negatively charged trimers have the same bond lengths, so that a
narrow peak should occur in the photoelectron spectrum. No fine structure is observed,
and the peak is broader than expected. Both features are consistent with the thermal
excitation of hot bands, since thermal excitation would result in the preferential excitation
of low energy modes that are beyond the energy resolution of the apparatus.

Vibration frequencies for P; have been calculated by Hamilton and Schaefer [HS90]
using the Hartree-Fock approach, and the results are compared with the present work in
Table 3.14. Apart from the C,, isomer, the results show the expected tendency of the
HF method to overestimate vibration frequencies. Feature A is assigned to the ground
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Intensity (arb.units)
Intensity (arb.unifs)
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Figure 3.25: Photoelectron spectra of Pj- Figure 3.26: Photoelectron spectra of PJ-
clusters (n=2-5) recorded at hrv=3.4§ eV clusters (n=2-5} recorded at hv=4.66 eV
photon energy. See text for a discussion of photon energy. See text for a discussion of
the features marked. the features marked.

state transition and exhibits vibrational fine structure when recorded with hv=2.33 eV.
The spectrum is consistent with the excitation of either two vibrational modes of Py
{frequencies 340/435+46 em™') or a single mode {frequency 390150 ¢m™!). While the
former values would be compatible with the C;, isomer, the latter would favour the Ds,
isomer.

All features observed in the spectrum of Sby have been assigned to emission from the
Ds;, isomer [PHGLY1]. In the absence of spin-orbit coupling, the present calculations, as
well as those of Balasubramanian ef al., [BSD91] predict a single vertical excitation energy
to a 2E" state. This state, which undergoes a Jahn-Teller distortion to two nearby minima,

would be split by spin-orbit coupling.

P,
The phosphorus tetramer has the familiar tetrahedral (T;) structure. The additional elec-

tron in the anion, however, results in a Jahn-Teller distortion that is so large that it is
not meaningful to analyze the equilibrium structure {Fig. 3.23(d)) in terms of tetrahedral
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Molecule Symmetry W,
P, Doon, 'S} Expt® 780.77
Expt (here) 730+80
MD/DF 781
Py Doon, 21,  Expt.? 63050
Expt (here) 5604120
MD/DF 659
P Expt (here) 460%65, 645460
Py Doh MD/DF 140 (7,), 484 (o), 723 (o)
P Che MD/DF 334 (by), 409 (a1), 623 (a1)
Py Expt (here} 390::50 or 340/435:4:-40
P; 3.23(a) Do MD/DF 176 (m,), 482 (0,), 809 (o)
HF(DZP)® 188 (m), 552 (0,), 886 (0.)
P; 3.23(b) Das MD/DF 427 (¢}, 572 (a})
HF(DZP)® 457 {¢'), 641 (a')
P; 3.23(c) Ci MD/DF 313 (by), 449 (a;), 607 (a;)
HF(DZP)° 158, 337, 686
Py 3.23(e) D MD/DF 207 (e}, 294 {e}), 487 (a)), 493 (¢}, 453 (¢})
HF< 224 (el), 336 (e}), 509 (a}), 532 (e}), 564 (¢})
HF* 233 (&), 348 (e}), 514 (a}), 531 (&), 563 {¢})
“Ref. [HHTY]
YRef. [SCF*85]
“Ref. [HS90]
‘Ref. [HS89]

*Ref. [Jan89], unscaled values
Table 3.14: Vibration frequencies {w., cm™!) of selected phosphorus clusters.

symmetry. The vertical detachment energies calculated for transitions to the lowest-lying
singlet and triplet structures are 1.35 and 2.91 eV, respectively. There are two pronounced
peaks in the measured spectra of Py, at 1.35 eV and 2.69 eV, both of which can be
interpreted in terms of transitions from the “roof”-shaped isomer.

The very broad first peak indicates a large difference between the geometries of the most
stable isomers of the anion and neutral clusters. The calculated adiabatic electron affinity,
the difference between the lowest energies of Py and P, is only 0.19 eV, in satisfactory
agreement with the onset in the measured spectra. Relaxation of the neutral tetramer
from the anionic structure to the tetrahedral form results in an energy lowering of 1.16 eV,

The “roof” structure is also found to be the most stable in calculations for Sby and
Biy [GKS*].
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P,

bl

The pentamer is an interesting case. The planar (cyclo-Pg) anion has been stabilized as a
ligand [SB87] and prepared by reacting white phosphorus in solution with tetrahydrofuran
[BO8Y]. It has been calculated to be the most stable isomer in Sby and Biy [GKSt].
Hartree-Fock calculations [HS89, Jan89] give a consistent picture of both geometry (P-P
bond lengths of 3.955 and 3.959 a.u, respectively) and vibration frequencies (Table 3.14).
Scherer and Briick [SB87] noted that eyclo-P; could possibly be formed from P and P,
and Hamilton and Schaefer [HS89] observed that the high frequency vibration observed
by Baudler and coworkers [BO89| could be due to the presence of P;. Calculations by
Glukhotsev ef al. [GS93] indicate that the Dy isomer of Py is stable with respect to
both dissociation {P; — P; + Py; AE=71.6 kcal/mol} and disproportionation (2P; —
2P; + Py(Ty); AE=116.4 kecal/mol.)

The present calculations lead to two low-lying isomers. The planar ring (Dgs, Fig.
3.23(e)) has bonds of length 3.96 a.u. and is 1.44 eV more stable than the structure
(3.23(f}) related to the most stable form found for the neutral pentamer. The planar ring
is isovalent with the cyclopentadienyl anion (CH); and is an “aromatic” 6x-system [GS93).

There is a striking difference between the vertical detachment energies of the two isomers
of the anion (Dsy: 4.04 eV, Cy,: 2.08 €V). A single peak at 4.04 eV dominates the spectrum
of Py measured at hry=4.66 eV. This is in excellent agreement with the calculated value
for the planar pentagonal form (3.23(e)}. The (%, isomer (3.23(f)) related to the structure
predicted to be the most stable in the neutral heptamer is much less stable and has a much
lower excitation energy. There is no evidence that this isomer is generated by the PACIS.

The calculated vibration frequencies (Table 3.14) are about 10% below the Hartree-
Fock values, which are generally higher than experimental frequencies by approximately
this amount [Jan89].

Pg

The most stable isomer in all the present calculations was the (5, form (Fig. 3.24(a)),
which is 0.3-0.5 eV more stable than the other isomers (3.24(b,c)). While the measured
photoelectron spectra (peak positions given in Table 3.17) are in reasonable agreement
with the calculated values for the lowest-lying states of Py (2.29, 3.33 eV), the other stable
structures found give similar values [2.44, 3.70 eV for 3.24(b}; 2.65, 3.43 eV for 3.24(c¢)]. It
is certainly possible that the source produces more than one isomer.

Py

Simulated annealing led in the heptamer P, not only to low-lying isomers of the anions,
but to a stable isomer of the neutral cluster ~ the (5, structure shown in Fig. 3.24(d) -
that had not been found in earler work [JHS0c]. The MD/DF calculations indicate that
this structure is slightly (0.11 eV} more stable than the C, (“roof plus trimer”) isomer.
The anionic structure (Fig. 3.24(d)) is the most stable in all the present calculations, with
a second isomer (3.24(e)) 0.40-0.45 eV higher. The open form (3.24(f)) related to structure




84 CHAPTER 3. RESULTS

-~

&

—

7
—
&
B
=
£
[™
B

By ) iu

P,
2
£
g

—

b

§ heveprevprerprrer rReerrte ey

4 3.5 3 15 % 15 1 &5

Binding Energy {(eV}

Figure 3.27: Photoelectron spectra of Py -clusters {n==6-9) recorded at Av=4.66 ¢V photon
energy. See text for a discussion of the features marked.

(3.24(d)) is a further 0.6 eV higher. Structures 3.24(d,e) are related to the prism structure
of Pg by bridging bonds in and between the triangular faces, respectively. Comparison of
3.24(e) with the “roof plus trimer” structure of Py (Fig. 5(b) of Ref. [JH80c]) shows that
the effect of the additional charge in the anjon is very large. The energy change in Py
between these two structures is correspondingly large (0.68 eV).

The measured intensities fall for clusters with more than six atoms, and relatively
unstructured backgrounds become more apparent. The pronounced peak A in the spectrum
(Fig. 3.27) of Py (VDE 2.79 V) is closest to the value calculated for the 3.24(d) structure
(3.11 V), but the other two structures have excitation energies only 0.2 €V higher. Another
feature A'is weak, and its location close to the BE of peak A in the spectrum of Py suggests
that it may originate from a photofragmentation process. The structural relaxations on
removal of an electron from structures 3.24(d) and 3.24(e) are quite different. In the former,
the anionic and neutral structures are very similar, the change in energy on relaxation is
ouly ~0.1 €V, and we expect a sharp rise in intensity to the maximum af the VDE. In the
latter, the calculations predict a relaxation of ~0.6 eV and a much broader peak. Although
the calculations predict that 3.24{d) is more than 0.4 eV more stable than 3.24(e), the
interpretation of the measured spectra is ambiguous, and it is possible that both isomers

are present.
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Molecule  Symmetry AFE
P> 3.94(d)  Ca 0.0
d;524.28, dm"—"4.24, dlg“‘—-—"‘iﬂf}, d37=4.01, 05327—-‘”102.90, 0132360.30, Q137m111.4°, 037421(}0.30
P; 3.24(e) C, 0.41

d12“£4.15, dg-;wL.GS, d16=4.49, d&sménls, d457—4.08, Q217383,9°, a216=88.8°§ a165:89°{}°,
14— 100.8°, agpe=58.5°

Py 3.24(f) Cyy 1.47
d16=3.80, dy3=4.33, d3:=4.00, 0g13=104.8° @ry32=92.5° ej37=104.4°
Py 3.28(a) C, 8.0

dy13=4.26, d37=4.02, dy4=4.33, dor=4.08, dyy=4.32, dss=4.15, dig=4.23, 0134=90.3°,
r137=104.6°%, aor3=100.1°, roe=100.2°, c¥73:=86.7°, 245=589.8°, crgze=61.4°

Pg 3.28(b) Clay 6.23
d13=4.33, drs=4.77, day=4.13, ds5=4.20, cv4pe=T71.1°, g43=86.6°, agrz=102.7°
Py 3.28(¢) Cay 1.28

dig= 4.07, d34=4.92, dys=4.61, dag==4.20, (345=88.4°, (¥34;=88.6°, q125=103.9°, cr4y0=91.6°,
Cta36=91.2°%, og2==88.5°, erg32=01.8°

Py 3.28(d) Dyp 1.43

des=4.10, d3s=4.86

Table 3.15: Structure parameters for isomers of P; and Py, with energies AFE relative
to the ground state (eV). Bond lengths d;; in a.u., bond angles ey in degrees. Additional
labels refer to the figures.

Py

The predicted structures of the Pg-isomers gave perhaps the most unexpected results in
the earlier study of neutral clusters [JH90a]. The cubic structure that had been favoured
by several authors proved to be much {1.7 eV) less stable than the wedgelike (C,,) analog
of the cuneane form of (CH}g. A third isomer (D;,) had an energy between these two.
Apart from the occurrence of Pg-cages in crystalline phosphorus [TK69], we are unaware
of any experimental information on the structure of the isolated clusters.

The MD/DF calculations predict several local minima in the energy surface of the
anion. The two with the lowest energies are derived from the cuneane structure, with
3.28(a) being more stable by 0.22 eV. In the latter, there is a large expansion in two of the
parallel bonds. This configuration is unstable to annealing at 300K, with one of the long
bonds breaking and the other contracting to give a structure with lower symmetry (not
shown here). A similar situation occurs in the structures related to a cube, where the more
symmetrical structure {3.28(d)) has four expanded bonds. The more stable of the pair
(3.28(c)) —~ with energy 1.3 eV above that of the most stable isomer - has one broken bond
and seven bonds of length comparable with those in the cubic form of Pg. Annealing from
the D,y structure of Pg [JHS0c] also results in structure 3.28(c). The structure 3.28(b)
does presumably not correspond to an energy minimum, as annealing leads directly to the
most stable form 3.28(a).

Our calculations lead to VDE values that are significantly higher for the most stable
isomer (3.28(a)) than for all others. For example, we found 3.0 eV for 3.28(a) and 2.5 eV for
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Figure 3.28: Structures of P;. Labels in (b) Figure 3.29: Structures of Py
and (d) are as in (a), (b}, respectively.

3.28(c). The vertical excitation energies are consistent with these results. The agreement
between the measured VDE (3.05 eV) and the calculated value (3.02 eV) is very good,
while the values for the other three isomers are much lower (2.34-2.55 V).

P;

Our calculations predict that the most stable isomer of Py is the C, form shown in Fig.
3.29(a), which may be viewed as a dimer attached to the most stable form of P7. The Cj,
unit 3.28(b) found in crystalline Hittorf’s phosphorus [TK69], is only ~0.2 eV higher, and
structure 3.29(c) is more than 1 eV less stable.

The most stable isomers in P; have VDE values that are 3.60 eV (3.29(a)) and 3.28
eV (3.29(b)). The VDE for the latter, less stable structure is then in better agreement
with the measured value (3.11 eV). But structure 3.29(c) has a VDE of 3.1 eV, and the
experimental information is not sufficient to make a definite assignment in this case.

3.4.2 Trends and Discussion

The trends in the structures of the phosphorus cluster anions are reminiscent of the neutral
clusters. The structures are “three-dimensional” from n = 4, and from » = 7 they show
distributions in bond lengths, bond angles, and dihedral angles that are similar to those
found in bulk phases of the element. Phosphorus atoms prefer three-fold coordination,
although two-fold coordinated atoms generally have shorter bonds. The shortest bonds
found were the multiple bonds occurring in the dimer and trimer. Bonds in rectangular
structural units (bond angles ~ 90°) are generally longer than those in triangular units,
and the presence of rectangular units is energetically unfavourable. An example is the case
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Molecule  Symmetry AFE

P; 3.29(a) o, 6.0

dz4=4.05, dg5=4.04, dyg=4.18, dgr=4.14, dre=3.91, dyg=4.12, d15=4.17, dy3=4.31, c345=101.6°
456==09.5%, tper=102.6°, 561 =102.6°, cxgra=106.6°, 0g13=101.2°, vgy3=-104.5°, cx339=57.8°
Py 3.29(b) Cay 6.27

d4524.14, d5§:4*31, d5g: 3‘91, %7:4.32, &945260.60, a45§:199.6°$ asg?ﬂl(}?x.lo,

rgra=95.8°, rgar=104.8°

Py 3.29(c) Coo 1.49

dey=4.03, drg=4.15, dag= 4.37, dg7=4.30, dyg=4.12, cv345=110.0°, 456=123.3°, cxsae=58.27,
trser=95.8°, 0g75:=91.8°, agre==63.6°

Table 3.16: Structure parameters for isomers of Py, with energies AFE relative to the ground
state (eV). Bond lengths d;; in a.u., bond angles ¢; in degrees. Additional labels refer to the

figures.

of Py, where 3.29(c) is less stable than the otherwise similar structure 3.29(b). Rings with
approximately pentagonal projections are found, and the most stable form of Py can be
viewed as a “pentagon plus trimer” structure.

The anionic structures are generally more open than the corresponding neutral systems,
and there are other differences arising from the different number of electrons. In Py, for
example, the tetrahedral structure is stable, while P, undergoes a Jahn-Teller distortion.
For n = 3,5, on the other hand, the anion structures have higher symmetries (Dsn, Dsp)
than the Jahn-Teller distorted structures of P; and P;. As in the case of the sulfur clusters,
the presence of the additional electron in the anion can stabilize structures that are unstable
in the neutral clusters. In S these were chain structures that revert otherwise to the
more stable rings. The vertical detachment in the former were larger than in the latter,
where the most weakly bound electron occupied an orbital localized to one bond or atom.
The differences in VDE are smaller in the phosphorus arnions, but we note that P; has
two local minima (3.28(b},(d}} — corresponding to structures with two and four expanded
bonds, respectively — that are less stable than the related structures {3.28(a),(c)), where
the additional charge is located in the region of one (broken) bond.

In those cases, such as P;, P, and Py, where the energy calculations give an un-
ambiguous prediction of the form of the most stable isomer, the calculated detachment
energies are in satisfactory agreement with experiment. The measurements indicate that
the most stable form of Py {with high probability Pg as well] has a “wedge” (cuneane)
rather than a cubic structure. In P7, where the present and earlier calculations predict
the existence of three isomers with different structures but very similar energies, we show
that the source generates at least two isomers, one of them linear. Spectra for P; taken
with hv=3.49 eV (below the electron affinity 4.04 eV) show fragmentation into P; and P,.
We have noted above (Sec. 3.4.1) that there is evidence that the same process occurs in
solutions containing the pentamer anion. The situation in P, and Py is less definite. The
energies of the most stable isomers in these cases are only ~0.2 eV lower than the next
most stable, and the vertical excitation energies in the P, isomers are similar. The VDE
of the second most stable isomer of Py is in better agreement with the measured value
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88
n A A B C b B
1 0.78 2,16  3.07
p 0.68 3.03 385 4.18
3 1.68 1.6 2.8 391 4.32
4 1,85 2.69 >4.40
E 2,49 4.84
i) 2.22 2.59 3900 3.47
7T 218 2.7% 4.860
8 220 3.85
g 2.70 3.11

Table 3.17: The BE’ in eV of the electronic transitions observed in the photoelectron spectra
of PZ. The uncertainty in the measurements is £0.05eV except for n = 1. The BE’s of features

A correspond to the VDE's.

than the value of the most stable isomer.
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3.5 Mixed Silicon-Carbon Cluster Anions Si1,C,,”

Elements belonging to the same group of the periodic table have properties in common, and
carbon and silicon (group 14) are no exceptions. Nevertheless, their differences are very
pronounced. The immense variety of organic chemistry, reflecting the ability of carbon to
form single, double and triple bonds, is not shared by silicon, which favors multi-directional
single bonds. It is perhaps not surprising that the structures of the elemental clusters show
striking differences.

For pure carbon clusters with up to 10 atoms, ab initio calculations [PC59, RB87,
MFG90] have predicted odd-membered clusters to have linear optimal structures, whereas
cyclic forms have been ascribed to even-membered C,, clusters, although at least linear
C4 might be favoured by entropy at room temperature [ASG90, BMBS88]. And indeed,
experimental results show evidence for the presence of both linear and cyclic geometries:
linear C¢ has been observed in matrix Fourier transform infrared measurements [SG89,
WSG91] and by photoelectron spectroscopy [ABKNS1], while the rhombic form has been
observed only indirectly in a Coulomb explosion experiment [VFK*91|, which is difficult
to interpret unambiguously. The larger clusters have been observed [HGK'95] to form
monocyclic rings and there is evidence for the existence of bicyclic rings for C,, n>>20.
Finally, many clusters with even numbers n2>28 have lowest-energy isomers that belong to
the famous fullerenes [GDC192).

By contrast, Si,, clusters are predicted to be cagelike for 5<n<11 [RR88, RR90, AP0,
LVWRSS] and the peaks in the abundance spectra corresponding to fullerene structures in
C,, are absent in Si, [AMS91]. CP-MD calculations [RAP94] have predicted that for Si,
with n>25, the atoms are organized into two shells: an outer one reminiscent of a fullerene
topology and an inner one of highly coordinated atoms.

While the combination of theory and experiment has led te a rather detailed picture
of the elemental clusters, this is not so for mixed clusters 5i,C,.. It is natural to expect
that such clusters exhibit structural features of C,, and Si,, and this has been confirmed
by a number of studies in the past years. The experimental work includes absorption
spectra in matrices [PMG92, PMG94] and in the gas phase [RBRR94, OGP*94], and the
recent PE studies [NTN'95] of §1,,C,.” anions. These data provide a challenge to theoreti-
cians, as does the large number of topologically distinct isomers that can occur in mixed
clusters. While there have been numerous theoretical ({GS84], [GS85, Rit91, BDF*92],
[DCY4], [AGS90], [LG8R], [MAZBY], [Rit94), [FMZO5], [MFZP93, MFZ+94], [FZM*94])
and experimental ([PMGS90, BR92, MGLSS84], [PMG91], [Rit92, PMG92], [PMGRG95],
(WG92], [PMG94]) publications on individual Si,C,, clusters, a systematic investigation
is still missing. We note that the bdulb phases of SiC also have remarkable properties.
There are more than 100 cristalline forms (“polytypes”) [Yeo88], characterized by different
stacking sequences of close-packed layers that can have long periods. The amorphous phase
(@-8iC) is a high-temperature semiconductor whose structure has been the subject of some
debate. A recent study using a combination of MD and DF calculations [FGPB93] showed
that the structure has many (48-45%) homonuclear bonds, with the C atoms tending to
form chainlike structures.
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Photoelectron spectra of pure C,,~ anions [YTC"88, ABKNG1] consist of sharp features
for n=39 and of relatively broad features for n>10. Furthermore, the VDEs of odd
numbered clusters display much lower values than those of the even numbered ones for
n<10 and, starting at n=10, the even/odd pattern inverts. Both observations can be
explained qualitatively by a transition from linear optimal structures to ring topologies
at n=10. The peaks in the transition between anion and the neutral species of three
dimensional structures are broader than those between the species of linear isomers, because
the freedom of bending or rocking vibrations having low frequencies is higher in the former
and the peaks of these low frequency vibrations cannot be observed separately. The even-
odd slternation of the VDEs can also be understood, since even numbered linear anions
have a nlx' configuration, i.e., an attached electron occupies the HOMO, whereas odd
numbered chains have a 7' configuration, i.e., the electron occupies the higher lying LUMO.
The pattern inverts for ring isomers, since two more electrons of the former lone pairs of the
chain enter the 7 system after closure of the ring. This is consistent with recent numerical
results [WB92, 1590, PA92] and has been affirmed by ion chromatography measurements
on clusters with up to 10 atoms [vHKGB93].

Photoelectron spectra of Si,~ for n<12 [CYP*87] and Raman spectra of Si,~ for
n=4,6,7 [HOM*03] have been interpreted successfully by theoretical investigations [RR91a,
RR91b, RR92, GM95], assigning, e.g., a rhombus to Siy, a trigonal bipyramid to Sij, a
tetragonal bipyramid to Si; and a “triplet tetracapped tetrahedron” to Si;. As these in-
vestigation have shown, in some cases (e.g., C¢~, Cs™, Sis™, Sig™, Sig™ [RB87, RR9lal),
the geometries of both carbon and silicon cluster anions can differ substantially from those
of their neutral counterparts.

While the structures of pure C,~ and Si,,~ anions are thus relatively well understood
through a combination of theory and experiment, the structures of anienic 5i,C,. ™~ clusters,
which are essential for interpreting PE data, have not yet been studied systematically.
We describe here the results of an extended series of DF calculations on 8i,C..~ anions
(n+m<8) and their neutral counterparts and focus on the comparison of our results to
available PE spectra of these clusters [GPS96, NTN*951.

3.5.1 Optimal Geometries, Vibration Frequencies, and Vertical
Excitation Energies

The interatomic distances included in Tables 3.18-3.22 are shorter than 3.82 a.u. between C
atoms and 5.35 a.u. between Si atoms, which corresponds to the minima of the respective
pair correlation functions of liquid C [GMCP90] and Si [SCP91] between the first peak
for covalently bonded pairs and the second peak for nonbonded pairs. For C-5i distances,
we have chosen the arithmetic mean of both values, i.e., 4.57 a.u. as a cutoff distance.
“Bonds” are shown in Figures 3.30-3.89 for interatomic distances <5.3 a.u., irrespective of
the atomic species. The photoelectron spectra have been recorded at hv=3.49 eV [NTN*95]
and hr=3.8 eV photon energy [GPS96], respectively.
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Molecule Symmetry State AF
SiC~ Coow B35 6.00
dg_gzg.l?;

SiCy™ 330(3) Cy, sz 0.60
d19=2.49; dy3,23=3.56; r193,213=70°; cr125=41°;

SiCy~ 3.30(b) Coon T 0.03
dio=2.43; ds3=3.32;

Si,C~ 3.30(¢) Deon 71, 0.60
dy2,13=3.25;

SiCs~ 3.30(e) Coon 1 0.00
d1222.45; CZ23=2.52; d34ﬂ3¢22;

Sng_ 3.30(f) (o 2.42 0.4G
d12,20=2.58; dy4,24=3.78; dp4a=3.45; ct133=152°; Gr314,234==62°;
SiCy- 3.31(3) Cyw 231 0.67
du,gg:z‘?ﬂ; d13m2.76; d14,34=3.54; Oz;ggzﬁlag 0214;2347—1260; 01432460;
Si;Cy™ 331(5) C, 2 A 0.060

d12=2.49; d13m3.56; d14=3.49; dzgmg.?T; d34t4.56; Qizgmﬁﬁa;
Q2147135°; a143=50°; qra34==89°;

Si,Cy™ 331((7) D 2[[9 0.10
d1222.48; d14,23=3.26;
Sigcm 3.31(6) Cay zAg 0.08

d12,14=3.38; d13=3.58; d324=4.49; 0r314=161°; cryaa=96°;

Table 3.18: Structure parameters for isomers of 5inCm ™, n+m=2-4, with energies AF relative to
the ground state (eV). Bond lengths d;; in a.u. and bond angles o.; in degrees. Bond angles are
given where appropriate. Additional labels refer to the figures, where also the atom numberings
are defined.

SiC-

Our calculations for neutral SiC yield a 3II GS [...(x)%0)"] with a 3%~ excited state
.. (r)*(c)?] 0.42 eV above it, in agreement with CI results [BR92, 0.44 eV, MR-SOCI]. The
lowest singlet '£~ sate [... (r)*] was found at 0.76 €V [BR92, 0.65 eV, MR-SOCI]. Although
Cy and Si; are well-known species [HHT79], it was not until 1988 that SiC was identified
spectrometrically by by Bernath ef al. [BRO'88]. The authors were able to resolve the
0-0 band of the d'E*-5'I1 electronic transition in the vibration-rotation spectrum of SiC.
It has subsequently been detected [CGG*89] at millimeter wavelengths in the envelope of
a carbon star. In combination with theoretical results, the the *II GS bond length has
been estimated to 7. = 3.248 a.u., with an estimated accuracy of 0.002 a.u.. Our value
Te = 3.24 a.u. compares well with this result as well as with other theoretical predictions
[BL87, 3.28 2.u., MRCI].

Addition of an electron to the abovementioned SiC triplet states yields a 28+ GS

[-.-(m)*(o)*] with a *II state [...(m)*(c)?] 0.47 eV above it. The shorter bond length in
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(b)

{b}

{f)
Figure 3.30: Structures of (a,b) 5iCy™ (c,d) Figure 3.31: Structures of (a) SiC;™, (b-d)
Si,C™ and (e,f) 8iCs;™. Light spheres are Si SizCy™ and (e,f) Si3C~. Light spheres are 5i
atoms, dark sphereg are C atoms. atoms, dark spheres are C atoms.

the anion [3.17 a.u. (*T%)] than in the neutral GS is consistent with the presence of more
# electrons in the former and is also observed with Siy/Si,~ clusters [NHE87]. No other
experimental results were found in the literature nor could a photoelectron spectrum be
recorded by Gantefér ef al. [GPS96] for this very elusive molecule, but we nevertheless list
our results for the anion in Tables 3.18 and C.2.

Si1C,~
According to our results, neutral SiC; has a C3, 'A; GS with a C-5i-C angle of 41°. A
linear Si-C-C structure is 0.19 eV less stable. The corresponding triplet states are 1.55 and
2.27 ¢V higher in energy. This is in agreement with the experimentally determined [SG85]
bond angle of 40-41° and theoretical values for the energy difference between the isomers of
0.22 eV |GS84, TCSCF] and 0.16 eV [DC94, QCISD(T)/6-311+G(3df,2p}]. Our calculated
bond lengths [r(5i-C)=3.48 a.u., r(C-C)= 2.41 a.u.] are in reasonable agreement with those
extracted from spectroscopic data [r(Si-C)=3.42 a.u., r{C-C)=2.36 a.u., [MGLSS84]].
Adding an electron stabilizes the linear isomer [*II state, Fig. 3.30(b)] with respect
to the other, which is now virtually degenerate (0.02 eV higher) with a 2B; state of the
(s, anion shown in Fig. 3.30(a). The bond lengths in the Cs, isomer are larger in the
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Composition VDE

Figure N G Cale
3.30(b) 1.54(0.06} 1.72(0.05) 1.69
3.30(c) - 1.17(0.05) 1.18
3.30(e) 2.76(0.04) 2.96(0.10}) 2.86
3.31(a) 1.93(0.10) 2.00(0.16) 2.08
3.31(b) 1.93(0.08) 2.10(0.15) 2.07
3.31(e) 1.54(0.08) 1.60(0.05) 1.69
3.34(a) 2.34(0.04) 2.33(0.05) 2.27
3.34(d) 1.71(0.10) 1.77(0.05) 1.82
3.35(a) - 1.90(0.15) 1.88
3.35(d) 3.12(0.10) - 3.21
3.35(f} 3.14(0.03) 3.29(0.05) 3.22
3.36(c) 2.49(0.08) 2.70(0.15) 2.59
3.37(a) 2.16(0.08) 2.42(0.05) 2.51
3.37(e) 2.10(0.08) - 2.18
3.38(b) 1.74{0.08) - 1.81
3.38(e} 2.16(0.06) 2.22{0.05) 2.18
3.39(c) 1.74(0.08) - [1.79)
3.39{e)} 2.92(0.08) - 13.32]

Total atoms
3 atoms

4 atoms

5 atoms

& atoms

7 atoms

e e I I N R R R N R I

n
1
2
1
1
2
3
1
2
3
4
1
2
3
4
5
2
6
7

& atoms

Table 3.19: Si,C,,™ clusters: vertical detachment energies (VDE, eV), with uncertainties in
brackets, obtained from photoelectron spectra of Nakajima and coworkers [NTN*95) (denoted
“N”) and Gantefor and coworkers {denoted “G”}. Calculated VDEs (denoted “Calc™) are also
given. Values in square brackets belong to isomers that are not the most stable.

anion by about 3%, while the bond angles remain the same. The photoelectron spectra
of Fig. 3.32(a) [GPS96] and of Nakajima et al. [NTN'95] show relatively broad peaks
around 1.7240.05 eV [GPS96] and 1.54:+0.06 eV [NTN¥95], respectively, which would be
compatible with the presence of both isomers with calculated VDEs 1.50 eV {C3,) and
1.68 eV {C»). Fig. 3.32 also indicates the presence of an excited state at 3.6240.05 eV
BE, which favours the linear isomer, whose first excited state {°II) lies at 3.69 eV BE, and
excludes the (', isomer that has a *B. state at 2.99 eV BE, since the spectrum shows
only a very low signal at this value. The spectrum of Nakajima ef al. [NTN*95] as well
shows no significantly increased intensity near 3.0 eV, which should be observable, if the
assignment to the Cs, isomer would be correct, so that the presence of this isomer in either
of the experiments is unlikely.

Si,C~

The neutral Si;C dimer has Cy, and D structures that are again close in energy, the *4;
state of the (s, isomer being 0.11 €V more stable than the 'L} state of the linear isomer.
The energy ordering and difference is similar to that reported in other studies ([Rit81,

.08 eV, MBPT2/6-311G(2d)], [(GS85, 6.09 eV, CISD]). Two triplet states were found at
~2.5 eV above the C,, ground state. The Oy, structure has a SiC bond length of 8.21 a.u.
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and a SiCSi angle of 116°, in accordance with other theoretical results ([Rit81, r(5iC)=3.22
a.u., o5iC8i)=119.5°], [BDF+92, r(SiC)=3.18 a.u., (8iC8i)=117.6°, TZ+2P+ f CISD]}.
The length of the SiC bond is unusually short, as has already been noted by Grev and
Schaefer [GS85], and this has been attributed to the strong polar character of this bond.

The addition of an electron causes the SiCSi angle of the 3, isomer to increase in
our simulations and we obtain the same linear isomer [Fig. 3.30(c)] with a *II GS for
both neutral species. Such a behaviour may already be expected from simple electrostatic
considerations. Starting from an equilateral triangle, we found another local minimum
with C,, geometry [Fig. 3.30(d)] and ?4; GS only 0.01 eV higher in energy on the BO
energy surface of the anion. As can be seen from Table C.2, the excitation spectra of
the neutral species at the geometries of the anions show marked differences which should
facilitate their distinction in the photoeleciron spectra. The photoelectron spectrum of
Gantefor ef al. [GPS96] depicted in Figure 3.32 is indeed incompatible with the presence
of the Oy, isomer. On the other hand, the calculated VDE (1.18 eV) of the linear species is
in excellent agreement with the spectroscopic result {1.1740.05 eV) and the presence of a
second peak with a broad, unresolved Franck-Condon profile at 3.66 eV BE is in reasonable
agreement with our value for a transition into the lowest excited state [3.49 eV [’IL}] of
this isomer.

SiCy~

As we have seen in the previous sectioms, there is & strong competition between cyclic
and linear isomers in the series of neutral three-atomic silicon-carbon clusters: Siy has a
cyclic GS structure!, Si;C has a weakly bent (3, geometry, SiC; is cyclic (Cy,) and Cs is
linear (here and Ref. [RB87]). On the other hand, as our results indicate, three-atomic
silicon-carbon anions are more inclined towards linear geometries: while Siz™ is still eyclic
[RR$1a), Si;C~ and SiC;~ are linear, and photoelectron spectra of C3~ [YTC*88] indicate
that this isomer is linear, too. A similar behavior may now be expected for tetra-atomic
clusters. Both Sis (here and Ref. [Rag86]) and Siy~ are rhombic and Cy might also prefer
a rhombic form [ASG90]. Neutral SiC; indeed has a rhombic C, minimum structure with
a 1A; GS (here and Ref. [AGS90]) and a transannular (cross ring) CC bond [r(CC)=2.72
a.u. (here), r{CC)=2.78 [AGS90]]. Another rthombic O3, isomer with a transannular SiC
bond [r(SiC)=3.58 a.u. (here), r(5iC)=3.55 [AGS90]] just 0.08 eV.[AGS90, 0.19 eV] above
the GS. A further, linear isomer with a 3L~ GS isomer has an intermediate energy of
0.01 eV above the GS [AGS90, 0.18 eV]. Other structures and electronic states considered
are appreciably higher (>>0.75 eV) above the GS.

In the anion, the near degeneracy of the isomers is lifted and their relative order reverses
completely. The linear isomer [Figure 3.30(e)] is now more stable than the Cj, isomer with
the transannular SiC bond [Figure 3.36(f), 0.49 eV higher| and the former GS, the Ch,
isomer with a transannular CC bond [Figure 3.31(a}] is another 0.18 eV higher in energy.

1Qur LSDA calculations favour & %4 Dgy, isomer slightly (by 0.08 eV) over & '4; Oy, isomer, while
Hartree-Fock calculations [Rag8s, CCD-+ST(4)] report an inverse ordering with the Cj, isomer being
0.02 eV more stable.
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Figure 3.32: Photoelectron spectra of Figure 3.33: Photoelectron spectra of
Si.C,-clusters (n+m=3-5) recorded at 8i,C,, ~-clusters (n+m=>5-7) recorded at
hv=3.8 eV photon energy. hv=3.8 eV photon energy.

Again, as already observed at the S,~ (helical) chain isomers, the additional electron has
a high amplitude at the terminal bonds of the linear isomer, which are contracted by ~
2% compared to the neutral species,

The photoelectron spectra recorded by Gantefor ef ol. [GPS96] (Fig. 3.32) and Naka-
jima ef al. INTNT95] both reveal an interesting detail: apart from the main peaks (VDE:
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Molecule Symmetry Method Frequency w,

§iC, Coow(CS)  Expt®  2178£250
here 168 {m}, 442 (7}, 588 (&), 1283 (&), 1959 (o)
SCF® 164 (7), 456 (x), 659 (&) 1275 (o), 2037 (o)
Si3Cy C,(tAN Expt® 14904120
here 172 {(a")}, 269 ('), 424 (&'}, 585 (a'}, 673 (o'},
1530 {a')
SCFe 245 (a"), 306 (a"), 537 (a') 668 (a"), 754 (a'),
1560 (a')
Si3Cy Doon(3T7)  here 123 (), 425 (7,), 455 (0,), 863 (o), 1845 (o,)
SCF< 117 (my), 278 (m,), 493 (0g), 933 (04}, 1801 (o)
8100y th(lAg) here 152 (bau), 288 (bay), 440 (ag), 865 {bag),
907 (b1}, 1011 {a,)
SCFe 213 {bs,), 397 (bsu), 522 (a,), 978 (bsg),
1011 (byy), 1067 (a,)
$i,C; Don(*TT) Expt® 411350
here 97 (mw); 236 (m,), 450 {0,), 586 {my), 875 {ou}),
1558 (0,), 2053 (o)
SCF? 85 (my), 210 (7,), 442 (o,) 519 (my), 869 (0w),
1527 (0,), 2082 (ou)

“Present work [GPS86], photoelectron detachment
*Ref. [AGS90], TZ2P

‘Ref. [FPMGRGS5], TZ2P

“Ref. [Rit94], MBPT(2)/DZP

Table 3.20: Calculated vibration frequencies w. (cm™?) of selected isomers of neutral 5i,C,,™,
n+m<B.

3.0:+0.1 eV [GPS96], 2.76+0.4 eV [NTN'85]; first excited state at 3.13+0.1 eV [GPS96})
that are only compatible with the calculated excitation spectrum of the linear isomer
(VDE: 2.86 eV, first excited state (15*): 3.27 eV), there is another very weak signal at
1.9340.1 eV [NTN*95] and 2.0+0.1 eV BE. Both experimental groups assign this feature
to the presence of a second isomer, and Nakajima ef ol. [NTN™95] see indications that it
might be produced by a ring isomer. In fact, the position of this feature agrees well with
the caleulated VDE of the Oy, isomer with the transannular CC bond, i.e. 2.08 eV, as can
be seen from consulting Table C.2. The spectrum of Gantefor ef al. [GPS96] shows also
another, even slightly weaker peak at 2.21 eV BE, which agrees well with the VDE of the
(s, isomer with the transannular SiC bond, i.e., 2.35 eV. The peak at 3.0 eV BE exhibits
also vibrational fine structure with frequency 21784250 ¢cm™' (see Table 3.20), which is
consistent with our assignment of this feature to the linear isomer. To conclude, the spec-
tra show signs for the presence of all three isomers, while the dominant contributions stem
from the linear 35 of the anion.
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81,Cs

There have been several studies of the structure of Si;C;. Rhombic and linear states
were studied by Trucks and Bartlett [TB86], who calculated energies up to fourth order
in perturbation theory. Another more extensive study by Lammertsma and Giner [LG88]
predicted a new low-lying isomeric state of C, symmetry and Sudharkar ef ol. [SGL8&9]
compared two rhombic Dy structures in terms of a bond stretch isomerism. A higher level
comparison of a number of isomers was provided by Fitzgerald and Bartlett [FB90]. We
have reconsidered six different isomers and their triplet states, the lowest three of them
being: a rhombic Dsy isomer with *4, GS is 0.18 eV below a distorted trapezoidal C,
structure (1A’ state), which in turn is anocther 0.18 eV more stable than s linear isomeric
state (3L7) of Den symmetry. The energetic ordering is in accord with Ref. [LG88], who
found for the corresponding energy differences §.36 eV and 0.13 eV at the MBPT(4}/6-31G*
level.

As might be suspected from the previous results, the linear isomer [Fig.3.31(c}] is
favoured in the anion, but it is still 0.1 eV less stable than the true GS of the anion,
which we found to be the distorted trapezoidal C, structure [Fig.3.31(b}] (4" state). The
rhombic Dy, isomer [Fig.3.31(d})] is 0.25 eV less stable than the C, structure of the an-
ion. Furthermore, we observed several® isomers of the neutral species undergo considerable
structural rearrangement upon charging, all transforming into the C, isomer, which in-
dicates that the “catchment region” of this isomer is comparatively large. On the other
hand, the remaining structures did not change their shapes significantly upon charging.

The photoelectron spectra of GantefSr ef al. [GPS96], Fig. 3.32, and Nakajima ef al.
INTN'95] agree well with the calculated excitation spectrum of the C, isomer, Table C.2.
Qur calculated VDE, 2.07 eV agrees particularly well with the position of the first peak
in Fig. 3.32 at 2.1:+0.15 eV BE, whereas Nakajima ef al. [NTN'95] give 1.93--0.08 eV
for the same gquantity. Other peak positions at 2.7340.05 eV and 3.2840.05 eV BE agree
well with the calculated transition energies into the 34" and the * 4" excited states of the
neutral species at 2.83 eV and 3.21 eV BE, respectively. The peak at 2.1 eV BE seems
to be the first of a pronounced vibrational progression with frequency w,=14924-120cm™?,
which is compatible with the theoretical frequency spectrum of the C, isomer (see Table
3.20). Theoretical results for the vibrational spectra of the remaining two isomers are,
however, not compatible which the experimental value, which falls into a pronounced gap
in their frequency spectra {between ~ 1100 em™! and ~ 1800 cm™*, as can be seen in
Table 3.20. Although we found no definite sign for the presence of the linear isomer in
the spectrum, it cannot be excluded, since our calculated peak positions [2.14 eV (3%,
VDE}, 2.49 eV ('Z])] partially coincide with peaks of the most stable isomer and/or fall
in ranges of comparatively high intensity. On the other hand, the rhombic isomer is, for
example, incompatible with the spectrum, as its calculated VDE at 1.56 ¢V BE falls in an

interval of almost zero intensity.

2Among them & trapezcidal Oy, structure (3.61 state) 0.81 eV and a C isomer (A state) 1.04 eV
above the rhombic isomer.
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() (d)

{f}
Figure 3.34: Structures of {a) SizC~, (b,c) Figure 3.35: Structures of (a-c} SizCy™,
SiC4™ and (d-f} SioCy™. Light spheres are Si {d,e) 8i3C~, and {f) SiCz;~. Light spheres
atoms, dark spheres are C atoms. are Si atoms, dark spheres are C atoms.

Si;C-

Experimentally, Si3C has been identified in the products of vaporization of carbon/silicon
mixtures trapped in Ar at 13 K by Presilla-M4rquez and Graham [PMG92], who also
also identified fundamental vibrations. In Hartree-Fock calculations, Rittby [Rit92] in-
vestigated six different isomeric structures of the neutral species. We have reconsidered
these structures, both in their singlet and triplet states, and found, in agreement with
Ref. [Rit92] that a rhomboidal s, structure (1A4; state) with two equivalent silicon atoms
and a transannular SiC bond is the energetically most favourable isomer. The next Uy,
structure, similar to the anion shown in Figure 3.31(f) with *B; GS is 1.44 eV less stable
than the rhombus and another rhomboidal Cs, structure with transannular SiSi bond is
§.40 eV higher in energy.

The energetic ordering of the structures is preserved in the anion, the rhomboidal isomer
Fig. 3.31(e) now being only 0.80 eV more stable than structure Fig. 3.31(f) and 1.20 eV
below the rhomboidal isomer Fig. 3.34{a}. As might be expected, the experimental values
for the VDE agree well with the calculated value for isomer Fig. 3.31(e}, as may be seen
from Table 3.19. The agreement is not only good for the VDE, it remains so even for
peaks of excited states at 3.12 eV, 3.5 eV and 3.8 ¢V BE in the spectrum of Gantefor ef
al. [GPS96] (3.16 eV and 3.51 eV are the calculated values; a fourth state with a vertical
excitation energy of 3.88 eV is not the lowest state of a given symmetry (®B;) and therefore
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Molecule Symmetry State AR
SiCs~ 3.34(b) Cooo I 0.00
d12=2.43; d23ﬂ2.56; d3422‘42; d4533.27;
Sing‘ 3.34([1) Deon 2Hu 8.00
d13,23=2.46; dy534=3.22;
SizCy~ 3.35(2) Cas B, 6.00
d12=2.5}.; d14,24:3.82; &15,23m3e33; d34‘45m4u55; a123m150°; 61143:840;
a345=130°%;
S1,C~ 3.35(d) Clay 2A1 0.00

di9,15=3.47; dy3,14=3.84; dy3 2435 45=4.54; dss==4.67; 0rp35=146°; r314==75°;

Table 3.21: Structure parameters for isomers of 5i,,C,, ~, n+ m=5, with energies AF relative to
the ground state {eV). Bond lengths 4;; in a.u. and bond angles o in degrees. Bond angles are
given where appropriate. Additional labels refer to the figures, where also the atom numberings

are defined.

not covered by theory). On the other hand, the spectra do not show any increased intensity
near 2.06 eV and 2.47 eV BE, which are the VDEs of isomers Fig. 3.31{f) and Fig. 3.34(a),
respectively. These isomers may then be excluded from further consideration.

SiCy™

SiC,~ has been investigated experimentally by Withey and Grabam [WG92], who identified
a fundamental vibration. Moazzzen-Ahmadi nad Zerbetto [MAZS89] investigated the GS of
linear SiC4 by MBPT (2)/6-311G(d) calculations. Apart from this structure, which turned
out to be the most stable in our calculations as well, we considered also a Cs, ring (14,
state} 0.62 eV above the chain as well as several others, planar and nonplanar ones, all
with considerably higher energies (>1.0 eV) than the chain.

As for SiCy™ and SiC;, the relative stability of the linear chain Fig. 3.34(b) increases
further (to 1.08 eV) in the anion, and the remaining structures become even less important.
Indeed, there is no sign for the presence of the ring isomer [Fig. 3.34(c)] in Fig. 3.33,
whose VDE (1.95 eV), e.g., falls into an energy interval of low intensity. On the other
hand, VDE {2.27 eV) and the other calculated transition energies (> 4 eV) into excited
states of the chain isomer are in accordance with the presence and position of only one
peak (and the accompanying vibrational progression} at 2.33 and 2.34 eV BE in the spectra
of Gantefér ef al. [GPS96] and Ref. [NTN™95], respectively. The origin of another weak
feature in the spectrum of Ref. [GPS96] at ~2.60 eV BE is unclear. It might either belong
to the vibrational progression of the first peak or belong to a transition into an excited
state. Unfortunately, the discussion of further peaks is not possible within LSDA, since it
would require the calculation of multiplets arising from two unpaired r electrons (see the
discussion in appendix B).
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SigCg_

SizCs has been investigated experimentally in the vapor of Si/C mixtures by Presilla-
Miérquez and Grabam [PMG94], who also reported the observation of two fundamental
vibrations by Fourier transform infrared measurements. One of the vibrations was again
observed by van Orden ef al. [OGP194] using infrared laser spectroscopy. Extensive
calculations at the MBPT(2) level Rittby [Rit94] investigated nine different isomers of
SisCy both in their singlet and triplet states. We also found that most stable isomer is
a linear D chain (*Z} state}, and the energetic ordering is the same as reported by
Ref. [Rit94], apart from minor deviations. The second most stable structure encountered
here, & planar C, ring with a C; submolecule (not included in the figures) that is 0.68 eV
less stable than the chain, has not been considered previously. We found, however, that it
is not stable under simulated annealing at temperatures up to 600 K, where it transforms
into the chain, and it might be that it is not a true minimum. We also considered nine
other isomers, which turned out to be more than 1 eV less stable than the chain, among
them a (' structure, similar to that of the anion shown in Fig. 3.34{e) at 1.38 eV, and
a distorted C,, bipyramid [see Fig. 3.34(f) for the corresponding structure of the anion]
1.55 eV above the minimum.

Again, charging stabilizes the linear chain [Fig. 3.34(d)] slightly, with respect to the
other isomers, but alse the () isomer [Fig. 3.34(e)! becomes more stable than another
Oy structure (not included in the figures), which contains an triangular Cs; submolecule
in a more equilateral form, and ends 1.45 eV above the minimum. The bipyramid [Fig.
3.34(f)] distorts to C, symmetry and reaches a local minimum 1.46 eV above the most
stable isomer. Inspection of Table C.2 shows that the presence of the second and third
lowest energy isomers is not compatible with the observed peak positions in the spectra.
Nakajima ef al. [NTN*95] found a peak at 1.7140.1 eV, while Gantefor ¢f al. [GPS96]
report peak positions at 1.770.05 eV and 3.5 eV, see also Fig. 3.33. Only the vertical
excitation energies of the chain (VDE: 1.82 eV, *E, state: 3.66 eV} can explain consistently
the peak positions in the spectrum. The assignment to the chain is further supported by
the observation of a vibrational progression at the second peak with frequency 411:£50
em™!, which is close to a fundamental vibration (at 450 cm™?) of this isomer (see Table

3.20).

S1,C,~

Neutral Si;C; has recently been investigated by Froudakis ef al. [FMZ95], who considered
five different isomers. We have considered these and other structures and found, in accor-
dance with Ref. [FMZ95], that the structure of lowest energy is a planar Cy, pentagon with
a (U, submolecule, 0.52 eV below the most stable three-dimensional structure, a distorted
Dgp, bipyramid. Other siructures (three-dimensional, planar and linear), with higher in
energies will not be discussed here.

Charging affects little the relative stability of the two most stable isomers shown in
Figure 3.35(a,b), which also turn out to be the most stable in the anion. Furthermore, we
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observed that several isomers that were stable in the neutral species transformed readily
into the pentagon upon charging in MD runs between 306C and 600 K. The third most
stable neutral isomer {not considered by Ref. [FMZ95)), a planar C, pentagonal ring with
transannular CC bond transforms upon charging into the structure in Figure 3.35(c}, which
is virtually degenerate with the bipyramid (only 0.04 eV less stable). The photoelectron
spectrum recorded by Ref. [GPS96] shown in Fig. 3.33 reveals several unusual features:
apart from a sequence of sharp peaks that are almost identical in shape and position to
those in the spectrum of Si;C4~, there are other features of much lower intensity added.
Re-estimation of the data revealed that the mass spectrometer was not able to resolve the
small mass difference {3mg; + 2m¢ = 108 a.m.u., 2mg +4m¢ = 104 a.m.u.} between Si;C;
and Si,Cy, yielding two overlapping peaks in the mass spectrum. Since the PACIS generates
the more stable S1;C,~ in much higher abundance, the second, smaller maximum in the
common intensity distribution corresponds to a mixture of both anions, by far dominated
by SisCs~. This allows us to identify features arising from Si3C,~ as those that are missing
in the spectrum of “pure” Si,C,~. This yields peak positions at 1.9 and >2.43 eV, in
agreement with those obtained for the VDE (1.88 eV} and the energy for excitation into
the neutral ®B; state (2.59 eV) of the pentagonal structure. Of course, the experimental
information is not sufficient to exclude the remaining isomers, although their presence in
the beam is unlikely, given the comparatively large energy differences from the minimum
structure.

S1,C-

SisC has been studied by Nakajima et al. [NTN*95] with MP2/6-31G* calculations. The
authors report a distorted trigonal (Cs,) bipyramid with the C atom in an apical position
to be the most stable isomer. This agrees with our findings, but an almost isoenergetic
distorted pentagonal (Cs,) ring was found only 0.1 eV above. Another distorted trigonal
(Cy,) bipyramid similar to the corresponding anion shown in Figure 3.35(d) is another
0.19 eV less stable.

The energetic ordering and the stability of the structures changes appreciably in the
anion, the trigonal (Cs,) bipyramid [Fig. 3.35(d)] now being the most stable. This was
also the result of MP2/6-31G* calculations of Ref. [NTN*95]. The second lowest-lying
planar (', structure depicted in 3.35(e) is 0.38 €V higher in energy. All the remaining iso-
mers considered underwent major topological changes in the anion and transformed into
the bipyramidal minimum. The only observed peak at 3.12:£10 eV in the photoelectron
spectrum of Ref. [NTNT95] agrees well with the VDE of the minimum structure (3.21 eV),
while the second isomers VDE (2.01 eV) does not fit the spectrum. The exceptional high
VDE [it is the highest among all our five-membered clusters and is even higher than the
experimental value for Cs~ (2.27 eV)] can be explained by the additional bond between
atoms 3 and 4 in Figure 3.35(d) that is created upon charging of the cluster. The sub-
stitution of a Si atom for C introduces considerable strain in the underlying Dg; trigonal
bipyramid of Sis, causing a bond between atoms (3,4) to open in neutral Si,C (equilibrium
distance 5.55 a.u.). Furthermore, the more compact C atom attracts electron density from
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Molecule Symmetry State AE
SiCs~ 3.35(f) Cooe ‘I 0.00
dmmz.é‘i; d23=2.50; !.{34:2.42; d45'“-——“2.49§ d5523.25;
SiCs— 3.36(a) Cav 24y 0.81

d12,45=2.56; d13,235=3.55; die 56=3.42; da334=2.55; r1g5=68°; qr123=88%;
Q334=157°; 09y6=2159%;

51Cs™ 336(0) Do 2Hu 6.00
d12’3§=2.47; d;g’45=3.19; d23x2.43;

SisCs™ 3.37(a) o 24 0.00
dumz.éﬁ; d16$3,24; d23=2.,49; Cf34,35‘“-—”3e55; d45m4.24; a435m?3°;
SiyCq™ 337(8) Ch 24 .00

d12=2.97; dy4.233.46; di5=3.89; dis=3.53; dgs=3.90; dys=3.52;
d34:4.59; d35:4w62; d45w4.‘63; d5324.64;

Si;C~ 3.38(b) C, 24 0.90

d1223.‘@2; d;13$3.83; d;4=3.59 d15=3.83; dzgﬂ‘i.?'s; 525:4.79; d26=4.65;
d34‘4524.43; dgsm‘%.f)g; d35=4.46; d55=4.45;

Si;C- 338(c)  Ca  ’Bs 0.00
dia,13,14,1573.61; dis=4.08; da3 45=4.50; dy5,34=5.24; dog 36,46,56=4.60;
Si,Cs~ 338(@) Do, 2ﬂ§ 0.00

d12,45=2.45; dyr pe=3.22; dyg 34=2.43;

Table 3.22: Structure parameters for isomers of 81,,C,,~, n + m=86,7, with energies AFE relative
to the ground state (eV). Bond lengths di; in a.u. and bond angles ;. in degrees. Additional
labels refer to the figures, where also the atomn numberings are defined.

the Si sites in the cluster, which can be seen in Figures 3.44 and 3.45, where we reproduce
isosurface plots of the electronic density of the Si,C~ isomer in Figure 3.35(d). The region
of high density (>0.023 a.u.) enclosed by the surface shown in Figure 3.45 is localized
around the C atom. After ionization, the attached electron will be repelled by the partial
charge around the C atom and will be pushed into the Si; substructure, as we can see in
Figure 3.46, where an isosurface of the magnetization density of the same cluster is shown.
This quantity, which is proportional to the single-particle density of the additional electron,
attains a large amplitude between the Si atoms (3,4) opposite to the C atom in the cluster,
where it contributes to the formation of a bond (equilibrium distance 4.67 a.u.), which
explains why this level is so tightly bound. Pure Si;~ has also an exceptional high VDE,
as has already been noted previously [CYP787, RR9la]. Contrary to our observations at
$1,C~, Raghavachari and Rohlfing [RR91a} have found that the additional electron of Sis™
goes into an orbital that is antibonding between the two apex atoms, causing them to move
apart. They argue that the strain hereby introduced in the Siz structure is compensated
by a contraction of the equatorial Sis substructure, which results in an increased bonding
that stabilizes the uppermost electronic state.
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SiCs~

Neutral and anionic $iCy have been studied by Nakajima ef al. [NTN*95] at the MP2/6-
31G* level of theory, who also calculated adiabatic electron affinities at the PMP4(SDTQ)
level. Asg in the previous cases, we investigated several isomeric structures of the neutral
species, among them a linear (C,,) chain, a planar pentagonal (O} ring and a planar
(C3e) structure of rhombus SiCs+Cs [see Fig. 3.36(b} for the (similar) structure of the
corresponding anion]. The latter is a very flexible molecule: the transannular C, fragment
in the ringlike SiC; submolecule undergoes hindered internal rotation with only a very
shallow minimum at Cy, symmetry. The chain was found to be the absolute minimum, the
other two isomers are 0.24 eV and 0.39 eV less stable, respectively. Several other isomeric
states that have been considered have even higher energies and will not be discussed here.

The energetic ordering is not reversed in the anion, and the energy differences of the less
stable isomers [Figs. 3.36(a) and 3.36(b)] to the linear chain [Fig. 3.35(f)] rather increase
to 0.81 and 1.18 eV, respectively. The dominant features in the photoelectron spectrum of
SiC5;~ agree reasonably with calculated values for the linear chain. The experimental VDE
is 3.14:£0.03 eV, our theoretical value is 3.22 eV. The next higher predicted peak position
[3.51 eV, corresponding to a transition into the 37 state of the neutral species], is outside
the sampling interval of Ref. [NTN*G5] (0-3.49 ¢V BE). The topological changes between
the anionic and neutral chain are minor (bond lengths changed by less than 2%]), and this
also visible in the better resolved spectrum of Gantefor et al. [GPS96], Fig. 3.33, where
the 0-0 peak of the first progression has also maximal intensity, i.e., the nuclear vibrational
ground states of the anion has greatest overlap with the vibrational ground state of the
neutral species. Usually, the VDE is assigned to the maximum of the envelope of the
peaks accompanying a transition, which is in this case restricted to lie between the peaks
of the 0-0 and the 140 transition. Apart from this, its position is largely arbitrary, and
the position of the highest peak seems to be a reasonable choice. This gives 3.284-0.1 eV
for this value, in good agreement with the calculated 3.22 eV. A second peak appears at
3.5340.1 eV BE in this spectrum, in good agreement with our value of 3.51 eV for the
BE of the first excited state. No other features are visible in the sampling interval of the
measurement, in accordance with our calculated excitation energies for this isomer (see
Table C.2}.

Nakajima et al. [NTN'95] see evidence for the presence of a second ringlike isomer
in their spectrum and give reasons for their assignment of a feature of low intensity near
1.7 eV by comparison with the EA they calculated for the planar structure [Fig. 3.36(b)].
Starting with their structure, we basically confirmed their results, but found on the other
hand that the VDE of this isomer (3.14 eV) is not compatible with the experimental VDE
they give (1.65£0.1 eV). Since the VDE corresponds in general to a peak of high intensity
and they identify the EA with the threshold energy (onset}, the VDE can be determined
much more reliably, so that their assignment must be questioned. On the other hand,
the anion structure [Fig. 3.36(b}] is much less stable than the linear chain (1.19 eV) and
also less stable (0.38 eV) than the second lowest-energy structure, the €y, pentagonal ring
shown in Figure 3.36(a}, even in the neutral species. However, the VDE of this isomer is




104 CHAPTER 3. RESULTS

Figure 3.36: Structures of (a,b} SiCs™ and Figure 3.37: Structures of {a-d) SizC3™ and
{e-f} SigC4~. Light spheres are Si atoms, {ef} SigCy~. Light spheres are Si atoms,
dark spheres are C atoms. dark spheres are C atoms.

also too large {2.86 eV) to explain the feature near 1.7 €V so that the origin of this feature
remains unclear. Moreover, the spectrum of Ref. [GPS96] shows almost zero intensity in
the same energy range, but a small feature at 2.9 eV BE, which might stem from the
pentagonal ring. The comparatively high VDE of the linear isomer compared to its ring
analogue is in line with our expectations for the even-odd alternation of VDEs in linear
and ringlike C,, clusters, since even-membered rings should have low VDEs, unlike odd-
membered chains.

S1,C,

Five different structures of Si;Cy have recently been investigated by Froudakis ef al
[FZM*94] at the SCF, MP2 and CASTP2 levels. We reconsidered their structures as
well as several others. In accordance with Ref. [FZM*94], we found the linear D nuclear
arrangement with Si atoms in terminal positions and a ¥%- state the most stable isomer,
followed by a hexagonal C, ring (“chair structure”) [similar to the anion 3.36(d}] 0.70 eV
higher in energy. Our next structure in the energetic ordering, a version of this ring dis-
torted to planar Cyy symmetry [similar to the anion 3.36(e)] has not been considered before
and was found to lie only 0.08 eV above the C, ring. Considerably higher in energy than the
last isomer (0.64 eV), we found a planar O, structure with two Si atoms attached to the
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same end of a C4 chain submolecule [see Fig. 3.36(f) for the structure of the corresponding
anion]. Other structures also considered by Ref. [FZM*94] were found at 1.08, 2.69 and
1.93 eV above the linear isomer (in the energetic ordering given by Ref. [FZM™94}).

In the anion, the chain [Fig. 3.36({c)] is again stabilized with respect to the other
structures and is now 0.48 eV more stable than the chair [Fig. 3.36(d)], 0.62 eV more stable
than the ring [Fig. 3.36(e)] and 0.71 eV more stable than the structure in Fig. 3.36(f}.
All other isomers of the anion are even higher in energy. For the VDE, Nakajima et al.
INTN'95] have determined the value 2.49:£0.08 eV and Ref. [GPS96] 2.5740.05 eV, which
agrees particularly well with the value for linear chain, i.e., 2.59 eV. Another transition
might occur at 2.79+0.05 eV, but this assignment is not definite, since this peak almost
coincides with the peaks of the first vibrational progression. The energy, however, agrees
well with our theoretical energy of the transition into the I} state, 2.85 eV. There are no
definite signs of other electronic excitations in the remainder of the spectrum. Inspection
of Table C.2 in appendix C shows that none of the other isomers matches the pattern of
the peak positions. The fact that the VDE (3.15 V) of isomer [Fig. 3.36(f)] is higher than
the corresponding value of isomer [Fig. 3.36(c)] may be explained by the tendency of the
surplus electron to have high amplitude at the ends of the chain, which is energetical more
favourable, if C atoms are present there (see the discussion in section 3.5.2).

SiaCs™

In extensive theoretical calculations, Mihlh&user and coworkers investigated as many as
17 different isomers of this molecule [MFZP93, MFZ*94] by reoptimizing the most stable
HF geometries at the MP2{TZP) and MP2{TZ2P} levels. We re-examined 8 of their
most stable structeres as well as other geometries. While the lowest-energy isomer was
found, in accordance with Ref. [MFZ+94], to be a distorted C, pentagonal pyramid, with
a strongly bent (apical angle 44°) C3 submolecule, the energetic ordering we obtained
sometimes differed from that reported before. We found also several low-energy isomers
not considered previously, among them as our second most stable a distorted C, hexagonal
ring with a weakly (135°) bent Cs submolecule (not included in the figures) 0.51 eV above
the minimum structure, and a planar (%, isomer with a linear C; submolecule, similar to
the anion structure in Fig. 3.37(a), 0.85 eV above the minimum.

Charging seems to favor structures energetically that contain an almost linear Cj; sub-
molecule, such as the planar C, isomer [Fig. 3.37(a)] which is the most stable in the anion.
0.31 eV higher in energy, we found a C, structure shown in Fig. 3.37(b), which was no
low-energy structure (1.43 eV above the minimum) in the neutral species. As already men-
tioned, strongly bent C; submolecules seem to be energetically unfavorable in the anion,
and indeed, the C, ground state of the neutral species distorts to C; symmetry yielding the
structure shown in Fig. 3.37(c} with a less bent C; subunit 0.08 eV higher in energy. The
next isomer in the energetic ordering, another 0.33 ¢V less stable, is a distorted C, prism
depicted in Fig. 3.37(d). This structure was derived from the fourth isomer in energetical
ordering {0.71 eV less stable than the absolute minimum) of the neutral species. Several
other isomers had energies more than 0.8 eV above the minimum.
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Figure 3.38: Structures of (a) SigCy~, (b-d) Figure 3.39: Structures of (a-¢) SigC™ and
SigC~, and (e-f) Si»Cs~. Light spheres are (d-e) SiyC~. Light spheres are Si atoms, dark
Si atoms, dark spheres are C atoms. gpheres are C atoms.

The experimental VDEs for this molecule are 2.16::0.08 eV [NTN*95] and 2.424-0.05 ¢V.
Our value for the most stable isomer (2.51 eV) agrees well with the latter result, and also
the higher excitation energies at 2.93 eV (3A4;), 3.07 (*4:) and 3.73 (34,)® match the
pattern of the peak positions in the spectrum (at 2.88 eV, 3.25 eV, and 3.75 eV). The
remaining isomers are less compatible with the features in the spectrum, as can be seen
from their VDEs (see Table C.2).

81,C,~

Four different structures of 5izC; have been investigated by Froudakis ef al. [FZM™94]
and only one of them has been found to be a true minimum. It is a (s, isomer close to
the anion structure shown in Figure 3.37(f). Another distorted D, octahedron [see Fig.
3.38(a) for the corresponding anion] is virtually degenerate (AE=0.06 eV) with the first
isomer. There were several less stable structures, among them a C; structure close to the
anion shown in Figure 3.37(e) 0.6 eV above the minimum.

The energetical ordering of the corresponding anions is again different from that of the
neutral species, and the most stable anion is now structure [Fig. 3.37(e}}, which is 0.20 eV

3The last two values belong to states that are not the most stable of a given symmetry and are therefore
rot covered by theory.
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more stable than isomer 3.37(f) and 0.46 ¢V more stable than structure 3.38(a). The only
isomer that can account for the features in the spectra, is the minimum structure 3.37(e).
Nakajima ef al. [NTN95] report a VDE of 2.10+0.08 and our value for structure 3.37(¢)
is 2.18 eV, while all other low-energy isomers {less than 0.5 eV above the minimum)
considered in this work have VDEs below 1.2 eV. The appearance of a second peak at
>3.30 eV is in reasonable agreement with our first excitation energy [3.48 eV (34 state)]
for this isomer. An interesting phenomenon encountered here is the remarkable difference
between the VDEs of the individual isomers. While isomer 3.37(f) and 3.38(a) have roughly
the same value, that of 3.37(e} is more than twice as large. This can be related to structural
differences of the isomers. The C atoms of structure 3.37(e) are rather embedded into the
Si substructure, resulting in a high coordination of the C atoms in this isomer. This
inhibits the formation of a double bond between them. The bond is strained considerably
in the neutral species, resulting in an interatomic distance of 3.12 a.u.. In isomer 3.37(f)
of the anion, on the other hand, which looks more like & C; dimer loosely bound to a
planar S, cluster, they are linked by a double bond (bond distance: 2.49 a.u.}). The closer
CC distance in 3.37(f) lowers the potential between them, which induces a higher partial
charge at the C atoms than in 3.37(e). An attached electron will consequently be pushed
away farther into the 5i substructure, resulting in a higher amplitude of the excess electron
in regions of high potential energy (i.e., beyond atoms 4 and 6, here) than in 3.37(e}). In
3.37(e) however, the partial charge at the C atoms is weaker than in (f), so that an attached
electron is even able to enter the (low-potential) region between them and to strengthen
the CC bond (resulting in the typical single bond distance of 2.97 a.u.}, which stabilizes
the corresponding electronic level and increases the VDE. The neutral D; octahedron [Fig.
3.38(a)] underlying the apion in Figure 3.38({a) exhibits already maximal coordination and
no strained bonds so that an attached electron cannot compensate for its repulsion from
the partial charges on the C atoms into the Sis ring by participating in the stabilization
of a bond. On the contrary, it is even forced to occupy antibonding orbitals near the Si
atoms, causing the bonds between atoms (3,4) and (5,6) to open in the anion (fo ~4.95

a.u.).

Si;C~

Nakajima et al. [NTN*95] not only determined the VDE from their photoelectron spectrum
to be 1.74+0.08 eV, but also performed MP2/6-31G* calculations in order to determine
the most stable isomer of the anion. They found a O3, structure with *A; electronic
state which is similar to our structure shown in Fig. 3.38(dj. This isomer is, however,
only the third lowest-energy structure encountered in our calculations, and we found two
virtually degenerate isomers, a distorted octahedron [Fig. 3.38(c)] and a slightly more
stable (AE=0.01 eV} C, variant [Fig. 3.38(b)| of the structure in Fig. 3.38(d) to be about
0.28 eV more stable than the O, structure. The C, isomer [Fig. 3.38(b)] could also be
conceived as consisting of a SiC dimer [consisting of atoms labeled 1 and 2 in Fig. 3.38(b}]
attached to a slightly bent Siy cluster. The bond lengths in the Siy subunit between 4.43
and 4.45 a.u. support this view, indicating a rather strong bond order between one and
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two. The closely related isomer [Fig. 3.38(d)}] is, on the other hand, less tightly bound and
has double bounds only between atoms (3,4) and (4,5).

From the calculated VDEs of these isomers {1.81 eV, 1.54 €V, 2.07 eV), only the first
of the most stable isomer fits the experimental value. In particular the last value of
the minimum structure proposed by Ref. [NTN'95] is not compatible with their own
experimental result. There are no further peaks of sizeable intensity in their spectrum,
apart from a steep increase in intensity at the upper border of their sampling interval
(3.49 eV), indicating the presence of a second peak around >3.4 eV, which would again
agree with the first excitation energy of our mintmum structure [3.38 eV, (*4’) state]. To
conclude, no definite indication for the presence of any of the remaining isomers can be
seen in the spectrum, although our calculations indicate that the two lowest-energy isomers
are almost degenerate. Unfortunately, the resolution in the experiment is not high enough
to decide about the presence of smaller peaks at the corresponding energies {isomer 3.38(c)
should lead to peaks arcund 1.54, 3.39 and 3.61 eV in the energy range of interest, according
to our calculations). The different VDEs of isomers 3.38(b) and 3.38(d) can be understood
as a consequence of the different bond strengths of these clusters already observed above.
The C, structure has two additional single bonds between atoms (2,6) and (3,5) compared
to the (s, structure and in total twice as much double bonds than this isomer. This both
stabilizes the former isomer with respect to the latter, and is an energetical less favourable
situation for the attached electrom, which, repelled from the partial charge around the C
atom into the Si substructure, has now fewer empty orbitals with bonding character at its
disposal. This leads to a somewhat higher VDE for isomer [Fig. 3.38(d}].

Si,Cy™

The results of Ref. [NTN*95] and of Ref. [GPS96, see Fig. 3.33] indicate a VDE of
2.16-0.06 eV and 2.22-+0.05 eV, respectively. No other peaks are discernible in the spec-
trum of Ref. [NTN*95], and the next definite peak in the spectrum of Ref. [GP596] appears
at 3.56 eV BE.

Our calculations indicate the existence of two low-energy isomers of the anion, a Deon
chain [Fig. 3.38(e)] and a C, pentagonal ring [Fig. 3.38(f)] that is 0.72 eV less stable.
About the same energy differences and ordering were also found for the neutral species.
As might be expected from the distinct energy difference, only the most stable isomer
can account for the spectral features, with VDE at 2.18 eV and an excitation energy of
3.73 eV for a transition into the 3T, state of the neutral chain, in contrast to the ring,
which has excitation enmergies well above 3.0 eV. The comparatively high VDE of this
isomer compared to its linear analogue is in line with our considerations on the even-odd
alternation of VDEs in linear and ringlike C,, clusters, since odd-membered rings should
have high VDEs, unlike odd-membered chains.
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8iC™

The spectrum of Ref. [NTN*95] shows a distinct peak at 1.74:£0.08 eV, their value for the
VDE. Another, much broader feature with unresolved vibrational fine structure attains
its maximum around 2.7-3.1 eV. We found a Cs, structure [Fig. 3.3%(a)] to be the most
stable both for the anion and for the neutral species. It can be derived from the minimum
structure of SisC~ [Fig. 3.38(b)| either by capping the face between atoms (3,5,6) with
an an additional Si atom, or, likewise, by replacing a Si atom of the optimal structure
of Siy {which we found, in accordance with Raghavachari and Rohlfing [RR88], to be a
pentagonal Dy, bipyramid) by a C atom. The large interatomic separation between the
Si atoms (2,7) and (4,6) of 5.11 a.u. is much larger than standard values for elemental Si
clusters (4.3-4.8 eV [LPKJ*93]), and the molecule is in fact rather floppy in our simulations,
undergoing low-energy bending vibrations at T=300 K. A C, structure [Fig. 3.39(b)] Lies
0.30 eV higher in energy, followed by another C, isomer [Fig. 3.39(c)] at 0.36 V. The
latter isomer can as well be derived from the optimal structure of SisC~ by capping a
face containing a C atom. Other structures considered were both less stable and/or not
true minima on the BO energy surface. However, at most the C, isomer shown in [Fig.
3.39(b)] would be compatible with the spectral features. The calculated VDE is 1.79 eV,
and further calculated excitation energies are 3.17 eV (3A4”) and 3.36 eV (*4"), but this
assignment is admittedly not very conclusive, regarding the energy difference to our most
stable isomer and the broad vibrational progression observed around the second feature
that suggests a major geometrical change between anion and the neutral species, which
has not been observed for this isomer.

Motivated by the observation of Nakajima ef al. [NTNT95] of a similarity between
this spectrum and the photoelectron spectrum of pure Siy, we experimented with replac-
ing Si atoms with C atoms in the lowest-energy isomers of Siy. Replacing a S5 atom in
axial position in the Dy, pentagonal bipyramid GS of Siy leads to an low-energy struc-
ture {0.07 eV less stable than the “most stable” minimum), which is, however, not stable
against MD runs at about 300 K and is probably not a true minimum (not included in the
figures). Replacing Si atoms in several positions in the second most stable Siy structure,
a (s, tricapped tetrahedron 0.79 eV less stable than the Dg, GS (see Ref. [RR88)), lead
upon annealing to less stable local minimum geometries or to any of the structures already
known. So, despite all our efforts, it is possible that we have not found the true minimum,
although we have little doubt that the structure in Figure 3.39(a) is the most stable. On
the other hand, the energy difference between the lowest-energy isomer and the isomer in
Fig 3.39(c) (0.36 V) should not be overstressed, as recent publications on Cy (RSOV93]
and Cyq [RZP794] have shown that the inclusion of gradient corrections to the potentials
(see sec. 2.1.2) can have dramatic effects on the energy ordering of the isomers, changing
relative energy differences by up to 8 eV. Another possible explanation for our failure to
explain the spectrum of Ref. [INTN*95] conclusively might be that SigC~ clusters cannot
be distinguished from Si3Cs~ by the mass spectrometer, since both clusters have the same
mass. Since Ref. [NTN*95] vaporize a silicon-carbon rod using a laser, they cannot control
the Si:C ratio in the vaporized material, and it is possible that Si;Cs™ is produced in signif-
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icant amounts, which would lead to a superposition of the corresponding spectra. In fact,
the observation of & broad vibrational progression with obviously large vibrational quanta
is more consistent with a Cg submolecule with strong CC bonds than with a structure con-
taining relatively weak SiSi or SiC bonds. However, this should not be oversfressed, since
the same argument also applies to other Si,C,.~ cluster pairs in clusters already discussed
here: Si,C~ and SiCp~, SiyCp™ and SiCg™, SiEC” and SigCg_, and SizC~ has the same
mass as both Si4Cs™ and SiCys~. This raises the question of why no signs for the presence
of other isomers were found in the spectra of 814C~, 814G, and SizC~. A possible reason
is that intensities of the clusters in the beam generally decrease with increasing number
of atoms, so that larger clusters might be less significant in the spectrum. Alternatively,
the other clusters in these cases {3iC;s™, SiCy~ and SipCs™) are all carbon-rich and can be
expected to have properties more similar to those of pure carbon clusters. The experimen-
tal VDEs of Cy~ and Cy~ are 4.42 and 3.70 eV [YTC788], respectively. This is beyond
the scope of the instrument (0 - 3.49 eV}, and it may also apply to the corresponding
silicon-containing clusters. The properties of Si3Cy in the present case might already be
affected by the higher percentage of Si in its structure. As we discuss in section 3.5.2, its
VDE might be lowered, resulting in an observable signal in the spectrum.

The marked difference of the VDEs of isomers {Fig. 3.39(a)] and [Fig. 3.39%(c)] stems
from the fact that in (a) the surplus electron contributes to strengthening of the bond
between atoms (8,7). If cluster [Fig. 3.39(a}] is derived from the underlying pentagonal
bipyramid of Si; by replacing a Si atom by C, considerable strain is introduced into the Si
substructure opposite to the C site, causing the bond between atoms (6,7) to open (to a
bond length in the neutral isomer of 4.71 a.u.). An attached electron will move away from
the partial negative charge accumulated around the C site and consequently attain a large
amplitude opposite the apical C atom as well. Its contribution to local bonding results in
a double bond in the anion (bond length 4.44 a.u) between atoms (6,7) and & considerable
stahilization of the state the excess electron occupies. On the other hand, the replacement
of a Si by a C atom in the Siy cluster yielding [Fig. 3.39(c)] introduces strain near the
C atom in the structure, not opposite to it. An attached electron, however, cannot bind
strongly to this site, since it will be repelled by the partial charge centered around the
C site and will be shifted to the opposite end of the Si substructure. But in this case,
the structure of the Si; cluster has remained almost intact here, with high coordination
numbers of the Si atoms, and a high occupancy of the bonding orbitals and the excess
charge is forced into regions of high potential energy.

Si,C~

The spectrum of SiyC~ of Ref. [NTN*95] resembles closely that of pure Sig™ of the same
authors, apart from a weaker resolution. This suggests that SiC,” might be related to
Sig™ just by replacing one Si atom by C. Two relevant low-energy structures for Sig have
heen reported by Raghavachari and Rohlfing [RR88]: a bicapped C;n octahedron and a
tetracapped Cs, tetrahedron. In agreement with Ref. [RR88], we have found that the
former isomer is 0.41 eV more stable than the latter. Replacing one Si atom by C atoms in
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different positions we generated six different structures for the anion that we investigated
by simulated annealing, as well as five structures not related to these isomers of Sig. The
lowest {C,) isomer [Fig. 3.39(d)] is in fact derived form the most stable structure of Sis. It
can also be derived by face-capping either of the low-energy isomers in Figure 3.39(b) and
Figure 3.39(c) of SigC~. This isomer is almost degenerate (only 0.10 eV more stable) with
the O, structure depicted in Fig. 3.39(e} and 0.44 eV more stable than the C, isomer in
Fig. 3.39(f).

However, the first and the last structure cannot account for the features contained in
the spectrum, since their VDEs (2.05 eV and 2.45 eV, respectively) are much lower than
experimental VDE which Nakajima ef al. [NTN¥95] report to be 2.92::0.08 eV. This favors
the ('3, isomer, whose VDE is 3.32 eV. Lowest excitation energies of this structure at 3.47
and 3,55* eV BE are, however, outside the range of the instrument and it is not possible
to make the assignment more definite. In line with the discussion in the preceding section,
we should note that the spectrum might be affected by the presence of isomers of SizCg™
and SiCys ™, which have the same mass as 8i,C~ and cannot be distinguished by the mass
spectrometer.

3.5.2 Trends and Discussion

While it is generally known (see, e.g., Ref. [CW88]} that C prefers double bonds and Si
favors single bonds, only few attempts have been made to relate this chservation to atomic
properties. Within LSD, Harris and Jones [HJ79] explained experimentally known trends
in the bond strengths of group 14 dimers by the radial extent of the atomic orbitals of the
bonding partners. In this picture, the relative strength of the CC bond compared with the
SiSi bond {e.g., C; and Si; have binding energies of 6.2 and 3.2 eV [HH79}), is related to the
fact that carbon atoms are more compact than Si atoms. The preference for double bonds
of carbon can be understood from the relative compactness of the atomic s and p orbitals.
In Si, the p orbital has its antinode comsiderably displaced outward from that of the s
orbital and falls off considerably more slowly. In C, the two orbitals peak at practically the
same distance from the nucleus and fall off on almost the same length scale. This induces
comparatively short bond distances, increases the contribution of p orbitals to bonding and
favors double bonds over single bonds. Compact 2p orbitals can be found in all first-row
atoms, because there are no underlying p-states in the core to which valence p states must
be orthogonal. For elements higher in the periodic table, in particular Si, there is a p-core,
and this is considerably more extended than the s-core. Accordingly, the valence p orbitals
are displaced outwards with respect to their s counterparts. This weakens the contribution
of p orbitals to bonding and consequently favors single bonds over double bonds, resulting
in reduced bond strengths compared to C. For example, while it is known that CC and
SiC o bonds have nearly identical strengths (~3.8 and ~3.7 eV [GS84]), SiC n bonds have
only about 60 % of the analogous CC bond strength [Wal93, STG87]. We can conclude

4The corresponding 1.4, state is again not the lowest of a given symmetry and is therefore not covered
by theory.
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that it should be energetical favorable for mixed silicon-carbon clusters that the carbon
atoms should form connected submolecules within the cluster, as may indeed be verified by
consulting the Figures 3.30-3.39. These qualitative arguments may be illustrated in Figure
3.40, where we compare the bond length distribution of CC, CSi and SiSi bonds, sampled
over the 65 most stable (with energy difference less than 1.6 eV to the most stable isomer)
mixed silicon carbon clusters included in our caleulations. For CC bonds, the curve shows a
distinct preference for smaller bond lengths close to ~2.4 a.u. and decreases towards ~2.9
a.u., which are standard values for CC double and single bonds [MFZ794], respectively.
The curve for SiSi bonds, on the other hand, shows the opposite trend, favoring long bonds
(~4.5 a.u.) over short ones (~4.3 a.u.}, which are close to the typical values for SiSi single
and double bonds [LPKJ*93], respectively, but we encountered also substantially strained
SiSi bonds (~4.9 a.u.), which are not shown in the Figure 3.40. The distribution of SiC
bond lengths is more balanced between the typical length of a double bond, ~3.2 a.u.
[MFG90], and the standard value for a single bond ~3.6 a.u. [TB86]. These values are
close to the nearest-neighbor distances in the bulk (2.62 a.u. for C, 3.98 a.u. for 5i, both
in the diamant crystal phase).

Increased bond length and strength are not the only consequences of the small spatial
extent of the atomic p orbitals of C. Probably of equal importance for structural properties
is (if we think in LCAO terms) the remarkable ease of sp hybridization in carbon [GJ85],
due to the comparative closeness of the atomic 25 and 2p levels. While small C, clusters
have low-lying linear and ring isomers, in which the C atoms are sp hybridized, no such
isomers are known for Si clusters, nor have we found SiSiSi bond angles close to 180° in
our simulations. This can also be seen in Figure 3.41, where we plot the distribution of
COC (upper curve) and SiSiSi {(lower curve) bond angles of our 65 most stable isomers
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of Si,C,.™, although the statistics are less definite than in our previous example (before,
we accepted every bond, but now we accept only the occurrence of 2 C (Si) bonds in
succession ).

While the former considerations focus exclusively on the properties of the single atoms
to discuss the differences between CC, CSI and SiSi bonds, it is worth examining the
corresponding dimers more closely to understand the topology of silicon-carbon compounds
better. In C,, the GS* (*L}) is nZr2 bonded whereas in SiC, we found a % bonded
(*I) GS, and we have a o« bond in Si; (*°Z; state). This is in line with our previous
discussion: in C,, the o,2p is closer in energy to the o,2s than in Si, a property that is
inherited from the underlying atomic 2s and 2p levels. Conseguently, the energy splitting
upon hybridization between these molecular orbitals is more pronounced in G, than in
Siy, shifting the 0,23 eigenvalue to lower and the o,2p eigenvalue to higher energies. As a
result, the o,2p level lies above the =, 2p level in C,, while the opposite holds true for Sij.
SiC takes an intermediate position between these cases. Consider now an atom or radical
approaching the C, molecule. As the x,2p orbitals are both completely filled and the «,2p
level is empty, it is the most probable position for a successful bonding and the molecule will
preferentially grow along the molecular axis. This also explains the extraordinary stability
of catenated compounds involving chains or rings of carbon atoms, which distinguishes
carbon from other elements. The opposite holds true for an attempted bonding to the
Si; molecule, where an attack of the o,2p level, which is completely filled, would hardly
be successful, and it is much more likely that bonding to the empty =,2p orbital of the
molecules will take place, suggesting an off-line growth. Indeed, the final, stable geometry
of, e.g., Siy is a {Dj) rhombus and not a chain. The resulting bonds can be expected

SLSDA gives the wrong order here, reporting the SII, state to be ~0.5 ¢V more stable than the ey
while the experimental results indicate that it is 0.08 eV less stable than the latter.
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to be less directional, as the Si w,2p orbitals are rather extended. This explains also the
observed tendency of silicon-rich clusters for three-dimensional structures.

In contrast to the situation encountered in S,~ and P,~ clusters, Si,C,.~ clusters
have several features that complicate the discussion of their VDEs. First of all, there are
more highly symmetri¢ compounds (Ceew, Doons €tc.), where there are not enough valence
electrons to fill the bonding orbitals completely. An example we encountered are linear
C,. chains, where the even-numbered chains have a *%; GS [PC59] with two unpaired =
electrons. An electron attached to an even-numbered chain will therefore enter a HOMO
and is much stronger bound {i.e., has muck higher VDE) than in odd-numbered chains
[} {n*) GS|, where it must enter the LUMO (see the uppermost curve in Figure 3.42,
where we reproduce experimental VDEs of [YTC*88]). In the remaining curves, we plot
the VDEs of linear chain isomers of $i,C,~ with {from top to bottom) one and twe C
atoms replaced by Si atoms. Obviously, the even-odd alternation prevails even if Si is
mixed in, although somewhat weakened in amplitude. Furthermore, since the partially
empty 7 levels are bonding, electron attachment to even-numbered chains will in general
increase the bond strength and reduce the bond distance in these chains, as we already
observed in the preceding section. Another trend can be expected from our previous
discussion: attached electrons should bind more strongly to carbon sites, since in carbon
submolecules the occupied orbitals are more compact and closer to the nuclei than their
silicon counterparts, which can also be concluded from Figures 3.42. Identifying the VDEs
with the binding energies of the attached electrons, we can see that the binding is strongest
in pure C, chains, and decreases monotonically as more and more C atoms are replaced
by Si. This is not the whole story, as we can see from Figure 3.43, where we plot the
calculated VDEs of some of our most stable isomers (together with some experimental
results [YTC+88, NTN*95]). The curves interpolate values for n-+m=3,4,5,6. The entries
in the first three columns are mostly linear isomers, whose even-odd alternation accounts
for the fact that the onset of n+m=>5 curve is shifted to smaller values with respect to
the n+m=4 curve. Apart from such shell-closure effects, which are most important in the
carbon-rich linear chains and monocyclic rings, the VDEs should be higher in the larger
clusters for simple electrostatic reasons, a feature shown by the curves. The expected trend
that the excess electron is more tightly bound to carbon-rich than to silicon-rich clusters is
also clearly visible, although there is considerable additional structure. This resuits from
the second complication we encounter in going from elementary clusters such as 5,7 or
P, to mixed clusters such as 8i,C~ clusters. C and Si sites in the sfructures are no
longer equivalent, as shown by the smaller spatial extension of C compared to that of
Si. This will induce considerable strain in Si, structures, if Si atoms are replaced by C
atoms. Another feature we already discussed in the example of S5i;C™, is that the smaller
spatial extent of the C atomic orbitals will result in a polar character of SiC bonds, which
tends to deplete Si, submolecules in the clusters from electrons to the advantage of G,
fragments. As in the example of the high-density region of the $i,C~ isomer in Figure 3.45,
which is localized at the C atom, inspection of our charge densities shows that this leads
in all cases to a partial negative charge at the carbon atoms, which tends to push attached
electrons away from carbon sites into the silicon subunit. This can also be seen at the
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Figure 3.44: Isosurface plot of the electron Figure 3.45: Isosurface plot of the electron
density of the isomer shown in Fig. 3.35(d) density of the isomer shown in Fig. 3.35(d) of
of 5i4C~. The density on the surface is 0.008 SigC~. The density on the surface is 0.0023
a.u.. a.ll..

Figure 3.46: Isosurface plot of the magnetization density of the isomer shown in Fig. 3.35(d) of
Si¢C~. The magnetization density on the surface is 0.00006 3.u..

example of the magnetization density of the SisC~ isomer in Figure 3.46, where the most
prominent accumulation of density is situated between the Si atoms opposite to the C site.
If all bonds in the Si submolecule are saturated, the excess eleciron becomes localized in
regions of high potential energy, which would result in a low VDE, but it may also stabilize
5iSi bonds, that might have been strained by the presence of C atoms in the cluster, and
a higher VDE will result. The density in Figure 3.46 is an example for the latter case,
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since the accumulation of electronic density between the two Si atoms at the bottom of
the picture stabilizes a bond strained in the neutral isomer {the contraction of the bond
length upon charging is ~16%). As we have already seen in the preceding section, the
interplay of these two factors can account for the irregular behavior of VDEs of silicon-rich
clusters, including the exceptionally high VDE of SiyC™ in Figure 3.43 (see last section for
a discussion) and the tendency of the {experimental [NTN*95]) VDEs of 5i,~ clusters to
be larger than those of the $i,,C™~ clusters of the same size (since the absence of C atoms
in a silicon-tich cluster is in general enegetically more favourable for an attached electron),
which is also observable in Figure 3.43. To conclude, we can discern two regimes of 5i,C,,™
clusters with different behavior of the VDEs:

¢ Carbon-rich clusters with linear C, submolecules. They show even-odd alternation
of the VDEs due to shell-closure effects. Since there are only few Si atoms in the
cluster, partial charges at the carbon sites are both small and insignificant for the

VDEs.

e Silicon-rich clusters, where the behavior of the VDEs is dominated by the presence
of negative partial charges around the carbon sites. Due to electrostatic repulsion,
the additional electron will be shifted to Si sites in the cluster, where it is compar-
atively weak bound unless it happens to contribute to increased bonding in the Si,

substructure, as we argued above.

The discussion above demonstrated that a reliable description of the geometry and both the
electron density and magnetization densities® of the anion clusters, as provided by density
functional theory, is crucial for a qualitative understanding and an accurate quantitative
description of the various features contained in the photoelectron spectra. Exceptional
cases are SigC~ and Si,C~, where the VDEs of isomers that are not the most stable (less
than ~0.4 ¢V above the GS) are in better agreement with the measured values than the
values of the most stable isomers. It might be interesting to study the effect of gradient
corrections to the exchange-correlation potential (see section 2.1.2}, as recent publications
[RSO+93, RZP*94] report dramatic consequences for the energy ordering of isomers of
carbon clusters, changing relative energy differences by up to 8 V. This could be a possible

objective for future investigations.

5The magnetization density m.(r) = {ns — n-)}{r}/2 {a.n.) of all anion clusters inspected appears to
be identical (apart from a factor 42) to the single-particle density of the excess KS-electron within the
numerical sccuracy.




Chapter 4

Conclusion

We have presented a scheme based on density functional theory that is able to describe
accurately photoelectron spectra of complex nanosystems, such as anionic 8,7, P~ and
Si,,C,,~ clusters. The success of our approach rests on two factors: the accurate deter-
mination of the ground state structures within the local spin-density approximation with
the simulated annealing approach of Car and Parrinello, and the application of the ASCF
scheme without further approximations to obtain excitation energies that include final
state effects. Although this approach is confined to the lowest states of a given symme-
try, we obtain in most cases sufficient excitation energies to make a definite assignment.
As we have shown in various examples, differences in the geometries of the clusters may
have major implications for the electronic excitation energies and the vertical detachment
energy (VDE]}, a prominent example being the striking difference of the VDEs of ring and
chainlike isomers of S,,~. This has enabled us to explain a correspouding transition in the
features observed experimentally in the photoelectron spectra upon readjustment of the
source parameters as resulting from a generation of different classes of isomers.

Other examples of the effects of structural differences on the VDEs are found in our
results. In Ps~ the VDEs of the two most stable isomers, a Ds), ring and a Cs, structure
differed by more than 2 eV, and in Si;C~ two isomers with related structures [shown in
Figures 3.38(b) and 3.38(c)] have appreciably different VDEs (1.81 and 2.07 eV, respec-
tively). To differentiate between such cases makes severe demands on both the accuracy
and the efficiency of the computational methods, particularly if the ground state structure
is not known. Qur results show that the the local spin-density approximation within den-
sity functional theory addresses both requirements. The cbservable (and in many cases
understandable) sensitivity of VDEs and excitation energies to structural differences makes
us confident that the comparison of vibrationally resolved photoelectron spectra with com-
puter simulations can enable us to gain information about cluster structures that is other-

wise inaccessible.
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Appendix A

FFT Coeflicients and Isolated
Systems

For further use in section 2.3.2, we shall derive here exact relations between the FET
components snd the Fourier components and the Fourier transform of the density. The
Fourier series of a density that is periodic over a direct lattice with lattice constant lajas

may be written

fulr) = 5 (@) w(G) = ?3% j[ Eriifr)e” S, G € {Gh (A.1)

{Gh o

where {G}; denotes the vectors of the reciprocal lattice corresponding to a lattice spacing
layss. Under the condition that

3
#(G) =0 for G ¢ AV := {Gi@ = ZA,-P;, -—%’l <M< 5’24-}

=1
the FFT components and the Fourier components of the density are related by:
# @) = PNR(G), G € {G} (A.2)

where {G}; denotes denotes the reciprocal-space FFT mesh defined by (2.50). This may
be seen by inserting {A.1) into the defining equation of the FFT coefficients’

e = Zfz(r)exp —1Gr
{rh
== Z Z fu(G') exp1G'rexp —1Gr
{eh {G'H

11t should be noted that no difficulties arise in interchanging orders of summation, since all sums are
finite in the case, where the relation is valid.
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= Z (G Zexp G — Gir

{G'}h ff}t B
=EN T em HE' -G, miNiby), nezt
3
- Z (G + anNsbi)lgN
ne?Zs =1

= BN#(G), if #(G) =0for G ¢ AV

This last condition can always be fulfilled for the original periodic density (i.e., [ = 1) by
adjusting the size N of the FFT mesh, due to the finite cutoff in the expansion of the
density. In the case of increased lattice spacings [ > 1, this condition implies further that
the periodic density must be negligibly small at the cell boundary, so no high-frequency
oscillations are introduced by cutting it there. If this can be fulfilled for all I, then the
above relation implies for the Fourier transform of the isolated density of a single unit cell

N
At G = ﬁﬁ(g)’ G e {G}, 1 =1, (A.3)
since, due to the finite support? of 4 in k-space, we have 4(G) = PQ#n(G).
In the remainder of this section, a sketch of the proof that the series (2.51) converges to

the k-space integral {2.52) shall be given. Let us first define the following volume elements
AV in k-space of volume (27)3/{I*Q}} surrounding all G € {G}*:

AVI(G) = {klk=G + i,\,-%;i, ué <A< %}
im}

As may be readily verified, the series (2.51) may be written as an integral over k-space of
the following step function

1 > 2 4w
¢i(k) = %aaﬁc’ama)(k), ag = { gﬁr—fg G & g g igg}l \ {0}

where the characteristic functions
1 i ke AVIG)
Xﬁm‘;}(k) = { § otherwise
have been used. Obviously, we have

. . 1 N o 4:7!’
z}ini ¢i(k) = PIE (k)| ) almost everywhere.

“The support of a function f(x) is the closure of the set {x]f(x) # 6}

$As it stands, the definition for AV; holds only for IN; odd. For {N; even, the ranges for A; should
be modified to —1 < A; < 0. This is just s technicality that does not defeat the argument and has been
omitted for simplicity’s sake.
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Since the region AV where 7i(k} is nonzero is finite, there exists an integrable function G(k)
with [¢{k}] < G(k) a.e. (take, e.g., G(k) = §/(27)3m?/k?, where m := maxav [2(k}), so
that the dominated convergence theorem (see, e.g. {RS72, §I, (1.16)]) is applicable. This
implies that

1 (2?\')3 1 > 47T
i [0 = fm G S o EP
I—-+c>o 2 [rren 2 l {1 (GIn{0} (2?‘5’)

1
= §f dkc lim ¢(k)

1 f dk 24??
= 5 G 0O

Convergence can also be ensured, if the contribution of the central volume AV{0) to the
series (2.51), or to the approximation of the integral (2.52) respectively, is replaced by

1 dk g4r 1 o f dk 4dn 4nQd n¥74(0 f
3 j (2n)? (k) g = 5l (G)Ef Gr) k2 - ENE T ax 153 abif? ;n,b{
AVi{0) AVi{0} (-1,

where the last integral may be calculated numerically to high precision using, e.g., spherical
coordinates. This is done in our program.




Appendix B

Excited States within the von Barth
Scheme

As already mentioned in section 2.1.2, excited states that cannot be represented by a
single Slater determinant in the noninteracting case can be obtained by the procedure of
von Barth [vB79], whose application may be illustrated by two examples. Consider, the p*
configuration of the sulfur atom that gives rise to the three terms 3P, 'D and 1S. Solving for
the determinantal states that enter the corresponding excited states, we find the following
relations?

il
e
"
-
foon
.
Jomt
e

i}- Tal \L?G T:""l T)
‘1 7,01,0),~1 T} = iSP:Qsl>
61,04,-11,~1])=|"D,2,0)

l}* T,14,0 4y =1 T) = ;71’5‘([3?:170>+ !IB':I:O})

fl Ts 1 ‘L)ﬂ T: -1 i} = ”%(PP, 190} - llpsisﬂ»

14,010,048, -11) = 5°P,0,0) + "D, 0,0) + —'8,0,0)
jl T‘.‘G T,G w!': -1 Jv) = %PP,G:{D - “\%‘ID$916> - 7{%!18’0!0)
[1 T, 1d,—1 T, -1 ‘L) = %m}s@»ﬂ) - 71'3"‘;;185870>‘

Since the states of different total angular momentum J that belong to each term are
degenerate in the absence of spin-orbit interaction and the energies are invariant under an
overall change of sign of all my; and/or m,;, we are left with six different equations for the

1The MS determinantal states are characterized by the one-particle aumbers i, My, - - o, B4, Mg
{only quantum numbers of the one-particle orbitals in the Is-shell are given}, the multiplet states are
characterized by symmetry labels **+1X My, Mg, where X = §,P. D, ... correspond to L = 0,1,2,3,....
Here, out of the 15 possible states only those corresponding to My, Ms > § are shown, since the local-
density energies are invariant under a change of sign in My, Mg.
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three unknown guantities

E(ET,I\L,E}T,—IT) ZE{P)
E(11,0%,04,-11) =E(P)
E(@T,Gi,"—}_T,*lJ,)mE( D)

B(11,14,04,-11) = 3(ECP)+ E('D)
E(14,01,0),-1]) = gE@P) -+ tE('D) + 3 E('8)
E(l H1id,~-17,—-1 J') = §E{1D) + %E(ls)

Although there are in general more determinants than pure-state energies, in certain cases,
the number of determinants of different energy may be smaller than the number of mul-
tiplets with different energy and the von Barth procedure is not applicable. Examples
we encountered are linear molecules with two inequivalent unpaired 7 electrons, as for
example the excited state configuration o2n3x, of the phosphorus dimer, which gives rise
to the terms? 37, 387, 3A,, and related singlets [Her50]. To illustrate the difficulties
encountered, let us consider the more general problem of two inequivalent electrons in the
cylinder symmetric potential of a diatomic molecule. In Russell-Saunders coupling, sym-
metry species of a diatomic molecule are characterized by the total electronic spin and by
the magnitude of the axial compenent of orbital angular momentum. For a homonuclear
dimer, the symmetry property even (g) or odd (u) with respect to reflection of the coor-
dinates of all electrons in the plane bisecting the nuclear axis in the center of mass (o)
is also defined. In addition, for £ states with zero axial angular momentum, the property
+ of — is precisely defined for the operation of reflection in any plane passing through
the internuclear axis (00c,). “+” states remain unchanged under this operation, while
“_7 states change signs. Let us see how this is accomplished in our two-electron example
by constructing states of the requested symmetries from two-particle Slater determinants.
If we use, e.g., cylindrical coordinates (p,z,¢)%, the spatial parts of the single-particle
solutions that enter the Slater determinants have the general form [Sla63]

fbi,m(pjs zja‘pj) = fi(.ajszj)etm‘pj = ¢£,m(j)si:j =1,2.

Here, m denotes the angular momentum about the intermolecular axis, and the f; may
be (in the homonuclear case) either symmetric or antisymmetric under the operation o.
Spatial parts of Slater determinants that would be compatible with a I state (all m must
add up to zero) would then be

1
@i = E(ﬁfbl,m(l)ézwm(z) + ¢1.m(2)¢2,~m{1))

where the upper sign would be appropriate for a triplet state and the lower for a singlet
state. As inspection shows, these determinants are still not symmetric with respect to

3The symmetrization postulate forbids the existence of 1= and *T} states only, if the = orbitals are
equivalent (see also below).

31n elliptical coordinates (with 77 := jr— Ry}, J = 1,2 and R:= [R; — Rg|, these read p = (r +73}/R,
v = (ry — 73/ R and ) the g and v dependent parts of the orbitals separate as well (see, e.g. [SW3]).
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o.*, instead we have (P, &%) = &* . But +/— symmetry can be taken into account, if
we use linear combinations of Slater determinants such as (®,, & &...)/v2 for + and —
states, respectively. For a A state, on the other hand, a possible spatial part of a Slater
determinant would read

B = (a2 £ @ (D), ot =2.

Since in this case the momenta m and m' about the intermolecular axis of every determinant
are required to add up to 2, we cannot construct {antijsymmetric linear combinations of
these determinants with respect to application of ., and consequently, a A state does not
exhibit +/— symmetry. The single-particle wave functions that enter these determinants
differ only by their phase factors exp{temd;), which a CI wavefunction, consisting of a
sum of such determinants for several m, nevertheless sensitively depends on. Therefore, CI
energy terms of, e.g., 'T%, 12~ and 'A states will {in general) differ. This holds also true,
if we evaluate the energy expectation values of the corresponding determinants within the
the Hartree-Fock (HF) approximation, since phase relations like expum(¢y £ ¢} between
the orbitals enter the energy expectation value via the exchange integral. The energy terms
of the correctly symmmetrized linear combinations of single determinantal HF states can
be recovered by application of the analogues to the von Barth equations within HF theory
[ZRBT77]. The physical origin of the energy-difference is the so-called angular correlation
[Sla63], which takes into account the relative angular position of the two electrons around
the internuclear axis. Since the +/— states considered above contain factors cos m{¢, — ¢z)
and sin m{¢; — ¢.), respectively, a + state will have largest amplitude if the electrons move
in diametrically opposite directions, in contrast to the — state, which has zero amplitude
in this case {for ms0)}. Therefore, a + state should be energetically favored by correlation.

Within LSDA, however, the (spin-)densities are independent of phase factors of the
orbitals like exp(4im¢;) and consequently, the potentials and KS eigenvalues are inde-
pentent of m and m'. This means that we would obtain the same energies if we would
set, e.g., m=m'=0 in the above equations, and we can see that in this case, LSDA can
only distinguish paired and unpaired spin. For example, in the case of the o2x3m, con-
figuration of the phosphorus dimer, the above equations apply with m=m'=1, but since
the KS energies are independent of m and m', we obtain only two different KS energies
{for paired and unpaired spin) for the six unknown energy terms. Unfortunately, it is not
possible to determine the symmetry of the state by, e.g., the application of Hund’s rules,
since these fail for dimers (for example, all first-row dimers have a £, GS, apart from B,
and Oy, which are the only ones to obey at least the first rule [HH79]). This should not be
confused with the Hund’s distinction of the various coupling cases of the spins and angular
momenta that applies well to a diatomic molecule [Atk83]. It is not possible to appeal to
the Hohenberg-Kohn theorem for the lowest state of a well-defined mixture of symmetries
proven by von Barth, since the mixture is in this case by no means definite, and we make

*Applying o, is equivalent to change simultaneously the signs of ¢; and ¢, or likewise, to exchange m
and —m).
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no attempt to ascribe these KS states to any physical states. We note in passing that
similar, but less severe difficulties are encountered for a mymy configuration, when the =
orbitals are equivalent. Such a configuration gives rise to the three terms 32, 'S+ and
YA, but LSDA can distinguish only a triplet and a singlet term. While the assignment of
the triplet term is unambiguos, there is no formal justification to identify the singlet with
the 1T+ term, apart from the fact that a transition into a 'A state is dipole-forbidden
[Atk&3] and cannot be observed in most spectroscopic experiments (but see, for example,
[KN93]). However, it is established tradition to do so (see [JG89] and references therein)
and the reader should be aware of this.




Appendix C

Vertical Excitation Energies of
Selected Clusters

In the first table, we list the calculated vertical excitation energies of the atom and all S
isomers shown in Figs. 3.5-3.15, and in the second table the corresponding values for the
Si,Cy clusters Figs. 3.30-3.39. Only values that correspond to transitions into the lowest
excited state of a given symmetry of the neutral species are considered. In the case of S,
... denotes the occupancies 102102202 202307 1t 1nidol4o? of the lower lying orbitals.

Table C.1: Calculated values (eV) for VDE and for vertical
transition energies for S, n=1,9.

Species Symmetry/ Excited state Excitation Energy
Electronic configuration
Sy [Ne]3s?p* 3p 2.21
ip 3.63
s 4.21
[Nel3s%3p°4st s goa 8.82
3gea 9.17
S pee 10.67
1 pes 10.85
3 pee 11.87
1 poa 12.04
S5 vee 50’32ﬁ,‘f2ﬁ3 32;, VDE 1.91
A 2.45
eF 2.98
... 5ol2rtand 1, 6.25
i, 6.90
S; 8.5{a) Cyy '4;, VDE 2.64

Continued on next page.

“Detachment from the S~ *P ground state into these states is a two-electron transition.
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Species Symmetry Excited state Excitation Energy
SAq 3.73
3B 3.77
3B, 3.95
1 As 4.02
1By 4.13
!By 4.84
Sy 3.5(b) Cu 14, VDE 1.34
34, 2.93
B 2.94
1 Ag 3.29
1By 3.34
3B, 5.91
1B, 6.85
S7 3.5(¢) D M., VDE 2.84
15 3.02
I, 3.27
Sy 3.5(d}y  Ca 14, VDE 2.45
:By 3.19
1B, 3.96
By 4.09
N 4.33
S; 3.5(e) D ‘4,, VDE 2.47
3 Ba., 3.11
1 Ba, 3.90
8 B3y 3.94
183, 4.19
3By, 4.45
1By 4.73
Sy 3.5(f)  Can ‘44, VDE 2.89
:B, 3.36
'B. 4.07
8B, 3.87
1B, 4.11
S; 3.6(a) C. 1A', VDE 2.85
3 AM 3.28
LAY 3.81
34 3.92
S; 3.6(b) O 14, VDE 2.80
34 3.30
S 3.6(c) o 14, VDE 321
*B 3.34
‘B 3.96
%4 4.25

Continued on next page.
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Species Symmetry Excited state Excitation Energy
S; 3.6(d) C, 14!, VDE 2.77
S; 3.6(e) (3 ‘4, VDE 2.61
B 3.17
‘B 3.80
34 4.53
Sg 3.6(f) o ‘4, VDE 2.70
ip 3.51
e 3.89
24 4.09
Sq 3.11{(a) C, 14', VDE 2.87
4 3.89
Sg 3.11(b) C 14, VDE 3.43
34 3.53
S5 3.11(e) O 14, VDE 3.55
5B 3.56
1B 4.23
34 4.28
S; 3.11(d) <y 14, VDE 3.13
4 3.15
S5 3.1i(e}) Co 14, VDE 3.46
°B 3.73
'p 4.34
sy 3.11{f) C, 1A', VDE 2.69
s 47 3.88
SAf 4.15
LAY 4.51
Sy 3.12{a) 14, VDE 2.52
54 3.81
Sy 3.12(b) 4 14, VDE 2.69
34 3.68
S7 3.12(c) &4 14, VDE 3.46
24 3.46
Sy 3.12(d) C: %A, VDE 3.44
14 3.46
Sy 3.12(e) C 14, VDE 3.41
34 3.53
Sy 3.12(f) °B, VDE 3.52
14 3.62
ey 4.17
S; 3.14(a8) Ds 14, VDE 2.30
9 4.33
) 4.49

Continued on next page.
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Species Symmetry Excited state Excitation Energy
34 4.68
Sy 3.14(b) Cs. 14;, VDE 2.54
24, 3.81
14, 4.17
34, 4.34
S; 3.14(c) 14, VDE 2.68
B 3.57
‘B 3.88
S; 3.14(e) 4 ‘4, VDE 2.86
34 3.60
S; 3.14(d) Cy 14, VDE 3.35
A 3.45
Sg 3.14(f) 4 *4, VDE 3.25
34 3.56
Sy 3.15(a) & 1A, VDE 2.86
A 3.82
S; 3.15(b) C, 1A', VDE 2.83
3 4% 3.86
A" 4.34
Sy 3.15(c} C, *4', VDE 2.64
34" 4.06
14" 4.24
Sy 3.15(d) ®B, VDE 3.68
1A 3.94
B 4.24
Sy 3.15(e) Cy 14, VDE 2.63
54 3.64

Table C.2: Calculated values {eV) for VDE and for vertical
transition energies for 5i,C,, 2< n + m <8.

Species Symmetry Excited state Excitation Energy
SiC Coon 11, VDE 2.55
3% 3.25
311 3.27
te+ 2.30
SiC; 3.30(a) Cpe 14;, VDE 1.50
3By 2.99
1B, 3.55
5iCz 3.30(b)  Cloow 15+, VDE 1.69
311 3.69

Continued on next page.




Species Symmetry Excited state Excitation Energy
i 4.19
Si;C 3.30{c} Do iyt VDE 1.18
n, 3.49
i, 3.94
SipC 3.30(d) iy, 1Ay, VDE 1.56
3B, 2.90
1B, 3.37
8iC3 3.30(e)  Cloow 3%-, VDE 2.86
1+ 3.27
*n 4.36
31 4.96
SiCs 3.30(f)  Ca 14;, VDE 2.35
5By 2.83
1By 3.55
SiC; 3.31(a) (4 14,, VDE 2.08
By 3.00
D : 3.38
$i,Cy 3.31(0) C, 1A' VDE 2.07
S4" 2.83
LAY 3.21
Si3Cs 3.31{c) Do %, VDE 2.14
2N 2.49
1, 4.55
i, 4.92
8i2Cy 3.31(d) Dy '4,, VDE 1.56
Bs, 3.62
1By, 3.76
8i3C 3.31(e) Coy 14, VDE 1.69
By 3.16
: N 3.51
Siz3C 3.31{1) Oy, ‘4;, VDE 2.06
5By 2.33
1B 2.45
Sigc 3.34(&) Cgv 141, VDE 2.47
8By 2.59
‘B, 3.02
SiCy4 3.34(b)  Cow tp+, VDE 2.27
Qi 4.62
1 5.08
SiCs 3.34(¢) (g 14;, VDE 1.95
5By 4.13
o 4.55
8i2C; 3.34(d) Door '¥Y, VDE 1.82

Continued on next page.
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130 APPENDIX C. CALCULATED VERTICAL EXCITATION ENERGIES

Species Symmetry Excited state FExcitation Energy
3% 3.66
15 3.92
SixCy 3.34(e) O 14, VDE 1.93
A 3.01
SisCs 3.34(F) C, 1A', VDE 2.01
34 3.28
SizCs 3.35(2) O 14;, VDE 1.88
3By 2.59
1B, 2.94
54, 4.34
14, 4.48
5i13C; 3.35(b) Cy, ‘4,, VDE 2.32
34y 3.91
1 As 4,18
SisCs 3.35(c) 141, VDE 2.73
:B, 2.79
1B, 2.92
8i4C 3.35(d) Ca 14, VDE 3.21
By 3.37
1B, 3.48
§icC 3.35(e) Oy, ‘4;, VDE 2.01
34, 3.00
14, 3.20
SiCs 3.35(f)  Cloow *%-, VDE 3.22
Iyt 3.51
0 4.48
I 4.99
SEC5 3.36(3) Cly 1;‘11& VIE 2.86
95 3.48
1By 3.70
Si;Cs 3.36(b) Cyy 14;, VDE 2.78
&9 M 4.26
1By 4.62
Si3Cq4 3.36(¢) Doen 8%, VDE 2.59
Tyt 2.85
511, 4.91
L, 5.25
SiyCy 3.36(d) C, 1A', VDE 2.75
s 4 3.50
8i,Cy 3.36(¢) Can 14,, VDE 2.61
B, 3.68
‘B, 3.86
512 Cy 3.36(f} Cla 14,, VDE 3.15

Continued on next page.




Species Symmetry Excited state Excitation Energy
1B, 3.38
B, 3.3¢9
8i3C3 3.37(a) Oy, '4;, VDE 2.51
84, 2.93
Si3Cs 3.37(b) C, 14, VDE 2.76
3 47 3.41
1 A" 3.57
SizsCs 3.37(c) 14, VDE 1.89
54 3.50
SiaCs 3.37(d) C, 14, VDE 2.00
34¢ 3.69
52402 337(8) C} IA; YDE 2.18
%4 3.48
SisCs 3.37(f) Cyy 14, VDE 1.02
3B, 3.30
1B, 3.58
SisC; 3.38(a) D 14, VDE 1.07
B 3.84
1B, 4.16
SisC 3.38(b) C, 14, VDE 1.81
% 4 3.38
SisC 338(6) Cg,, 1‘41, VDE 1.54
34 3.39
14, 3.61
SisC 3.38(¢) (4, 14;, VDE 2.07
3B, 3.01
1B, 3.34
Sing 3.38(6} I}mh 12;, VIDE 2.18
3%, 3.78
1y, 3.95
Si;Cs 3.38(F) ¢, 14', VDE 3.17
4 3.75
Siec 3.39(3) Cg.v 1.41, VDE 2.47
iBy 3.00
ig, 3.17
SigC 3.39(b) C, 14, VDE 2.27
3 4 2.79
1 4% 3.00
SieC 3.3%{c) C, 1A', VDE 1.79
S 4" 3.17
147 3.36
Si;C 3.3%(d) C, 14", VDE 2.05
SA 3.01

Continued on next page.
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132 APPENDIX C. CALCULATED VERTICAL EXCITATION ENERGIES

Species Symmetry Excited state Excitation Energy
14t 3.19

SiTC 3.39(8) 031, 3A1$ VDE .32
14, 3.47

Si,C 3.39{f) C, 14" VDE 2.45
340 2.69

LA 2.91
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