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1. Introduction

In the first half of the twentieth century, Niels Bohr, Erwin Schrödinger, Werner Heisen-
berg, Paul Dirac and others laid the foundation of quantum mechanics after it had
become apparent that the laws of classical mechanics failed for sub-atomic particles.
Quantum mechanics is not just a special theory for microscopic particles but also con-
tains classical mechanics in the limit of macroscopic dimensions and scales. Therefore the
description of macroscopic objects from first principles, or ab-initio, is possible. With the
discovery of quantum mechanics, Dirac pointed out that ”the underlying laws necessary
for the mathematical theory of a large part of physics and the whole of chemistry are
thus completely known” [Dir29], but he also foresaw the main problem, as he continued
”the difficulty is only that exact applications of these laws lead to equations which are
too complicated to be soluble.” Ever since, a large part of condensed-matter theory has
been devoted to developing approximate practical methods that are accurate enough to
describe the main properties of materials.

The chemical binding of materials is the result of an interplay of the dynamics of
electrons and their interactions with the atomic nuclei as well as the interactions among
each other. This leads, for example, to the stable periodic arrangement of atomic nu-
clei in crystals. While the quantum mechanical motion of a single electron, e.g., in a
central potential, the hydrogen atom, is a relatively simple problem that can be solved
analytically, the equation of motion becomes exponentially more complicated the more
electrons are being treated. The main reason for this is that the electrons interact with
each other so that their motion is correlated: the motion of any electron depends on
the motion of all other electrons. As a consequence, the many-electron wave function
becomes so complicated that it is impossible to store it in a computer for systems with
more than a few electrons, let alone the billions of billions of electrons in a macroscopic
material.

In 1964, Pierre Hohenberg and Walter Kohn revolutionized the calculation of phys-
ical properties of atoms, molecules, and solids from first principles by introducing the
density-functional theory (DFT). They showed that one does not have to deal with the
complex many-electron wave function; already the much simpler electronic density ρ(r),
which is just a real-valued scalar function of space, contains all information about the
physical system, e.g., the ground-state total energy. Together with a variational prin-
ciple for the total energy, this allows us, in principle, to determine the ground-state
arrangement of the atomic nuclei at zero temperature by minimizing the total energy
of the system. While Hohenberg and Kohn proved the theoretical foundation of DFT,
Kohn and Sham introduced one year later, in 1965, a mapping of the real interacting
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1. Introduction

system to a fictitious non-interacting system of electrons that has made practical cal-
culations possible; the fictitious system of non-interacting electrons is constructed in
such a way that its electronic density coincides with that of the real system. Then, the
only approximation is the exchange-correlation energy functional, whose exact form is
unknown. The success of DFT lies in the observation that rather simple approximations
for this quantity are known, e.g., the local-density approximation (LDA) and several
generalized gradient approximations (GGAs), yield reliable results for a wide range of
materials. The impact of DFT on theoretical chemistry was acknowledged by awarding
Walter Kohn and John A. Pople the Nobel prize in chemistry in 1998. Today, DFT
is a standard method in theoretical solid-state physics, theoretical chemistry, materials
science, mineralogy, bio-physics, etc. It has been used successfully to determine atomic
arrangements in molecules and solids, dynamical properties like lattice vibrations, elec-
tronic and magnetic properties, etc.

The structure of a binary molecule consisting of two atoms is determined by a simple
number, the inter-atomic distance between the nuclei. If the nuclei are displaced relative
to each other, forces arise that cause the nuclei to return to their equilibrium distance.
Similar restoring forces occur in molecules that contain more than two atoms. Here,
the angles between the nuclei are additional parameters that may change during the
relaxation. The ground-state geometry of a molecule or cluster, i.e., the agglomerate of
several atoms in a stable arrangement, is characterized as the global minimum of the
potential energy surface. Any deformation of the structure will give rise to a larger
total energy. To find the ground-state geometry within DFT, one could calculate the
total energies of several different atomic configurations and then choose the configura-
tion that is lowest in energy. However, since there are infinitely many structures, this
is not a viable practical approach. Instead, one uses an iterative optimization proce-
dure that involves the forces acting on the atoms. As long as a stable geometry is not
found yet, there are finite restoring forces that drive the atoms toward their equilibrium
positions. In each iteration of the geometry optimization one calculates these atomic
forces, which are defined as derivatives of the total energy with respect to the atomic
positions. Assuming a parabolic shape of the potential energy surface, this information
can then be used to extrapolate to a new atomic arrangement, which starts the next
iteration. Furthermore, once a stable geometry is found, one can calculate the restoring
forces by selectively displacing certain atoms. The restoring forces are directly related
to the so-called dynamical matrix, from which the vibrational modes and frequencies of
the molecule or cluster can be calculated.

In a solid, atomic forces determine the configuration of the nuclei in the unit cell,
too. When using periodic boundary conditions (which is necessary to deal with the
infinite number of atoms in a crystal), all copies of an atom in the unit cells move in
the same way as the representative atom. Hence, the representative only changes its
position relative to the other atoms in the unit cell but not relative to its equivalent
atoms. Apparently, a solid possesses additional degrees of freedom, which are related
to the arrangement of atoms within the equivalent sets of nuclei. The simultaneous
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change of the position of all atoms in a regular but aperiodic manner is called strain.
More specifically, strain can be characterized by a three-dimensional tensor ε; the atomic
displacements are given in terms of this tensor by r → (1 + ε)r. The unit cell of a solid
under strain differs in shape or volume from the unit cell of the solid in its equilibrium
state. In the strained solid, forces occur that simultaneously drive all atoms back to
their equilibrium positions. These forces can be defined to act on the boundary of the
unit cell, a special case of which is pressure. In general, they are called stress. Together
with the atomic forces, stress can be used to determine the crystal structure of a solid
in its ground state, which is defined by the atomic basis and the lattice vectors of the
crystal, respectively: Equilibrium is achieved if (i) the total forces vanish on each atom
and if (ii) the macroscopic stress equals the externally applied stress. For example, in a
liquid the state of the system is fully specified by the volume, pressure and temperature.
Note that the elasticity of solids is another property that is directly related to the stress
tensor. In this way, we can understand the microscopic origin of elasticity, which is
originally a concept used in continuum mechanics.

Figure 1.1.: Uniaxial tensile stress transforms a bcc structure into a bct structure.

Stress and strain are interesting not only for finding the ground-state crystal structure
of a system. A material can also be forced into a strained geometry. The technique of
growing thin films of a certain material onto a substrate material exploits this feature.
At the contact zone, interface forces of the substrate exert stress on the film material,
and the film adopts the lattice constant of the substrate. Choosing different substrates,
one can experimentally tune the lattice constant of the film and in this way study its
behavior under different degrees of strain. This enables, for example, the study of the
dependence of the easy magnetization axis of iron or nickel films under strain [SK11].

Another example is the study of the deformation of solids induced by a magnetic
field. Such a study provides a means to search for new materials to use in transformers,
dynamos, and other applications of electric engineering. Severe deformation of the mate-
rials embedded in these devices causes them to heat up and to generate a characteristic
humming. By knowing how a material changes its shape in a magnetic field, its usability
and performance in such devices can be predicted.

3



1. Introduction

Figure 1.2.: Film (white) on different substrates (gray). In the middle figure, substrate
and film are of the same material, the film is under no stress. On the left,
the substrate has a greater lattice constant, leading to a tensile stress in
the film (thin green lines). On the right, the substrate has a smaller lattice
constant. This results in compressive stress in the film (red zigzag lines).

The first derivation of the macroscopic stress tensor from DFT was provided, im-
plemented and tested by Nielsen and Martin [NM85a, NM85b] in the context of the
pseudo-potential method, a particular approach to electronic structure methods based
on density functional theory, in which plane waves are used as basis sets. An imple-
mentation that was later extended to the projector augmented-wave (PAW) method
[Blo94, TJB+08].

In this thesis, a formalism is presented to obtain the stress tensor of a strained solid
from a DFT calculation for an all-electron method, that means an electronic structure
method that takes all electrons of an atom into account and can be applied to all atoms
of the periodic table and also to magnetic materials with complex magnetic phases. Pre-
requisite to precise stress tensor calculations is the treatment of the crystal potential
and the charge density without approximation of their shapes.
With all these factors in mind, we have chosen the full-potential linearized augmented-
plane-wave (FLAPW) method [WKWF81, WWF82, Sin94, BB06, htt12], considered to
be the most accurate electronic structure method available with caveat that it is tech-
nically and conceptually a rather complex method. The FLAPW method relies on a
partitioning of space into non-overlapping atom-centered muffin-tin spheres and the re-
maining interstitial region. In the latter plane waves are used as basis functions, while
in the former one employs superpositions of atomic solutions of the radial Schrödinger
equation, as well as the energy derivatives of the atomic solutions. The superpositions
are such that they match in value and first radial derivative to the plane waves in the
interstitial. A force formalism based on the FLAPW method was derived by Yu et al.
[YSK91], while a formalism derived by Soler and Williams [SW89] uses a variant of a
linearized augmented plane-wave method.

Prior to the results of this thesis, the stress tensor was formulated within the FLAPW
method by Thonhauser et al. [TADS02], where they give a guideline on how to ob-
tain the stress tensor from total-energy calculations. However, their publication lacks
a detailed description of the stress contribution coming from the electrostatic interac-
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tion between the particles, which poses a challenge due to the non-local nature of the
corresponding energy term. A very rigorous deduction of stress using the basis set of
Soler and Williams was done recently by Nagasako and Oguchi [NO11]. Their derivation
cannot directly be adopted for the FLAPW method, though.

The formalism presented here will allow to relax the lattice structure of a solid similar
to the relaxation of atomic positions within the unit cell. Furthermore, the formalism
can be used for studies of the elasticity of materials.

Bravais lattice

Atomic basis
DFT calculation

Total energy,
Other results

Forces F a 6= 0:

τ a → τ a + δτ a

Stress σ 6= 0:

r → (1 + ε)r

Figure 1.3.: Lattice structure optimization: Start with a guessed lattice geometry. If
the resulting atomic forces are non-zero, shift the atoms in the unit cell and
continue the optimization until the forces are sufficiently small. If the stress
is non-zero, change the Bravais lattice vectors accordingly and continue the
optimization until the stress vanishes.

The thesis is divided into seven chapters. Chapter 2 will provide a general theoretical
background to stress in solids and an introduction to DFT and the formalism of Kohn
and Sham. Chapter 3 explains the FLAPW method starting from the Bloch theorem
and gives a detailed overview of the construction of the electrostatic potential. Chapter
4 gives an overview about the force implementation in the FLAPW method following
Yu et al. Chapter 5 then contains the main part of this thesis, the variation of the
total-energy formula by strain. Pressure formulas are provided to compare the stress
components to, and the implementation into the FLEUR code is presented. This code is a
FLAPW DFT code for energy band calculations, which is developed and maintained in
the Peter Grünberg Institut of the Forschungszentrum Jülich. Chapter 6 compares the
formulas found in this thesis to the previous works of Nielsen and Martin, Thonhauser
et al., and Nagasako and Oguchi. First results for aluminum are presented in chapter
7. In chapter 8, we summarize the thesis and give an outlook. Ways to improve the
implementation further are suggested and further problems are discussed to which the
formalism can be applied. The appendix provides some important technical details.
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2. Theoretical background

2.1. Stress and strain in solids

According to the textbook of Nye [Nye98], a body is said to be in a state of stress if it is
acted upon by external forces or if parts of the body exert forces on neighboring parts.
In considering a unit cube within a body, stress can be described as force components
acting on the surface planes of this cube. We define a second rank stress tensor σ. On the
center of each surface of the cube, a stress component σαβ is reserved for each direction
given by the area normals of the cube (see fig. 2.1 for clarification).
If a strain ε is applied to a solid in its equilibrium state, i.e. if all atoms of the solid
are displaced by (1 + ε), then a state of stress is invoked that forces the solid back
into its unstrained shape. Similar to the stress, the strain is a second rank tensor. Its
elements εαβ describe the expansion or compression of the body along a certain direction
(if α = β) or a shear of the body perpendicular to the normals of a unit cube inside the
solid (if α 6= β).

εyy

y

z

x

σxy

σxz

σxx

σzz

σzy
σzx

σyy

σyz

σyx

Figure 2.1.: Components of the stress tensor. On each face of the cube, stress can act
perpendicular to the surface normal or parallel to it. E.g. the stress com-
ponent σyy causes the cube to expand or to shrink by εyy.
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2. Theoretical background

We define both quantities to be symmetric: Antisymmetric strain results in a trans-
formation matrix, which is conceptually of the form 1 0 εxz

0 1 0
−εxz 0 1

 ≈
 cos(εxz) 0 sin(εxz)

0 1 0
− sin(εxz) 0 cos(εxz)

 .

This describes a rotation of the whole body, but no deformation. In turn, antisymmetric
stress causes a rotation of the body. Hence, we discard antisymmetric stress and strain.

2.2. The many-body Hamiltonian

The most fundamental and impressive quality of a solid is that it has a variety of char-
acteristics which are not featured by the single atoms the body is composed of. Electric
conductivity as well as magnetism arise as collective properties of the particles in the
system, while elasticity is a macroscopic property that cannot even be attributed to
single atoms. The particles of a solid can be described by the Schrödinger equation

H |Ψ〉 = i~
∂

∂t
|Ψ〉 , (2.1)

where the Hamiltonian expresses the motion of the particles:

H = −
∑
j

~2

2me
∇2
j −

∑
a

~2

2Ma
∇2
a

−
∑
j,a

Zae
2

|rj − τ a|
+

1

2

j 6=k∑
j,k

e2

|rj − rk|
+

1

2

a6=b∑
a,b

ZaZbe
2

|τ a − τ b|

Htr. units
= −

∑
j

1

2
∇2
j −

∑
a

1

2M̃a

∇2
a

−
∑
j,a

Za
|rj − τ a|

+
1

2

j 6=k∑
j,k

1

|rj − rk|
+

1

2

a6=b∑
a,b

ZaZb
|τ a − τ b|

The second part of the equation is expressed in Hartree units, which will be used for the
remainder of this thesis. In these units, the electron mass me as well as the elementary
charge e, the reduced Planck’s constant ~ and Coulomb’s constant 1/4πε0 are set to
unity, leaving M̃a = Ma/me as the relative atomic mass of the nucleus of atom a. rj
denotes the position of the j-th electron, while τ a is the position of the nucleus of atom
a. Za is that nucleus’ charge number. A solution to the Schrödinger equation 2.1 would
be a function dependent on the spatial coordinates of all particles in the system and is
as such only obtainable for very small systems.
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2.3. Density functional theory

Exploiting the fact that the nuclei are more massive than the electrons by at least three
orders of magnitude, both move on different time scales. Due to that it is feasible to fix
the atomic positions τ and regard their influence on the system under consideration as
an external potential in which the electrons move. This approach is known as the Born-
Oppenheimer approximation [BO27]. Still, all solutions of this simplified Schrödinger
equation depend on the coordinates of all electrons and are parametrized by the atomic
positions.

2.3. Density functional theory

A remedy to deal with the complexity of the aforementioned problem was given in the
form of the Hohenberg-Kohn theorem [HK64], for which Kohn was awarded with the
Nobel prize in 1998. Hohenberg and Kohn were able to prove that in order to obtain
information on the ground state of the system, only the electronic density of the ground
state needs to be known. This is a quantity dependent only on one spacial coordinate
(i.e. x-, y-, and z-direction) in contrast to the dependencies of the wave functions and as
such takes much less effort to be stored and handled. In their publication they recorded
that

1. for a given configuration of atomic nuclei, the ground state energy E[ρ] and all other
ground state properties of the system are functionals of the electronic density ρ(r)
in a unique fashion and that

2. the ground state density ρ0(r) minimizes the energy functional, if one assumes a
fixed number of charges in the system.

E[ρ] > E[ρ0] for all ρ(r) 6= ρ0(r)

Therefore, the theory is called density functional theory (DFT). The second statement
allows by means of variational calculus to find the ground state of the system as minimizer
to the energy functional, fulfilling

δE[ρ0] = 0.

It is an integral part of proving the validity of DFT: Assume that ψ and ψ′ are different
ground states of two different systems with external potentials Vext and V ′ext and that
they form the same density ρ = 〈ψ|

∑
i δ(r − ri)|ψ〉. By the second statement, we see

E = 〈ψ|H|ψ〉 < 〈ψ′|H|ψ′〉 = 〈ψ′|H′ − V ′ext + Vext|ψ′〉

= E′ +

∫
ρ(r)

(
Vext(r)− V ′ext(r)

)
d3r.

Doing the same analysis starting from E′ and summing up both inequations, we find the
contradiction

E + E′ < E′ + E.
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2. Theoretical background

So according to their theorem, Hohenberg and Kohn showed that beyond the deduction
of ρ by means of the external potential, Vext → ψi → ρ which is known from textbooks
on quantum mechanics, the ground state density also identifies the external potential
and in turn the whole Hamiltonian, leading to a direct map between both quantities,

Vext ←→ ρ. (2.2)

This sketch, which follows closely the original publication of Hohenberg and Kohn, as-
sumes that the ground state is not degenerate and that both external potentials differ
by more than just a constant shift so different wave functions are generated.

DFT provides a relevant simplification for obtaining the properties of a solid. While
the electronic density still needs to be found, it can now be obtained from a variational
ansatz by minimizing the total energy. This avoids the necessity to use many-body wave
functions.

Vext(r) ρ(r)

|ψ〉

H |ψ〉 = ε |ψ〉
∑
n|ψ|2

DFT

Vext(r) = Vext[ρ0](r)

Figure 2.2.: The textbook way of quantum mechanics follows the top, dotted path. Given
a potential Vext(r), one calculates the eigenfunctions of the corresponding
Hamiltonian. The electron density ρ(r) is then found as the sum of the
eigenfunctions squares. The theorem of Hohenberg and Kohn allows for the
lower path from the ground state density ρ0(r) to the potential, allowing all
three quantities to be the starting point of quantum mechanical calculations
and introducing the equivalence between ground state density and potential.

2.3.1. The Kohn-Sham System

In order to recast the Hamiltonian into a form that might be easier to use, Kohn and
Sham [KS65] formulated the composition of the energy terms as

E[ρ] = Tni[ρ] + U [ρ] + Exc[ρ],

where Tni denotes the kinetic energy of non-interacting electrons and U [ρ] names the
Coulomb energy arising from the interaction of the electrons with the nuclei, which pose
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2.3. Density functional theory

an external potential, as well as with all electrons, which is the Hartree expression:

U [ρ] = Eext[ρ] + EH [ρ]

Eext[ρ] =

∫
ρ(r)Vext(r)d3r

EH [ρ] =
1

2

∫∫
ρ(r)ρ(s)

|r − s|
d3sd3r

Up to this point, the energy functional is rewritten as an expression for electrons that only
interact by their Coulomb repulsion and which are exhibited to an external potential.
The remaining term, the exchange-correlation functional Exc[ρ], formally accumulates
the finer nuances that have to be considered when using quantum mechanics: In it, the
errors made by assuming the electrons as non-interacting in the kinetic energy and the
effects of exchange and correlation are subsumed.
The ground state density minimizes this energy functional as we learned in the previous
section. Therefore, it fulfills

δTni

δρ(r)
[ρ] +

∫
Ω

ρ(s)

|r − s|
d3s+ Vext(r) +

δExc

δρ(r)
[ρ] = 0.

This equation has the same form as one obtained for non-interacting particles moving
in an effective potential

Veff(r) =

∫
Ω

ρ(s)

|r − s|
d3s+ Vext(r) + µxc(r).

Comparing both equations shows that the exchange-correlation potential is given as

µxc(r) =
δExc

δρ(r)
[ρ] =

δ

δρ(r)
(ρ(r)εxc[ρ](r)) . (2.3)

The term εxc(r) represents the exchange-correlation energy density and is such that

Exc =

∫
ρ(r)εxc[ρ](r)d3r.

Using this approach, the density of the original problem can be constructed by solving
an auxiliary single particle Schrödinger equation as(

−1

2
∇2 + Veff(r)

)
ψi(r) = εiψi(r). (2.4)

and then forming the sum of squares of as many Kohn-Sham wave functions as there
are electrons in the system, i.e. the sum over all occupied states,

ρ(r) = 2
N∑
i

ni|ψi(r)|2, (2.5)
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2. Theoretical background

where ni is the occupancy of the state i.
However, as the effective potential in turn depends on the density again, the last two
equations have to be solved self-consistently. After application of a convergence scheme
from an initial guess for ρ0 (for example a Broyden mixing [Bro65]), the ground state
energy and density meet

E0 = E[ρ0] = Tni[ρ0] + U [ρ0] +

∫
ρ0Vext(r)d3r + Exc[ρ0] and (2.6)

ρ0(r) = 2
∑
i

ni|ψi(r)|2. (2.7)

The success of this formalism is based on the observation that the difference between
both kinetic energies, the one for the original many body system and the one for the
non-interacting particles, is comparably small, as is the contribution from exchange and
correlation. By this, the non-interacting system already copes a significant part of the
relevant energies, whereas the exchange-correlation functional corrects the energies on a
smaller scale.
One should be aware however, that the Kohn-Sham eigenfunctions and their eigenvalues
do not actually have a physical meaning. They are merely a means to obtain the density
of the system in an easy fashion.

Given the ground state density, we can now formulate the total energy per unit cell
Ω of a solid with atoms a placed at τ a:

E = Ekin + Exc + Eee + Eie + Eii

=
∑
i

niεi −
∫

Ω
ρ0(r)Veff(r)d3r +

∫
Ω
ρ0(r)εxc(r)d3r

+
1

2

∫
Ω
ρ0(r)

{∫
R3

ρ0(s)

|r − s|
d3s−

atoms∑
b

Zb
|r − τ b|

}
d3r

− 1

2

atoms∑
a∈Ω

Za


∫
R3

ρ0(s)

|τ a − s|
d3s−

atoms∑
b 6=a

Zb
|τ a − τ b|

 (2.8)

The kinetic energy is expressed in this equation as the sum of the Kohn-Sham eigenval-
ues minus a double counting term. This term is the integral of the electronic density
times the effective potential, leaving us with the expression we are looking for. This way
to express the kinetic energy is convenient as the Kohn-Sham eigenvalues and the inte-
gral containing the electronic density and the effective potential already are quantities
easily obtainable from DFT calculations. Furthermore, applying DFT in computational
physics, we want to note that a differential operator roughens the function it is applied
to, possibly making a numerical description of the functions derivative difficult.
For the remainder of this thesis, we assume that we already have found the ground state
density and hence we drop the index 0.
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2.3. Density functional theory

2.3.2. The exchange-correlation functional

The scheme presented so far is exact in principle. However, the actual form of the
exchange-correlation energy functional is not known. It is only known that the xc en-
ergy density is a functional of the electronic density, making the energy density and
potential deviate from each other following (2.3).
In the local density approximation (LDA), εxc becomes a mere function of the electronic
density, making it - as the name suggest - a local approximation. Because it does not
vary at all, the density of the homogeneous electron gas (HEG) acts as a model for this
approach for systems with a spatially slowly varying density. Even though this approx-
imation is rather crude for computing the properties of a solid, where the density is
heavily influenced by the atomic nuclei, it produces surprisingly good results for certain
materials. It is believed that the reason for this is the construction of the LDA after an
actual physical system. Due to this, the LDA functional automatically respects some
conditions that are posed to such a physical system.
The generalized gradient approximation (GGA), another local approximation to the
exchange-correlation functional, adds the gradient of the electronic density to the com-
putation of the xc energy density and potential. As the gradient of a function at a cer-
tain point contains information on the vicinity of that point, its inclusion should cause
an implicit augmentation regarding the non-locality of the real exchange-correlation
functional. Therefore, GGA functionals are often called semi-local, even though their
exchange-correlation energy density and potential are evaluated only at r.
A whole zoo of approximations to the xc functional exists, even within the LDA [vBH72,
CA80, VWN80, PZ81, CP82, PW92] and GGA [PW86, WP91, PBE96], where the meth-
ods to deal with the correlation part or the inclusion of the density gradient are manifold.
Yet more sophisticated methods add explicit non-locality as is done with the orbital
dependent hybrid functionals [HSE03, BFB10, SBF+11], while others deal with exact
exchange [Bet11].
We will restrict ourselves to the local density and generalized gradient approximations,
though. Both can be described on a similar theoretical footing since their locality allows
for certain simplifications. Their explicit expressions will be of no concern to us.
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3. Electronic structure methods

Figure 3.1.: Schematic overview over electronic structure methods. Different parts of the
Schrödinger equation can be handled by different techniques. The techniques
are chosen with respect to the problem under consideration. [BB06]

As the introductional figure 3.1 indicates, there exists a vast spectrum of methods to
perform an electronic structure calculation. Those methods are crafted to fulfill certain
needs on the specific topic one wishes to study.
We are interested in solids and the periodicity of a crystalline structure allows the ap-
plication of Bloch’s theorem [Blo28]. Then, the solution of the auxiliary Schrödinger
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3. Electronic structure methods

equation are of the form

ψik(r) = eik.ruik(r) (3.1)

at each point k in the first Brillouin zone and we can limit ourselves to the unit-cell
volume Ω. The function uik(r) has the same periodicity as the crystal potential. Since
for each reciprocal lattice vector G, the plane wave eiG.r has the correct periodicity, we
can expand uik(r) and consequently ψik(r) into plane waves of reciprocal lattice vectors,

uik(r) =
∑
G

ûik(G)eiG.r and (3.2)

ψik(r) =
∑
G

zikGφkG(r), with (3.3)

φkG(r) =
1√
Ω
ei(k+G).r. (3.4)

Plane waves are a convenient choice because the kinetic energy operator becomes diag-
onal in reciprocal space, whereas the potential is diagonal in real space. Thus, one can
reformulate the Kohn-Sham equation (2.4), which is a differential equation of second
order, as an algebraic (generalized) eigenvalue problem:∑

G

HG′G(k)zikG = εi(k)
∑
G

SG′G(k)zikG (3.5)

The Hamilton and overlap matrices are given as

HG′G(k) =

∫
Ω
φ∗kG′(r)

{
−1

2
∇2 + Veff(r)

}
φkG(r)d3r and (3.6)

SG′G(k) =

∫
Ω
φ∗kG′(r)φkG(r)d3r. (3.7)

In the case of plane waves, the overlap matrix is the identity matrix. Thus we see that
expanding the solutions of the Kohn-Sham equation into plane waves would in general
yield a complete and sufficient representation to find the Kohn-Sham states and their
eigenvalues.

However, the number of plane waves one can practically include into electronic struc-
ture calculations is limited. That by itself would not pose much of a problem if one could
include just as many basis functions as one would need for a decent approximation of the
real solution. But in the vicinity of the 1/r potential created by the atomic nuclei, the
cut-off in the number of basis functions would have to be increased drastically to achieve
convergence to the actual solution, up to the point where a computation is not feasible
any more. To remedy this behavior, there exist pseudo potential methods, replacing
the divergent potential of the atomic nuclei and tightly bound core-electron states by a
smooth potential fitted to reproduce good approximations to the chemically important
valence states.
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3.1. The APW method

We want to include all electrons in the description, though. Therefore, this chapter
comprises of an introduction to the all-electron full-potential linearized augmented plane
wave method (FLAPW) and we will present the steps taken to obtain this method start-
ing from the simple plane waves we found.

3.1. The APW method

The first augmentation to the use of plane waves distinguishes between the space far
away from the atomic nuclei and the space in the vicinity of the atoms. In the former
region, the so called interstitial (IS), the potential does not exhibit features that would
compromise the use of plane waves for the basis and is approximated as a constant. The
near-atom sites are taken as spheres BRa(τ a) around the atomic positions τ a of a certain
radius Ra. Inside those so called muffin-tins (MTa), the potential is considered to be
spherical and a corresponding solution to the Schrödinger equation are radial functions
times spherical harmonics. Both solutions are then matched at the muffin-tin boundary.

This approach was suggested by Slater [Sla37] and is known as the augmented plane
wave (APW) method. Beyond the shape approximations to the potential, it is a method
dinstinctivly crafted to give a physically appropriate description of the auxiliary basis
set. The basis then is

φkG(r) =

{
1√
Ω
ei(k+G).r , r ∈ IS∑
lm a

akG
lm ual (ra, E

a
l )Ylm(r̂a) , r ∈ MTa

(3.8)

with ra = r − τ a being the spatial vector relative to the position of the a-th nucleus.
The matching coefficients are found to be

aakGlm =
4πil√

Ω
ei(k+G).τaY ∗lm(k̂ +G)

jl(|k +G|Ra)
ual (Ra, E

a
l )

and the radial functions u solve{
− d2

dr2
a

+
l(l + 1)

r2
a

+ V a
eff 00(ra)− Eal

}
rau

a
l (ra, E

a
l ) = 0. (3.9)

The El are atom specific energy parameters and Ylm(r̂a) is a spherical harmonic. jl(r)
are spherical Bessel functions. V a

eff 00(ra) finally describes the spherical part of the po-
tential around the nucleus at τ a.
The construction of the radial functions ul implies that each solution of (3.9) is orthog-
onal to all other solutions ũl, that are zero at the sphere boundary and beyond. To
prove this, multiply the corresponding radial Schrödinger equations by r times the other
function and subtract them from each other.{

Ẽl −
l(l + 1)

r2
− El +

l(l + 1)

r2

}
r2ulũl = rũl

d2

dr2
rul − rul

d2

dr2
rũl
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MTa MTb

MTa MTb

MTa MTb

MTa MTb

MTa MTb

MTa MTb

V0IS

IS

IS

Vb00(rb) Va00(ra)MTb MTbMTa MTa

Figure 3.2.: Division of space into an interstitial region between the atomic sites (IS)
and spheres centered at the atomic nuclei, the so-called muffin-tin spheres
(MT). In the APW method, the interstitial potential is a constant V0 while
the potential in the muffin-tin spheres is spherical with a radial function
V00(r).

Integration results in a multiple of the scalar product between ul and ũl on the left
side. The right side becomes after integration by parts

(Ẽl − El)(ul, ũl)

= [rũl(rul)
′ − rul(rũl)′]RMT

0 −
∫ RMT

0
[(rũl)

′(rul)
′]− [(rul)

′(rũl)
′]dr = 0. (3.10)

The last equality holds as ũl vanishes at the muffin-tin boundary and beyond, which
implies that ũ′l, too, vanishes at the muffin-tin boundary. This orthogonality indicates
that the space spanned by the APW basis functions does not include states low in energy
which are highly localized around the atomic nuclei and which decrease rapidly towards
the sphere boundary. Those core states are accounted for separatley by solving (3.9).
Since the core states are confined within the muffin-tin spheres and don’t contribute to
chemical bonds, this description already is an adequate representation for them. Hence,
the core states do not need to be expanded into a basis.

The energy parameter El is a difficulty of the APW method:

First, radial functions that vanish at the muffin-tin boundary will decouple with the
plane wave representation of the basis in the interstitial as they appear in the denom-
inator of the matching coefficients alm evaluated at their zero. This is known as the
asymptote problem. Choosing the energies accordingly to prevent zeros of the radial
functions at the sphere boundaries circumvents the problem but restricts the choice of
energy parameters.
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3.2. The LAPW method

Secondly, fixing the energy parameters at all makes the method impractical: To obtain
a good representation of the Kohn-Sham states, the energy parameters would have to be
chosen at the band energies of those states. However, those band energies are unknown
at this point and in fact they are the quantities that one wants to calculate.
Usually, the El are taken as a variational degree of freedom instead. Then their evalu-
ation becomes a non-linear problem and it cannot be found by a simple diagonalization
of the Hamiltonian with respect to the basis.

3.2. The LAPW method

In order to obtain a higher variational freedom of the basis functions and to reduce the
dependence on the energy parameters El, Anderson [And75] proposed to include into
the muffin-tin description of the basis the energy derivative of the radial functions, given
by differentiating (3.9) with respect to the energy parameter:{

− d2

draa
+
l(l + 1)

r2
a

+ V a
eff 00(ra)− Eal

}
rau̇

a
l (ra, E

a
l ) = rau

a
l (ra, E

a
l ) (3.11)

The basis functions then are constructed by matching the muffin-tin representation to
the plane waves at the sphere boundaries up to first order in the radial variable.

φkG(r) =

{
1√
Ω
ei(k+G).r , r ∈ IS∑
lm

[
aakGlm ual (ra, E

a
l ) + bakGlm u̇al (ra, E

a
l )
]
Ylm(r̂a) , r ∈ MTa

(3.12)

Again, one can show the orthogonality of the radial functions to core states as was done
in (3.10), because only properties of the radial function ũl describing a core state were
used.
The matching coefficients are given as(

aakGlm

bakGlm

)
=

4πil√
Ω
ei(k+G).τaY ∗lm(k̂ +G)U−1

(
jl(|k +G|Ra)

|k +G|j′l(|k +G|Ra)

)
. (3.13)

Using the abbreviation W a
l (Ra, E

a
l ) = ual (Ra, E

a
l )u̇al

′(Ra, E
a
l ) − u̇al (Ra, Eal )ual

′(Ra, E
a
l )

for the Wronskian determinant, the matrix U−1 is

U−1 =
1

W a
l (Ra, Eal )

(
u̇al
′(Ra, E

a
l ) −u̇al (Ra, Eal )

−ual ′(Ra, Eal ) ual (Ra, E
a
l )

)
. (3.14)

The idea behind taking the energy derivative of the radial function into consideration
becomes obvious by Taylor-expanding the radial function around the band energy ε:

ual (ra, ε) = ual (ra, E
a
l ) + (ε− Eal )u̇al (ra, E

a
l ) +O((ε− Eal )2)

Including u̇l enables valid approximations of ul(ε) if El is chosen to be not too far away
from the band energy in contrast to the necessity to hit the band energy on spot. The
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3. Electronic structure methods

error made in the wave functions, being of the order of O((ε − El)2), is passed on to
the band energies. Choosing those parameters in the middle of an energy window one
is interested in should therefore result in decent band structures.
The asymptote problem does not arise in the case of LAPWs as the Wronskian does not
vanish at the muffin-tin boundary. This can be proven by multiplying (3.9) and (3.11) of
the same l-value with r times the other radial function and subtracting both equations
from each other. Integration then gives:

1 =

∫ Ra

0
r2u2

l dr =

∫ RMT

0

[
ru̇l

d2

dr2
rul − rul

d2

dr2
ru̇l

]
dr

=
[
ru̇l(rul)

′ − rul(ru̇l)′
]RMT

0

= R2
MT[u̇lu

′
l − ulu̇′l]

The LAPW basis in the muffin-tin spheres depends on G only through the matching
coefficients a and b. Therefore, we can write

ψik(r)|r∈MTa
=
∑
G

zikG
∑
L

(
aakGlm ual (ra) + bakGlm u̇al (ra)

)
YL(r̂a)

=
∑
L

(
Aaiklm ual (ra) +Baik

lm u̇al (ra)
)
YL(r̂a), (3.15)

defining the capital A and B coefficients as

A\Baik
lm =

∑
G

zikGa\bakGlm . (3.16)

Since we will deal with charge densities, the product of two wave functions will have
to be calculated. This results in a lengthy formula. For the sake of brevity, we also
introduce an index λ which moderates between the quantities belonging to the radial
function and its energy derivative for use in the stress chapter:

ψik(r)|r∈MTa
=
∑
L

1∑
λ=0

AaikLλ u
a
lλ(ra)YL(r̂a) (3.17)

The assignment of λ is given by

AaikL0 u
a
l0(ra) = AaikL ual (ra) (3.18a)

AaikL1 u
a
l1(ra) = Baik

L u̇al (ra). (3.18b)

Seeing that the addition of u̇ into the calculations increases the flexibility of the basis
and thus the efficiency of the method comparing accuracy and complexity, one might
be led to conclude that the inclusion of further energy derivatives should bring even
more advantages. This is not observed in practice, which is plausible remembering that
the inclusion of more energy derivatives makes a matching to higher order necessary
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3.3. The FLAPW method

as well. There are two ways to describe an arbitrary smooth function. One way, by
the mathematical definition of a function, is to map each of the uncountable many
points of the set on which the function is defined onto its image. The other way makes
use of the Taylor expansion and identifies the functions by the just countable many
expansion coefficients in front of the monomials xn. As these coefficients are basically
the derivatives of the function, this indicates that defining a function by its derivatives
is indeed a strong condition.
While adding the first energy derivative into the calculations increases the flexibility in
describing the Kohn-Sham states inside the muffin-tin spheres by allowing to deviate
from the band energy, adding more derivatives thus fixates the resulting function too
firm. The error made around the energy parameter decreases, but in order to retain the
variational flexibility to describe the physical system, more basis functions are needed.

3.3. The FLAPW method

In order to drop the shape approximations in the description of the crystal potential and
to include its full form into the LAPW method, it seems natural to mimic the twofold
description of the wave functions by describing the density and the original potential
inside the muffin-tin spheres and the interstitial region on a different footing as well. To
that end, the interstitial representation of both quantities is done by an expansion into
plane waves, i.e. a Fourier transformation. As the charge density is the square of the
wave functions and the reciprocal lattice-vectors form a group, the charge density takes
the form

ρ(r) =
∑
ikGG′

nik
z∗ikGzikG′

Ω
e−i(k+G).rei(k+G′).r

=
∑
G′

(∑
ik

nik
Ω

∑
G

z∗ikGzik(G′+G)

)
eiG

′.r =
∑
G

ρ̂(G)eiG.r. (3.19)

The interstitial description of the potential is more complicated since the Coulomb po-
tential part demands for inclusion of the strongly varying muffin-tin contributions as
well. For an accurate description of the interstitial potential, many plane waves would
be needed. In section 3.3.3, a detailed formulation of the electrostatic potential will be
given that circumvents the need for an excessive amount of plane waves.
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3. Electronic structure methods

Inside a muffin-tin, the wave functions are given as an expansion into spherical har-
monics. The density around atom a then is expressed by

ρa(ra) =
∑
st

Yst(r̂a)

[∑
ik

nik
∑
Glm

∑
G′l′m′

z∗ikGzikG′

∮
Y ∗stYlmYl′m′dS2

×
{
aakG∗lm aakG

′

l′m′ ul(ra)ul′(ra) + bakG∗lm aakG
′

l′m′ u̇l(ra)ul′(ra)

+ aakG∗lm bakG
′

l′m′ ul(ra)u̇l′(ra) + bakG∗lm bakG
′

l′m′ u̇l(ra)u̇l′(ra)
}]

+ ρacore(ra)Y00(r̂a) =
∑
st

ρast(ra)Yst(r̂a). (3.20)

The muffin-tin potential is similarly given by

V a(ra) =
∑
st

V a
st(ra)Yst(r̂a). (3.21)

Its exact form is obtained by solving a Dirichlet boundary value problem. However,
knowledge of the interstitial potential is necessary to set up the boundary values. For
that reason, we postpone the exact formulas to section 3.3.3, too.

The storage and computational demands to handle the density and potential can be
simplified by exploiting lattice symmetries of the solid under consideration. Using these
symmetries, several basis functions of the aforementioned expansions can be merged.
In case of the plane waves, the symmetrized version is called a star and the spherical
harmonics condense to lattice harmonics. We will give an overview over these represen-
tations, but we wish to note a critical thing:
Straining the system can explicitly change the symmetry properties of a solid. While
stars and lattice harmonics are a good representation to calculate quantities of a system
of fixed shape, they are impractical to describe a configuration that is intended to relax
according to the stress acting upon it.
Therefore, the next sections mainly will serve as a map between the two forms of repre-
sentation stars vs. plane waves and lattice harmonics vs. spherical harmonics.

3.3.1. Stars as symmetrized plane waves

A crystal lattice is invariant under its Nop space group operations
{
R|t
}

. R are the
rotations of the space group and t are its (non-symmorphic) translations.{

R|t
}
r = Rr + t

This suggests that the description of density and potential of the system along certain
directions should stand in some kind of relation.
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3.3. The FLAPW method

A star relates plane waves to other plane waves that share a space group equivalent
reciprocal lattice vector via

Φs(r) =
1

Nop

∑
R

eiRGs.(r−tR).

Onto a representative reciprocal lattice vector Gs, all space group operations are applied
and the results are summed up. Especially those Gs on high-symmetry directions will
reproduce the same reciprocal lattice vector more than once, making this representation
more elaborate than necessary for our purposes. Instead, a form can be chosen that
sums only once over the ms distinct plane waves the star is composed of:

Φs(r) =
1

ms

∑
G:G=RGs for some R

φGe
iG.r

The occurrence of multiple space group rotations that map the representative vector Gs

onto the same G is accounted for in the phase factors

φG =
ms

Nop

∑
R:RGs=G

e−iG.tR .

If a plane wave G is part of a star, it cannot be part of another star due to the group
properties of the space group: AssumingG would be contained in the stars 1 and 2, there
exist operations which map the representatives of the stars onto G = R

1
G1 = R

2
G2.

Then R−1
1

R
2

maps between G1 and G2 and is an operation of the space group again,
making both representatives belong to the same star.
To a star, only plane waves with the same |G| contribute. The operations R preserve
the length of a vector when operating on it. This does not imply that all plane waves
with the same |G| are part of the same star.
Thinning out the number of basis functions for the representation of charge and potential
by merging them can only decrease the number of effective basis functions, never raise it.
In lattices with a high symmetry, the number of stars is much smaller than the number
of single plane waves.
Furthermore, each function with the same symmetry as the lattice from which the stars
are formed can be expanded in stars, as they are orthogonal:

1

Ω

∫
Ω

Φ∗s(r)Φs′(r)d3r =
1

ms
δss′

The relation between star expansion coefficients and coefficients from a plane wave ex-
pansion is in terms of a phase factor.

f(r) =
∑
G

f̂(G)eiG.r =
∑
s

fs
1

ms

∑
G:G=RGs

φGe
iG.r
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Since the star containing a reciprocal lattice vector is unique, comparison between both
representations gives:

f̂(G) = δsG
1

ms
φGfs or fs = ms · δsGφ∗Gf̂(G)

The Kronecker delta indicates that only G vectors from the Fourier transformation
must be included that belong to the star s. So, if one has given the coefficients of a star
expansion, the coefficients of a plane wave expansion can be obtained by looping over all
plane waves, finding the star that plane wave is part of, multiplying the phase factor φG
to the star coefficient and weighting it by the number of plane waves in that particular
star.

3.3.2. Lattice harmonics

The expansion of the density and potential inside the muffin-tin spheres is in terms of
spherical harmonics. As with the stars, a high symmetry of the crystal lattice allows for
some spherical harmonics to be combined into a symmetrized basis function, the lattice
harmonic K a

ν (r̂a). The coordinate origin of each lattice harmonic is at an atom site τ a
and the coordinates are given relative to this origin. Thus, instead of the full set of
space group operations, only those symmetry operations can be taken into account that
do not alter the atomic position. The lattice harmonics are constructed to be real and
orthonormal and a more detailed overview regarding their synthesis can be found e.g.
in the book of Singh [Sin94]. They take the form

K a
ν (r̂a) =

∑
m

caνmνYlνmν (r̂a).

Only the m and explicitly not the l components of a set of spherical harmonics can be
combined as the operations, which allow for the relevant atomic position to be fixed,
only consist of rotations. Rotating the argument of a spherical harmonic leaves its l
component unchanged, but mixes up several m components. This does not imply that
each spherical harmonic with the same l quantum number is contained in the same
lattice harmonic.
As they are orthonormal by construction, each function that shares it symmetries with
the local symmetry of a lattice site can be expanded into lattice harmonics. Comparing
the spherical and lattice harmonic expansions of such a function, we find the map between
both representations:

f(ra) =
∑
lm

flm(ra)Ylm(r̂a) =
∑
ν

fν(ra)K
a
ν (r̂a) =

∑
νmν

caνmνfν(ra)Ylνmν (r̂a)

This indicates that the radial functions are connected by

flm(ra) = caνmνfν(ra)δllνδmmν .
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3.3. The FLAPW method

3.3.3. The Weinert method

To restate the reason for this section, let us briefly repeat the problem posed by the
representation of the interstitial potential in terms of plane waves: While the electro-
static potential from the interstitial charge density can be described reasonably well by
plane waves, the 1/r singularities and the resulting density at the atomic sites inside
the muffin-tin spheres demand for an extensive number of plane waves to be included
into the basis. This would cause a straight-forward calculation to be computationally
expensive.
Weinert [Wei81] solved this problem of constructing the interstitial potential by replac-
ing the muffin-tin density with a more convenient one. In a nutshell, the idea behind
this trick is, that in order to calculate the potential of a charge density contained in a
volume, only knowledge of the multipole moments of the density is necessary if one is
interested in the potential outside of that volume. By this, any density that reproduces
the same multipole moments outside this volume will yield the same potential. Thus,
exploiting the freedom to choose a convenient charge density in the muffin-tin spheres,
the interstitial potential can be obtained with much less computational effort.
The task of finding the muffin-tin potential then becomes rather trivial, as it is given as
solution to a Dirichlet boundary value problem with now-known boundary values from
the interstitial potential.

During the course of this thesis, we will learn that the electrostatic potential poses an
explicit challenge in calculating its stress contribution. The coupling between interstitial
and muffin-tin parts in the evaluation of the potential at a certain point is the reason
for this challenge. Therefore, we will give a detailed overview over the Weinert method
in the following.
Say we have given a total charge-density n(r) from all electrons ρ(r) and the atomic
nuclei Zaδ(ra) in a system dependent on some parameter ε. The density is given in
terms of interstitial and muffin-tins as

n[ε](rε) = ρ[ε](rε) =
∑
Gε

ρ̂[ε](Gε)e
iGε.rε for rε ∈ ISε, (3.22a)

na[ε](ra) =
∑
lm

ρalm[ε](ra)Ylm(r̂a)− Zaδ(ra) for rε = ra + τ a[ε] ∈ MTaε. (3.22b)

While the setup of the system depends on ε, it is still set up according to the FLAPW
partitioning scheme, meaning that the muffin-tins are spheres. In a local coordinate
frame of an atom a that is placed at τ a[ε], the relative coordinate ra is independent of
the parameter.
We now calculate the multipole moments of that density inside the muffin-tin spheres in
order to find the condition the smooth replacement density has to fulfill.

qalm[ε] =

∫
BRa (0)

Y ∗lm(r̂a)r
l
an

a[ε](ra)d
3ra

=

∫ Ra

0
rl+2
a ρalm[ε](ra)dra −

√
4πZaδl0 (3.23)
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The total charge-density, from which the interstitial electrostatic potential is constructed,
then has the form

nps[ε](rε) = ρ[ε](rε)Θ(rε ∈ ISε) +
atoms∑
a

na[ε](ra)Θ(rε ∈ MTaε)

= ρ[ε](rε) +
atoms∑
a

(
na[ε](ra)− ρ[ε](ra + τ a[ε])

)
Θ(rε ∈ MTaε)

= ρ[ε](rε) +
atoms∑
a

ñaps[ε](rε − τ a[ε]) = ρ[ε](rε) + ñps[ε](rε),

with na[ε] providing the same multipoles as the original na[ε]. In the second line, the
plane-wave density from the interstitial is expanded over the whole unit cell and then
subtracted from the muffin-tin part, again. Doing this suggests to calculate the multipole
moments of the plane-wave charge-density inside the muffin-tin spheres, which leads to
a subtraction of

qa,PW
lm [ε] =

√
4πR3

a

3
ρ̂[ε](0)δl0

+ 4πil
∑
Gε 6=0

ρ̂[ε](Gε)e
iGε.τa[ε]Y ∗lm(Gε)

Rl+3
a jl+1(GεRa)

GεRa
(3.24)

from qalm[ε]. The remaining part of the pseudo charge, ρ̃aps[ε], then reproduces the mul-

tipoles q̃alm[ε] = qalm[ε]− qa,PW
lm [ε]. We construct this part as a power series in ra up to a

parameter N by defining

ñaps[ε](ra) =
∑
lm

Qalm[ε]Ylm(r̂a)
N∑
η=0

aη[ε]r
l+2η
a .

It then is apparent that the multipoles Qalm in the above expansion have to be

Qalm[ε] = q̃alm[ε]

 N∑
η=0

aη[ε]
Rl+l+2η+3
a

l + l + 2η + 3

−1

to end up with the correct multipole moments again. Fourier transforming the muffin-tin
pseudo charge yields

ˆ̃nps[ε](Gε) =
1

Ω[ε]

∫
Ω[ε]

[∑
a

ñaps[ε](rε − τ a[ε])

]
e−iGε.rεd3ra

=
1

Ω[ε]

∑
a∈Ω[ε]

e−iGε.τa[ε]

∫
BRa (0)

ñaps[ε](ra)e
−iGε.rad3ra
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3.3. The FLAPW method

=
1

Ω[ε]

∑
lma

Qalm[ε]e−iGε.τa[ε]4π(−i)lYlm(Ĝε)

×
N∑
η=0

aη[ε]

Gl+2η+3
ε

∫ GεRa

0
tl+2η+2jl(t)dt (3.25)

and

ˆ̃nps[ε](0) =
1

Ω[ε]

∑
a∈Ω[ε]

∫
BRa (0)

Y ∗00(r̂a)r
0
añ

a
ps[ε](ra)d

3ra
√

4π

=

√
4π

Ω[ε]

∑
a∈Ω[ε]

q̃a00[ε]. (3.26)

By using the equality d
dt [t

l+2jl+1(t)] = tl+2jl(t) of the spherical Bessel functions and
integrating η times by parts, the integral in the Gε 6= 0 components becomes∫ GεRa

0
tl+2η+2jl(t)dt =

[
t2ηtl+2jl+1(t)

]GεRa
0

−
∫ GεRa

0
2ηt2η−2tl+3jl+1(t)dt

= (GεRa)
l+2η+2jl+1(GεRa)− 2η

[
t2η−2tl+3jl+2(t)

]GεRa
0

+ 2η

∫ GεRa

0
(2η − 2)t2η−4tl+4jl+2(t)dt = . . .

= (GεRa)
l+2η+2

η∑
ν=0

(−1)ν2νη!

(η − ν)!

jl+ν+1(GεRa)

(GεRa)ν
.

Subsequently, the sum over η in the description of ˆ̃nps[ε] can be rearranged into sums of
the same powers of GεRa:

Aal [ε] :=

N∑
η=0

aη[ε]
Rl+2η+3
a

GεRa

η∑
ν=0

(−1)ν2νη!

(η − ν)!

jl+ν+1(GεRa)

(GεRa)ν

=Rl+3
a

N∑
ν=0

(−1)ν2ν
jl+ν+1(GεRa)

(GεRa)ν+1

N∑
η=ν

aη[ε]η!R2η
a

(η − ν)!

We demand that the last sum be zero for all ν but ν = N . This can be achieved by
setting

aη[ε] = (−1)N−ηR2(N−η)
a

(
N
η

)
aN [ε]

as a simple substitution proves. Consequently, the sum over η becomes

Aal [ε] = (−1)N2NRl+3
a

jl+N+1(GεRa)

(GεRa)N+1

(
aN [ε]N !R2N

a

)
.
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3. Electronic structure methods

Coming back to the replacements for the multipole moments, we can insert the aη[ε]
there, too:

Qalm[ε] = q̃alm[ε]

 N∑
η=0

aη[ε]
R2l+2η+3
a

2l + 2η + 3

−1

= q̃alm[ε]

 N∑
η=0

(−1)N−ηR2(N−η)
a

(
N
η

)
aN [ε]

R2l+2η+3
a

2l + 2η + 3

−1

=
(−1)N q̃alm[ε]

aN [ε]R2l+2N+3
a

 N∑
η=0

(−1)η

2l + 2η + 3

(
N
η

)−1

(3.27a)

=
(−1)N q̃alm[ε]

aN [ε]R2l+2N+3
a

[
2NN !

(2l + 1)!!

(2l + 2N + 3)!!

]−1

(3.27b)

=
(

(−1)N2NRl+3
a

)−1 (2l + 2N + 3)!!

(2l + 1)!!Rla
q̃alm[ε]

(
aN [ε]N !R2N

a

)−1

The transition from the third to the second to last equation will be proven in the appendix
A.1 since it demands more analytics than physical understanding. Plugging both Aal [ε]
and Qalm[ε] into the Fourier components of the muffin-tin pseudo charge (3.25), we see
that the coefficients aN [ε] cancel out and we find

ˆ̃nps[ε](Gε) =
1

Ω[ε]

∑
lma

Qalm[ε]e−iGε.τa[ε]4π(−i)lYlm(Ĝε)A
a
l [ε]

=
4π

Ω[ε]

∑
lma

(−i)l(2l + 2N + 3)!!

(2l + 1)!!Rla

jl+N+1(GεRa)

(GεRa)N+1
q̃alm[ε]e−iGε.τa[ε]Ylm(Ĝε),

(3.28a)

ˆ̃nps[ε](0) =

√
4π

Ω[ε]

atoms∑
a∈Ω[ε]

q̃a00[ε]. (3.28b)

The total pseudo charge from which the electrostatic potential is constructed then is
given by

nps[ε](rε) =
∑
Gε

(
ρ̂[ε](Gε) + ˆ̃nps[ε](Gε)

)
eiGε.rε .

As the electrostatic potential is connected to the (pseudo)charge via the Poisson equa-
tion, it can be written as

VC [ε](rε) =
∑
Gε

V̂C [ε](Gε)e
iGε.rε =

∑
Gε 6=0

4π
n̂ps[ε](Gε)

G2
ε

eiGε.rε (3.29)
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3.3. The FLAPW method

since VC fulfills

∆εVC [ε](rε) = −4π
∑
Gε 6=0

n̂ps[ε](Gε)e
iGε.rε = −4πnps[ε](rε).

Note that the Gε = 0 component of V̂C [ε] is not explicitly determined by this equation
as any shift in the potential would vanish during differentiation, anyway.
Comparing the single expansion coefficients as

G2
εV̂C [ε](Gε) = 4πn̂ps[ε](Gε),

it becomes prominent that the pseudo density has to fulfill n̂ps[ε](0) = 0. This require-
ment corresponds to charge neutrality in the whole system since the zero component of
the density represents the average density.

A detailed discussion on the choice of the parameter N can be found in the publication
by Weinert [Wei81] that introduced this method. Therein he states, that N − 1 is the
degree to which the pseudo charge is guaranteed to be continuously differentiable on the
muffin-tin boundary and that a different N can be chosen for each value of l. To achieve
a good convergence of the pseudo charge with respect to the number of G vectors, the
paper presents the criterion to chose N(l) such that the first zero of the spherical func-
tion jl+N(l)+1 is close to the maximal value of the product GεRa for each muffin-tin
radius and each reciprocal lattice vector included into the computations. According to
this criterion, the sum of l and N(l) is independent of l.
We assume that the influence of the parameter ε on the maximal value of GεRa is small,
then the choice of N does not depend on ε.
It should be noted that in his book, Singh [Sin94] argues against the sensitivity of
electronic structure calculations to N(l) and suggests a general value of max(GεRa)/2,
independent of l.

Now that the electrostatic potential is known in the interstitial, the potential in the
muffin-tin spheres can be constructed by inverting the Poisson equation to a Dirichlet
boundary value problem. The Green’s function belonging to the homogeneous Laplace
equation on a sphere of radius Ra is known to be

G(ra, sa) = 4π
∑
lm

Y ∗lm(ŝa)Ylm(r̂a)

2l + 1

rl<

rl+1
>

[
1−

(
r>
Ra

)2l+1
]

(3.30)

with r<\> = min \max(ra, sa). The Green’s function subsequently can be used to con-
struct a function g that solves the inhomogeneous Laplace equation ∆g = −f with the
source term f on the same sphere.
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3. Electronic structure methods

Green’s identity provides the proof of this statement:∫
BRa (0)

G(ra, sa)∆g(sa)− g(sa)∆G(ra, sa)d
3sa

=

∫
BRa (0)

∇. [G(ra, sa)∇g(sa)− g(sa)∇G(ra, sa)] d
3sa

=

∮
∂BRa (0)

G(ra, sa)∂sag(sa)− g(sa)∂saG(ra, sa)dS2.

The Green’s function is zero on the sphere boundary and G and g solve their respective
Poisson equations. With g(sa) = VC [ε](sa+τ a[ε]) and f(sa) = 4πna[ε](sa), the original
muffin-tin density, we see:

VC [ε](ra + τ a[ε]) =

∫
BRa (0)

na[ε](sa)G(ra, sa)d
3sa

− R2
a

4π

∮
∂B1(0)

VC [ε](Ras+ τ a[ε])∂RasG(ra, Ras)dS2 (3.31)

The normal derivative of the Green’s function evaluated for s = Ra is calculated to be

∂sG(ra, s)|s=Ra = − 4π

R2
a

∑
lm

(
ra
Ra

)l
Y ∗lm(ŝ)Ylm(r̂a). (3.32)

We finally obtain for the electrostatic potential in a muffin-tin sphere the equation

VC [ε](ra + τ a[ε])

=
∑
lm

Ylm(r̂a)
4π

2l + 1

∫ Ra

0
s2
aρ
a
lm[ε](sa)

rl<

rl+1
>

[
1−

(
r>
Ra

)2l+1
]
dsa − Za

1

ra

[
1− ra

Ra

]

+
∑
lm

Ylm(r̂a)

(
ra
Ra

)l ∑
Gε 6=0

eiGε.τa[ε]V̂C [ε](Gε)

∮
B1(0)

eiGε.RasY ∗lm(ŝ)dS2. (3.33)

With this, we conclude our construction of the parameter dependent electrostatic po-
tential VC [ε](rε) using Weinerts construction method. Discarding the parameter gives
the general construction scheme used in full-potential codes like FLEUR [htt12].

3.3.4. Construction of the exchange-correlation energy density and
potential

In contrast to the electrostatic potential, the quantities corresponding to the exchange-
correlation density and potential shift the attention away from a non-local nature of the
potential towards the non-linearity of their density-dependence, at least as far as the
local density approximation (LDA) and the generalized gradient approximation (GGA)
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3.3. The FLAPW method

are concerned. Due to the locality of the energy functional,

Exc[ρ] =

{∫
Ω ρ(r)εxc[ρ](r)d3r =

∫
Ω ρ(r)εxc(r, ρ(r))d3r , LDA∫

Ω ρ(r)εxc[ρ, |∇ρ|](r)d3r =
∫

Ω ρ(r)εxc(r, ρ(r), |∇ρ(r)|)d3r , GGA,

µxc(r) =
δExc[ρ]

δρ(r)
=


∂

∂ρ(r)ρ(r)εxc(r, ρ(r)) , LDA
∂

∂ρ(r)ρ(r)εxc(r, ρ(r), |∇ρ(r)|)
+ ∂
∂|∇ρ(r)|ρ(r)εxc(r, ρ(r), |∇ρ(r)|) , GGA,

muffin-tin and interstitial contributions can be calculated separately. However, as εxc and
µxc depend on the density themselves in a more complicated fashion, the construction of
those terms has to be executed in real space. Once finished, they are back-transformed
into the standard FLAPW representation.

εxc and µxc in the muffin-tin spheres

The charge density is already given as a spherical/lattice harmonic expansion in the
atomic spheres. The real space representation can thus be found on a mesh by multi-
plying the radial functions evaluated at a certain set of arguments {ri} with the spheri-
cal/lattice harmonics at a certain set of angular positions {r̂i = (Θi, φi)} as

ρ(ri) =
∑
lm

ρlm(ri)Ylm(r̂i).

The absolute value of the gradient needed for the GGA method is constructed with the
same set of {ri}.
After plugging the density (and possibly the gradient thereof) into the formulas for εxc

and µxc, both are given on the same mesh. The choice of the mesh points should be
made considering the back-transformation onto spherical\lattice harmonics. A good set
of mesh points allows for the orthonormality conditions of the spherical harmonics to be
used on it. The radial functions are given by

εxc,lm\µxc,lm(ri) =
∑

j:rj=ri

Y ∗lm(r̂j)εxc\µxc(rj).

εxc and µxc in the interstitial

Stored as plane wave coefficients, a real space representation of the charge density in the
interstitial can be constructed by multiplying them with a phase factor belonging to a
grid point ri and summing them up over the reciprocal lattice vectors:

ρ(ri) =
∑
G

ρ(G)eiG.ri
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3. Electronic structure methods

This can efficiently be done by a fast Fourier transformation. After computing εxc and
µxc on each grid point, the inverse fast Fourier transformation provides their plane wave
counterparts.

ρ(G)
FFT−→ ρ(ri) −→ εxc\µxc(ri)

FFT−1

−→ εxc\µxc(G)

3.3.5. Construction of the Hamilton and overlap matrices

The description (3.6) of the Hamilton matrix and (3.7) of the overlap matrix can now
be used to find the eigenvalues εi(k) of the Kohn-Sham states. For that purpose, the
occurring integrals are split into the muffin-tins and the interstitial region and evaluated
separately. We will apply the notation used in the NIC summer school article about the
FLEUR code [BB06].

Contribution of the muffin-tin spheres

We use the abbreviations

ϕalm(ra) = ual (ra)Ylm(r̂a) and (3.34a)

ϕ̇alm(ra) = u̇al (ra)Ylm(r̂a) (3.34b)

for part of the muffin-tin representation of the wave functions, noting that the spherical
part of the muffin-tin Hamiltonian acts on it by construction as

Hasphϕ
a
lm = Eal ϕ

a
lm (3.35a)

Hasphϕ̇
a
lm = Eal ϕ̇

a
lm + ϕalm. (3.35b)

Plugged into the corresponding parts of the Hamilton matrix (3.6) and the overlap
matrix (3.7), we get

HG′G
MTa(k) =

∫
BRa (0)

(∑
l′m′

aakG
′

lm ϕal′m′(ra) + bakG
′

l′m′ ϕ̇
a
l′m′(ra)

)∗

×HMTa

(∑
lm

aakGlm ϕalm(ra) + bakGlm ϕ̇alm(ra)

)
d3ra and (3.36a)

SG
′G

MTa(k) =

∫
BRa (0)

(∑
l′m′

aakG
′

lm ϕal′m′(ra) + bakG
′

l′m′ ϕ̇
a
l′m′(ra)

)∗

×

(∑
lm

aakGlm ϕalm(ra) + bakGlm ϕ̇alm(ra)

)
d3ra. (3.36b)
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3.3. The FLAPW method

In the evaluation of those terms, the spatial integrals can be executed independent of
the reciprocal vectors k and G. Doing this in the form of

taϕϕL′L =

∫
BRa (0)

ϕa∗L′ (ra)HMTaϕ
a
L(ra)d

3ra, (3.37a)

taϕϕ̇L′L =

∫
BRa (0)

ϕa∗L′ (ra)HMTaϕ̇
a
L(ra)d

3ra, (3.37b)

taϕ̇ϕL′L =

∫
BRa (0)

ϕ̇a∗L′ (ra)HMTaϕ
a
L(ra)d

3ra, (3.37c)

and

taϕ̇ϕ̇L′L =

∫
BRa (0)

ϕ̇a∗L′ (ra)HMTaϕ̇
a
L(ra)d

3ra (3.37d)

saves a significant amount of computation time and lets us use the aforementioned
eigenvalue properties of ϕ with respect to the spherical component of the Hamiltonian:

〈
ϕaL′
∣∣Hasphϕ

a
L

〉
MTa

= δll′δmm′E
a
l (3.38a)〈

ϕaL′
∣∣Hasphϕ̇

a
L

〉
MTa

= δll′δmm′ (3.38b)〈
ϕ̇aL′
∣∣Hasphϕ

a
L

〉
MTa

= 0 (3.38c)〈
ϕ̇aL′
∣∣Hasphϕ̇

a
L

〉
MTa

= δll′δmm′E
a
l ||ϕ̇aL||2 (3.38d)

Then, only the non-spherical part of the potential demands for an explicit computation to
obtain the t matrices. Since the potential is expanded into lattice harmonics, the angular
part of the integration collapses into Gaunt coefficients, leaving the radial integrals

Iaϕϕl′lν =

∫ Ra

0
r2
au

a
l′(ra)u

a
l (ra)V

a
eff ν(ra)dra, (3.39a)

Iaϕϕ̇l′lν =

∫ Ra

0
r2
au

a
l′(ra)u̇

a
l (ra)V

a
eff ν(ra)dra, (3.39b)

Iaϕ̇ϕl′lν =

∫ Ra

0
r2
au̇

a
l′(ra)u

a
l (ra)V

a
eff ν(ra)dra, (3.39c)

and

Iaϕ̇ϕ̇l′lν =

∫ Ra

0
r2
au̇

a
l′(ra)u̇

a
l (ra)V

a
eff ν(ra)dra (3.39d)
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to be calculated for ν 6= 0. The t matrices consequently are

taϕϕL′L =
∑
ν 6=0

Iaϕϕl′lν

∑
mν

caνmνG
m′mmν
l′llν

+ δll′δmm′E
a
l , (3.40a)

taϕϕ̇L′L =
∑
ν 6=0

Iaϕϕ̇l′lν

∑
mν

caνmνG
m′mmν
l′llν

+ δll′δmm′ , (3.40b)

taϕ̇ϕL′L =
∑
ν 6=0

Iaϕ̇ϕl′lν

∑
mν

caνmνG
m′mmν
l′llν

and (3.40c)

taϕ̇ϕ̇L′L =
∑
ν 6=0

Iaϕ̇ϕ̇l′lν

∑
mν

caνmνG
m′mmν
l′llν

+ δll′δmm′E
a
l ||ϕ̇aL||2. (3.40d)

Finally, the Hamilton and overlap matrix elements are thus given by:

HG′G
MTa(k) =

∑
L′L

aakG
′∗

L′ taϕϕL′L a
akG
L + bakG

′∗
L′ taϕ̇ϕ̇L′L b

akG
L

+ aakG
′∗

L′ taϕϕ̇L′L b
bkG
L + bakG

′∗
L′ taϕ̇ϕL′L a

akG
L (3.41a)

SG
′G

MTa(k) =
∑
L

aakG
′∗

L aakGL + bakG
′∗

L bakGL ||ϕ̇aL||2 (3.41b)

Contribution of the interstitial

The interstitial part of (3.6) and (3.7) can be found by multiplying the integrand with
the unit step function corresponding to the unit cell without the muffin-tin spheres,

ΘIS(r) = 1−
atoms∑
a∈Ω

Θ(|r − τ a| ≤ Ra). (3.42)

It has the Fourier transform

Θ̂IS(G) = δG0 −
atoms∑
a∈Ω

e−iG.τa
4πRa3

Ω

j1(GRa)

GRa
. (3.43)

When the plane wave representation of the basis functions is inserted, we obtain

SG
′G

IS =
1

Ω

∫
Ω
e−i(G

′−G).rΘIS(r)d3r = Θ̂IS(G′ −G) (3.44a)

HG′G
IS (k) =

1

2
|k +G|2Θ̂IS(G′ −G) + (V̂ΘIS)(G′ −G) (3.44b)

As each wave function is given in plane waves up to a G-cutoff of Gmax, the Fourier
transform of the unit step function and its product with the potential has to be given
up to a cutoff twice as big. Unit step function and potential are then fast Fourier trans-
formed into real space and multiplied with each other on a real space mesh. The product
is then back-transformed into reciprocal space via another fast Fourier transformation.
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3.4. Local orbitals

3.4. Local orbitals

During our introduction to the LAPW basis set, we noted that one gets reasonable results
in band structure calculations, if the energy parameters of the valence states are chosen
in the middle of the bands one wishes to study. Furthermore we assumed that the core
states are highly localized and low in energy so that the valence states are orthogonal
to them. While this description gives a good conceptual understanding of the theory at
hand, it lacks applicability with materials where core and valence states are not separated
enough to support such assumptions. That kind of material features states which, while
bound to the core of an atom and not participating at chemical bonds, noticeably extend
into the interstitial region. Such states are called semicore states. Because they are not
orthogonal to the LAPW basis, the interstitial part of them is sampled by the basis while
the muffin-tin part of the basis lacks the flexibility for a proper description. The result of
this deficiency are ’ghost-bands’, artifacts in the band structure arising from the partial
description of the semicore states, whose energies are off the mark of the valence energies.

A way to deal with this problem is the introduction of local orbitals, as done by Singh
[Sin91]. Aiming at an even higher flexibility of the muffin-tin representation of the LAPW
basis, he suggested to add to the basis valence like functions that vanish to first order
at the muffin-tin boundary and thus do not meddle with the interstitial representation.
This is done by including the radial solution of (3.9), ũl, to an energy parameter Ẽl that
fits the semicore state energy to the ul and u̇l functions. The conditions which define
the local orbitals together with a normalization constraint yields the equations

aal,lou
a
l,lo(Ra, E

a
l ) + bal,lou̇

a
l,lo(Ra, E

a
l ) + cal,loũ

a
l,lo(Ra, Ẽ

a
l ) = 0, (3.45a)

aal,lo∂ru
a
l,lo(Ra, E

a
l ) + bal,lo∂ru̇

a
l,lo(Ra, E

a
l ) + cal,lo∂rũ

a
l,lo(Ra, Ẽ

a
l ) = 0, and (3.45b)∫ Ra

0

(
aal,lou

a
l,lo(ra, E

a
l ) + bal,lou̇

a
l,lo(ra, E

a
l ) + cal,loũ

a
l,lo(ra, Ẽ

a
l )
)2
r2
adra = 1. (3.45c)

They are solved by choosing the matching parameters as

aal,lo = Ka,1
l,loc

a
l,lo, (3.46a)

bal,lo = Ka,2
l,loc

a
l,lo, and (3.46b)

cal,lo =
(

(Ka,1
l,lo)

2 + (Ka,2
l,lo)

2(u̇al,lo, u̇
a
l,lo) + 2(Ka,1

l,lo)(u
a
l,lo, ũ

a
l,lo) + 2(Ka,2

l,lo)(u̇
a
l,lo, ũ

a
l,lo)
)− 1

2

(3.46c)

with the scalar product (f, g) =
∫ Ra

0 r2fgdr and the abbreviations

Ka,1
l,lo =

1

W a
l (Ra, Eal )

(
ũal,lo(Ra)∂ru̇

a
l,lo(Ra)− ∂rũal,lo(Ra)u̇al,lo(Ra)

)
, (3.47a)

Ka,2
l,lo = − 1

W a
l (Ra, Eal )

(
ũal,lo(Ra)∂ru

a
l,lo(Ra)− ∂rũal,lo(Ra)ual,lo(Ra)

)
, and

(3.47b)

W a
l (Ra, E

a
l ) = ∂ru

a
l,lo(Ra)u̇

a
l,lo(Ra)− ual,lo(Ra)∂ru̇al,lo(Ra). (3.47c)
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3. Electronic structure methods

Note that the local orbitals are not orthogonal to the LAPW basis even though they
vanish to first order at the muffin-tin boundary. In contrast to the radial functions ul
and u̇l, which solve the Schrödinger equation for the energy parameter El, and the new
radial function ũl, which solves the Schrödinger equation for a different energy parame-
ter Ẽl, their sum is for that very reason not an eigenfunction of the same Hamiltonian.
This was a critical condition of showing the orthogonality between the radial functions
and the core states.

As they originate from plane waves, the valence states fulfill Bloch’s theorem by con-
struction. To rigorously include the local orbitals in the LAPW basis, they too have to
respect the theorem. Therefore, they are coupled to virtual plane waves k +Glo such
that they become

φa,lokGlo
(ra)

=
∑
m

(
AakGloL,lo ual,lo(ra, E

a
l ) +BakGlo

L,lo u̇al,lo(ra, E
a
l ) + CakGloL,lo ũal,lo(ra, Ẽ

a
l )
)
YL(r̂a). (3.48)

The capital letter A, B and C coefficients are related to their small letter counterparts
by

A\B\CakGloL,lo =
4πil

W a
l (Ra, Eal )

ei(k+Glo).τaa\b\cal,loY ∗L (k̂ +Glo). (3.49)

Here, we also can introduce the index λ, which we defined as a switch between quantities
belonging to the radial function and quantities belonging to its radial derivative. By
letting λ = 2 indicate the quantities belonging to the radial solution ũ, we can write

ψik(r)|r∈MTa
=
∑
G

zikG φkG(r)|r∈MTa
+
∑
Glo

zaikGloφ
a,lo
kGlo

(r − τ a) (3.50a)

=
∑
G

zikG
∑
Lλ

aakGLλ ualλ(ra)YL(r̂a) (3.50b)

+
∑
Glo

zaikGlo

∑
mλ

AakGloL,lo,λ u
a
l,lo,λ(ra)YL(r̂a) (3.50c)

A great benefit of local orbitals is that they can be used situationally. It is possible
to add a single local orbital of a certain angular momentum l to an atom when appro-
priate. Due to this, the basis grows reasonably with the selective addition of a few local
orbitals. There are three blocks that have to be added to the Hamilton and overlap
matrices, namely two contributions from the interplay between the regular basis and the
local orbital addition and one contribution from the interplay of the local orbitals with
themselves, leading to(

HG′G(k) HG′Glo(k)

HG′loG(k) HG′loGlo(k)

)
and

(
SG′G(k) SG′Glo(k)

SG′loG(k) SG′loGlo(k)

)
. (3.51)

We will not delve further into the construction of these extended matrices, as it is similar
to the construction of their first blocks.
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3.5. Variational total energy for metals

3.5. Variational total energy for metals

Insulators and semiconductors are characterized by having their Fermi-energy separate
the occupied and unoccupied energy bands altogether. This justifies to assume that the
occupation numbers of the Kohn-Sham states are either zero or two (or one, if a spin
resolved calculation is executed) and are thus insensitive to small strains.
Metals on the other hand possess partially occupied bands since their Fermi-energy cuts
through one or more energy bands. Therefore, fractional occupation numbers have to be
employed and integration over the Brillouin zone has to be executed with care. This is
due to the integration method applied to Brillouin zone integrals. They are sampled as
discrete sums over a mesh of k-points and demand that the quantity to be integrated is
smoothly varying over the integration zone. Then one can write for an integrand fi(k)
depending on the band index i

1

VBZ

∫
BZ

∑
i:εi(k)<EF

fi(k)d3k −→
∑
k

∑
i:εi(k)<EF

fi(k)w(k)

with the weights w(k) containing the general occupation of a state at the corresponding
k-point. However, the condition of being smoothly varying is not fulfilled near the Fermi-
edge because of the sharp transition from occupied to unoccupied states.
To provide applicability, the states are therefore smeared by a Fermi function to a
parameter T that is chosen for good convergence.

w̃(k, εi(k)− EF ) = w(k)
1

e(εi(k)−EF )/kBT + 1

The determination of the Fermi energy and the construction of w̃(k, εi(k) − EF ) are
achieved in two simple steps. First, the bands are occupied at each k-point starting
with the lowest one in energy until all electrons of the system are distributed:

N =
∑
k

∑
i

w(k)

Afterwards, the smearing is applied with the Fermi energy chosen such that the number
of electrons is reproduced.

N =
∑
k

∑
i

w̃(k, εi(k)− EF )

As the Fermi function does only vary close to the Fermi-edge, lower lying bands do not
experience an alteration of their weights and higher lying bands are still excluded from
the summation as intended.

37



3. Electronic structure methods

Weinert and Davenport [WD92] proved that the total energy is no longer variational
when fractional occupation numbers are part of the electronic structure calculation.
They have shown that an electronic density which slightly differs from the ground state
density results in a first order deviation of the energy functional from the ground state
energy as given by

E[ρ0 + δρ] = E[ρ0] +
∑
k

∑
i

δw̃(k, εi(k)− EF )εi(k) +O(δ2).

To remedy this problem, they proposed the incorporation of an entropy like term

TS = kBT
∑
k

∑
i

[w̃(k, i) ln(w̃(k, i)) + (w(k)− w̃(k, i)) ln(w(k)− w̃(k, i))]

into the energy functional, where w̃(k, i) is an abbreviation for w̃(k, εi(k) − EF ). The
variation of this expression is exactly the necessary adjustment to the energy variation:

TδS

= kBT
∑
k

∑
i

[δw̃(k, i) ln(w̃(k, i)) + δw̃(k, i)− δw̃(k, i) ln(w(k)− w̃(k, i))− δw̃(k, i)]

= kBT
∑
k

∑
i

δw̃(k, i) ln

(
w̃(k, i)

w(k)− w̃(k, i)

)
= kBT

∑
k

∑
i

δw̃(k, i) ln

(
1

e(εi(k)−EF )/kBT + 1− 1

)
= −

∑
k

∑
i

δw̃(k, i)εi(k)

The last equality holds as the number of electrons in the system is a constant, meaning
that

∑
δw̃(k, i)EF is zero.

Using the same argumentation, an energy functional subject to fractional occupation
numbers but corrected by the entropy like term is also variational with respect to a strain
variation. Due to this circumstance, we will neglect changes in occupation numbers
during the stress calculation, as they will cancel out.
To suit other publications, we will write nik for the occupation numbers w̃(k, i).
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4. Forces from total energy calculations

Before we start with the derivation of the stress formula, we want to explain the calcula-
tion of atomic forces in the FLAPW method as formulated by Yu et al. [YSK91]. A good
understanding of the contributions appearing in their derivation will help us to identify
and characterize the corresponding terms appearing in the stress/strain formalism. Let
us assume that we have given a self-consistent solution of a system with unit cell Ω and
atoms placed at positions τ a. We then want to find the force acting on a specific atom
c at τ c. To that end, we displace that atom by an infinitesimal vector δτ c and observe
the changes in the total energy. We indicate quantities which are subject to variation
due to the displacement by adding [δτ c] to them.
The total energy of the slightly altered system is given by

E[δτ c] =
∑
ki

nikεi[δτ c](k)−
∫

Ω
ρ[δτ c](r)Veff [δτ c](r)d3r +

∫
Ω
ρ[δτ c](r)εxc[δτ c](r)d3r

(4.1a)

+
1

2

∫
Ω
ρ[δτ c](r)

{∫
R3

ρ[δτ c](s)

|r − s|
d3s−

atoms∑
b

Zb
|r − τ b[δτ c]|

}
d3r (4.1b)

− 1

2

atoms∑
a∈Ω

Za


∫

Ω

ρ[δτ c](s)

|τ a[δτ c]− s|
d3s−

atoms∑
b 6=a

Zb
|τ a[δτ c]− τ b[δτ c]|

 . (4.1c)

The changes in the density ρ[δτ c](r) and the potential Veff [δτ c](r) are largely unknown.
Independent from the change in the shape of the potential, we can say however, that
the contribution of the nucleus c and its core electrons to the original effective potential
will have moved to τ c+δτ c according to the atomic displacement. The atomic positions
are displaced as τ a[δτ c] = τ a + δacδτ c. The eigenvalue sum also changes. We now
want to calculate the linear change of the energy with respect to the infinitesimal vector
δτ c. Note that the variation in the density occurring in the integral which contains
the density and the effective potential will cancel out exactly with the corresponding
terms that appear in the integral containing the electronic density and the electrostatic
potential (4.1b) as well as in the sum over the nuclei and the Madelung potential (4.1c).
Furthermore, the integral over the exchange-correlation energy density will be handled
according to µxc(r) = δ [ρ(r)εxc(r)] /δρ(r) applying the chain-rule. Thus, it cancels
the exchange-correlation potential part in the integral containing the density and the
effective potential integral. We obtain

δE =
∑
ki

nikδεi[δτ c](k)−
∫

Ω
ρ(r)δVeff [δτ c](r)d3r − F c

HF · δτ c
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4. Forces from total energy calculations

with F c
HF being the Hellmann-Feynman force, written as

F c
HF =

∑
a∈Ω

Za
δ

δτ c

∫
R3

ρ(s)

|τ a[δτ c]− s|
d3s− 1

2

atoms∑
b6=a

Zb
|τ a[δτ c]− τ b[δτ c]|


= Zc

δ

δτ c

∫
R3

ρ(s)

|τ c + δτ c − s|
d3s−

atoms∑
b 6=c

Zb
|τ c + δτ c − τ b|

 , (4.2)

which is the variation of the Madelung potential of atom c. The force acting on that
atom then becomes

F c = − δE
δτ c

= F c
HF −

1

δτ c

(∑
ki

nikδεi[δτ c](k)−
∫

Ω
ρ(r)δVeff [δτ c](r)d3r

)
. (4.3)

There is no contribution from the electron-electron interaction in the Hellmann-Feynman
force because, due to the cancellation of the density variation, the remaining expression
ρ(r)ρ(s)/|r − s| does not depend on atomic positions. This is clear as the Hellmann-
Feynman force consists of all forces which act on the nucleus of atom c. The Hartree
interaction mediates only between electrons. Also note that the Hellmann-Feynman
force is composed of the electron-nuclei interaction as part of the remaining electron-
charged particle interaction, which is the second term in the curly brackets in line (4.1b),
as well as of the total nuclei-charged particle interaction, which is the first term in the
curly brackets in the subsequent line (4.1c). This is a result of splitting the electron-ion
interaction to equal parts to (4.1b) and (4.1c).
The additional term is the so-called Pulay correction for the force. If one used a complete
basis set for the description of the Kohn-Sham system, this correction would vanish
identically. However, in the FLAPW method the basis set is not sufficiently complete,
which makes a careful handling of this term necessary. We will divide it in three parts
so that

F c = F c
HF + F c

core + F c
val + F c

disc. (4.4)

The core and valence corrections are a direct result of splitting the Pulay correction
into core and valence states. They come in because the atomic displacement demands
for an adjusted description of the Kohn-Sham states due to the new atomic location.
Furthermore, the discontinuity correction is a result of matching the plane waves and
the representation in the muffin-tin spheres to first order, only.

4.1. The Hellman-Feynman force

We noted earlier that the Hellmann-Feynman force is the variation of the Madelung
potential of atom c, i.e., the Coulomb potential arising from all charges of the system
except of the atomic nucleus at τ c. We therefore are in the fortunate position to be able
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4.2. The Pulay correction

to calculate it directly from the Dirichlet boundary value problem 3.31 without having
to apply a variation to the interstitial potential. In the appendix section A.2, we give the
detailed derivation, which results in the following expression for the Hellmann-Feynman
force:

F c
HF = Zc

1∑
m=−1

{
4π

3

∫ Rc

0
ρc1m(r)

[
1−

(
r

Rc

)3
]
dr +

V c
C1m(Rc)

Rc

}
∇ [rY1m(r̂)] (4.5)

This formula is easy to implement in DFT codes based on the FLAPW method.

Ω

τ a

τ c

τ c + δτ c

Figure 4.1.: Infinitesimal displacement of atom c at τ c by δτ c.

4.2. The Pulay correction

Now we have to evaluate the additional term, the variation of the eigenvalue sum minus
the integral containing the variation of the effective potential. As core and valence
states are treated differently in the FLAPW method, we have to distinguish between
them. Because the core electrons are direct solutions of a simple Schrödinger equation,
they do not require a basis set. This makes their treatment fairly easy. However, the
treatment of the valence states will be more involved. The wave functions are subject
to change, and the variation of the wave functions cannot be expressed in terms of the
basis.

4.2.1. Core correction

To obtain the change in the energy eigenvalue εi[δτ c] of a core state ψci [δτ c] with respect
to the atomic displacement δτ c, we can apply the Hellman-Feynman theorem. As was
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4. Forces from total energy calculations

mentioned in the introduction of the total energy (4.1) of the system containing the dis-
placed atom, from the perspective of the core states, they move along with the dominant
part of the potential. Therefore we have

δ

δτ c
εi[δτ c] =

δ

δτ c

〈
ψci [δτ c]

∣∣∣∣[−1

2
∇2 + Veff [δτ c](r)

]∣∣∣∣ψci [δτ c]〉
MTc

(4.6a)

=

〈
ψci

∣∣∣∣ δδτ cVeff [δτ c](r)

∣∣∣∣ψci〉
MTc

(4.6b)

=

∫
BRc (0)

ρci (rc)

[
δ

δτ c
V c

eff [δτ c](rc)

]
d3rc. (4.6c)

In the core part of the double counting term, the last term in (4.3), we observe a different
effect, since we only have given the variation of the potential times the original density
as the integrand. Then, the dominant part of the potential is displaced by δτ c with
respect to the core density. Thus, we obtain

−
∫
BRc (τ c)

ρci (r − τ c)
[
δ

δτ c
V c

eff [δτ c](r − [τ c + δτ c])

]
d3r

= −
∫
BRc (0)

ρci (rc)

[
δ

δτ c
V c

eff [δτ c](rc)−∇V c
eff(rc)

]
d3rc (4.7)

By summing up (4.6c) and (4.7), it becomes apparent that the core states contribute to
the Pulay correction a gradient of the effective potential,

F c
core = − 1

δτ c

∑
i∈core

(
δεi[δτ c]−

∫
BRc (0)

ρci (rc)δV
c

eff [δτ c](rc)d
3rc

)

= −
∑
i∈core

∫
BRc (0)

ρci (rc)∇V c
eff(rc)d

3rc. (4.8)

The difference we have found here arises because the effective potential changes twofold
when looked at from the perspective of the original core density of atom c: First, the
potential is displaced by δτ c. Second, the potential adjusts to the new crystal field. The
latter part is the only change in the potential seen by the core states when shifted along
with the atom. Thus, this latter part cancels out.

4.2.2. Valence correction

The valence states are not confined to a muffin-tin sphere. We therefore have to take
into account the whole unit cell. The eigenvalues can be obtained through the Rayleigh
coefficient. Let i denote a valence state, then we have:

εi(k) =

∫
Ω ψ
∗
ik(r)

[
−1

2∇
2 + Veff(r)

]
ψik(r)d3r∫

Ω ψ
∗
ik(r)ψik(r)d3r
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4.2. The Pulay correction

The Kohn-Sham eigenvalue in the disturbed system is thus given by

εi[δτ c](k) =

∫
Ω ψ
∗
ik[δτ c](r)

[
−1

2∇
2 + Veff [δτ c](r)

]
ψik[δτ c](r)d3r∫

Ω ψ
∗
ik[δτ c](r)ψik[δτ c](r)d3r

. (4.9)

Even though the FLAPW basis is constructed to give a good representation of the system
one wishes to study, it lacks the flexibility to describe a perturbed system. Therefore, the
derivative of the Kohn-Sham states with respect to the atomic displacement cannot fully
be described by the same FLAPW basis. As a consequence, the Hellmann-Feynman the-
orem does not yield the complete atomic force. We now have to introduce the variation
in the eigenfunctions of the Kohn-Sham system as well.

nikδεi[δτ c](k) = nik

∫
Ω
ρik(r)δVeff [δτ c](r)d3r

+ 2nik Re

(∫
Ω
δψ∗ik[δτ c](r)

{
−1

2
∇2 + Veff(r)− εi(k)

}
ψik(r)d3r

)

We see that the first term cancels with the last expression in equation (4.3). The
contribution to the Pulay correction coming from the valence electrons then becomes

F c
val = −2

∑
ki∈val

nik Re

(∫
Ω

δψ∗ik[δτ c](r)

δτ c

{
−1

2
∇2 + Veff(r)− εi(k)

}
ψik(r)d3r

)
.

If written in terms of operators,

F c
val = −2

∑
ki∈val

nik Re

〈
δψik[δτ c]

δτ c

∣∣∣∣H− εi(k)

∣∣∣∣ψik〉 ,

one would be tempted to argue that this term should vanish. However, as was empha-
sized above, the FLAPW basis set, in which the eigenfunctions ψ(r) are expressed, is
incomplete. The variation of the eigenfunctions is not necessarily expandable in the same
basis set, and as such it acts in a distributive manner on the Hilbert space available.

4.2.3. Discontinuity correction

There is an additional feature of the FLAPW basis that leads to a correction. While
the basis functions are constructed to be continuous up to first order on the muffin-tin
boundaries, the kinetic energy operator is a differential operator of second order. The
rigorous distinction between interstitial region and muffin-tin spheres causes a surface
contribution from the boundaries, as will be shown below.

43



4. Forces from total energy calculations

The basis functions and the Kohn-Sham eigenfunctions may be written with the idem-
potent projection function Θ (the unit step function) as:

φkG(r) =
1√
Ω
ei(k+G).r

(
1−

∑
a∈Ω

Θ(r ∈ BRa(τ a))

)
+
∑
a∈Ω

∑
lm

(
aakGlm ul(r)Ylm(r̂) + bakGlm u̇l(r)Ylm(r̂)

)
Θ(r ∈ BRa(τ a))

ψik(r) =
∑
G

zikGφkG(r)

(
1−

∑
a∈Ω

Θ(r ∈ BRa(τ a))

)
+
∑
a∈Ω

∑
G

zikGφkG(r)Θ(r ∈ BRa(τ a))

In the local frame of atom c, the unit step function translates to Θ(|r−τ c| ≤ Rc), which
becomes Θ(|r− τ c− δτ c| ≤ Rc) in the disturbed system. Applying the variation to this
expression leads to

δ

δτ c
Θ(|r − τ c| ≤ Rc) = −(r − τ c)

|r − τ c|
δ(|r − τ c| = Rc) = −r̂cδ(|r − τ c| = Rc),

the Dirac delta distribution weighted only on the muffin-tin boundary. Executing just
this part of the variation to the altered wave functions in (4.9) (and remembering the
idempotence of Θ), one obtains for the discontinuity correction:

F c
disc

= −
∑
ki

nik

∮
∂BRc (τ c)

[
ψ∗ik(r)

(
−1

2
∇2

)
ψik(r)

∣∣∣∣
MTc

− ψ∗ik(r)

(
−1

2
∇2

)
ψik(r)

∣∣∣∣
IS

]
r̂cdS2

Due to the continuity of the wave functions on the muffin-tin boundary, the terms
ψ∗ik(r) [Veff(r)− εi]ψik(r) are equal in muffin-tin and interstitial representation on the
sphere shell. Thus, there are no additional contributions from them.
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5. Stress from total energy calculations

Now that we followed through the steps presented in Yu’s paper [YSK91] for the cal-
culation of atomic forces, we proceed in a similar manner for the stress calculation. In
order to obtain the stress tensor, we need to find a parametrization of the total energy
with respect to strain. Since straining the system means a coordinated displacement
of all atoms of the system instead of only one atom, we expect to find contributions
that resemble those of the atomic force calculation. Furthermore, the unit cell volume
can change. This will result in contributions in addition to those that we derived for
the atomic force calculation. If we have self-consistently calculated the quantities of a
certain configuration, we know its electronic density ρ(r), its effective potential Veff(r)
etc. Next, we imagine a set of quantities belonging to a configuration slightly strained
by a tensor ε. Examples are the new electronic density ρ[ε], the new effective potential
Veff [ε] and the Kohn-Sham eigenvalues εi[ε]. In the strained system, the atomic posi-
tions and spatial vectors have changed from τ a and r to τ a\r[ε] = (1 + ε)τ a\r, and
the volume has become Ω[ε], which is the triple product of the strained lattice vectors.
Vectors in reciprocal space as well as the nabla operator will transform inversely, i.e.,
∇ε = (1 − ε)∇. Letting rε and sε denote the integration variables and kε the wave
vectors in the strained system, we can write the total energy (2.8) of this system as

E[ε] =
∑
kεi

nikεεi[ε](kε)−
∫

Ω[ε]
ρ[ε](rε)Veff [ε](rε)d

3rε +

∫
Ω[ε]

ρ[ε](rε)εxc[ε](rε)d
3rε

(5.1a)

+
1

2

∫
Ω[ε]

ρ[ε](rε)

{∫
R

ρ[ε](sε)

|rε − sε|
d3sε −

atoms∑
b

Zb
|rε − τ b[ε]|

}
d3rε (5.1b)

− 1

2

atoms∑
a∈Ω[ε]

Za


∫
R

ρ[ε](sε)

|τ a[ε]− sε|
d3sε −

atoms∑
b6=a

Zb
|τ a[ε]− τ b[ε]|

 . (5.1c)

by using a similar notation as with the atomic forces.
The ground-state valence density ρv[ε](rε) acquires a somewhat different shape due to
the change in the new crystal field. The core density ρac [ε](rε − τ a[ε]) of an atom a,
on the other hand, is defined in a new muffin-tin sphere of the same radius as in the
unstrained system but centered at the new atomic position τ a[ε]. It thus moves along
with the atom in addition to a change in its shape.

The most obvious change of the energy formula to the one expressing an atomic
displacement (4.1) is, as expected, the change in the volume of integration. Therefore,
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5. Stress from total energy calculations

a variation in strain introduces terms coming from the surface of the unit cell.
However, to avoid those surface terms, we can back-transform the integration volume
to the unstrained volume Ω by the substitution rε → (1 + ε)r when dealing with the
Kohn-Sham states. This introduces a Jacobian det(1+ε). We then can avoid the surface
terms at the cost of an explicit dependence of the spatial vectors on the strain according
to ∫

Ω[ε]
f(rε)d

3rε = det(1 + ε)

∫
Ω
f(r[ε])d3r. (5.2)

5.1. Recurring relations

In the derivation of the stress components, which will be performed in the order of their
appearance in the total energy formula, there will be a certain amount of repetition.
Some expressions will appear in many terms of the stress formula, and we want to pro-
vide some handy definitions and examples for the most common ones.

We will exploit the fact that the stress as well as the strain are symmetric tensors,
i.e., εT = ε. For the variation in a strained vector vε and its absolute, we have

δ

δεαβ
(1± ε)v

∣∣∣∣
ε=0

=
δ

δεαβ

(
δij ±

εij + εji
2

)
vj êi

∣∣∣∣
ε=0

= ±1

2
(vαêβ + vβ êα) , (5.3)

δ

δεαβ
|(1± ε)v|

∣∣∣∣
ε=0

=
δ

δεαβ

[
(δij ±

εij + εji
2

)vj(δik ±
εik + εki

2
)vk

]1/2
∣∣∣∣∣
ε=0

= ±
vαvβ
v

. (5.4)

Then the variation in the volume is

δ

δεαβ
Ω[ε]

∣∣∣∣
ε=0

=
δ

δεαβ
det((1 + ε)(abc))

∣∣∣∣
ε=0

= δαβ det(abc) = δαβΩ. (5.5)

In the muffin-tin spheres, all quantities are expanded into spherical harmonics. There-
fore, we have to take a look at these, too.
We already used the Gaunt coefficients G, which are defined as integrals of products of
three spherical harmonics over the unit sphere boundary,

Gmm
′m′′

ll′l′′ =

∮
B1(0)

Y ∗lm(r̂)Yl′m′(r̂)Yl′′m′′(r̂)dS2. (5.6)

It is nonzero only for those combinations of arguments for which m = m′ + m′′ and
|l′ − l′′| ≤ l ≤ l′ + l′′. Furthermore, l + l′ + l′′ has to be even.

We also define the unit vector expansion coefficient cαt and the differential factor
cstα (l,m).
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5.1. Recurring relations

The unit vector expansion coefficient cαt is the projection of the α-component of a unit
vector along direction r̂ onto Y1t(r̂):

cαt =

∮
B1(0)

r̂αY
∗

1t(r̂)dS2 (5.7a)

As the components of a unit vector can also be expressed in spherical harmonics with
l = 1, the unit vector expansion coefficients are exactly the necessary coefficients

c = (cαt)
t=−1...1
α=1...3


√

2π
3 0 −

√
2π
3

−i
√

2π
3 0 −i

√
2π
3

0
√

4π
3 0

 . (5.7b)

Finally, it is known that the derivative of a spherical harmonic along a direction α times
the radius r is a linear combination of spherical harmonics with an l quantum number
shifted by 1 and an m quantum number shifted at most by 1. The differential factors are
the expansion coefficients of the derivative of a spherical harmonic in terms of spherical
harmonics,

cstα (l,m) =

∮
B1(0)

[r∂αYlm(r̂)]Y ∗l+s,m+t(r̂)dS2. (5.8)

These quantities become relevant because, according to (5.3), the variation in a spherical
harmonic of a strained vector is

δ

δεαβ
Ylm( ̂(1± ε)v)

∣∣∣∣
ε=0

=

[
δ

δεαβ
(1± ε)v

∣∣∣∣
ε=0

]
.∇Ylm(v̂)

= ±1

2
(vα∂β + vβ∂α)Ylm(v̂) = ±1

2
(v̂αv∂β + v̂βv∂α)Ylm(v̂)

= ±1

2

1∑
t′=−1

Y1t′(v̂)
(
cαt′v∂β + cβt′v∂α

)
Ylm(v̂)

= ±1

2

1,2∑
s=−1

1∑
t,t′=−1

Y1t′(v̂)
(
cαt′c

st
β (l,m) + cβt′c

st
α (l,m)

)
Yl+s,m+t(v̂) (5.9)

= ±1

2

1,2∑
s=−1

1∑
t,t′=−1

(
cαt′c

st
β (l,m) + cβt′c

st
α (l,m)

) l+s+1,2∑
s′=|l+s−1|

Gm+t+t′,t′,m+t
s′,1,l+s Ys′,m+t+t′(v̂)

The second number above the summation symbols denotes the increment to the sum-
mation variable. While we will stay with the last but one line (5.9) in our calculations,
the last line shows explicitly that the strain derivative of a spherical harmonic Ylm mixes
the spherical harmonics with l quantum numbers l − 2, l, and l + 2. The mixing in the
m quantum numbers ranges from m − 2 to m + 2. This behavior matches with that
of a differential operator of second order, as should be expected for differentiating with
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5. Stress from total energy calculations

respect to a tensor of rank 2.
Another simple expression that will occur mainly when dealing with the atomic phase
factors is the scalar product of strained spatial and reciprocal vectors. As the latter
transform inversely to their spatial counterparts, we have

kε.rε = (1− ε)k.(1 + ε)r = k.(1− ε)T(1 + ε)r = k.r. (5.10)

Note that this equation holds exactly for (1 + ε)−1 instead of (1 − ε). Since we are
interested in an infinitesimal strain only, we find the latter term as the linear Taylor
expansion for the inverse strain.

Keeping those relations in mind, we proceed with the calculation of the stress compo-
nents.

5.2. Variation of the kinetic energy

The first two terms of (5.1a) contributed to the atomic force calculation with the Pulay
correction. In the case of a strained system, we will find similar terms, but also additional
contributions. The differentiation of the Kohn-Sham eigenvalues will be split into core
and valence states. However, the derivative of the double counting term is the same for
the two cases. A back-transformation to the unstrained volume results in

δ

δεαβ

∫
Ω[ε]

ρ[ε](rε)Veff [ε](rε)d
3rε

∣∣∣∣∣
ε=0

=
δ

δεαβ

∫
Ω

det(1 + ε)ρ[ε](r[ε])Veff [ε](r[ε])d3r

∣∣∣∣
ε=0

= δαβ

∫
Ω
ρ(r)Veff(r)d3r (5.11a)

+

∫
Ω

[
δ

δεαβ
ρ[ε](r[ε])

∣∣∣∣
ε=0

]
Veff(r)d3r (5.11b)

+

∫
Ω
ρ(r)

[
δ

δεαβ
Veff [ε](r[ε])

∣∣∣∣
ε=0

]
d3r (5.11c)

We already know an expression of the form (5.11c) from the calculation of the atomic
forces. It is the variation of the potential due to the new atomic configuration. The term
(5.11b) did not explicitly appear since a change in coordinates of the electronic density
ρ(r[ε]) did not happen within the force calculation. It was shown that the variation in
the shape of the density ρ[ε](r) would cancel with similar terms. We will see that this is
also the case in the context of the stress calculation. The trace term (5.11a) comes from
the change in the unit-cell volume and is thus one of the additional terms in the stress
calculation.
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5.2. Variation of the kinetic energy

5.2.1. Contribution of core electrons

We want to consider the change in the eigenvalues of the core states. We can apply the
Hellman-Feynman theorem to the core states as we did in chapter 4.2.1. For a core state
i of atom a, this gives us

δ

δεαβ
εi[ε]

∣∣∣∣
ε=0

=
δ

δεαβ

〈
ψai [ε]

∣∣∣∣[−1

2
∇2 + Veff [ε](r)

]∣∣∣∣ψai [ε]

〉
MTa

∣∣∣∣∣
ε=0

(5.12a)

=

〈
ψai

∣∣∣∣∣ δ

δεαβ
Veff [ε](r)

∣∣∣∣
ε=0

∣∣∣∣∣ψai
〉

MTa

(5.12b)

=

∫
BRa (0)

ρai (ra)

[
δ

δεαβ
V a

eff [ε](ra)

∣∣∣∣
ε=0

]
d3ra. (5.12c)

Since the double counting term is subtracted from the eigenvalue sum, the core part of
(5.11c) cancels the term from the eigenvalue sum. The remaining expression summed
up over all core states is the core correction to the stress,

σcore
αβ = − 1

Ω

atoms∑
a∈Ω

∫
BRa (0)

ρac (ra)

[
δ

δεαβ
V a

eff(ra[ε])

∣∣∣∣
ε=0

]
d3ra

= − 1

Ω

atoms∑
a∈Ω

∫
BRa (0)

ρac (ra)raα∂βV
a

eff(ra)d
3ra. (5.13)

As (4.8) within the atomic forces, this term stems from the twofold change in the effective
potential from the perspective of the original core density, that is the change in the
shape of the potential and its displacement to the shifted lattice position. Only the
former contribution is seen in the variation of the core eigenvalues, as the core states
are displaced along the atomic nucleus in this case. (4.8) is obtained by applying the
gradient to the effective potential, while the corresponding stress term is found by acting
on the effective potential with the stress operator r ⊗∇.

Ω[ε]

rε = r[ε]

Ω

Figure 5.1.: The stress components from the valence states, the double counting term,
and the exchange-correlation energy of the strained system are calculated
using a back-transformation to the unstrained coordinates.
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5. Stress from total energy calculations

5.2.2. Contribution of valence electrons

We will continue by evaluating the effect of the strain on the eigenvalues of the valence
states. As the states extend over the whole lattice, the deformation of the unit cell yields
surface terms. These will be avoided by back-transforming the strained volume to the
original one. Using the Rayleigh quotient, we get

δ

δεαβ
εv[ε](kε)

∣∣∣∣
ε=0

=
δ

δεαβ

∫
Ω[ε] ψ

∗
vkε

[ε](rε)
{
−1

2∇
2
ε + Veff [ε](rε)

}
ψvkε [ε](rε)d

3rε∫
Ω[ε] ψ

∗
vkε

[ε](rε)ψvkε [ε](rε)d
3rε

∣∣∣∣∣∣
ε=0

=
δ

δεαβ

∫
Ω ψ
∗
vkε

[ε](r[ε])
{
−1

2

[(
1− ε

)
∇
]2

+ Veff [ε](r[ε])
}
ψvkε [ε](r[ε])d3r∫

Ω ψ
∗
vkε

[ε](r[ε])ψvkε [ε](r[ε])d3r

∣∣∣∣∣∣
ε=0

=2 Re

(∫
Ω

[
δ

δεαβ
ψvkε [ε](r[ε])

∣∣∣∣
ε=0

]∗
(H− εv(k))ψvk(r)d3r

)
(5.14a)

− 1

2

atoms∑
a∈Ω

R3
a

∮
S2

sαsβ
{
ψMTa ∗
vk (Ras)∇2ψMTa

vk (Ras)

− ψIS ∗
vk (Ras+ τ a)∇2ψIS

vk(Ras+ τ a)
}
dS2 (5.14b)

+
1

2

∫
Ω
ψ∗vk(r) (∂α∂β + ∂β∂α)ψvk(r)d3r (5.14c)

+

∫
Ω
|ψvk(r)|2

[
δ

δεαβ
Veff [ε](r[ε])

∣∣∣∣
ε=0

]
d3r. (5.14d)

The first two terms of this formula explicitly account for the incompleteness of the
FLAPW basis and correspond to F c

val and F c
disc. The discontinuity correction does not

only take into account the displacement of the atoms but also the deformation of the
muffin-tin spheres due to the back-transformation BRa(0) → (1 − ε)BRa(0). We thus
define the Pulay contributions of the incomplete basis set and the surface term as:

Ωσval
αβ = (5.14a) (5.15a)

Ωσdisc
αβ = (5.14b) (5.15b)

The last term (5.14d) cancels with the valence part of (5.11c). The remaining expression
(5.14c) is a contribution from the variation in the kinetic energy of the valence states.
Because the valence states have to adjust to the strained volume, they have a different
bending. This is seen by the kinetic energy operator.

5.3. Exchange-correlation contribution

The stress contribution that stems from the change in the exchange correlation energy
is best found if the total electronic density is back-transformed into the old system. In
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5.4. Variation of the electrostatic energy

the case of local approximations to the exchange-correlation functional like the LDA or
GGA, this yields

δ

δεαβ

∫
Ω[ε]

ρ[ε](rε)εxc[ε](rε)d
3rε

∣∣∣∣∣
ε=0

=
δ

δεαβ
det(1 + ε)

∫
Ω
ρ[ε](r[ε])εxc[ε](r[ε])d3r

∣∣∣∣
ε=0

= δαβ

∫
Ω
ρ(r)εxc(r)d3r (5.16a)

+

∫
Ω

[
δ

δεαβ
ρ[ε](r[ε])

∣∣∣∣
ε=0

]
µxc(r)d3r. (5.16b)

The variation of the density (5.16b) cancels with the exchange-correlation part of the cor-
responding expression in the stress contributions from the double counting term (5.11b).
This leaves only the electrostatic potential as integrand for the strained density. The
trace term (5.16b) is due to the change in volume.

In total, we obtain as the strain derivative of the first line (5.1a) of the total energy

δ

δεαβ

∑
kεi

nikεεi[ε](kε)−
∫

Ω[ε]
ρ[ε](rε)Veff [ε](rε)d

3rε +

∫
Ω[ε]

ρ[ε](rε)εxc[ε](rε)d
3rε


∣∣∣∣∣∣
ε=0

= Ωσcore
αβ + Ωσval

αβ + Ωσdisc
αβ

+
1

2

∑
kv

nvk

∫
Ω
ψ∗vk(r) (∂α∂β + ∂β∂α)ψvk(r)d3r

+ δαβ

∫
Ω
ρ(r) (εxc(r)− Veff(r)) d3r (5.17a)

−
∫

Ω

[
δ

δεαβ
ρ[ε](r[ε])

∣∣∣∣
ε=0

]
VC(r)d3r (5.17b)

with σcore
αβ , σval

αβ , and σdisc
αβ as in (5.13), (5.15a), and (5.15b), respectively.

5.4. Variation of the electrostatic energy

What remains to be calculated is the stress contribution coming from the electrostatic
interaction between all electrons and nuclei, the derivatives of (5.1b) and (5.1c). Simply
back-transforming the system to the unstrained volume would yield integrands of the
form

δ

δεαβ

1

|r[ε]− s[ε]|

∣∣∣∣∣
ε=0

=−
(r − s)α(r − s)β
|r − s|3

. (5.18)
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5. Stress from total energy calculations

To the knowledge of the author, these integrands cannot conveniently be integrated.
Therefore, we want to refrain from back-transforming the coordinates. This will only be
done to sort out the strain derivative of the charge density using

δ

δεαβ

∫
Ω[ε]

f [ε](rε)g[ε](rε)d
3rε

∣∣∣∣∣
ε=0

=
δ

δεαβ
det(1 + ε)

∫
Ω
f [ε](r(ε])g[ε](r[ε])d3r

∣∣∣∣
ε=0

=

∫
Ω

[
δ

δεαβ
f [ε](r[ε])

∣∣∣∣
ε=0

]
g(r)d3r

+
δ

δεαβ
det(1 + ε)

∫
Ω
f(r)g[ε](r[ε])d3r

∣∣∣∣
ε=0

=

∫
Ω

[
δ

δεαβ
f [ε](r[ε])

∣∣∣∣
ε=0

]
g(r)d3r

+
δ

δεαβ

∫
Ω
f((1− ε)rε)g[ε](rε)d

3rε

∣∣∣∣
ε=0

. (5.19)

Performing the differentiation of the electrostatic energy then gives for the electrostatic
stress

Ωσes
αβ =

1

2

∫
Ω

[
δ

δεαβ
ρ[ε](r[ε])

∣∣∣∣
ε=0

]
VC(r)d3r

+
1

2

∫
Ω

[
δ

δεαβ
ρ[ε](r[ε])

∣∣∣∣
ε=0

]{∫
R3

ρ(s)

|r − s|
d3s−

atoms∑
b

Zb
|r − τ b|

}
d3r

+
1

2

δ

δεαβ

∫
Ω[ε]

ρ((1− ε)rε)VC [ε](rε)d
3rε

∣∣∣∣∣
ε=0

(5.20a)

− 1

2

atoms∑
a∈Ω

Za

[
δ

δεαβ
V a
M [ε](τ a[ε])

∣∣∣∣
ε=0

]
, (5.20b)

where the first two terms are identical and sum up to cancel (5.17b). They are written
on two lines to emphasize their origin: The first line is a direct differentiation of the
density in (5.1b) while to the second line the differentiation of the density in the electro-
static potential (5.1b) and the Madelung potential (5.1c) contributes. New alternative
electrostatic and Madelung potentials are used in this equation. They are given as

VC [ε](rε) =

∫
R3

ρ((1− ε)sε)
|rε − sε|

d3sε −
atoms∑
b

Zb
|rε − τ b[ε]|

and (5.21)

V a
M [ε](τ a[ε]) =

∫
R3

ρ((1− ε)sε)
|τ a[ε]− sε|

d3sε −
atoms∑
b 6=a

Zb
|τ a[ε]− τ b[ε]|

. (5.22)
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5.4. Variation of the electrostatic energy

In contrast to the actual electrostatic and Madelung potential of the strained system,
these equations define the alternative potentials as coming from known quantities: The
valence density of the unstrained system smeared over the strained lattice and the core
density of the unstrained system, moved along with the nuclei to the positions of the
nuclei in the strained lattice and smeared over the ellipsoids (1 − ε)BR(τ [ε]). Conse-
quently, the whole charge density is smeared over the lattice.
Thus, the density generating these potentials, which can be plugged into (3.22b) and
(3.23), is

n[ε](rε) = ρ((1− ε)rε)−
∑
b∈R3

Zbδ(rε − τ b[ε]). (5.23)

5.4.1. Electrostatic pressure formulas

The introduction of an alternative electrostatic and Madelung potential is necessary to
avoid terms of the form

δ

δεαβ

1

|r[ε]− s[ε]|

∣∣∣∣∣
ε=0

=−
(r − s)α(r − s)β
|r − s|3

, (5.24)

which would give rise to integrals that cannot be evaluated analytically. However, the
pressure, which corresponds to the negative trace of the stress, preserves the 1/r form of
the electrostatic potential. Therefore, we have with the pressure formula a decent check
for the implementation of the electrostatic stress. The trace of the derivatives of (5.20a)
and (5.20b) is given by

1

2

3∑
α=1

δ

δεαα

[∫
Ω[ε]

ρ((1− ε)rε)VC [ε](rε)d
3rε

]∣∣∣∣∣
ε=0

=
1

2

3∑
α=1

δ

δεαα

[∫
Ω
ρ(r)

{∫
R3

det2(1 + ε)ρ(s)

|r[ε]− s[ε]|
d3s−

atoms∑
b

det(1 + ε)Zb

|r[ε]− τ b[ε]|

}
d3r

]∣∣∣∣∣
ε=0

=

∫
Ω
ρ(r)VC(r)d3r +

3

2

∫
Ω
ρ(r)

∫
R3

ρ(s)

|r − s|
d3sd3r

and

− 1

2

atoms∑
a∈Ω

Za

3∑
α=1

δ

δεαα
V a
M [ε](τ a[ε])

∣∣
ε=0

= −1

2

atoms∑
a∈Ω

Za

3∑
α=1

δ

δεαα

det(1 + ε)

∫
R3

ρ(s)

|r[ε]− s[ε]|
d3s−

atoms∑
b 6=a

Zb
|r[ε]− τ b[ε]|


∣∣∣∣∣∣
ε=0

= −3

2

∫
Ω
ρ(r)

atoms∑
b

Zb
|r − τ b|

d3r +
1

2

atoms∑
a∈Ω

ZaV
a
M (τ a).
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5. Stress from total energy calculations

Summed up, we obtain as a control formula for the electrostatic part of the pressure

−3PesΩ =
5

2

∫
Ω
ρ(r)VC(r)d3r +

1

2

atoms∑
a∈Ω

ZaV
a
M (τ a). (5.25)

5.4.2. Variation of the alternative electrostatic potential

As they were constructed in (5.21) and (5.22), the alternative electrostatic and Madelung
potential contain the electronic density of the unstrained system, with the core and va-
lence parts being smeared over the strained lattice and the core part being displaced
along with the nuclei. The latter part will result in a simplification of our calculations,
as inside a muffin-tin sphere no change in the potential risen by the nucleus will be seen.
Therefore, a nucleus will reproduce the same multipole moments as in the unstrained
case and the only differences are the smeared charge density and the multipoles of the
atoms outside of the muffin-tin sphere at their strained locations. This explicitly means
that the strain variation of the alternative electrostatic and Madelung potential should
be the same at an atomic position.

We have already explained Weinert’s method in chapter 3.3.3 in the general context
of a parametrized density n[ε](rε) and are now prepared to insert the alternative total
charge density (5.23) into the formalism to obtain the strain variation in the electrostatic
potential.

Multipole and pseudo-charge variation

According to (3.23), the multipole moments and their derivatives take the form

qalm[ε] =

∫ Ra

0
rl+2
a ρalm(|(1− ε)ra|)dra −

√
4πZaδl0, (5.26)

δ

δεαβ
qalm[ε]

∣∣∣∣
ε=0

=

∫ Ra

0
rl+2
a

[
δ

δεαβ
ρalm(|(1− ε)ra|)

∣∣∣∣
ε=0

]
dra and (5.27)

δ

δεαβ
ρalm(|(1− ε)ra|)

∣∣∣∣
ε=0

=

∮
S2

Y ∗lm(r̂a)

[
δ

δεαβ
ρa((1− ε)ra)

∣∣∣∣
ε=0

]
dS2

= −
∑
l′m′

1∑
t,t′=−1

{
ra∂rρ

a
l′m′(ra)cαtcβt′

2,2∑
s=0

Gm,t+t
′,m′

l,s,l′ Gt+t
′,t,t′

s,1,1

+
1

2
ρal′m′(ra)

1,2∑
s=−1

(
cαt′c

st
β (l′,m′) + cβt′c

st
α (l′,m′)

)
Gm,t

′,m′+t
l,1,l′+m

}
. (5.28)

The spherical harmonics expansion of the strained density is calculated according to
(5.28) in the routine st cdn2.f.
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5.4. Variation of the electrostatic energy

Calculating the strained plane-wave density inside the muffin-tin spheres demands for
the Fourier transform of the interstitial density to be known. In a finite volume, the
Fourier transform is given as

n̂[ε](Gε) =
1

Ω[ε]

∫
Ω[ε]

ρPW((1− ε)rε)e−iGε.rεd3rε (5.29a)

=
1

Ω

∫
Ω
ρPW(r)eiG.rd3r = ρ̂v(G). (5.29b)

Then, the strain derivative of the plane wave multipole moments (3.24) is

δ

δεαβ
qa,PW
lm [ε]

∣∣∣∣
ε=0

= 4πil
∑
G 6=0

ρ̂PW(G)eiG.τa

[
δ

δεαβ
Y ∗lm(Ĝε)

Rl+3
a jl+1(GεRa)

GεRa

∣∣∣∣
ε=0

]

= 4πil
∑
G 6=0

ρ̂PW(G)eiG.τaRl+3
a

[
Y ∗lm(Ĝ)

GαGβ
G2

(
jl+1(GRa)

GRa
− j′l+1(GRa)

)

− jl+1(GRa)

2GRa

1,2∑
s=−1

1∑
t=−1

(
Gα
G
cstβ (l,m) +

Gβ
G
cstα (l,m)

)
Y ∗l+s,m+t(Ĝ)

]
. (5.30)

By subtracting (5.30) from (5.27), the variation of the total multipole moments δq̃alm[ε]
can be obtained. This is done in the routine st mpmom2.f.

For the variation of the Fourier transform of the pseudo-charge, we are now able to
find with (3.28a) and (3.28b):

δ

δεαβ
n̂ps[ε](Gε)

∣∣∣∣
ε=0

=
δ

δεαβ

(
ρ̂PW(G) + ˆ̃nps[ε](Gε)

)∣∣∣∣
ε=0

= −δαβ ˆ̃nps(G) +
4π

Ω

∑
lma

(−i)l(2l + 2N + 3)!!

(2l + 1)!!Rla
eiG.τa

×

{
jl+N+1(GRa)

(GRa)N+1
Ylm(Ĝ)

[
δ

δεαβ
q̃alm[ε]

∣∣∣∣
ε=0

]
+ q̃alm

×

[
Ylm(Ĝ)

GαGβ
G2(GRa)N+1

(
(N + 1)jl+N+1(GRa)−GRaj′l+N+1(GRa)

)
− jl+N+1(GRa)

2(GRa)N+1

1,2∑
s=−1

1∑
t=−1

(
Gα
G
cstβ (l,m) +

Gβ
G
cstα (l,m)

)
Yl+s,m+t(Ĝ)

]}
(5.31a)

δ

δεαβ
n̂ps[ε](0)

∣∣∣∣
ε=0

= −δαβ ˆ̃nps(0) +

√
4π

Ω

atoms∑
a∈Ω

[
δ

δεαβ
q̃a00

∣∣∣∣
ε=0

]
(5.31b)

In the routine st psqpw2.f, the variation of the pseudo-charge presented in this section
is calculated. There we make use of ˆ̃nps(G) = n̂ps(G)− ρ̂PW(G).
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5. Stress from total energy calculations

Variation of interstitial potential

With (3.29), we already know how the interstitial potential is made up of the pseudo-
charge. Its variation takes the form

δ

δεαβ
VC [ε](rε)

∣∣∣∣
ε=0

=
∑
G 6=0

[
δ

δεαβ
V̂C [ε](Gε)

∣∣∣∣
ε=0

]
eiG.r

=
∑
G 6=0

4π

[
δ

δεαβ

n̂ps[ε](Gε)

G2
ε

∣∣∣∣
ε=0

]
eiG.r

=
∑
G 6=0

4π

G2

[
2GαGβ

n̂ps(G)

G2
+

[
δ

δεαβ
n̂ps[ε](Gε)

∣∣∣∣
ε=0

]]
eiG.r. (5.32)

The expansion coefficients of the strained interstitial potential are calculated in the
routine st hf coulpot.F by the name st vpw. Additionally, we need the variation on
the muffin-tin boundaries to obtain the potential variation inside the spheres.

δ

δεαβ
VC [ε](Ra + τ a[ε])

∣∣∣∣
ε=0

=
∑
G 6=0

4π

[
δ

δεαβ

n̂ps[ε](Gε)

G2
ε

eiGε.Ra
∣∣∣∣
ε=0

]
eiG.τa

=
∑
G 6=0

[
δ

δεαβ
V̂C [ε](Gε)

∣∣∣∣
ε=0

]
eiG.(Ra+τa)

− i

2

∑
G 6=0

V̂C(G)eiG.(Ra+τa)
1∑

t=−1

(GαRacβt +GβRacαt)Y1t(R̂a) (5.33)

The second term, coming from the variation in the exponential, will have to be taken
care of separately in further calculations as a correction to the boundary values.

Variation of muffin-tin and Madelung potential

First, we want to recall the particular difference between the electrostatic and Madelung
potential inside the muffin-tin spheres: The Coulomb potential arises from all charged
particles in the lattice while the Madelung potential of a certain atom arises from all
charged particles other than that atom. To take this difference into account while cal-
culating (3.31), the density can be adjusted to exclude the nuclear charge of an atom,
while the boundary values are corrected by adding Za/Ra to them. The potentials are
then given by

VC [ε](ra + τ a[ε]) =

∫
BRa (0)

ρa((1− ε)sa)G(ra, sa)d
3sa − Za

1

ra

[
1− ra

Ra

]
− R2

a

4π

∮
∂B1(0)

VC [ε](Ras+ τ a[ε])∂sG(ra, s)dS2 (5.34)
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5.4. Variation of the electrostatic energy

and

V a
M [ε](τ a[ε]) =

∫
BRa (0)

ρa((1− ε)sa)G(0, sa)d
3sa

− R2
a

4π

∮
∂B1(0)

(
VC [ε](Ras+ τ a[ε]) +

Za
Ra

)
∂sG(0, s)dS2. (5.35)

One can see clearly now that the difference between both potentials evaluated at an
atomic site ra = 0 is independent of the strain, as was anticipated earlier. Therefore,
the variation of both quantities can be found via (3.33) as

δ

δεαβ
VC [ε](ra + τ a[ε])

∣∣∣∣
ε=0

=
∑
lm

Ylm(r̂a)
4π

2l + 1

∫ Ra

0
s2
a

[
δ

δεαβ
ρalm(|(1− ε)sa|)

∣∣∣∣
ε=0

]
rl<

rl+1
>

[
1−

(
r>
Ra

)2l+1
]
dsa

+
∑
lm

Ylm(r̂a)

(
ra
Ra

)l ∑
G 6=0

eiG.τa

[
δ

δεαβ
V̂C [ε](Gε)

∣∣∣∣
ε=0

]∮
B1(0)

eiG.RasY ∗lm(ŝ)dS2

− i

2

∑
lm

Ylm(r̂a)

(
ra
Ra

)l ∑
G 6=0

eiG.τa V̂C(G)

×
1∑

t=−1

(GαRacβt +GβRacαt)

∮
B1(0)

eiG.RasY1t(ŝ)Y
∗
lm(ŝ)dS2, (5.36)

with the density and potential variation given by (5.28) and (5.32). Excluding the last
term, which is the aforementioned correction to the variation of the boundary values of
the potential, the variable st vr stores the variation of the electrostatic potential in the
muffin-tin spheres. The Rayleigh formula enables us to evaluate the surface integrals:

∮
B1(0)

eiG.RasY ∗lm(ŝ)dS2 = 4πilY ∗lm(Ĝ)jl(GRa)∮
B1(0)

eiG.RasY1t(ŝ)Y
∗
lm(ŝ)dS2 =

∑
l′m′

4πil
′
Y ∗l′m′(Ĝ)jl′(GRa)G

mtm′
l1l′

Since the evaluation of the potential variation at an atomic site sends ra towards zero,
only the angular momentum quantum number l = 0 contributes to the variation in the
Madelung potential in the routine st hf coulpot.F. Therefore, we obtain for the stress
arising from the interaction between the nuclei of a unit cell with all other charged
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5. Stress from total energy calculations

particles

−1

2

atoms∑
a∈Ω

Za

[
δ

δεαβ
V a
M [ε](τ a[ε])

∣∣∣∣
ε=0

]

= −
√

4π

2

atoms∑
a∈Ω

Za

∫ Ra

0

[
δ

δεαβ
ρa00(|(1− ε)sa|)

∣∣∣∣
ε=0

]
sa

[
1− sa

Ra

]
dsa

− 1

2

atoms∑
a∈Ω

Za
∑
G 6=0

eiG.τa

[
δ

δεαβ
V̂C [ε](Gε)

∣∣∣∣
ε=0

]
j0(GRa)

− 1

2

atoms∑
a∈Ω

Za
∑
G 6=0

eiG.τa V̂C(G)
GαGβ
G2

GRaj1(GRa). (5.37)

The routine containing this contribution is st hf coulpot.F. The integral containing
the variation of the density is named st ZV1 while the Fourier sums are collected in
st ZV2. We thus know how to calculate (5.22).

Stress contribution from electron charged-particle interaction

We will now proceed with the derivation of (5.20a). By using the unit step function of the
strained system, we can split the term into its interstitial and muffin-tin representation.
The latter gives

1

2

atoms∑
a∈Ω

∫
BRa (0)

 δ

δεαβ

∫
BRa (0)

ρa((1− ε)ra)VC [ε](ra + τ a[ε])d
3ra

∣∣∣∣∣
ε=0


=

1

2

atoms∑
a∈Ω

∫
BRa (0)

[
δ

δεαβ
ρa((1− ε)ra)

∣∣∣∣
ε=0

]
V a
C (ra)d

3ra

+
1

2

atoms∑
a∈Ω

∫
BRa (0)

ρa(ra)

[
δ

δεαβ
VC [ε](ra + τ a[ε])

∣∣∣∣
ε=0

]
d3ra. (5.38)

The quantity described by the last line is evaluated in the variable st nV6 in the rou-
tine st hf coulpot.F. Additionally, the correction to the boundary variation, which
was motivated in (5.33), is calculated as st nV5. The first line, on the other hand,
can be calculated by expanding the density variation and the potential into spherical
harmonics, the former with respect to (5.28). The variable containing this part is st nV3.

This leaves us with the interstitial part of (5.20a):

ΩσnV
αβ

:=
1

2

 δ

δεαβ

∫
Ω[ε]

(
1−

atoms∑
a∈Ω

Θ(|rε − τ a[ε]| ≤ Ra)

)
ρ((1− ε)rε)VC [ε](rε)d

3rε

∣∣∣∣∣
ε=0
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5.4. Variation of the electrostatic energy

We want to use the Fourier representation of the quantities involved in this integral.
However, we do not know the Fourier transform of the unit step function in the strained
system. We do now the Fourier transform of the unstrained unit step function, though.
Using (5.19), we can apply the strain variation just to this part and we find

ΩσnV
αβ = −1

2

atoms∑
a∈Ω

R3
a

1∑
t,t′=−1

cαtcβt′

∮
∂B1(0)

Y1t(ŝ)Y1t′(ŝ)ρ
a(Ras)V

a
C (Ras)dS2

+
1

2

 δ

δεαβ

∫
Ω[ε]

ΘIS((1− ε)rε)ρ((1− ε)rε)VC [ε](rε)d
3rε

∣∣∣∣∣
ε=0


By inserting the Fourier transforms of the strained density (which has the same expansion
coefficients as in the unstrained case) and the potential (5.32), we get

ΩσnV
αβ = −1

2

atoms∑
a∈Ω

R3
a

1∑
t,t′=−1

cαtcβt′

2,2∑
s=0

Gt+t
′,t,t′

s,1,1

∑
lm

∑
l′m′

ρa∗lm(Ra)V
a
Cl′m′(Ra)G

m,t+t′,m′

l,s,l′

+
1

2

 δ

δεαβ

∑
G

∑
G′ 6=0

ρ̂∗(G)V̂C [ε](Gε)
Ω[ε]

Ω[ε]

∫
Ω[ε]

ΘIS((1− ε)rε)e−i(Gε−G
′
ε).rεd3rε

∣∣∣∣∣∣
ε=0

 .

Parallel to (5.29b), the integral is the Fourier transform of its integrand in the unstrained
case. Thus, we find

ΩσnV
αβ = −1

2

atoms∑
a∈Ω

R3
a

1∑
t,t′=−1

cαtcβt′

2,2∑
s=0

Gt+t
′,t,t′

s,1,1

∑
lm

∑
l′m′

ρa∗lm(Ra)V
a
Cl′m′(Ra)G

m,t+t′,m′

l,s,l′

+
1

2

 δ

δεαβ

∑
G

∑
G′ 6=0

ρ̂∗(G)V̂C [ε](Gε)Ω[ε]Θ̂IS(G−G′)

∣∣∣∣∣∣
ε=0


= −1

2

atoms∑
a∈Ω

R3
a

1∑
t,t′=−1

cαtcβt′

2,2∑
s=0

Gt+t
′,t,t′

s,1,1

∑
lm

∑
l′m′

ρa∗lm(Ra)V
a
Cl′m′(Ra)G

m,t+t′,m′

l,s,l′

+
1

2

∑
G

∑
G′ 6=0

ρ̂∗(G)

[
δ

δεαβ
V̂C [ε](Gε)

∣∣∣∣
ε=0

]
ΩΘ̂IS(G−G′)

+
1

2
δαβ

∑
G

∑
G′ 6=0

ρ̂∗(G)V̂C(G)ΩΘ̂IS(G−G′). (5.39)

The surface term (first line) goes by the name of st nV4 in the routine st hf coulpot.F.
The trace term (last line) is calculated as st nV2 and coincides with the interstitial part
of the energy contribution of the electrons interacting with all charged particles to the
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5. Stress from total energy calculations

total energy. The middle term is summed up in the variable st nV1.

In contrast to the discontinuity correction derived in chapter 5.2.2, the surface term
found in this chapter does not arise from a discontinuity of the wave functions or the
density. Instead, it is necessary due to the use of the unit step function and its back-
transformation. Because no back-transformation is performed during the calculation of
the contribution to the stress tensor due to the muffin-tin spheres, the surface term does
not cancel.

This concludes the formalism to obtain the electrostatic stress.

5.5. The Hellmann-Feynman stress

We are now able to summarize the stress formula in terms of the physical Hellmann-
Feynman stress and the Pulay corrections, which are necessary due to our choice in
describing the wave functions. The stress tensor is given by

Ωσαβ =
1

2

∑
kv

nvk

∫
Ω
ψ∗vk(r) (∂α∂β + ∂β∂α)ψvk(r)d3r (5.40a)

+ δαβ

∫
Ω
ρ(r) (εxc(r)− Veff(r)) d3r (5.40b)

+
1

2

 δ

δεαβ

∫
Ω[ε]

ρ((1− ε)rε)VC [ε](rε)d
3rε

∣∣∣∣∣
ε=0

 (5.40c)

− 1

2

atoms∑
a∈Ω

Za

[
δ

δεαβ
V a
M [ε](τ a[ε])

∣∣∣∣
ε=0

]
(5.40d)

+ 2
∑
kv

nvk Re

(∫
Ω

[
δ

δεαβ
ψvkε [ε](r[ε])

∣∣∣∣
ε=0

]∗
(H− εv(k))ψvk(r)d3r

)
(5.40e)

− 1

2

atoms∑
a∈Ω

R3
a

∑
kv

nvk

∮
S2

sαsβ
{
ψMTa ∗
vk (Ras)∇2ψMTa

vk (Ras)

− ψIS ∗
vk (Ras+ τ a)∇2ψIS

vk(Ras+ τ a)
}
dS2 (5.40f)

− 1

2

atoms∑
a∈Ω

∫
BRa (0)

ρac (ra)raα∂βV
a

eff(ra)d
3ra. (5.40g)

The lines (5.40a) to (5.40d) form the Hellmann-Feynman stress. The remaining lines
constitute the Pulay correction.

Note that the contribution (5.40a) to the stress tensor contains the valence states
only, since we have shown that the core electrons do not contribute a component to the
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5.5. The Hellmann-Feynman stress

kinetic stress. However, Janak [Jan74] found a connection between (5.40g) and a term
containing the core states that is similar to the expression we have found for the kinetic
stress of the valence states, (5.40a). We will briefly sketch this connection, making use
of our assumption that the core states and their derivatives vanish at the muffin-tin
boundaries. We use the Schrödinger equation and its complex conjugate for the core
states: [

−1

2
∇2 + V a

eff 0

]
ψac =εacψ

a
c (5.41a)[

−1

2
∇2 + V a

eff 0

]
ψa∗c =εacψ

a∗
c (5.41b)

Operate on the first equation with
∫
BRa (0) ψ

a∗
c [rα∂β·] d3r and on the second equation

with
∫
BRa (0) · [rα∂βψ

a
c ] d3r:∫

BRa (0)
ψa∗c

(
rα∂β

[
−1

2
∇2 + V a

eff 0

]
ψac

)
d3r

= −1

2

∫
BRa (0)

ψa∗c rα∂β∂i∂iψ
a
c d

3r +

∫
BRa (0)

ψa∗c [rα∂βV
a

eff 0]ψac d
3r

+

∫
BRa (0)

ψa∗c V
a

eff 0 [rα∂βψ
a
c ] d3r

= εac

∫
BRa (0)

ψa∗c [rα∂βψ
a
c ] d3r

=

∫
BRa (0)

([
−1

2
∇2 + V a

eff 0

]
ψa∗c

)
[rα∂βψ

a
c ] d3r

= −1

2

∫
BRa (0)

[∂i∂iψ
a∗
c ] [rα∂βψ

a
c ] d3r +

∫
BRa (0)

ψa∗c V
a

eff 0 [rα∂βψ
a
c ] d3r

Since both formulas are manipulated to give the same result, we can subtract them from
each other and get:

−
∫
BRa (0)

ρac [rα∂βV
a

eff 0] d3r =
1

2

∫
BRa (0)

[∂i∂iψ
a∗
c ] [rα∂βψ

a
c ]− ψa∗c rα∂β∂i∂iψac d3r

=
1

2

∮
∂BRa (0)

î [∂iψ
a∗
c ] [rα∂βψ

a
c ]− ψa∗c rαî∂β∂iψac dS2

− 1

2

∫
BRa (0)

{
[∂iψ

a∗
c ] δαi [∂βψ

a
c ] + [∂iψ

a∗
c ] [rα∂i∂βψ

a
c ]

− δαiψa∗c [∂β∂iψ
a
c ]− [∂iψ

a∗
c ] [rα∂β∂iψ

a
c ]

}
d3r

= +
1

2

∫
BRa (0)

ψa∗c (∂α∂β + ∂β∂α)ψac d
3r (5.42)
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5. Stress from total energy calculations

Therefore, the core correction (5.40g) can be ignored when the sum in line (5.40a) is
extended to include the core states.

Ω Ω[ε]

ρ(r)→
ρ((1− ε)rε)

Figure 5.2.: The stress components from the electrostatic energy of the strained system
are calculated in strained coordinates. They are evaluated using the original
density smeared over the strained lattice.

5.6. Computational details

Since we already had to give a rather exhaustive overview over the electrostatic stress
and its implementation in chapter 5.4, we want to follow up by providing formulas for the
other stress contributions with the same degree of detail. We also want to provide other
partial pressure formulas with which to compare the trace of our results. The exchange-
correlation energy

∫
ρεxcd

3r and the integral containing the effective potential
∫
ρVeffd

3r
appearing in (5.40b) should already be part of FLAPW codes, so the corresponding trace
term can be taken directly from an electronic structure calculation. This, however, makes
comparison with a pressure formula redundant. The other parts of this formula need a
more thorough analysis, though.

5.6.1. Kinetic stress formula

As the wave functions are expanded into plane waves in the interstitial, (5.40a) is
straightforward to calculate in the interstitial region:

1

2

∑
kv

nvk

∫
Ω

Θ(r ∈ IS)ψ∗vk(r) (∂α∂β + ∂β∂α)ψvk(r)d3r

=
∑
kv

nvk
∑
GG′

z∗vkGzvkG′(−(k +G′)α(k +G′)β)
1

Ω

∫
Ω

Θ(r ∈ IS)e−i(G−G
′).rd3r

= −
∑
kv

nvk
∑
GG′

z∗vkGzvkG′(k +G′)α(k +G′)βΘ̂IS(G−G′)

This formula is implemented in the first part of stkin.F in the FLEUR-code.
In the second part of this routine, the muffin-tin representation of the basis functions is
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differentiated twice, which gives after a summation over all atoms

1

2

∑
kv

nvk

atoms∑
a∈Ω

∫
BRa (0)

ψa∗vk(r) (∂α∂β + ∂β∂α)ψavk(r)d3r

=
∑
kv

nvk

atoms∑
a∈Ω

∑
l

l+2,2∑
l′=l−2

∑
λλ′

{
δαβ

∫ Ra

0
rualλ(r)∂ru

a
l′λ′(r)dr

∑
m′

Aavk∗L′λ AavkL′λ′δll′δmm′

+

∫ Ra

0
rualλ(r)

(
r∂2
ru

a
l′λ′(r)− ∂rul′λ′(r)

)
dr

2,2∑
s=0

1∑
t,t′=−1

∑
m′

Aavk∗l,m′+t+t′,λA
avk
L′λ′

× cαtcβt′Gt+t
′,t,t′

s,1,1 Gm
′+t+t′,t+t′,m′

l,s,l′

+
1

2

∫ Ra

0
ualλ(r)

(
2r∂ru

a
l′λ′(r)− ual′λ′(r)

)
dr

1,2∑
s=−1

1∑
t,t′=−1

∑
m′

Aavk∗l,m′+t+t′,λA
avk
L′λ′

×
(
cαt′c

st
β (l′,m′) + cβt′c

st
α (l′,m′)

)
Gm

′+t+t′,t′,m′+t
l,1,l′+s

+
1

2

∫ Ra

0
ualλ(r)ual′λ′(r)dr

1,2∑
s=−1

1∑
t,t′=−1

∑
m′

Aavk∗l,m′+t+t′,λA
avk
L′λ′

1,2∑
s′=−1

δl,l′+s+s′δm,m′+t+t′

×
(
cs
′t′
α (l′ + s,m′ + t)cstβ (l′,m′) + cs

′t′
β (l′ + s,m′ + t)cstα (l′,m′)

)}
. (5.43)

The restriction on possible values for l′ and m are given by the Kronecker symbols and
the Gaunt coefficients. An additional restriction to the values of l′ is that it only can
have values from 0 to a maximal value lmax. Therefore, the values l− 2 and l+ 2 do not
contribute if they are out of said interval.

Kinetic pressure

If the trace of the kinetic stress is considered, the resulting term becomes familiar. It
is the negative double of the kinetic energy and can be obtained as an eigenvalue sum
minus the effective potential integral regarding only the valence states

3PkinΩ =
∑
kv

nvk

∫
Ω
ψ∗vk(r)∇2ψvk(r)d3r = −2Eval

kin. (5.44)

5.6.2. Discontinuity correction

Since the FLAPW basis functions are continuous up to first order on the muffin-tin
boundary, we will start by finding the second derivative of the interstitial basis functions.
Differentiation will reproduce them because they are plane waves. Afterwards, they can
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be expressed by their muffin-tin representation

−
∮
B1(0)

sαsβψ
IS ∗
vk (Ras+ τ a)∇2ψIS

vk(Ras+ τ a)dS2

= −
∑
GG′

z∗vkGzvkG′

∮
B1(0)

sαsβφ
IS ∗
kG(Ras+ τ a)∇2φIS

kG′(Ras+ τ a)dS2

=
∑
GG′

z∗vkGzvkG′ |k +G′|2
∮
B1(0)

sαsβφ
MTa ∗
kG

(Ras)φ
MTa
kG′

(Ras)dS2. (5.45)

We name
∑
G′ zvkG′ |k+G′|2aakG′L′λ′ as F avkLλ , mimicking the A and B coefficients. Then,

the formula for the surface correction is

Ωσsur
αβ = −1

2

∑
kv

nvk

atoms∑
a∈Ω

R3
a

∮
B1(0)

sαsβ
{
ψMTa ∗
vk (Ras)∇2ψMTa

vk (Ras)

− ψIS ∗
vk (Ras+ τ a)∇2ψIS

vk(Ras+ τ a)
}
dS2

= −1

2

∑
kv

nvk

atoms∑
a∈Ω

R3
a

∑
Lλ

∑
L′λ′

Aavk∗Lλ

×

{
ualλ(Ra)

[
AavkL′λ′

(
2

Ra
∂ru

a
l′λ′(Ra) + ∂2

ru
a
l′λ′(Ra)

)
+ F avkL′λ′ u

a
l′λ′(Ra)

]

×
2,2∑
s=0

1∑
t,t′=−1

cαtcβt′G
t+t′,t,t′

s,1,1 Gm,t+t
′,m′

l,s,l′

+AavkL′λ′ ulλ(Ra)

(
2

Ra
∂ru

a
l′λ′(Ra)−

1

R2
a

ual′λ′(Ra)

)

×
2,2∑
s=0

1∑
t,t′=−1

cαtcβt′G
t+t′,t,t′

s,1,1

1,2∑
p=−1

1∑
q,q′=−1

l′+p+1,2∑
p′=|l′+p−1|

Gm
′+q+q′,q′,m′+q

p′,1,l′+p

×Gm,t+t
′,m′+q+q′

l,s,p′

3∑
j=1

cjt′c
pq
j (l′,m′)

+AavkL′λ′
1

R2
a

ulλ(Ra)ul′λ′(Ra)

×
2,2∑
s=0

1∑
t,t′=−1

cαtcβt′G
t+t′,t,t′

s,1,1

1,2∑
p,p′=−1

1∑
q,q′=−1

Gm,t+t
′,m′+q+q′

l,s,l′+p+p′

×
3∑
j=1

cpqj (l′,m′)cp
′q′

j (l′ + p,m′ + q)

}
. (5.46)

The indices s, t, and t′ are reserved for handling the sαsβ expression in spherical har-
monics while the context of p, p′, q, and q′ is that of the kinetic energy operator.
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An expression similar to F avkL′λ′ is already obtained during the force calculation. According
to [YSK91] we write

EavkL′λ′ =
∑
G

zvkG

[
1

2
|k +G|2 − εv(k)

]
aakGL′λ′ =

1

2
F avkL′λ′ − εv(k)AavkL′λ′ , giving

F avkL′λ′ = 2(EavkL′λ′ + εv(k)AavkL′λ′).

The implementation of (5.46) is provided in the st pulay sur2.f routine.

Pressure from discontinuity correction

The dependence of (5.46) on the strain component manifests itself only through the fac-
tor sαsβ in the surface integral. The trace of this factor is 1 as s is a vector on the unit

sphere. Then, the pressure formula can be obtained by replacing
∑

s

∑
t,t′ cαtcβt′G

t+t′,t,t′

s,1,1

with
√

4π and s, t, and t′ with zero in the remaining Gaunt coefficients. Unfortunately,
the resulting expression cannot easily be obtained by means of known quantities from
a previous electronic structure calculation but has to be computed via (5.46) with the
aforementioned substitutions. This makes the pressure formula unsuitable as a check of
the discontinuity correction.

5.6.3. Valence correction

Before we derive a detailed formula for the the contribution of (5.40e) to the stress, we
make an important observation regarding the strain derivative of the wave function ψ:

δ

δεαβ
ψvkε [ε](r[ε])

∣∣∣∣
ε=0

=
δ

δεαβ

∑
G

zvkεGεφkεGε [ε](r[ε])

∣∣∣∣∣
ε=0

=
∑
G


 δ

δεαβ

zvkεGε√
Ω[ε]

∣∣∣∣∣∣
ε=0

√ΩφkG(r) +
zvkG√

Ω

[
δ

δεαβ

√
Ω[ε]φkεGε [ε](r[ε])

∣∣∣∣
ε=0

]
(5.47)

Here, the unit cell volume Ω is explicitly considered to be a prefactor, so
√

ΩφkG(r) is an
unweighted plane wave in the interstitial. Then, according to (5.10), the strained plane

wave
√

Ω[ε]φkεGε [ε](r[ε]) coincides with the unstrained one, and its derivative vanishes.

Since the first term of the sum is given in terms of the LAPW basis, it does not contribute
to the Pulay stress. This leaves us with the second term of the sum evaluated inside the
muffin-tin spheres and the Pulay stress arising only from the muffin-tin spheres.
Expanding the basis functions into spherical harmonics, we then have

δ

δεαβ
φkεGε [ε](ra[ε])

∣∣∣∣
ε=0

=
δ

δεαβ

∑
lmλ

aakεGεlmλ [ε]ualλ[ε](ra[ε])Ylm(r̂a[ε])

∣∣∣∣∣
ε=0

, (5.48)
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which can be handled by the product rule. The derivative of the spherical harmonic is
given by (5.9). Differentiating the other two gives

δ

δεαβ
ualλ[ε](ra[ε])

∣∣∣∣
ε=0

=
raαraβ
ra

∂rau
a
lλ(ra) +

δ

δεαβ
ualλ[ε](ra)

∣∣∣∣
ε=0

and

δ

δεαβ

(
aakεGεlmλ [ε]

bakεGεlmλ [ε]

)∣∣∣∣∣
ε=0

=
4πil√

Ω
ei(k+G).τa

× δ

δεαβ
Y ∗lm( ̂(kε +Gε))U [ε]−1

(
jl(|kε +Gε|Ra)

|kε +Gε|j′l(|kε +Gε|Ra)

)∣∣∣∣
ε=0

.

We recall that for vectors in reciprocal space, the strain transformation is kε = (1− ε)k.
Thus we can use (5.9) again. We also know the derivative of the absolutes (5.4), resulting
in the evaluation of the vector as

δ

δεαβ

(
jl(|kε +Gε|Ra)

|kε +Gε|j′l(|kε +Gε|Ra)

)∣∣∣∣
ε=0

= −
(k +G)α(k +G)β

|k +G|2

(
|k +G|Raj′l(|k +G|Ra)

|k +G|j′l(|k +G|Ra) + |k +G|2Raj′′l (|k +G|Ra)

)
.

The second term in the derivative of the radial functions u as well as the derivative
of the matrix U−1 features the change in the radial functions due to a strain in the
system and goes beyond a simple modification in the muffin-tin coordinates. In prin-
ciple, those functions would have to be adjusted to the real potential of the arbitrarily
strained system (in contrast to the alternative potential used for obtaining the electro-
static stress). A guide to such a procedure is contained in the PhD thesis of Betzinger
[Bet11], but in the context of the work at hand, we refrain from following it. Instead,
Thonhauser et al. [TADS02] and Nagasako and Oguchi [NO11] suggested to neglect the
corresponding terms, arguing that they should be comparatively small corrections. This
is in parallel with the force calculation of Yu et al. [YSK91], where the change in the
potential landscape, seen by the shifted atom, should make an adjustment of the radial
functions necessary. In literature, this course of action is called the frozen augmentation
approximation, since the augmentation of the plane waves is kept fix despite the chang-
ing potential.
Note that the variation in the unit cell volume is provided by the earlier split of the
wave function into expansion coefficients by volume and volume times basis functions.
The remaining variation in the a and b coefficients is calculated in the routine dabcof.F,
where they are multiplied by the expansion coefficients and summed up over the recip-

rocal lattice vectors to form δ
δεαβ

Aavkεlm [ε]
∣∣∣
ε=0

.
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We now can commence to formulate the valence contribution to the Pulay correction
from the muffin-tin integrals

Iavαβ(k) =

∫
BRa (0)

[
δ

δεαβ
ψvk[ε](ra[ε])

∣∣∣∣
ε=0

]∗
(H− εv(k))ψvk(ra)d

3ra. (5.49)

Similar to the calculation of the Hamilton and overlap matrices in chapter 3.3.5, we
divide the expression into parts that are for the most part independent of the reciprocal
vectors. To keep the formulas readable, we use the index λ, which we introduced in
chapter 3.2 to switch between the radial function u and its energy derivative u̇ or their
spatial counterparts ϕL = ulYL and ϕ̇L = u̇lYL. Then, the Pulay contribution takes the
form

Iavαβ(k) =
∑
Lλ

∑
L′λ′

{[
δ

δεαβ
Aavkε
Lλ

[ε]

∣∣∣∣
ε=0

]
taλλ

′v
LL′ (k)AavkL′λ′ +Aavk∗Lλ tadλλ

′v
LL′αβ (k)AavkL′λ′

}
. (5.50)

According to our convention, the factors taλλ
′v

LL′ (k) correspond to the four factors taϕϕLL′

to taϕ̇ϕ̇LL′ , (3.40a) to (3.40d), with the energies Eal shifted down by εv(k). Therefore, we

already know the left-hand sum. The factors tadλλ
′v

LL′αβ (k) refer to the integrals containing
the variation in ϕ(r[ε]),

tadλλ
′v

LL′αβ (k) =

∫
BRa (0)

[
δ

δεαβ
ualλ(r[ε])YL(r̂[ε])

∣∣∣∣
ε=0

]∗
{H − εv(k)}ϕaL′λ′(r)d3r. (5.51)

We split this expression according to the chain rule in a term containing the variation in
the radial function and a term containing the variation in the spherical harmonic. This
results in

tadλλ
′v

LL′αβ1(k) = (Eal′ − εv(k)) Iadλλ
′

ll′1 FαβLL′1 + δ1λ′I
adλ0
ll′1 FαβLL′1 +

∑
ν>0

Iadλλ
′

lνl′1 FαβLνL′1 and (5.52a)

tadλλ
′v

LL′αβ2(k) = (Eal′ − εv(k)) Iadλλ
′

ll′2 FαβLL′2 + δ1λ′I
adλ0
ll′2 FαβLL′2 +

∑
ν>0

Iadλλ
′

lνl′2 FαβLνL′2. (5.52b)

The radial integrals are given by

Iadλλ
′

ll′1 =

∫ Ra

0
r3∂ru

a
lλ(r)ual′λ′(r)dr, (5.53a)

Iadλλ
′

lνl′1 =

∫ Ra

0
r3∂ru

a
lλ(r)V a

eff ν(r)ual′λ′(r)dr, (5.53b)

Iadλλ
′

ll′2 =

∫ Ra

0
r2ualλ(r)ual′λ′(r)dr, (5.53c)

and

Iadλλ
′

lνl′2 =

∫ Ra

0
r2ualλ(r)V a

eff ν(r)ual′λ′(r)dr, (5.53d)
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while the factors

FαβLL′1 =
1∑

t,t′=−1

cαtcβt′

2,2∑
s=0

Gt+t
′,t,t′

s,1,1
Gm,t+t

′,m′

l,s,l′
, (5.54a)

FαβLνL′1 =
1∑

t,t′=−1

cαtcβt′

2,2∑
s=0

Gt+t
′,t,t′

s,1,1

∑
mν

caνmν

lν+l′,2∑
s′=|lν−l′|

Gmν+m′,mν ,m′

s′,lν ,l′
Gm,t+t

′,mν+m′

l,s,s′
,

(5.54b)

FαβLL′2 =
1

2

1,2∑
s=−1

1∑
t,t′=−1

(
cαt′c

st∗
β (l,m) + cβt′c

st∗
α (l,m)

)
Gm+t,t′,m′

l+s,1,l′
, (5.54c)

and

FαβLνL′2 =
1

2

1,2∑
s=−1

1∑
t,t′=−1

(
cαt′c

st∗
β (l,m) + cβt′c

st∗
α (l,m)

)
×
∑
mν

caνmν

lν+l′,2∑
s′=|lν−l′|

Gmν+m′,mν ,m′

s′,lν ,l′
Gm+t,t′,mν+m′

l+s,1,s′
(5.54d)

contain the angular integrals resulting in Gaunt coefficients.
The dependence of (5.52a) and (5.52b) on the band index and the k point expresses
itself only through the eigenvalue of the band at the k point. Storing the appropriate
factors I and F beforehand allows to calculate these quantities on the fly when needed.

The Pulay stress is calculated in the routine st pulay val2.f, while the integrals and
coefficients are set up in the subroutines setintegrals and setcoefficients of the
same routine.

Again, a pressure calculation is not easily obtained by known quantities. Instead, the
Pulay pressure should correct all other contributions with respect to the pressure zero,
making it agree with the total energy minimum.

5.6.4. Core correction

In order to calculate the change in the energy eigenvalues of the core states, the term

Ωσcore
αβ = −1

2

atoms∑
a∈Ω

∫
BRa (0)

ρac (ra) (raα∂β + raβ∂α)V a
eff(ra)d

3ra (5.55)
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has to be evaluated. Remembering that the core density is already spherical, this leads
to the formula

Ωσcore
αβ =−

atoms∑
a∈Ω

∑
ν

Ia1ν
∑
mν

ca∗νmν

1∑
t,t′=−1

cαtcβt′G
mν ,t,t′

lν ,1,1

−
atoms∑
a∈Ω

∑
ν

Ia2ν
∑
mν

ca∗νmν

1,2∑
s=−1

δ1,lν+s

×
1∑

t,t′=−1

(
cαt′c

st
β (lν ,mν) + cβt′c

st
α (lν ,mν)

)
δt′,mν+t (5.56)

with the radial integrals

Ia1ν =

∫ Ra

0
r3ρac (r)∂rV

a
eff ν(r)dr and (5.57a)

Ia2ν =

∫ Ra

0
r2ρac (r)V

a
eff ν(r)dr. (5.57b)

This formula is contained in the routine st pulay cor.f.

Core Pressure

While the pressure arising from the core electrons also needs to be calculated separately,
its simple form allows to use it as a test for accuracy. The trace of the core stress gives

3PcoreΩ =
atoms∑
a∈Ω

∫
BRa (0)

ρac (ra)ra.∇V a
eff(ra)d3ra

=
√

4π
atoms∑
a∈Ω

∫ Ra

0
r2
aρ
a
c (ra)∂raV

a
eff 0(ra)dra (5.58)

since the trace of rα∂β is just a radial derivative.

The trace of (5.42) yields as a second test for the core correction

atoms∑
a∈Ω

∫
BRa (0)

ρac (ra)ra.∇V a
eff(ra)d

3ra = 2Ecore
kin . (5.59)

The second term is easily obtained from the total kinetic energy by subtracting from it
the kinetic energy of the valence states. In this way, the differentiation of the core states
is avoided.
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5.7. Stress from local orbitals

We now know how to proceed in the construction of the stress tensor in the standard
FLAPW method using the frozen core and frozen augmentation approximation. We
want to add the local orbital extension in the same framework as well. Recall (3.48),
the definition of a local orbital as

φa,lokGlo
(ra) =

∑
mλ

AakGloL,lo,λ u
a
l,lo,λ(ra)YL(r̂a). (5.60)

An expansion into the basis functions happened on three occasions of the stress calcu-
lation: The calculation of the kinetic stress (5.43), the correction of the stress from the
surface terms (5.46) forming the discontinuity correction and the valence correction due
to the incompleteness of the FLAPW basis set (5.49).

The implementation of this expression to the stress contribution coming from the ki-
netic energy (5.43) is straightforward. Let λ and λ′ go from 0 to 2 and include the A,
B, and C coefficients of the local orbitals in the factors AavkLλ . The latter is the standard
procedure of handling the A, B, and C coefficients in FLEUR. Since the dependence of
the formula on G or Glo is only by these coefficients, no further adjustments have to be
made to the kinetic stress formula.

Since the local orbitals are constructed to vanish at the muffin-tin boundary, they do
not contribute to the discontinuity correction (5.46). Therefore, the remark in the pre-
vious paragraph about the matching coefficients already containing their counterparts
from the local orbital extension is irrelevant in this context. One could subtract the
A, B, and C coefficients from the factors AavkLλ , but this would result in unnecessary
computation time.

Then, only the adjustment of the Pulay stress (5.49) due to the local orbitals is left to
be calculated. Herein, we back-transformed the coordinates to the unstrained system.
We have thus to find the variation of

ψa,lokGlo
[ε](ra) =

∑
mλ

AakεGloεL,lo,λ [ε]ual,lo,λ(ra[ε])YL(r̂a[ε]) (5.61)

The matrix elements (5.51) can handle the variation of the unmatched muffin-tin func-

tions ϕaL,lo,λ(ra) = ual,lo,λ(ra[ε])YL(r̂a[ε]) in the case of local orbitals, too, by allowing

for λ = 2. Since the AavkLλ of FLEUR already contain the A, B, and C coefficients of the
local-orbital extension, we only need to find the variation of the matching coefficients of
the local orbitals to also construct the left term of the sum in (5.50). With the frozen
augmentation approximation and K lo = k+Glo, the matching coefficients (3.49) of the
strained system have the form

AakGloL,lo,λ [ε] =
4πil

W a
l (Ra, Eal )

eiKlo.τaaal,lo,λY
∗
L (K̂ lo[ε]), (5.62)
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since the lower case a, b, and c coefficients (3.46a) to (3.46c) are constructed only from
radial functions evaluated at the muffin-tin boundary. Thus, the strain variation results
in a contribution from the spherical harmonics, only. It is given by

δ

δεαβ
AakGloL,lo,λ [ε]

∣∣∣∣
ε=0

=
4πil

W a
l (Ra, Eal )

eiKlo.τaaal,lo,λ

× Kloα

Klo

1,2∑
s=−1

1∑
t=−1

cstβ (l,m)Y ∗l+s,m+t(K̂ lo). (5.63)

We can then add the product of the expansion coefficients zavkGlo and the variation of

the capital case factor AakGloL,lo,λ to the FLAPW matching coefficients and evaluate Eq.
(5.49).

The local orbital extension is not yet implemented into the calculation of the stress
tensor in the FLEUR code.

5.8. A simple pressure formula

We can sum up all checks for accuracy to obtain a simple formula for the pressure. By
using the expressions (5.13), (5.14a), (5.14b), (5.14c), (5.17a) and (5.25), we find

−3PΩ =

3∑
α=1

δ

δεαα
E[ε]

∣∣∣∣
ε=0

= −2Eval
kin +

5

2

∫
Ω
ρ(r)VC(r)d3r +

1

2

atoms∑
a∈Ω

ZaV
a
M (τ a) + 3

∫
Ω
ρ(r) (εxc(r)− Veff(r)) d3r

+
atoms∑
a∈Ω

∫
BRa (0)

ρac (ra)ra.∇V a
eff(ra)d

3ra +
3∑

α=1

(
σval
αα + σdisc

αα

)
, (5.64a)

or, reformulating the core correction as in (5.42) and merging the second term of this
equation with the one containing the exchange-correlation energy density

−3PΩ = −2Ekin −
1

2

∫
Ω
ρVCd

3r +
1

2

atoms∑
a∈Ω

ZaV
a
M (τ a) + 3

∫
Ω
ρ (εxc − µxc) d

3r

+

3∑
α=1

(
σval
αα + σdisc

αα

)
. (5.64b)

The simple pressure formula coincides with the one in [TADS02] found by Thonhauser
et al. The first line can easily be obtained from quantities available in a FLAPW code
for the total energy calculation. The second line makes use of (5.46) and (5.50).
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We want to draw a comparison between this work and the prior publications of Nielsen
and Martin [NM85a], Thonhauser et al. and Nagasako and Oguchi [NO11].

Nielsen and Martin as well as Thonhauser et al. suggested that the wave functions
and density change under strain by an inner variation only,

ψ[ε](rε) =
1√

det(1 + ε)
ψ(r) and (6.1)

ρ[ε](rε) =
1

det(1 + ε)
ρ(r). (6.2)

This corresponds to the smearing of the density over the strained lattice which we found
while deriving the electrostatic stress formula. Nielsen and Martin did not take into ac-
count the effects of a finite LAPW basis because they presented a general deduction in
the DFT formalism. Therefore, they were able to apply the Hellmann-Feynman theorem
to all states. Our equations less the discontinuity correction (5.15b) and the valence cor-
rection (5.15a) coincide with (30a) - (30e) of [NM85a] conceptually, with the electrostatic
and Madelung stress split into the stress from ion-ion, ion-electron and electron-electron
energies, respectively. Note though that we obtain the stress component from the kinetic
energy of the core electrons from the core correction via (5.42). In the FLAPW method,
the core charge is assumed to be spherical both in the strained and in the unstrained
system and both systems are initially set up with muffin-tin spheres, not ellipsoids.
Therefore, the core density of an atom can roughly be assumed to be displaced along
with the atom without further changes, particularly in the kinetic energy.
Thonhauser et al. also included a contribution from the core electrons to their kinetic
stress formula. As does this thesis, they worked in the context of the FLAPW method.
Their corrections (30) and (31) in [TADS02] coincide with (5.15b) and (5.15a). They
also present with their Eq. (21) the same core correction as we do in Eq. (5.13) of this
thesis, but with a different sign. However, they reason that the trace term vanishes in
the case of pure pressure. Following Janak [Jan74] we have shown that the core correc-
tion can either be accounted for directly by (5.13) or as a contribution to the kinetic
stress (5.42), but not both. Hence we believe that Eq. (21) in [TADS02] is redundant.
Since they present pressure calculations only, they could neither check the validity of
their sign nor the necessity of their additional core correction.
A further sign that in the FLAPW method, the core correction does not initially stem
from a change in the kinetic energy of the core electrons is provided in Eq. (4.8), its
appearance in the force formalism. From this formula, no connection to a kinetic energy
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term can be drawn. In the FLAPW method, the special form of the stress operator,
r⊗∇, is necessary to allow for a connection between the core correction and a term that
can be linked to the kinetic energy by partial integration of the kinetic energy operator.

To return to the discussion of the strained density, we allowed for an arbitrary change
of the electronic density in the strained lattice. The assumption that the density should
only vary by a smearing seemed unphysical to the author, since the tightly bound core
states should not be affected much by a small change in the lattice configuration, as we
pointed out before. The fact that the variation of the form of the density does cancel
during the calculation backs up the choice of Thonhauser et al. to assume the strained
density as an inner variation of the original one.
In [TADS02], the authors already suggested that the ”usual LAPW machinery for the
Coulomb potential can be used” to obtain the variation in the electrostatic potential by
plugging in the variation of the density in the Weinert method. However, they provide
no formulas to which we can compare our equations to. Since the formulation of the
variation of the electrostatic potential is elaborate and takes up a great part of this
work, they might have skipped it for a better legibility of their publication. Note that
they seem to have included only the variation of the 1/r potential in their calculation of
the variation of the electrostatic potential, whereas we include the change in the volume
as well. This results in a difference between our term (5.17a) and their Eq. (19) in
δαβ

∫
ρVCd

3r. The difference is the contribution from the change in volume of the inte-
gral containing the electrostatic potential. As we emphasized, the use of integral kernels
of the form (rα−sα)(rβ−sβ)/|r−s|2 is inconvenient in the FLAPW method due to their
non-locality. Thus we suggested to calculate the alternative electrostatic and Madelung
potential (5.21) and (5.22) in the strained system beforehand and perform the variation
with respect to the strain afterwards.
While the formula for the discontinuity correction (5.15b) is provided by Thonhauser et
al., they use the Slater form of the kinetic energy operator in their computations, i.e.
they integrate (∇ψ)∗(∇ψ) instead of −ψ∗∇2ψ. The LAPW basis is continuous up to
first order at the muffin-tin boundaries. Therefore, the Slater form does not imply the
discontinuity correction.

Nagasako and Oguchi also state that their derivation of the stress tensor does not
contain any surface terms. The reason for the absence of the surface terms is the special
basis set of Soler and Williams used in [NO11]: Without going into much detail, the
basis set proposed by Soler and Williams is roughly described as plane waves plus local
orbitals. A plane wave basis is used not only in the interstitial space, but extended over
the whole unit cell. On top of those plane waves, in the muffin-tin spheres a special SW-
LAPW basis is formed that is composed of a regular LAPW basis set from which the
excess plane-wave states are subtracted again. Thus, the basis set of Soler and Williams
does resemble the course of action taken with the Weinert method. The spherical Bessel
functions that appear during this process replace the radial functions ũl that we use in
our local orbital extension. Since the LAPW basis in the muffin-tin spheres is matched
to the plane wave description of the interstitial region on the muffin-tin boundary, the
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muffin-tin specific basis functions of the Soler and Williams basis set vanish at the sphere
boundary. With this knowledge, the absence of a discontinuity correction or other surface
terms becomes understandable: The plane waves are smooth in the whole unit cell and
the basis functions restricted to the muffin-tin spheres are zero at the boundary of those
spheres.
The discussion on the topic of the existence of surface integrals in the FLAPW method
already occurred at the introduction of atomic forces to the FLAPW method by Yu
et al. [YSK91] using the regular LAPW basis set and by Soler and Williams [SW89]
using their SW-LAPW basis. The equivalence between both force formalisms was shown
eventually by Soler and Williams [SW93].
Regarding the stress calculation, the modified LAPW basis set allows the description of
a strained system by smearing the plane waves over the lattice and moving the muffin-tin
spheres to the strained atomic positions. The kinetic stress of the plane wave basis, Eq.
(33) in [NO11], corresponds well to our formula describing the interstitial kinetic stress,
while they find for the variation of the muffin-tin basis functions Eq. (35) an expression
that resembles the kinetic part of the valence correction (5.15a). Nagasako and Oguchi
motivate the lack of a contribution to the kinetic stress from the core electrons by
the frozen core approximation. They do not explicitly point out a core correction in
their formulas. We believe however, that the last terms in Eqs. (47) and (58) within
their calculation of the electrostatic and exchange-correlation stress correspond to the
correction. This can be motivated by replacing the variation with respect to the strain
by rα∂β and performing an integration by parts. For an exact study, more insight into
the construction of the core electronic density within the SW-LAPW basis would be
necessary. Still, the deduction of Nielsen and Martin holds in the general context of
DFT and implies a contribution to the kinetic stress from all states.
Nagasako and Oguchi find the contribution of the variation of the electrostatic potential
to the valence correction in the two terms above the core correction in Eq. (47), where
they also provide a formula for the actual stress contribution from the electrostatic
energy. Finally, Eq. (56) and and the first term in Eq. (58) complete their formula
for the valence correction by adding its contribution containing the exchange-correlation
potential.
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7. Application of the stress formalism to
aluminum

Aluminum is experimentally found to be a face-centered cubic system with an unit-cell

volume of 66.42Å
3

or 112.1a3
0 [Coo62].

To check the implementation of the stress formalism, we calculate an aluminum bulk.
Values for pressure are given at four unit-cell volumes by Thonhauser et al. [TADS02],
to which we can compare our results.
We calculate total energies, the components of the stress tensor, and the pressure for-
mulas we have found for unit-cell volumes of 104.2a3

0, 106.4a3
0, 110.0a3

0, and 114.9a3
0 for

comparison as well as intermediate volumes of 105.3a3
0, 108.2a3

0, 111.6a3
0, and 113.3a3

0.
The calculations are set up with cut-off parameters of gmax = 3.8 Htr and lmax = 10 as
provided by the input-file generator of FLEUR. Furthermore, the muffin-tin radius of the
aluminum atoms is RAl = 2.59a0 The radial functions are sampled over 623 grid points
with a logarithmic increment of 0.018. We use a 12×12×12 k-point mesh that includes
the Γ-point for the first Brillouin zone. The exchange-correlation functional is chosen to
be the LDA functional of Perdew and Zunger [PZ81]. Those settings are shared by all
calculations.

In table 7.1, we give the parameters found by performing a least squares fit of the
Birch-Murnaghan equation of states [Bir47]

E(Ω) =E0 +
9Ω0B0

16


[(

Ω0

Ω

) 2
3

− 1

]3

B′0 +

[(
Ω0

Ω

) 2
3

− 1

]2 [
6− 4

(
Ω0

Ω

) 2
3

] (7.1)

to the results of the calculation (see fig. 7.1 on the next page). The negative derivative of
the Birch-Murnaghan formula with respect to the unit-cell volume provides the pressure
P = −dE(Ω)/dΩ.

Parameters Result

Minimal energy E0 (Htr) −241.9182166
Equilibrium volume Ω0 (a3

0) 107.106
Bulk modulus B0 (Htr/a3

0) 2.986 · 10−3

Derivative B′0 (dim.less) 4.774

Table 7.1.: Birch-Murnaghan fit to DFT data of aluminum
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7. Application of the stress formalism to aluminum
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Figure 7.1.: (a) Birch-Murnaghan fit to total-energy data of aluminum, shifted by E0.
(b) Negative derivative of the Birch-Murnaghan fit and pressure data with-
out Pulay correction.

The equilibrium volume obtained from the total-energy calculation deviates by less
than one percent from 106.519a3

0, the value found by Thonhauser et al. [TADS02]. This
deviation can be explained by a different setup of the calculations. The size of the k-
point mesh, the cut-off parameters, and the choice of the exchange-correlation functional
all influence the outcome of the calculation. The publication of Thonhauser et al. does
not give details on their setup. Furthermore, LDA is known to underestimate lattice
constants [KSU95], which explains the difference to the experimental value of 112.1a3

0.

Figure 7.2 shows the total values of stress and pressure in (a). Neither stress nor pres-
sure exhibit a zero-crossing. Therefore, none of the quantities indicate an equilibrium
volume of aluminum in the range of 104.2a3

0 to 114.9a3
0. This contradicts the existence

of an energy minimum at a volume of 107.106a3
0. Furthermore, stress and pressure do

not coincide. Even though at first glance the deviation seems to be caused by an error
in sign, this is not the case, as the remaining figures demonstrate:
The components of stress and pressure from the kinetic energy of the valence states
(5.40a) and (5.44), shown in figure (b), deviate by less than 0.1 percent from each other.
In figure (c), the contributions of the core correction (5.40g) and the test term (5.42)
agree within 0.3 percent. The remaining Pulay correction consisting of the valence term
(5.40e) and the surface term (5.40f) is shown in figure (f). The correction is added to the
stress as well as to the pressure. In figure (e), the contribution (5.40b) from the change
in volume of the unit cell is depicted. This contribution is calculated identically within
the stress and pressure computation, so there is no deviation by construction. Instead
the deviation in figure (a) is a consequence of the systematic deviation between the stress
and pressure components from the electrostatic energy derivation, as shown in figure (c).
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Figure 7.2.: Calculated results of the trace of the stress tensor and the pressure for-
mulas. (a) shows the total stress and pressure, including the valence and
discontinuity correction. (b) shows the kinetic stress and pressure of the
valence states. (c) shows the core correction and the kinetic pressure of the
core states. (d) shows the electrostatic stress and pressure. (e) shows the
exchange-correlation stress (5.40b). It coincides with pressure by construc-
tion. (f) shows the Pulay correction without the core correction.
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7. Application of the stress formalism to aluminum

The differences between the stress and pressure components are plotted in figure 7.3.
It becomes apparent that the deviation between total stress and pressure is dominated
by the deviation of the electrostatic components of both quantities.

Two conclusion have to be drawn from our results:

First, the calculation of the electrostatic stress components is erroneous. The simple
pressure formula (5.64b) contains simple terms obtainable from any DFT total-energy
calculation. It agrees to the formula derived by Thonhauser et al. and the earlier for-
mula of Janak [Jan74]. Therefore, we assume that the stress components are wrong, not
the pressure components. In addition, we present in table 7.2 a comparison between our
calculations and the results presented by Thonhauser et al. The origin of this error has
to be traced very vigilant. The electrostatic stress component comprises of 8 different
contributions. Not all of them can be tested separately by applying the stress formal-
ism to realistic systems. Hence, the construction of convenient test cases is assumed to
help with the correction of the electrostatic stress. The qualitatively similar form of the
electrostatic stress curve compared to the pressure curve indicates a systematic error.
Maybe the implementation of one or more of the 8 contributions misses a factor.
Another source of error is the special method, in which the iterations to find the self-
consistent electronic density proceed. In order to find the ground state density, the
density from the previous iteration is used as an input to construct the electrostatic po-
tential. Then the Kohn-Sham states are calculated and the new density is formed as an
output of the current iteration. However, a clever mixing of the input and output density
can help to achieve a faster convergence. The formulas derived in this thesis are found
under the assumption that the charge density is given self-consistently, meaning that
the mixed input and output densities are assumed to coincide. While the calculations
presented in this chapter are converged by the standards of a total-energy calculation, it
is unclear, how sensitive the stress calculation is to differences between input and output
density.

Second, the sum of valence and discontinuity correction is too large. Note that if the
total pressure is shifted up by the Pulay correction, its curve progresses just above zero
pressure (see fig. 7.1(b)). A smaller correction would then generate a zero-crossing. The
comparison between our results and the results given by Thonhauser et al., provided
in table 7.2, shows that they obtained only a small contribution from the valence cor-
rection. In their publication, Thonhauser et al. comment that the valence correction
should include a contribution from the interstitial region. We have proved in chapter
5.6.3, that our valence correction only comprises of terms that have their origin in the
muffin-tin spheres. We therefore believe that the implementation of the Pulay correction
in the FLEUR code is incorrect, not its analytic derivation. The construction of test cases
that focus on the Pulay correction will help to pinpoint the error.
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Figure 7.3.: Difference between stress and pressure. (a) shows the total difference. (b)
and (c) show the difference between the kinetic stress and pressure compo-
nents of the valence and core states, respectively. (d) shows the difference
between electrostatic stress and pressure. This contribution dominates the
difference between total stress and pressure. (e) and (f) correspond to fig-
ures 7.2(e) and (d). 6

∫
ρVCd

3r is transfered from the exchange-correlation
term to the electrostatic term. Thonhauser et al. use this convention.
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7. Application of the stress formalism to aluminum

Volume (a3
0) 104.2 106.4 110.0 114.9

Contribution Pressure (kbar)

Electrostatic -437027.2 -427961.4 -414112.3 -396302.8

Pressure -438236.9 -429861.6 -415775.6 -398024.5

Stress -426767.7 -418944.3 -405753.5 -389068.9

Kinetic valence 5981.1 5797.8 5525.5 5189.3

Pressure 6007.3 5837.5 5559.0 5221.4

Stress 6012.4 5842.5 5563.8 5225.9

Kinetic core 447059.0 437820.8 423703.5 405540.6

Pressure 449125.0 440574.7 426190.2 408054.3

Stress 448274.3 439740.2 425383.0 407281.4

Exc part -16002.4 -15665.2 -15150.5 -14489.3

Pressure -16022.3 -15711.3 -15188.7 -14530.7

Pulay correction 7.5 7.3 7.0 6.9

Stress -5796.4 -5546.2 -5145.8 -4681.1

Table 7.2.: Results of the stress calculation of Thonhauser et al. [TADS02] (bold rows)
and of the pressure and stress calculation of this thesis (indented lines be-
low). Note that the variation in the unit-cell volume is part of the variation of
the electrostatic potential in this thesis, but not in the publication of Thon-
hauser et. al. There it cancels with the electrostatic contribution in the term
containing the exchange-correlation density (5.40b). We have adjusted our
results to provide comparability.

Thonhauser et al. note that in order to calculate the stress, similar large numbers
have to be subtracted from each other. We recognize the problem this poses for the
accuracy of the stress formalism. Once the electrostatic stress and the Pulay correction
are implemented correctly in the FLEUR code, we are able to perform checks on the
numerical accuracy of the stress tensor.
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8. Conclusion & Outlook

In this thesis, we have derived the stress tensor from the total-energy expression of
density-functional theory within the FLAPW method. We found several terms that are
related to corresponding terms in the atomic-force formalism by Yu et al. [YSK91].
These include the Pulay corrections that are necessary due to the use of an insufficiently
complete set of basis functions. Since the valence states are constructed using a finite
basis, their derivation by strain cannot be expressed in terms of the same basis. There-
fore, the valence correction occurs. Also, the valence states are constructed to match in
value and radial derivative on the muffin-tin boundaries. The kinetic energy operator is
a differential operator of second order. Hence it is sensible to the discontinuity of the
valence states on the sphere shell, which moves to the new atomic position and deforms
in the strained lattice. This explains the need for the discontinuity correction. The core
correction has to be considered because the core density is always assumed to be spheri-
cal, in the original system as well as in the strained system. However, the (local) crystal
potential in the strained lattice differs from the potential in the unstrained case, which
affects the construction of the core states. This is accounted for in the core correction.
The correction terms are conceptually of the same form as their counterparts in the
force formalism. However, we have presented a relation between the core correction and
a term that has the same form of the kinetic stress component of the valence states, but
evaluated with the core states. This relation was proved by Janak [Jan74].
We also derived the Hellmann-Feynman stress, which is the variation of the Hamiltonian
by stress. In contrast to the calculation of atomic forces, were the Hellmann-Feynman
term was given exclusively by the variation in the Madelung potential, the HF stress in-
cludes also a contribution from the interaction of the electrons with all charged particles.
In addition, the change of volume generated by strain gives rise to additional volume
terms. We also derived a stress contribution from the kinetic energy of the valence states
(and of the core states, if the core correction is allocated at this place and not with the
corrections). The latter two are easy formulas, partly because we have chosen to stay
with the local density and generalized gradient approximations. The derivation of the
electrostatic stress is the most elaborate part of this thesis, though. As space is par-
titioned into the muffin-tin spheres and the interstitial region, the non-local nature of
the electrostatic and Madelung potential poses a challenge to calculate their respective
energy contributions. The calculation of stress is even more challenging, since the space
is deformed in a strained system. Therefore, we have chosen to calculate an auxiliary
alternative electrostatic potential in the strained lattice, using the strained coordinates
but the original electronic density smeared over the strained lattice. Doing so, we are
able to use the method to construct the electrostatic potential presented by Weinert
[Wei81] prior to the variation by strain.
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8. Conclusion & Outlook

First practical steps of an implementation have been taken. A rough agreement to
data provided by Thonhauser et al. [TADS02] indicates that the implementation has
to be revised. While most stress components are in good agreement to the pressure
formulas that we provided for test purposes, the contribution to the stress from the
electrostatic energy shows a systematic deviation from the pressure values. Also, the
sum of the valence and discontinuity correction does not behave as expected. Both con-
tributions, the electrostatic stress and the sum of the correction terms, are composed of
several terms in our implementation. Hence, they are very susceptible for errors in the
code.

As soon as the stress formulas are implemented more rigorously in the FLEUR-code, we
are confident to have a tool at hand that allows for structural optimization of materials
beyond atomic forces. The subsequent implementation of symmetry relations of stress
components from related k and G vectors or spatial coordinates is expected to produce
a considerable speed-up in the computing time.
By relaxing a system not with respect to σ = 0, but to another value of the stress tensor,
one should be able to perform a lattice relaxation for systems subject to external stress.
Also, local minima of the energy surface with respect to the lattice configuration can be
found, if the initial parameters are chosen accordingly. Thus, the existence of different
phases of materials depending on pressure can be probed.

The addition of collinear magnetism to the formalism should present not much of a
problem, since many of the formulas can simply be rewritten to include different spin
channels. Doing so, data on magnetic anisotropy and magnetization axes should be
accessible. Also, the effects of magnetic fields on the shape of systems can be obtained
in this case. The implementation of magnetism into the calculation is of interested for
finding materials usable in transformers or dynamos, for example. The iron cores often
used in these devices periodically deform in a rotating magnetic field. Therefore, they
consume energy and heat up. The periodic deformations are the origin of the character-
istic humming one hears next to a transformer. Other materials which deform less than
iron in a magnetic field, can improve the efficiency of those devices.

Since the development of more sophisticated exchange-correlation functionals goes
on and has helped the accuracy of DFT calculations, their inclusion into the stress
formalism seems to be asked for. Due to the non-locality of the newer attempts at the
exchange-correlation functional, we predict their inclusion into the stress formalism to
be a challenging endeavor, though.
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A. Appendix

A.1. Proof of (3.27)

To make our introduction to Weinert’s method to calculate the electrostatic potential
sound, we have to show the equality

N∑
η=0

(−1)η

2l + 2η + 3

(
N
η

)
=

2NN !(2l + 1)!!

(2l + 2N + 3)!!
.

In order to prove this equation, we borrow the beta and gamma functions from calculus
[Abr65].

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt (A.1a)

Γ(x) =

∫ ∞
0

tx−1e−tdt (A.1b)

Both functions are related by the equation

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(A.1c)

and the gamma function fulfills

Γ(x+ 1) =xΓ(x) and (A.1d)

Γ(n+ 1) =n! (A.1e)

for all positive reals x and positive integers n.

Examine the integral
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)
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2
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0
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2l+1
2 (1− t)Ndt =
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0
t2(l+1)(1− t2)Ndt.

The expansion of the integrand into a binomial series yields
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0
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)
. (A.2)
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A. Appendix

This is the left-hand side of the equality we want to show. On the other hand, we can
use (A.1c) and the properties (A.1d) and (A.1e) to find

1

2
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2
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2N + 2

2

)
=

1

2
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2
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2
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!(

l +N + 3
2
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!

=
2NN !(2l + 1)!!

(2l + 2N + 3)!!
. (A.3)

A.2. Hellmann-Feynman force formula

We want to derive Eq. (4.5). To do so, we perform the differentiation in Eq. (4.2). We
obtain

F c
HF =− Zc

δ

δτ c

{∫
BRc (0)

ρc(sc)G(−δτ c, sc)d3sc

− 1

4π

∮
∂BRc (0)

V c
C(sc)

∂G

∂sc
(−δτ c, sc)dS2

}
.

By inserting the formulas for the Green’s function (3.30) and (3.32), we can evaluate
this expression to get

F c
HF =Zc

δ

δ(−τ c)
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∫ Rc
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}
∇[rlYL(r̂)]

∣∣∣
r=0

.

(A.4)

Note that we already know the electrostatic potential at the time of the force calculation.
Therefore, we inserted the spherical harmonic representation of the potential for the
boundary values instead of the interstitial representation.
The last factor in (A.4) is the derivative of a constant for l = 0. For l ≥ 1 it becomes

∇[rlYL(r̂)]
∣∣∣
r=0

=ei

[ri
r
lrl−1YL(r̂) + rl−1r∂iYL(r̂)

]∣∣∣
r=0

.

Since the second term of the sum is rl−1 times Yl±1,m±1 (see Eq. (5.8) for the context)
and the spherical harmonic is bounded, the term is of the order rl−1. Therefore, the
expression vanishes for all values of l but l = 1. Thus, we have proven the validity of
Eq. (4.5).
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method’ selbstständig verfasst und keine anderen als die angegebenen Quellen und Hil-
fsmittel benutzt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner
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