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Chapter 1Introdu
tionThe investigation of surfa
es and interfa
es is a rapidly developing �eld in modernsolid state physi
s. Experimental and theoreti
al te
hniques have advan
ed tremen-dously during re
ent years. The possibility of growing metalli
 over-layers and multi-layers of high quality opened way to a

ess a 
ompletely new 
lass of system withremarkable properties: The ultrathin magneti
 �lms. The preparation of su
h spe
-imen has be
ome feasible with state of the art epitaxy in 
ombination with sophis-ti
ated va
uum te
hnology. With the mole
ular beam epitaxy (MBE), for example,thin layers 
an be grown in a pre
ise and 
ontrolled way on an atomi
 s
ale. Si-multaneously, te
hniques monitoring the growth and 
hara
terizing these materials
hemi
ally, stru
turally and ele
troni
ally have advan
ed at the same pa
e. Withthe s
anning tunneling mi
ros
ope (STM) the stru
ture of surfa
es 
an be studied inreal spa
e with atomi
 resolution. The STM 
an even be used to pla
e single atomsat a 
hosen position, and thus to \design" arti�
ial materials atom by atom. Spin-polarized ele
tron te
hniques have been developed to investigate the magnetism atsurfa
es and in addition the re
ently dis
overed magneti
 di
hroism 
an be employedto analyze the magneti
 properties. Dis
overies like the inter-layer ex
hange 
ouplingand the giant magnetoresistan
e, that found their way into industrial appli
ation,lead to extensive resear
h a
tivities in the �eld of thin magneti
 �lms.In order to understand the 
omplex intera
tions that lead to a spe
i�
 magneti
stru
ture, it is ne
essary to develop a theoreti
al des
ription of the magnetism at sur-fa
es. An important 
ontribution to the understanding of the physi
s of surfa
es hasbeen obtained from ab-initio 
al
ulations. With these methods, whi
h 
ontain the
harge of the nu
lei as the only parameter, ground-state properties like latti
e parame-ter, latti
e stru
ture, 
ohesive energies magneti
 moments and magneti
 stru
ture 
anbe determined. Bandstru
tures are 
al
ulated to guide the interpretation of experi-ments. The rapid progress in 
omputer te
hnology made it possible to apply ab-initiomethods to larger and more 
omplex systems, e.g. systems with broken symmetry,like surfa
es. The basis of su
h 
al
ulations is the density fun
tional theory (DFT)by Hohenberg and Kohn [HK64℄ and Kohn and Sham [KS65℄, whi
h states, that theground-state properties of a many ele
tron system are 
ompletely determined by theele
tron (
harge) density. However, this theory 
ould not be applied until the lo
al1



2 CHAPTER 1. INTRODUCTION(spin) density approximation (LSDA) was introdu
ed. This relatively simple approx-imation to the unknown ex
hange 
orrelation potential proved to be very su

essful,des
ribing the ele
troni
 stru
ture of most material in
luding the transition metals.On the basis of the DFT and the LSDA many bandstru
ture methods, whi
h di�erby the way the Kohn-Sham equations are solved, have been developed. The resultsof the present work have been obtain with the full-potential linearized augmentedplanewave method (FLAPW).The FLAPW method is an all-ele
tron method. The 
ore ele
trons are treated(full-) relativisti
ally, taking into a

ount only the spheri
al part of the potential. Thevalen
e ele
trons are 
al
ulated in the s
alar-relativisti
 approximation in
luding thefull potential. With no approximation to the shape of the potential being made,the FLAPW method is very suitable for open stru
tures and surfa
es. Due to itselaborate expansion of the wavefun
tions, in
luding radial fun
tions near the atomi
nu
lei, the FLAPW method 
an be applied to transition metals with their lo
alizedd-ele
trons. Surfa
es are approximated by a thin slab. The ne
essary extension tothe FLAPW method [KPF79℄ 
ontains an a

urate des
ription of the va
uum.The magnetism and the dimensionality (
oordination) of transition-metal sys-tems are 
losely related. This fa
t 
an most easily be realized 
omparing the twoextreme 
ases of low and high dimension, free atoms and bulk materials. Nearly alltransition-metal atoms have magneti
 moments, whi
h are well des
ribed by Hund'srule. In 
ontrast, only 5 transition-metals (Cr, Mn, Fe, Co and Ni) remain magneti
in the bulk 
rystalline phase, with magneti
 moments that are substantially redu
ed
ompared to the free atoms.Re
ently, a lot of resear
h has been devoted to transition-metal monolayers,in parti
ular on noble-metal substrates [FPB+90, Sie92, LMF85, FFOW85, Ter87,BDZD89, FW91, WB93, Bl�u95℄. Be
ause of the �lled d-bands of the noble-metalsthe d-bands of the transition-metal monolayers hybridize very little with the sub-strate. This leads to a narrowing of the d-bands and an enhan
ement of the magneti
moments in the overlayers [Bl�u88, Bl�u95℄. In this 
ontext, Fe on the Cu (100) sur-fa
e belongs to the most extensively investigated systems. Fe on Cu(100) as wellas Mn on Cu(100) show 
omplex re
onstru
tions, whi
h are expe
ted to be drivenby magnetism. In general the atomi
 ground-state stru
ture and also the magneti
ground-state stru
ture of systems with low dimension, like overlayers, 
lusters andnano-stru
tures, is more diÆ
ult to predi
t, be
ause restri
tions to the phase-spa
e ofpossible stru
tures due to symmetry are dropped and more degrees of freedom haveto be relaxed.So far, mainly overlayers on (100) surfa
es have been investigated, where the atomsin the monolayer from a square latti
e. Two di�erent magneti
 stru
tures have beenfound, the ferromagneti
 p(1 � 1) and the antiferromagneti
 
(2 � 2) stru
ture. Itturns out, that the early transition-metals V, Cr and Mn prefer the antiferromagneti
ordering (on Pd, Cu and Ag (100))1, while Fe, Co and Ni prefer the ferromagneti
stru
ture. However, little work has been done on overlayers on the (111) surfa
e,1No magneti
 solution has been found for V on Cu (100).



3where the atom are arranged on a hexagonal latti
e. Under the assumption, that theantiferromagneti
 ordering of the early transition-metals is predominantly driven bythe nearest neighbor ex
hange 
oupling, spin-frustration has to be expe
ted on thehexagonal latti
e. This spin-frustration 
an be resolved by a non-
ollinear ground-state. In fa
t, a Heisenberg model in
luding only nearest neighbor intera
tion leadsto a ground-state, where the spins on ea
h triangle of the hexagonal latti
e form120Æ angles. Spin-frustrated antiferromagnets are a very general problem in lowdimensions. Other expe
ted examples are: i) Small Cr or Mn 
lusters, where ea
hatom 
ouples antiferromagneti
ally to it neighbors, ii) Mn monolayers on Fe substrate:Here the Mn atoms 
ouple antiferromagneti
ally to the nearest neighbor atoms in themonolayer plane, but ferromagneti
ally to the Fe atoms of the substrate, iii) stepsin a Fe 
overed Cr surfa
e: The Fe atoms 
ouple antiferromagneti
ally to the Crsubstrate. However, the Fe atom at the step edge has two Cr nearest neighbors withopposite magnetization, be
ause the Cr substrate 
ouples antiferromagneti
ally layerby layer normal to the surfa
e. In all these 
ases the orientation of the magneti
moments is un
lear, and the ground-state might be a non-
ollinear 
on�guration.The interest in the hexagonal overlayers is reinfor
ed by the dis
overy of the 
om-plex 
(2 � 8) re
onstru
tion of the Mn monolayer on Cu (100) [FHW92℄. Withinthis re
onstru
tion the Mn atoms are lo
ally hexagonal, while globally the overlayerstays 
ompatible with the geometry of the substrate. This feature suggests, that theMn monolayer prefers a hexagonal geometry. In order to investigate this Pent
heva[Pen96℄ removed the in
uen
e of the substrate and performed systemati
 
al
ulationson unsupported monolayers (UML) of the 3d transition-metals. These 
al
ulationsshow, that Mn monolayers prefer the hexagonal stru
ture. However, this result 
ouldonly be obtained from magneti
 
al
ulations, non-magneti
 
al
ulations yield a lowerenergy for the square latti
e. This proves, that magnetism 
an have a strong impa
ton stru
tural properties. In addition, the investigation by Pent
heva showed, that a
ollinear antiferromagneti
 
on�guration, where four of the six nearest neighbors ofea
h Mn atom have opposite magnetization and the other two atoms have parallelmagnetization, is lower in energy than the ferromagneti
 
on�guration on the hexag-onal latti
e, whi
h supports the assumption of a non-
ollinear ground-state. Su
hsystems 
an only be des
ribed a

urately if both, the stru
tural and the magneti
degrees of freedom, are relaxed. Therefore, it is ne
essary to develop a method that
ombines the 
al
ulation of the for
es on the atoms with non-
ollinear magnetism.So far the majority of ab-initio 
al
ulations have been performed allowing onlyparallel or anti-parallel orientation of magneti
 moments. With the present workwe took a �rst step towards an extension of the FLAPW method to non-
ollinearmagnetism. Non-
ollinear 
on�gurations of unsupported Cr monolayer with Ag(111)geometry and Mn monolayer with Cu(111) geometry have been 
ompared to the fer-romagneti
 phase and the antiferromagneti
 
on�guration introdu
ed by Pent
heva.A non-
ollinear stru
ture proved to be lowest in energy in the 
ase of the Cr mono-layer. The results have been obtained non-self
onsistently in the frozen potentialapproximation.



4 CHAPTER 1. INTRODUCTIONIn 
hapter 2 the basi
s of the density fun
tional theory and the lo
al spin-densityapproximation are dis
ussed. The Stoner model, whi
h provides the framework forthe interpretation of the results of the 
al
ulation, is brie
y reviewed. The FLAPWmethod is dis
ussed in 
hapter 3. During this dis
ussion we put emphasize to the
omputation of the 
ontribution to the Hamiltonian and overlap matrix from themuÆn-tin spheres and the 
onstru
tion of the 
harge density in the spheres, be-
ause the 
orresponding parts of the program have been 
hanged for the implementa-tion of the lo
al orbital extension. In 
hapter 4 the implementation of non-
ollinearmagnetism is des
ribed and the approximations that have been made are dis
ussed.Chapter 5 
ontains a des
ription of the lo
al orbital extension that has been imple-mented as part of this work. The lo
al orbitals are extra basis fun
tions added to theFLAPW basis set, whi
h are 
ompletely lo
alized inside the muÆn-tins. With theimproved variational freedom due to this extension it is possible to used a 
ommonbasis set for the majority and minority spin-states, whi
h is ne
essary for an eÆ
ientimplementation for future self
onsistent non-
ollinear 
al
ulations. Test results arepresented, where the lo
al orbitals have been applied to the semi
ore states of b

Tungsten, f

 and h
p Titanium. The results for the non-
ollinear 
al
ulations onCr unsupported monolayers with Ag (111) geometry and the Mn monolayer with theCu (111) geometry are presented in 
hapter 6. All results are summarized in 
hapter7 and ideas for the experimental veri�
ation are put forward. The approximationsmade and de�
ien
ies of the 
urrent implementation are review and it is dis
ussedhow the results 
an be improved by extending the method to allow self
onsistentnon-
ollinear 
al
ulations.



Chapter 2The Density Fun
tional TheoryIn order to establish a deep understanding of the physi
al properties of solids, itis of major importan
e to develop a valid quantum-me
hani
al des
ription of thesesystems. However, the atom nu
lei and the ele
trons 
onstitute a 
omplex many-body problem. A simpli�
ation of this problem 
an be a
hieved employing the Born-Oppenheimer-approximation, within whi
h the atomi
 nu
lei are 
onsidered point
harges at �xed positions. Thus, all quantum e�e
ts of the nu
lei are negle
ted. Thisapproximation, whi
h is made in the vast majority of �rst-prin
iple 
al
ulations, leadsto the following S
hr�odinger equation.H	 = 8>><>>:� NXi=1 �h22mr2 + NXi;j=1i6=j e2jri � rjj + NXi=1 MX�=1 e2Z�jri � � �j9>>=>>;	(r1; : : : ; rN)= E	(r1; : : : ; rN) (2.1)However, due to the large dimension of 	 and the requirement of antisymmetry,whi
h means that 	 has to be expanded into a sum of Slater determinants, ratherthan simple produ
t-fun
tions, this equation 
an be solved only for tiny systems,in
luding few ele
trons. In order to deal with realisti
 materials, relevant in solidstate physi
s, further approximations have to be made.A breakthrough in the parameter-free ab-initio des
ription of 
omplex ele
troni
systems has been a
hieved with the development of the density fun
tional theory byHohenberg and Kohn [HK64℄ and Kohn and Sham [KS65℄.2.1 The Theorem of Hohenberg and KohnThe all-ele
tron wavefun
tion 
ontains all information available about an ele
troni
system. However, not the whole information is needed to determine the ground stateproperties of a physi
al system. The measurable quantities are given by expe
tationvalues of the quantum-me
hani
al operators 
orresponding to the observable under
onsideration. The 
entral idea of the density fun
tional theory [JG89℄ is to repla
e5



6 CHAPTER 2. THE DENSITY FUNCTIONAL THEORYthe 
omplex many parti
le wavefun
tion by a far simpler quantity, the ele
tron den-sity, given by n(r) = h	j NXi=1 Æ(r� ri)j	i: (2.2)Hohenberg and Kohn were able to show for systems with a non-degenerate groundstate, that:� For a given external Potential Vext, the ground state energy and all other groundstate properties of the system are unique fun
tionals of the ele
tron density n(r).� The energy fun
tional is variational, i.e. the ground state density n0(r) mini-mizes the energy fun
tional E[n℄, under the subsidiary 
ondition that the num-ber of ele
trons is kept 
onstant.E[n℄ > E[n0℄ = E0 for all n(r) 6= n0(r) (2.3)The density fun
tional formalism 
an be extended to degenerate ground states[Koh85, DG90℄. The se
ond part of the theorem implies, that the ground statedensity 
an be obtained from the minimization of the energy fun
tional.ÆE[n℄ = 0 (2.4)Levy [Lev79℄ provided a simpler and more general derivation of the above theorems,de�ning the energy fun
tional byE[n℄ = min	;n[	℄=nh	jHj	i: (2.5)However, no expli
it representation of E[n℄ has been derived so far.2.2 The Kohn-Sham EquationsAn important step on the way to �nding an appli
able approximation of the energyfun
tional is the idea of Kohn and Sham [KS65℄. The 
entral 
on
ept of their theoryis to split the energy fun
tional into tree 
ontributions.E[n℄ = Ts[n℄ + U [n℄ + Ex
[n℄ (2.6)Where Ts is the kineti
 energy of non-intera
ting ele
trons. The Coulomb energyU 
onsists of the intera
tion of the ele
trons with the external potential, whi
h isusually due to the atomi
 nu
lei, and the ele
tron-ele
tron intera
tion in Hartreeapproximation. U [n℄ = Eext[n℄ + EH [n℄Eext[n℄ = Z Vext(r)n(r)d3r (2.7)EH [n℄ = 4�e22 Z n(r)n(r0)jr� r0j d3rd3r0



2.2. THE KOHN-SHAM EQUATIONS 7Equation 2.6 
an be regarded as a de�nition of the ex
hange 
orrelation fun
tionalEx
[n℄, whi
h 
ontains all remaining 
ontributions to E[n℄, i.e. the ex
hange and
orrelation energy and 
orre
tion to the kineti
 energy due to the ele
tron-ele
tronintera
tion. The importan
e of this representation of E[n℄ has two reasons. Thekineti
 energy of the non-intera
ting ele
trons Ts, whi
h is a signi�
ant 
ontributionto the total energy, 
an be 
al
ulated exa
tly. By that, many de�
ien
ies due toina

urate treatment of the kineti
 energy by the Thomas-Fermi method are removed.In addition approximations to Ex
[n℄ 
an be found, that lead to ex
ellent results forthe ground state properties 
al
ulated for a wide variety of systems.An expli
it formula for Ts[n℄ 
an be obtained using a spe
ial ansatz for the ele
trondensity. The density 
an be written as a sum of single parti
le wavefun
tions, as inthe 
ase of non-intera
ting ele
trons.n(r) = 2 NXi=1 j i(r)j2 (2.8)Where, where the sum is over the o

upied states and the fa
tor \2" a

ounts for thespin degenera
y. With this ansatz the kineti
 energy 
an be written as:Ts[n℄ = �2 NXi=1 Z  �i (r) �h22mr2 i(r)d3r (2.9)Instead of minimizing the energy fun
tional with respe
t to the ele
tron density,it 
an also be minimized with respe
t to the wavefun
tions  i (or their 
omplex
onjugates). In this 
ase the subsidiary 
ondition of parti
le 
onservation is repla
edby the requirement of normalized wavefun
tions.Z j i(r)j2d3r = 1 (2.10)This requirement is taken into a

ount by Lagrange parameters �i. Applying thevariational prin
iple yields the Kohn-Sham equations.f� �h22mr2 + Veff(r)g i(r) = �i i(r) (2.11)with Veff (r) = Vext(r) + VH(r) + Vx
(r) (2.12)These equations have the form of a single parti
le S
hr�odinger equations. However,the potential has been repla
ed by an e�e
tive potential 
onsisting of three 
ontribu-tions: The external potential Vext, the Hartree potentialVH(r) = 4�e2 Z n(r0)jr� r0jd3r (2.13)and the ex
hange 
orrelation potentialVx
(r) = ÆEx
[n(r)℄Æn(r) (2.14)



8 CHAPTER 2. THE DENSITY FUNCTIONAL THEORYSin
e VH and Vx
 depend on the ele
tron density, this formalism 
onstitutes a self-
onsisten
y problem.Even though the Kohn-Sham equations have the form of a single-ele
tron S
hr�o-dinger equation, the formalism does not provide any justi�
ation to interpret theLagrange parameters �i as ex
itation energies, nor to regard the wavefun
tions asphysi
al ele
tron wavefun
tions. Nevertheless, experien
e shows, that doing so with-out formal justi�
ation 
an be meaningful, and helps to understand the properties ofthe system under 
onsideration.2.3 Spin Density Fun
tional TheoryIn order to des
ribe magneti
 e�e
ts the density fun
tional theory has to be extendedto the 
ase of spin polarized ele
trons. This is important for systems that possesnon-zero ground state magnetization, whi
h is the 
ase for most atoms, magneti
solids and surfa
es and ele
troni
 systems exposed to an external magneti
 �eld. Thene
essary extension to the Hohenberg-Kohn theory 
an be formulated repla
ing theele
tron density by the ele
tron density plus the magnetization density as fundamentalvariables. In this 
ase, the variational prin
iple be
omesE[n(r);m(r)℄ � E[n0(r);m0(r)℄: (2.15)An alternative, but 
ompletely equivalent, formulation 
an be obtained using a four
omponent density matrix ��� instead of n(r) and m(r) [vBH72, K�ub95℄. In or-der to gain a generalized form of the Kohn-Sham equations, it is ne
essary at leastto introdu
e two 
omponent Pauli wavefun
tions, that reprodu
e the ele
tron andmagnetization density.  i(r) =   1;i(r) 2;i(r)! (2.16)n(r) = NXi=1 j i(r)j2m(r) = NXi=1 �i (r)� i(r) (2.17)Applying the variational prin
iple again yields the Kohn-Sham equations, whi
h nowhave the form of S
hr�odinger-Pauli equations.(� �h22mr2 + Veff(r) + � �Beff(r)) i(r) = �i i(r) (2.18)The additional e�e
tive magneti
 �eld 
onsists of two terms. One of them is due tothe variation of the ex
hange 
orrelation energy with respe
t to the magnetization



2.4. THE LOCAL SPIN DENSITY APPROXIMATION 9density. The se
ond term is the external B-�eld, if present.Beff(r) = Bx
(r) +Bext(r)Bx
(r) = ÆEx
[n(r);m(r)℄Æm(r) (2.19)In many appli
ations, like for example ferromagneti
 and antiferromagneti
 solids,the magnetization is orientated along one parti
ular dire
tion. For these 
ollinear
ases the problem 
an be simpli�ed further. The z-axis 
an be 
hosen along thedire
tion of the magneti
 �eld. Therefore, the Hamiltonian of equation 2.18 be
omesdiagonal in the two spin 
omponents of the wavefun
tion, i.e. the spin-up and -down problems be
ome 
ompletely de
oupled and 
an be solved independently. Theenergy and all other physi
al observables be
ome fun
tionals of the ele
tron densityand the magnitude of the magnetization density m(r) = jm(r)j rather than m(r), or,equivalently, of the spin-up and spin-down ele
tron densities n"(r) and n#r) whi
hare given by n�(r) = NXi=1 j i�(r)j (2.20)The vast majority of the spin-polarized density fun
tional 
al
ulations have beenperformed using this formalism.2.4 The Lo
al Spin Density ApproximationSo far, no approximations have been made. The density fun
tional formalism, out-lined in the previous se
tions, 
ould in prin
iple reprodu
e all ground state propertiesof any 
omplex many-ele
tron system exa
tly, if the ex
hange 
orrelation energy Ex
was known. Unfortunately, no expli
it representation of this fun
tional, that 
on-tains all many-body e�e
ts, has been found yet. Thus, approximations to Ex
 haveto be used. The most widely used and very su

essful approximation is the lo
alspin density approximation (LSDA). The underlying idea is very simple. At ea
hpoint of spa
e Ex
 is approximated lo
ally by the ex
hange 
orrelation energy of ahomogeneous ele
tron gas with the same ele
tron and magnetization density. Hen
e,the approximate fun
tional Ex
 is of the formEx
[n(r); jm(r)j℄ = Z n(r)�x
(n(r); jm(r)j)d3r (2.21)It is important to note, that �x
 is not a fun
tional, but a fun
tion of n(r) and jm(r)jat a parti
ular point of spa
e. As a 
onsequen
e of its lo
al de�nition �x
 and thus Ex
depend only of the magnitude of the magnetization. This, in terms, leads to the fa
tthat Bx
(r) and m(r) do always have the same dire
tion. Therefore, the ex
hange
orrelation potential and magneti
 �eld derived from 2.21 be
omeVx
(r) = �x
(n(r); jm(r)j) + n(r)Æ�x
(n(r); jm(r)j)Æn(r)



10 CHAPTER 2. THE DENSITY FUNCTIONAL THEORYBx
(r) = n(r)Æ�x
(n(r); jm(r)j)Æjm(r)j m̂(r): (2.22)Using the LSDA the Kohn-Sham equations take exa
tly the same form as the Hartreeequations, and they are no more diÆ
ult to solve. In parti
ular, they are far easierto deal with than the Hartree-Fo
k equations be
ause of the lo
al e�e
tive potential.Intuitively one should expe
t, that the LSDA is valid only for slowly varying densities.Nevertheless, it has been applied su

essfully to inhomogeneous systems.Expli
it parameterizations of �x
 
an be obtained for example from Hartree-Fo
k
al
ulations for the homogeneous ele
tron gas. Of 
ourse, su
h 
al
ulations do onlytake into a

ount the ex
hange e�e
ts, but negle
t 
orrelation. Modern parameteri-zations of �x
 are based on quantum-me
hani
al many-body 
al
ulations. Most 
om-monly used are the parameterizations of v. Barth and Hedin [vBH72℄ and Moruzzi,Janak and Williams [MJW78℄, whi
h have been obtained applying the random phaseapproximation (RPA), the parameterization of Vosko, Wilk and Nusair [VWN80℄,that is based on Quantum-Monte-Carlo simulations by Ceperley and Alder [CA80℄,and goes beyond the RPA, and the parameterization of Perdew and Zunger [PZ81℄,whi
h is, in a 
ertain sense, a mixture of the previous two. The results of the presentwork have been obtained using the parameterization of Moruzzi, Janak and Williams.2.5 Determination of the Total EnergyIf the total energy of a system is needed, for example in order to 
al
ulate the equi-librium latti
e 
onstant of a 
rystal, the Coulomb intera
tion of the atomi
 nu
leihas to be taken into a

ount. This extra 
ontribution Eii (ion-ion) has to be addedto the ele
troni
 energy, given by 2.6.E[n℄ = Ts[n℄ + U [n℄ + Ex
[n℄ + Eii; Eii = e2 MX�;�0=1�6=�0 Z�Z�0j� � � � �0j ; (2.23)where � sums over all atoms of the 
rystal with the position � �. In prin
iple, thisformula 
ould be used to 
al
ulate the total energy. However, for numeri
al reasons itis desirable to avoid the expli
it appli
ation of the operatorr2. Therefore, the kineti
energy is 
al
ulated from the sum of the single parti
le eigenvalues �i. Rewriting theS
hr�odinger-Pauli equation 2.18 yields� �h22mr2 i(r) = �i i(r)� Veff(r) i(r)� � �Beff(r) i(r) (2.24)Multiplying from the left with R d3r  �i (r; �) and summing over the o

upied statesgives the kineti
 energy.Ts[n℄ = NXi=1 �i � Z n(r)Veff(r)d3r � Z m(r) �Beff(r)d3r (2.25)



2.6. THE STONER MODEL OF ITINERANT MAGNETISM 11Using 2.7, 2.21 and assuming that the external potential is given by the atomi
 nu
leiand that no external magneti
 �eld is present,Vext(r) = �4�e2 MX�=1 Z�jr� � �j ; Bext(r) = 0 (2.26)the total energy be
omesE[n;m℄ = NXi=1 �i � Z n(r)Veff(r)d3r � Z m(r) �Bx
(r)d3r� 4�e2 MX�=1 Z n(r)Z�jr� � �jd3r + 4�e2 12 Z n(r)n(r0)jr� r0j d3rd3r0+ Z n(r)�x
(n(r); jm(r)j)d3r + 4�e2 MX�;�0=1�6=�0 Z�Z�0j� � � � �0 j : (2.27)Using 2.7 and 2.22 this 
an be simpli�ed further.E[n;m℄ = NXi=1 �i � Z n(r)Vx
(r)d3r � Z m(r) �Bx
(r)d3r� 4�e2 12 Z n(r)n(r0)jr� r0j d3rd3r0+ Z n(r)�x
(n(r); jm(r)j)d3r + 4�e2 MX�;�0=1�6=�0 Z�Z�0j� � � � �0 j (2.28)Equation (2.28) holds exa
tly for the self
onsistent ele
tron and magnetization den-sity. During the iterations on the way to self
onsisten
y this result represents onlyan approximation to the total energy. Another diÆ
ulty arises, be
ause the Hartreeenergy and the 
ontribution from the Coulomb intera
tion of the nu
lei are diver-gent. Weinert, Wimmer and Freeman [WWF82℄ showed how these singularities 
anbe 
an
eled analyti
ally.2.6 The Stoner Model of Itinerant MagnetismAlthough all results of the present work have been obtained from ab-initio 
al
u-lations, a brief dis
ussion of the Stoner Model will be given in this se
tion. Thismodel provides a framework within whi
h to interpret the results of the 
al
ulations.It is very important to keep these simple models in mind, in order to build onesphysi
al intuition. Comparing ones \intuitive" expe
tations with the out
ome of the
al
ulations is 
ertainly the most important step on the way to understanding thephysi
s of a system. The magnetism of solid is determined by the interplay of the



12 CHAPTER 2. THE DENSITY FUNCTIONAL THEORYgain of ex
hange energy due to the formation of a lo
al moment and the in
rease ofthe kineti
 energy, if not all k-states are double o

upied within the Fermi sphere.This e�e
t 
an most easily be illustrated within the Stoner model for ferromagnets.The magnetization density m(r) = jm(r)j of solids is usually small 
ompared tothe ele
tron density n(r). Expanding the ex
hange 
orrelation energy �x
(n(r); m(r))into a Taylor series in terms of the parameter � = mn yields�x
(n; �) = �x
(n; 0) + 12�00x
(n; 0)�2 + : : : (2.29)Thus, the magneti
 �eld Bx
 be
omesBx
 = 1n2 �00x
(n; 0)m: (2.30)In the 
ase of ferromagnetismBx
 a
ts as an extra potential term ~Vx
, that adds to thenon-magneti
 ex
hange 
orrelation potential V 0x
. This term, whi
h is proportionalto m, has the same magnitude for both spin-dire
tions, but it is attra
tive for themajority-spin (+) and repulsive for the minority-spin(�).V �x
(r) = V 0x
(r)� ~Vx
(r)m(r) (2.31)Within the Stoner theory this rising and lowering of the potential is expressed by a
onstant. V �x
(r) = V 0x
(r)� 12IM (2.32)Where M is the total magneti
 moment per atom, and I is the ex
hange integral(Stoner parameter). Be
ause of this 
onstant shift the spatial shape of the potentialremains the same as in the non-magneti
 
ase. Consequently, the solutions of theKohn-Sham equations also remain un
hanged, only the single parti
le energies �i areshifted by the same amount as the potential. �i (r) =  0i (r); ��i = �0i � 12IM (2.33)Hen
e, the whole band stru
ture is spin-split, but the shape of the bands remainsun
hanged. As a result, the lo
al densities of states proje
ted on an atom for thespin-dire
tions �,n�(�), are also shifted by �12IM .n�(�) = n0(�� 12IM) (2.34)From this property of the density of states a 
riterion for the existen
e of ferromag-netism 
an be derived. Integrating the density of states up to the Fermi energy EFyields the number of ele
trons N and the total magneti
 moment per atom M .N = Z�<EF �n0(�+ 12IM) + n0(�� 12IM)� d�M = Z�<EF �n0(�+ 12IM)� n0(�� 12IM)� d� (2.35)



2.6. THE STONER MODEL OF ITINERANT MAGNETISM 13These two equations determine the unknown Fermi energy and magneti
 moment.Requiring 
harge neutrality the �rst equation 
an be used to obtain the Fermi energyas a fun
tion of the magnetization EF = EF (M). Substituting this into the se
ondequation leads to a self
onsisten
y problem for M .M = F (M); F (M) = Z�<EF (M) �n0(�+ 12IM)� n0(�� 12IM)� d� (2.36)The fun
tion F (M) has the following properties.� F (0) = 0� F (M) = �F (�M)� F (�1) = �M1� F 0(M) > 0Where M1 is the largest possible magnetization, rea
hed when only majority-spinstates are o

upied. The graphi
 solution of 2.36 is illustrated in Fig. 2.1. Two

Figure 2.1: Graphi
 solution of the Stoner modelfun
tions F (M), 
onsistent with the above properties, are plotted. In 
ase A onlythe trivial non-magneti
 solutionM = 0 is present, whereas in 
ase B three solutionsexist, two of whi
h have non-zero magnetization. From the properties of F (M)follows, that 2.36 always has solutions with non-zero magnetization, if the slope ofF (M) at M = 0 is larger than 1. From 2.36 follows that the slope of F (M) is givenby F 0(0) = In0(EF ): (2.37)



14 CHAPTER 2. THE DENSITY FUNCTIONAL THEORYThis �nally is the Stoner 
riterion for ferromagnetism:In0(EF ) > 1: (2.38)A big ex
hange integral and a large non-magneti
 density of states at the Fermienergy favors ferromagnetism. This result is not surprising, be
ause a large n0(EF )means, that only a small in
rease in kineti
 energy has to be a

epted to obtain alarge magnetization, and thus a large gain of ex
hange energy. In the most simpleapproximation the size of the density of states is proportional to the inverse of thebandwidth W . Thus, the smaller the bandwidth is, the larger the tenden
y towardsmagnetism be
omes. The limiting 
ase of zero bandwidth are atoms. Here theStoner 
riterion is always satis�ed, and the magneti
 moments are determined byHund's rule, with the ex
eption of the Lanthanides and the A
tinides. The only bulkmaterials that ful�ll the Stoner 
riterion are Fe, Co and Ni. However, due to theredu
ed 
oordination, the bandwidth at surfa
es is smaller than in bulk materials.Thus, from the Stoner model one should expe
t an enhan
ement of magnetism atsurfa
es and even new magneti
 materials, whi
h are non-magneti
 in their bulk
rystalline phase, but be
ome magneti
 at the surfa
e.



Chapter 3The FLAPW Method
3.1 The FLAPW MethodThere are many possible ways to solve the Kohn-Sham equations. One very 
ommonmethod is to use some kind of basis set to represent the wavefun
tions. A verysuitable 
hoi
e that is already suggested by Blo
h's theorem are plane waves. Theyhave a lot of advantages: They are orthogonal, they are diagonal in momentumand any power of momentum and the implementation of planewave based methodsis rather straightforward be
ause of their simpli
ity. However, sin
e the ele
tronwavefun
tions are varying very qui
kly near the 
ore, large waveve
tors are neededto represent the wavefun
tions a

urately. This makes planewaves very ineÆ
ient.To over
ome this problem one 
an employ pseudopotential te
hniques, whi
h allowan a

urate des
ription of the wavefun
tions between the atoms, but avoid the fastos
illations near the 
ore. Thus, less basis fun
tions are needed. Another way to solvethis problem is to use a basis set, whi
h 
ontains radial wavefun
tions to des
ribe theos
illations near the 
ore. This has already been suggested by Slater [Sla37℄. The
orresponding te
hnique is 
alled the augmented planewave method (APW).
3.1.1 The APW Method and its ProblemsWithin the APW approa
h, spa
e is divided into spheres 
entered at ea
h atom site,the so-
alled muÆn-tins, and the remaining interstitial region (
f. �g. 3.1). Inside themuÆn-tins the potential is approximated to be spheri
ally symmetri
, and in manyimplementations the interstitial potential is set 
onstant. The restri
tions to thepotential are 
ommonly 
alled shape-approximations. Noting that planewaves solvethe S
hr�odinger equation in a 
onstant potential, while spheri
al harmoni
s times aradial fun
tion are the solution in a spheri
al potential, suggests to expand the single15
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Figure 3.1: The division of spa
e in the APW method. The muÆn-tinspheres are surrounded by the interstitial region.parti
le wavefun
tions1 ��(k; r) in terms of the following basis fun
tions:'G(k; r) = 8><>: ei(G+k)r interstitial regionXlm A�GL (k)ul(r)YL(r̂) muÆn-tin � (3.1)Where k is the Blo
h ve
tor, 
 is the 
ell volume, G is a re
ipro
al latti
e ve
tor, Labbreviates the quantum numbers l and m and ul is the regular solution of the radialS
hr�odinger equation(� �h22m �2�r2 + �h22m l(l + 1)r2 + V (r)� El) rul(r) = 0 (3.2)Here El is an energy parameter and V (r) is the spheri
al 
omponent of the potential.The 
oeÆ
ients A�GL (k) are determined from the requirement, that the wavefun
tionshave to be 
ontinuous at the boundary of the muÆn-tin spheres.Hen
e, the APW's form a set of 
ontinuous basis fun
tions that 
over all spa
e.Where ea
h fun
tion 
onsists of a planewave in the interstitial region plus a sum offun
tions, whi
h are solutions of the S
hr�odinger equation to a given set of angularmomentum quantum numbers lm and a given parameter El, inside the muÆn-tinspheres.If the El were kept �xed, used only as a parameter during the 
onstru
tion of thebasis, the hamiltonian 
ould be set up in terms of this basis. This would lead to astandard se
ular equation for the band energies. Unfortunately, it turns out, that the1I will only dis
uss the appli
ation of FLAPW to systems that possess either 2- or 3-dimensionaltranslational symmetry, i.e. bulk 
rystals or thin 
rystal �lms.



3.1. THE FLAPW METHOD 17APW basis does not o�er enough variational freedom if the El are kept �xed. Ana

urate des
ription 
an only be a
hieved if they are set to the 
orresponding bandenergies. However, requiring the El's to equal the band energies, the latter 
an nolonger be determined by a simple diagonalization of the Hamiltonian matrix. Sin
ethe ul's depend on the band energies, the solution of the se
ular equation be
omes anonlinear problem, whi
h is 
omputationally mu
h more demanding than a se
ularproblem.Another disadvantage of the APW method is, that it is diÆ
ult to extend beyondthe spheri
ally averaged muÆn-tin potential approximation, be
ause in the 
ase of ageneral potential the optimal 
hoi
e of El is no longer the band energy. And �nally,but less serious, if, for a given 
hoi
e of El, the radial fun
tions ul vanish at themuÆn tin radius, the boundary 
onditions on the spheres 
annot be satis�ed, i.e. theplanewaves and the radial fun
tions be
ome de
oupled. This is 
alled the asymptoteproblem. It 
an already 
ause numeri
al diÆ
ulties if ul be
omes very small at thesphere boundary.Further information about the APW method 
an be found in the book byLou
ks [Lou67℄, whi
h also reprints several early papers in
luding Slater's originalpubli
ation [Sla37℄.3.1.2 The Con
ept of LAPWThe basi
 idea of the linearized augmented planewave method (LAPW) is to add extravariational freedom to the basis inside the muÆn-tins, so that it is not ne
essary toset the El equal to the band energy. This is done by using not only the radial solutionof the S
hr�odinger equation, but also its derivative with respe
t to the energy. This
onstru
tion, whi
h was �rst suggested by Andersen [And75℄, 
an be regarded as alinearization of the APW. To realize this re
all that in the APW method the ul'sdepend on the band energies and 
an thus be understood as fun
tions of r and �.Hen
e, ul 
an be expanded into a Taylor-series around El.ul(�; r) = ul(El; r) + _ul(El; r)(�� El) +O[(�� El)2℄ (3.3)Here _ul denotes the energy derivative of ul, �ul(�; r)=��, andO[(��El)2℄ denotes errorsthat are quadrati
 in the energy di�eren
e. Ergo, the LAPW method introdu
es anerror of order (�� El)2 in the wavefun
tion. Therefore, a

ording to the variationalprin
iple the error in the 
al
ulated band energies is of the order (�� El)4. Be
auseof this high order, the linearization works very well even over rather broad energyregions. In most 
ases a single set of energy parameters is suÆ
ient for the wholevalen
e band. However, sometimes the energy region has to be split up in two (veryrarely more) windows with separate sets of energy parameters.But let's turn to some important properties of the LAPW basis �rst, before dis-
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ussing its quality and a

ura
y. The LAPW basis fun
tions are of the form'G(k; r) = 8><>: ei(G+k)r interstitial regionXL A�GL (k) ul(r)YL(r̂) +B�GL (k) _ul(r)YL(r̂) muÆn-tin � (3.4)with the extra term BkL _ul(r)YL(r̂) 
ompared to the APW method. The additional
oeÆ
ient is determined by requiring that not only the basis fun
tions, but also theirderivatives with respe
t to r are 
ontinuous at the sphere boundaries. It is useful torequire the following normalization.hujui = Z RMT0 u2l (r)r2dr = 1 (3.5)Here RMT is the muÆn-tin radius. Taking the derivative of (3.5) with respe
t to theenergy it 
an easily be shown, that ul and _ul are orthogonal. _ul is 
al
ulated from aS
hr�odinger-like equation, derived by taking the energy derivative of (3.2).(� �h22m �2�r2 + �h22m l(l + 1)r2 + V (r)� El) r _ul(r) = rul(r) (3.6)Still the solution of this equation has to be made orthogonal to ul, sin
e any linear
ombination of _ul and ul also solves the equation. On
e the ul and _ul are madeorthogonal the basis fun
tions inside the spheres form a 
ompletely orthogonal basisset, sin
e the angular fun
tions Ylm(r̂) are also orthogonal. However, the LAPWfun
tions are in general not orthogonal to the 
ore states, whi
h are treated separatelyin the LAPW method. This fa
t 
an 
ause problems in the presen
e of high lying 
orestates. A detailed dis
ussion of these problems and strategies to 
ir
umvent them 
anbe found in the book by Singh [Sin94℄, whi
h in
ludes a very 
omprehensive reviewof many aspe
ts of the LAPW method.With the 
onstru
tion of the LAPW basis the main problems of the APW methodare solved:� Sin
e it is no longer ne
essary to set the energy parameters equal the band ener-gies, the later 
an be determined by a single diagonalization of the Hamiltonianmatrix.� The LAPW method 
an be extended to nonspheri
al muÆn tin potentials withlittle diÆ
ulty, be
ause the basis o�ers enough variational freedom. This leadsthen to the full-potential linearized augmented planewave method (FLAPW).� If ul is zero at the sphere boundary, its radial derivative and _ul are in generalnonzero. Hen
e, the boundary 
onditions 
an always be satis�ed and there isno asymptote problem.As a �nal remark it is worth mentioning, that the nonlinearity inherent to the APWmethod 
an only be 
ir
umvented at the expense of a larger eigenvalue problem. To



3.1. THE FLAPW METHOD 19see this, re
all that within LAPW (and also within APW) the basis fun
tions arerepresented by planewaves. The fun
tions inside the muÆn tins are 
oupled to theplanewaves via the boundary 
onditions, and 
an only varied indire
tly by a variationof the planewave 
oeÆ
ients. Clearly, with a �nite number of planewaves, at maxi-mum the same number of fun
tions inside the spheres 
an be varied independently.Hen
e, to make use of the of the extra variational freedom, that the LAPW basis setallows 
ompared to the APW basis, i.e. to vary the ul's and the _ul's independently,more planewaves have to be used.3.1.3 The Con
ept of FLAPWIn the past the majority of appli
ations of APW and LAPW2 method employed shape-approximations on the potential used in the Hamiltonian. Typi
ally, the potential inthe unit 
ell V (r) is approximated by V0(r),V (r) = 8<: V 0I = 
onst: interstitial regionV 0MT (r) muÆn-tin (3.7)using a 
onstant potential in the interstitial region and a spheri
ally symmetri
 po-tential inside ea
h sphere.While the LAPW method yields a

urate results for 
lose-pa
ked metal systemsthe shape-approximation be
omes diÆ
ult to justify for 
rystals with open stru
turessu
h as silizides, perovskides, surfa
es or 
lusters.In the full-potential LAPW method (FLAPW) [Ham79, WKWF81℄ any shape-approximations in the interstitial region and inside the muÆn-tins are dropped. Thisgeneralization is a
hieved by relaxing the 
onstant interstitial potential V 0I and thespheri
al muÆn-tin approximation V 0MT (r) due to the in
lusion of a warped interstitialPV GI eiGr and the non-spheri
al terms inside the muÆn-tin spheres:V (r) = 8>><>>: XG V GI eiGr interstitial regionXL V LMT (r)YL(r̂) muÆn-tin (3.8)This method be
ame possible with the development of a te
hnique for obtain-ing the Coulomb potential for a general periodi
 
harge density without shape-approximations and with the in
lusion of the Hamiltonian matrix elements due tothe warped interstitial and non-spheri
al terms of the potential. The 
harge densityis represented in the same way as the potential:�(r) = 8>><>>: XG �GI eiGr interstitial regionXL �LMT (r)YL(r̂) muÆn-tin (3.9)2There are APW and LAPW methods available whi
h in
lude the warped interstitial potential[Koe72℄.



20 CHAPTER 3. THE FLAPW METHODDetail of the solution of the Poisson equation for an arbitrarily shaped periodi
 po-tential are des
ribed in se
tion 3.7.3.1.4 The Generalized Eigenvalue ProblemAfter dis
ussing the FLAPW basis it is ne
essary to say a few words about theeigenvalue problem. The solution of the eigenvalue problem has to be 
arried outseparately for every Blo
h ve
tor. And, of 
ause, the basis set and the Hamiltonianmatrix have to be set up for ea
h Blo
h ve
tor. However, I will not add the index kto the basis fun
tions and the Hamiltonian matrix.There is one important fa
t that I have not mentioned so far. Even though plane-waves form an orthogonal basis set, the FLAPW fun
tions do not. The planewavesin the interstitial-region are non-orthogonal, be
ause the muÆn-tin are 
ut out, i.e.the integration,in terms of whi
h orthogonality is de�ned, does not stret
h over thewhole unit 
ell, but only over interstitial region. An additional 
ontribution 
omesfrom the muÆn-tin. Even though the ul(r)YL and _ul(r)YL are mutually orthogonal,in general ea
h planewave 
ouples to all fun
tions in the spheres.Due to the non-orthogonality of the basis fun
tions the overlap matrix S, de�nedby (3.10), is not a diagonal, but a hermitian matrix.SG0G = Z '�G0(r)'G(r)d3r (3.10)In (the more 
onvenient) Dira
 notation the eigenvalue problem has the followingform. Hj�ii = �ij�ii (3.11)Where j�ii denotes the eigenfun
tion 
orresponding to the ith eigenvalue �i. Substi-tuting the expansion of the eigenfun
tionsj�ii =XG 
iGj'Gi (3.12)we obtain XG 
iGHj'Gi = �iXG 
iGj'Gi (3.13)Multiplying this from the left with h'G0 j we �ndXG 
iGh'G0 jHj'Gi = �iXG 
iGh'G0 j'Gi (3.14)whi
h 
an be written in matrix formfH� �iSg 
i = 0 (3.15)where the eigenve
tor 
i is the 
oeÆ
ient ve
tor 
orresponding to the ith eigenvalue.(3.15) is 
alled a generalized eigenvalue problem.



3.1. THE FLAPW METHOD 21However, this problem 
an be redu
ed to a standard eigenvalue problem using theCholesky de
omposition. It 
an be shown (e.g. Stoer [Sto94℄), that any hermitianand positive de�nite matrix 
an be de
omposed into a matrix produ
t of a lowertriangular with only positive diagonal elements matrix and its transposed. Clearly,the overlap matrix satis�es these 
onditions and 
an be writtenS = LLtr (3.16)Therefore (3.15) be
omes H
i = �iLLtr
i (3.17)multiplying from the left with L�1 and introdu
ing a unit matrix we getL�1H(L�1)trLtr
i = �iLtr
i (3.18)de�ning P = L�1H(L�1)tr; xi = Ltr
i (3.19)we �nally have Pxi = �ixi (3.20)Thus the generalized eigenvalue problem has been redu
ed to a simple eigenvalueproblem. The eigenve
tors 
i 
an be obtained by the ba
k-transformation
i = (Ltr)�1xi (3.21)3.1.5 Film Cal
ulations within FLAPWNowadays the physi
s of surfa
es is an �eld of major interest and investigation. How-ever, surfa
es are diÆ
ult to treat, be
ause they break the translational symmetry,i.e. there is only the 2-dimensional symmetry parallel to the surfa
e left to be used toredu
e the problem, and a semi-in�nite problem is left perpendi
ular to the surfa
e.In our approa
h surfa
es are approximated by thin �lms, typi
ally 10{15 atomi
 lay-ers thi
k. Obviously, this approximation, whi
h is 
alled the thin-slab approximation,
an only yield good results if the intera
tion between the two surfa
es of the �lm isweek enough, so that ea
h of them shows the properties of the surfa
es of an idealsemi-in�nite 
rystal.In the 
ase of �lm 
al
ulations spa
e is divided into three distin
t regions, themuÆn-tins, the interstitial and the va
uum region (
f. �g. 3.2). The interstitialregion now stret
hes from �D=2 to D=2 in z-dire
tion, whi
h is de�ned to be thedire
tion perpendi
ular to the �lm. The representation of the wavefun
tions inside themuÆn-tin spheres remains exa
tly the same as in the bulk 
ase. Sin
e the periodi
ityalong the z-dire
tion is lost, the unit 
ell extends prin
ipally from �1 to 1 in z-dire
tion. Still the wavefun
tions 
an be expanded in terms of planewaves. However,the waveve
tors perpendi
ular to the �lm are not de�ned in terms of D, but in terms
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Figure 3.2: The unit 
ell in �lm 
al
ulations. (I) denotes the muÆn-tinspheres surrounded by the interstitial region (II). On both sides the �lmis delimited by the va
uum (III).of ~D, whi
h is 
hosen larger than D to gain greater variational freedom. Therefore,the planewaves have the form'GkG?(kk; r) = ei(Gk+kk)rk eiG?z (3.22)with G? = 2�n~D (3.23)where Gk and kk are the 2-dimensional wave- and Blo
h ve
tors, rk is the parallel
omponent of r and G? is the waveve
tor perpendi
ular to the �lm. The basis fun
-tions in the va
uum region are 
onstru
ted in the same spirit as the fun
tions in themuÆn-tins. They 
onsist of planewaves parallel to the �lm, and a z-dependent fun
-tion uGk(kk; z), whi
h solves the 
orresponding 1-dimensional S
hr�odinger equation(3.24), plus its energy derivative _uGk(kk; z).(� �h22m �2�z2 + V0(z)� Eva
 + �h22m(Gk + kk)2)uGk(kk; z) = 0 (3.24)
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 is the va
uum energy parameter and V0(z) is the planar averaged part of theva
uum potential. As in the 
ase of _ul in the muÆn-tins, the fun
tion _uGk(kk; z) is
al
ulated from a S
hr�odinger-like equation, whi
h 
an be obtained by deriving (3.24)with respe
t to the energy.(� �h22m �2�z2 + V0(z)� Eva
 + �h22m(Gk + kk)2) _uGk(kk; z) = uGk(kk; z) (3.25)The resulting basis fun
tions have the form'GkG?(kk; r) = nAGkG?(kk)uGk(kk; z) +BGkG?(kk) _uGk(kk; z)o ei(Gk+kk)rk (3.26)The 
oeÆ
ients AGkG?(kk) and BGkG?(kk) are determined in exa
tly the same wayas it is done for the muÆn-tins by requiring that the fun
tions are 
ontinuous anddi�erentiable at the va
uum boundary. It should be mentioned, that the va
uumbasis fun
tions o�er less variational freedom than the basis set in the interstitialregion does. This 
an be seen by noting that there are only two fun
tions, uGk and_uGk times the 
orresponding planar planewave, to be mat
hed to all planewaves ofthe interstitial region with the same Gk. But there are generally far more than twodi�erent G?'s, i.e the number of basis fun
tions in the va
uum region is signi�
antlysmaller than in the interstitial region. However, this 
an be improved rather easily. Inequation 3.24 only one energy parameter Eva
 is used. Instead one 
an used a wholeseries of parameters Eiva
 to 
over an energy region. A possible 
hoi
e of the energyparameters 
ould be Eiva
 = EG?va
 = Eva
� �h22mG2?, whi
h leads 
orrespondingly to G?dependent basis fun
tions uGkG?(kk; z). For more details see [NKD86℄. In general,however, the present approximations is a

urate, the energy spe
trum of the ele
tronsin the va
uum region is small due to the work-fun
tion.Finally we would like to summarize the basis set used for thin �lm 
al
ulationwith the FLAPW method.
'GkG?(kk; r) = 8>>>>>>>>>><>>>>>>>>>>:

ei(Gk+kk)rk eiG?z Int.nAGkG?(kk)uGk(kk; z)+BGkG?(kk) _uGk(kk; z)o ei(Gk+kk)rk Va
.XL A�GL (k)ul(r)YL(r̂) +B�GL (k) _ul(r)YL(r̂) MT � (3.27)
This expansion has been suggested by H. Krakauer, M. Posternak and A.J. Free-man [KPF79℄.3.2 Relativity in Valen
e Ele
tron Cal
ulationsRelativisti
 e�e
ts are important for the 
orre
t numeri
al des
ription of 
ore orvalen
e ele
trons. Both 
ore and valen
e ele
trons have �nite wavefun
tions near the
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leus, where the kineti
 energy is large. This kineti
 energy enhan
ement be
omesmore signi�
ant for heavier elements and 
ompounds. Additionally, only relativisti
e�e
ts, in parti
ular the spin-orbit-
oupling, introdu
e a link between spatial andspin 
oordinates. Thus, information about the orientation of spins relative to thelatti
e 
an only be gained if relativity is taken into a

ount. For fully relativisti
des
ription of the ele
troni
 stru
ture all relativisti
 e�e
ts (mass-velo
ity, Darwin-term, spin-orbit 
oupling) have to be taken into a

ount [SDKW℄. However, in manyappli
ations an approximation is used, where the spin-orbit intera
tion is negle
ted.This approximation is 
alled the s
alar relativisti
 approximation.3.2.1 The Kohn-Sham-Dira
 EquationIn a relativisti
 density fun
tional theory the Kohn-Sham equation has the form of asingle parti
le Dira
 equationn
� � p + (� � 1)m
2 + V eff (r)o	 = E	 (3.28)
� =   0 �x�x 0 ! ; 0 �y�y 0 ! ; 0 �z�z 0 !!tr =  0 �� 0 ! (3.29)� =  I2 00 �I2 ! (3.30)Here, �x �y �z are the Pauli matri
es and � is the ve
tor of Pauli matri
es, p isthe momentum operator, and In denotes an (n � n) unit matrix. V eff is the e�e
-tive potential, that 
ontains ele
tron-nu
leon Coulomb potential, Hartree potentialand ex
hange-
orrelation potential. In the 
ase of non-zero spin-polarization, V effbe
omes spin-dependent. Finally, 	 is the relativisti
 four 
omponent wavefun
tion.The straightforward way to solve this problem would be to expand ea
h of thefour 
omponents of	 in terms of the FLAPW basis. However, if all four 
omponentswere treated with the same a

ura
y, this would result in a basis set whi
h 
ontainsfour times as many fun
tions as in the non-relativisti
 (non-magneti
) 
ase. Sin
ethe numeri
al e�ort of the Hamiltonian diagonalization s
ales with the dimension ofthe matrix to the power of three, this would in
rease the 
omputing time needed forthe diagonalization by a fa
tor of 64.The FLAPW implementation we use introdu
es some approximations to makerelativisti
 
al
ulations more eÆ
ient. One of these approximations is the s
alarrelativisti
 approximations, whi
h has been suggested by D.D. Koelling and B.N.Harmon [KH77℄, where the spin-orbit term is negle
ted, and spin and spatial 
oordi-nates be
ome de
oupled. Hen
e, the Hamiltonian matrix redu
es to two matri
es ofhalf the size, whi
h 
an be diagonolized separately. This saves a fa
tor of four in 
om-puting time. The s
alar relativisti
 approximation will be dis
ussed more detailed in
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tion. It should be noted, that relativisti
 e�e
ts are only signi�
ant 
loseto the nu
leus, where the kineti
 energy is large. It is therefore reasonable to treatthe interstitial region and the va
uum non-relativisti
ally. Thus, merely within themuÆn-tins the ele
trons are treated relativisti
ally. And only the large 
omponentof 	 is mat
hed to the non-relativisti
 wavefun
tions at the boundary between themuÆn-tins and the interstitial region, be
ause the small 
omponent is already negli-gible at this distan
e from the nu
leus. The small 
omponent is atta
hed to the large
omponent, and 
annot be varied independently. However, this is a sensible approxi-mation for two reasons: Firstly even inside the muÆn-tin sphere the large 
omponentis still mu
h bigger than the small 
omponent, and plays the more important role,and se
ondly the two 
omponents are determined by solving the s
alar relativisti
equations for the spheri
ally averaged potential. Therefore, they are very well suitedto des
ribe the wavefun
tions.Hen
e, the size of the basis set and the Hamiltonian matrix remains the same asin non-relativisti
 
al
ulations, but the problem has to be solved twi
e, on
e for ea
hdire
tion of spin. This amounts to a numeri
al e�ort, that is equal to that needed inspin-polarized non-relativisti
 
al
ulations.3.2.2 The S
alar Relativisti
 ApproximationAs I pointed out in the previous se
tion, the ele
trons are only treated relativisti
allyinside the muÆn-tin spheres. Thus, the �rst problem that has to be addressed isthe 
onstru
tion of the relativisti
 radial fun
tion. This is done by solving the s
alarrelativisti
 equation, in
luding only the spheri
ally averaged part of the potential.The starting point is the following Dira
 equation.n
� � p+ (� � 1)m
2 + V (r)o	 = E	 (3.31)The solution of (3.31)is dis
ussed in many textbooks, e.g. E.M. Rose [Ros61℄. Dueto spin-orbit 
oupling m and ms are not good quantum numbers any more, andthey have to be repla
ed by the quantum numbers � and � (or j and �), whi
h areeigenvalues of the operators K and the z-
omponent of the total angular momentumjz (or the total angular momentum j and jz) respe
tively. K is de�ned byK = �(� � l+ 1) (3.32)The solutions of (3.31) have the form	 = 	�� =  g�(r)���if�(r)���� ! (3.33)Where g�(r) is the large 
omponent, f�(r) is the small 
omponent, ��� and ���� arespin angular fun
tions, whi
h are eigenfun
tions of j, jz, K and s2 with eigenvalues j,�, � (-�) and s = 1=2 respe
tively. The spin angular fun
tions 
an be expanded into
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ts of spheri
al harmoni
s and Pauli spinors. Where the expansion
oeÆ
ients are the Clebs
h-Gordon 
oeÆ
ients. The radial fun
tions have to satisfythe following set of 
oupled equations.��rg�(r) = �� + 1r g�(r) + 2M
f�(r) (3.34)��rf�(r) = 1
 (V (r)� E)g�(r) + �� 1r f�(r) (3.35)with M = m + 12
2 (E � V (r)) (3.36)This 
an be written in matrix form.0BBB� �� + 1r � ��r 2M
1
 (V (r)� E) �� 1r � ��r 1CCCA g�(r)f�(r) ! = 0 (3.37)To derive the s
alar relativisti
 approximation D.D. Koelling and B.N. Har-mon [KH77℄ introdu
e the following transformation. g�(r)��(r) ! = 0BB� 1 012M
 �+ 1r 1 1CCA g�(r)f�(r) ! (3.38)Using this transformation (3.37) be
omes0BBBB� � ��r 2M
12M
 �(�+ 1)r2 + 1
 (V (r)� E)� 12M
 �+ 1r  ��r � M 0M ! �� 1r � ��r 1CCCCA g�(r)��(r) ! = 0 (3.39)Where M 0 denotes the derivative of M with respe
t to r (�M=�r). Multiplying the�rst line in (3.39) by (�+ 1)=2M
r and subtra
ting it from the se
ond yields0BBB� � ��r 2M
12M
 l(l + 1)r2 + 1
 (V (r)� E) + �+ 1r M 02M2
 �2r � ��r 1CCCA g�(r)��(r) ! = 0(3.40)Where the identity �(�+1) = l(l+1) has been used. Re
alling, that � is the eigenvalueof K = �(� � l + 1) the term (� + 1)M 0=2M2
r 
an be identi�ed as the spin-orbit
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alar relativisti
 approximation, be
ause it is theonly one, that 
auses 
oupling of spin up and spin down 
ontributions. In the originalpaper this is interpreted as an average over all states for the two possible values of�, � = l; (j = l� 1=2) and � = �(l+1); (j = l+1=2). The radial fun
tions gl(r) and�l(r) (the index � has been repla
ed by l) 
an now be 
al
ulated from the followingset of di�erential equations.��rgl(r) = 2M
�l(r) (3.41)��r�l(r) =  12M
 l(l + 1)r2 + 1
 (V (r)� E)! gl(r)� 2r�l(r) (3.42)Deriving these equations with respe
t to the energy yields a set of equations for _gl(r)and _�l(r), whi
h are the relativisti
 analog of _ul(r).��r _gl(r) = 2M
 _�l(r) + 2 _M
�l(r) (3.43)��r _�l(r) =  12M
 l(l + 1)r2 + 1
 (V (r)� E)! _gl(r)� _M2M2
 l(l + 1)r2 + 1
! gl(r)� 2r _�l(r) (3.44)For numeri
al reasons the fun
tions gl(r) and �l(r) are repla
ed by p(r) = rgl(r) andq(r) = 
r�l(r). Thus, equations (3.41) { (3.44) be
ome��rp(r) = 2�1 + 12
2 (E � V (r))� q(r) + p(r)r (3.45)��r q(r) = 0� l(l + 1)2 �1 + 12
2 (E � V (r))� r2 + V (r)� E1A p(r)� q(r)r (3.46)��r _p(r) = 2��1 + 12
2 (E � V (r))� _q(r) + 12
2 q(r)�+ _p(r)r (3.47)��r _q(r) = 0� l(l + 1)2 �1 + 12
2 (E � V (r))� r2 + V (r)� E1A _p(r)�0� l(l + 1)4
2 �1 + 12
2 (E � V (r))� r2 + 11A p(r)� _q(r)r (3.48)This formulae have been obtained using the de�nition of M (3.36), _M = 1=2
2 andthe fa
t that m = 1 in Hartree units. In our implementation of FLAPW the radialwavefun
tions are normalized a

ording to* gl�l !�����  gl�l !+ = Z RMT0 (g2l (r) + �2l (r))r2dr = 1 (3.49)



28 CHAPTER 3. THE FLAPW METHODHowever, g2l (r)+�2l (r) is not the 
harge density. The radial 
harge density is de�nedby �l(r) = * glfl !�����  glfl !+ = Z RMT0 (g2l (r) + f 2l (r))r2dr (3.50)The energy derivatives of the radial fun
tions have to be made orthogonal to theradial fun
tions (
omp. se
tion(3.1.2)).* gl�l !�����  _gl_�l !+ = 0 (3.51)Thus, the s
alar relativisti
 FLAPW basis set is
'GkG?(r) = 8>>>>>>>>>><>>>>>>>>>>:

1p
 ei(Gk+kk)rk eiG?z Int:nAGkG?uGk(z) +BGkG? _uGk(z)o ei(Gk+kk)rk V a
:X�lm A�Gklm  gl(r)�l(r) !Ylm(r̂) +B�Gklm  _gl(r)_�l(r) !Ylm(r̂) MT (3.52)
Note, that the Pauli-spinors have been omitted, sin
e the spin up and down prob-lems are solved independently within the s
alar relativisti
 approximation. Rewriting(3.40) HSP  gl(r)�l(r) ! = E  gl(r)�l(r) ! (3.53)with HSP = 0BBB� 12M l(l + 1)r2 + V (r) �2
r � 
 ��r
 ��r �2m
2 + V (r) 1CCCA (3.54)a matrix expression for the s
alar relativisti
 Hamiltonian in
luding only the spheri-
ally averaged part of the potential 
an be obtained.3.3 Constru
tion of the Hamiltonian MatrixThe FLAPW Hamiltonian and overlap matri
es 
onsist of three 
ontributions fromthe three regions into whi
h spa
e is divided.H = HI +HMT +HV (3.55)S = SI + SMT + SV (3.56)All three 
ontributions have to be 
omputed separately. Let's begin with the muÆn-tin spheres.



3.3. CONSTRUCTION OF THE HAMILTONIAN MATRIX 293.3.1 Contribution of the MuÆn-TinsThe 
ontribution of the muÆn-tin to the Hamiltonian matrix and the overlap matrixis given by:HG0GMT (k) = X� ZMT�  XL0 A�G0L0 (k)'�L0(r) +B�G0L0 (k) _'�L0(r)!�HMT� XL A�GL (k)'�L(r) +B�GL (k) _'�L(r)! d3r (3.57)SG0GMT (k) = X� ZMT�  XL0 A�G0L0 (k)'�L0(r) +B�G0L0 (k) _'�L0(r)!� XL A�GL (k)'�L(r) +B�GL (k) _'�L(r)! d3r (3.58)with '�L(r) =  gl(r)�l(r) !YL(r̂); _'�L(r) =  _gl(r)_�l(r) !YL(r̂) (3.59)Where we distinguish between the atom index � and the atom type index �(�). Inmost appli
ation the are symmetry equivalent atom in the unit 
ell, i.e. some atoms
an be mapped onto ea
h other by spa
e group operations. Clearly, these atommust possess the same physi
al properties, e.g. the potential has to be equal. Asa 
onsequen
e, the Hamiltonian and the basis fun
tions '�L(r) do not di�er amongthe atoms of the same type. This fa
t is exploited in that the muÆn-tin potentialof an atom type is only stored on
e for the representative atom, and the matri
es3.61{3.64 is also 
al
ulated for the representative only. HMT� is the s
alar relativisti
Hamiltonian operator. It 
an be split up into two parts, the spheri
al HamiltonianHsp (3.54) and the nonspheri
al 
ontributions to the potential Vns.HMT� = H�sp + V �ns (3.60)The above integrations 
ontain the following matrix elements.t�''L0L = ZMT� '�L0(r)HMT�'�L(r)d3r (3.61)t�' _'L0L = ZMT� '�L0(r)HMT� _'�L(r)d3r (3.62)t� _''L0L = ZMT� _'�L0(r)HMT�'�L(r)d3r (3.63)t� _' _'L0L = ZMT� _'�L0(r)HMT� _'�L(r)d3r (3.64)These matrix elements do not depend on the A�GL (k) and B�GL (k) 
oeÆ
ients. Thus,they are independent of the Blo
h ve
tor and need to be 
al
ulated only on
e per



30 CHAPTER 3. THE FLAPW METHODiteration. The fun
tions '�L and _'�L have been 
onstru
ted to diagonalize the spheri
alpart H�sp of the muÆn-tin Hamiltonian HMT�.H�sp'�L = El'�L (3.65)H�sp _'�L + _H�sp'�L = El _'�L + '�L (3.66)However, _H�sp is smaller than H�sp, by a fa
tor of 1=
2 and is therefore negle
ted.H�sp _'�L+ = El _'�L + '�L (3.67)Multiplying these equations with '�L0(r) and _'�L0(r) respe
tively and integrating overthe muÆn-tins givesh'�L0 jH�sp'�LiMT� = Æll0Æmm0El (3.68)h'�L0 jH�sp _'�LiMT� = Æll0Æmm0 (3.69)h _'�L0 jH�sp'�LiMT� = 0 (3.70)h _'�L0 jH�sp _'�LiMT� = Æll0Æmm0Elh _'�Lj _'�LiMT� (3.71)Where the normalization 
ondition for '�L has been used. So, only the expe
tationvalues of the nonspheri
al part of the potential are left to be determined. Sin
e thepotential is also expanded into a produ
t of radial fun
tions and spheri
al harmoni
s,the 
orresponding integrals 
onsist of produ
t of a radial integrals and an angularintegrals over three spheri
al harmoni
s, the so-
alled gaunt 
oeÆ
ients.V �(r) =XL00 V �L00(r)YL00(r̂) (3.72)t�''L0L = Xl00 I�''l0ll00 Gm0mm00l0ll00 + Æll0 Æmm0El (3.73)t�' _'L0L = Xl00 I�' _'l0ll00 Gm0mm00l0ll00 + Æll0 Æmm0 (3.74)t� _''L0L = Xl00 I� _''l0ll00 Gm0mm00l0ll00 (3.75)t� _' _'L0L = Xl00 I� _' _'l0ll00 Gm0mm00l0ll00 + Æll0 Æmm0Elh _'�lmj _'�lmiMT� (3.76)with I�''l0ll00 = Z (g�l0 (r)g�l (r) + ��l0(r)��l (r))V �l00 (r)r2dr (3.77)I�' _'l0ll00 = Z (g�l0 (r) _g�l (r) + ��l0(r) _��l (r))V �l00 (r)r2dr (3.78)I� _''l0ll00 = Z ( _g�l0 (r)g�l (r) + _��l0(r)��l (r))V �l00 (r)r2dr (3.79)I� _' _'l0ll00 = Z ( _g�l0 (r) _g�l (r) + _��l0(r) _��l (r))V �l00 (r)r2dr (3.80)



3.3. CONSTRUCTION OF THE HAMILTONIAN MATRIX 31and Gmm0m00ll0l00 = Z Y �lmYl0m0Yl00m00d
 (3.81)The I matri
es 
ontain the radial integrals. Finally, the Hamiltonian and overlapmatrix elements be
omeHG0GMT (k) = X� XL0L(A�G0L0 (k))�t�''L0L A�GL (k) + (B�G0L0 (k))�t� _' _'L0L B�GL (k)+(A�G0L0 (k))�t�' _'L0L B�GL (k) + (B�G0L0 (k))�t� _''L0L A�Gl (k) (3.82)SG0GMT (k) = X� XL (A�G0L (k))�A�GL (k) + (B�G0L (k))�B�GL (k)h _'�Lj _'�LiMT� (3.83)3.3.2 The Va
uum ContributionThe va
uum 
ontributions to the Hamiltonian and overlap matrix are.HG0GV (kk) = ZV �nAG0kG0?(kk)uG0k(kk; z) +BG0kG0?(kk) _uG0k(kk; z)o ei(G0k+kk)rk��HV �nAGkG?(kk)uGk(kk; z) +BGkG?(kk) _uGk(kk; z)o ei(Gk+kk)rk� d3rSG0GV (kk) = ZV �nAG0kG0?(kk)uG0k(kk; z) +BG0kG0?(kk) _uG0k(kk; z)o ei(G0k+kk)rk���nAGkG?(kk)uGk(kk; z) +BGkG?(kk) _uGk(kk; z)o ei(Gk+kk)rk� d3r(3.84)The treatment of the va
uum region in FLAPW is in many way similar to the treat-ment of the muÆn-tins. As in the muÆn-tins the basis fun
tions are 
onstru
ted todiagonalize only a 
ertain part of the Hamiltonian. Here this part of the Hamiltonianin
ludes only the non-
orrugated planar averaged part of the potential (Vn
(z)), thatdepends only on z. HV = Hn
 + V
o(r) (3.85)The t-matri
es 
an be de�ned in the same way as inside the muÆn-tin spheres ((3.61){ (3.64)). tuuG0kGk(kk) = h'G0k(kk)jHV 'Gk(kk)iV (3.86)tu _uG0kGk(kk) = h'G0k(kk)jHV _'Gk(kk)iV (3.87)t _uuG0kGk(kk) = h _'G0k(kk)jHV 'Gk(kk)iV (3.88)t _u _uG0kGk(kk) = h _'G0k(kk)jHV _'Gk(kk)iV (3.89)The 
ontribution to these matri
es from Hn
, are given by the analog of equations(3.68) { (3.71). The non-
orrugated potential is expanded into z-dependent fun
tions



32 CHAPTER 3. THE FLAPW METHODand planewaves in the x-y-plane.V
o(r) =XG00k VG00k (z)eiG00kr (3.90)The 
ontribution due to the expe
tation values of VCO(r) 
onsists of a z-dependentintegral and an integral in the x-y-plane of the following form.Z e�iG0kreiG00kreiGkrdxdy = ÆG0k(Gk+G00k) (3.91)Thus, the t-matri
es are given bytuuG0kGk(kk) = IuuG0kGk(G0k�Gk)(kk) + ÆG0kGkEva
 (3.92)tu _uG0kGk(kk) = Iu _uG0kGk(G0k�Gk)(kk) + ÆG0kGk (3.93)t _uuG0kGk(kk) = I _uuG0kGk(G0k�Gk)(kk) (3.94)t _u _uG0kGk(kk) = I _u _uG0kGk(G0k�Gk)(kk) + ÆG0kGkEva
h _uGk(kk)j _uGk(kk)iV (3.95)Where the I matri
es abbreviate the z-dependent integrals in
luding V(G0k�Gk)(z).IuuG0kGkG00k (kk) = Z uG0k(kk)uGk(kk)VG00k (z)dz (3.96)Iu _uG0kGkG00k (kk) = Z uG0k(kk) _uGk(kk)VG00k (z)dz (3.97)I _uuG0kGkG00k (kk) = Z _uG0k(kk)uGk(kk)VG00k (z)dz (3.98)I _u _uG0kGkG00k (kk) = Z _uG0k(kk) _uGk(kk)VG00k (z)dz (3.99)The Hamiltonian and overlap matrix elements are 
al
ulated a

ording toHG0GV (kk) = (AG0kG0?(kk))�tuuG0kGk(kk)AGkG?(kk)+(AG0kG0?(kk))�tu _uG0kGk(kk)BGkG?(kk)+(BG0kG0?(kk))�t _uuG0kGk(kk)AGkG?(kk)+(BG0kG0?(kk))�t _u _uG0kGkBGkG?(kk)(kk) (3.100)SG0GV (kk) = (AG0kG0?(kk))�AGkG?(kk)ÆG0kGk+(BG0kG0?(kk))�BGkG?(kk)h _uGk(kk)j _uGk(kk)iV ÆG0kGk (3.101)3.3.3 The Interstitial ContributionThe interstitial 
ontributions to the Hamiltonian and overlap matrix have the follow-ing form. HGG0I (k) = 1
 ZI e�i(G+k)r  � �h22m 4+V (r)! ei(G0+k)rd3r (3.102)
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 ZI e�i(G+k)rei(G0+k)rd3r (3.103)The potential is also expanded into planewaves in the interstitial region.V (r) =XG0 VG0e�iGr (3.104)Without the existen
e of the muÆn-tin spheres the integration would stret
h overthe entire unit 
ell and the integration be
omes rather simple. The kineti
 energy isdiagonal in momentum spa
e and the potential is lo
al, diagonal is real spa
e and of
onvolution form in momentum spa
e.HGG0I (k) = �h22m jG+ kj2ÆGG0 + V(G�G0 )SGG0I = ÆGG0However, these matrix elements are not as straightforward to 
al
ulate as they appearat �rst glan
e, be
ause of the 
ompli
ated stru
ture of the interstitial region. Theintegrations have to be performed only in between the muÆn-tins. Therefore, a stepfun
tion �(r) has to be introdu
ed, that 
uts out the muÆn-tins.�(r) = ( 1 interstitial region0 muÆn-tins (3.105)In �lm 
al
ulations the region between D=2 and ~D=2 has to be 
ut out too, but tokeep it simple we will dis
uss the only the bulk 
ase in this se
tion. Using the stepfun
tion the matrix elements 
an be written:HGG0INT (k) = 1
 Z
ell e�i(G�G0 )rV (r)�(r)d3r+12(G0 + k)2 1
 Z
ell e�i(G�G0 )r�(r)d3r (3.106)SGG0INT = 1
 Z
ell e�i(G�G0 )r�(r)d3r (3.107)In momentum spa
e 3.106 be
omes:) HGG0INT (k) = (V�)(G�G0) + �h22m(G0 + k)2�(G�G0 ) (3.108)SGG0INT = �(G�G0 ) (3.109)Where �G and (V�)G are the Fourier 
oeÆ
ients of �(r) and V (r)�(r) respe
tively.Apparently these 
oeÆ
ients are needed up to a 
ut-o� of 2Gmax. The step fun
tion
an be Fourier transformed analyti
ally.�G = ÆG;0 �X� e�iG� � 4�(R�MT )3
 j1(GR�MT )GR�MT



34 CHAPTER 3. THE FLAPW METHODThe Fourier transform of the produ
t of V (r) and �(r) is given by a 
onvolution inmomentum spa
e. (V�)G =XG0 VG0�(G�G0 )This 
onvolution depends on both, G and G0 , therefore the numeri
al e�ort in
reaseslike (Gmax)6. However, (V�)G 
an be determined more eÆ
iently, using Fast-Fourier-Transform (FFT). In �g. 3.3 it is shown s
hemati
ally how (V�)G 
an be obtainedusing FFT. Using this s
heme the numeri
al e�ort in
reases like (Gmax)3ln((Gmax)3)with Gmax.
(r)

V(G)

analytic F.T.

(V

Θ

Θ)(G)
cut-off 2Gmax

(G)Θ~ FFT

V(r)

(r)Θ~

(VΘ)(r)

FFT

FFT~Figure 3.3: S
hemati
 representation of the 
al
ulation of (V�)G. First�(r) is Fourier transformed analyti
ally with a 
ut-o� of 2Gmax yielding~�G. Then ~�G and VG are fast Fourier transformed and multiplied ona real spa
e mesh. Finally, the result (V ~�)(r) is ba
k-transformed tomomentum spa
e.
3.3.4 The MuÆn-Tin A- and B-CoeÆ
ientsWithin FLAPW the ele
tron wavefun
tions are expanded di�erently in the intersti-tial region and the muÆn-tins. Ea
h basis fun
tion 
onsists of a planewave in theinterstitial, whi
h is mat
hed to the radial fun
tions and spheri
al harmoni
s in themuÆn-tins. The 
oeÆ
ients of the fun
tion inside the spheres are determined fromthe requirement, that the basis fun
tions and their derivatives are 
ontinuous at thesphere boundaries. These 
oeÆ
ients play an important role, and they will be neededagain during the dis
ussion of the lo
al orbitals in 
hapter 5. In this se
tion we willtherefore dis
uss how the mat
hing 
onditions 
an be solved and what propertiesthey indu
e.In many systems that the FLAPW method 
an be applied to some atom aresymmetry equivalent, i.e. these atoms 
an be mapped onto ea
h other by a spa
egroup operation fRj�g. Su
h a group of atoms is 
alled an atom type, representedby one of the atoms. Let fR�j� �g the operation that maps the atom � onto itsrepresentative. This atom 
an now be assigned a lo
al 
oordinate frame S� (
f.�g. 3.4), where the origin of S� is at the atoms position3 p�. The lo
al frame is3The atom position is very frequently denoted by ��, whi
h would 
learly 
ause some 
onfusion
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S
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Sα
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µαp pFigure 3.4: Lo
al 
oordinate frames inside ea
h muÆn-tin.
hosen su
h that the unit ve
tors of the lo
al frame S� are mapped onto those of theglobal frame by Rg (R�S� = Sg). The lo
al frame of the representative atom S�is only translated with respe
t to the global frame, i.e. the same rotation R� mapsS� onto S�. The potential (and other quantities) inside the muÆn-tins 
an nowbe written in terms of the lo
al 
oordinate system. Due to the symmetry we �ndVMT�(r�) = VMT�(r�), where r� and r� are expanded in terms of the lo
al frames S�and S� respe
tively. As a 
onsequen
e the radial fun
tions4 ul(r) and the t-matri
esare the same for all atoms of the same type. This way symmetry is exploited to savememory and 
omputer time (during the 
al
ulation of the t-matri
es).Any planewave 
an be expanded into spheri
al harmoni
s via the Rayleigh ex-pansion. eiKr = 4�XL il jl(rK) Y �L (K̂) YL(r̂) (3.110)Where r = jrj, K = jKj and K abbreviates (G+ k). Looked at from the lo
al frameK and p� appear rotated, besides the origin of the lo
al frame is shifted. Therefore,the planewave has the following form in the lo
al frame:ei(R�K)(r+R�p�) (3.111)Thus, the Rayleigh expansion of the planewave in the lo
al frame is given by:eiKp� 4�XL il jl(rK) Y �L (R�K̂) YL(r̂) (3.112)in this 
ontext.4Within this se
tion the radial fun
tions are denoted by ul(r) for simpli
ity, though in s
alarrelativisti
 
al
ulating the large 
omponent gl(r) is used instead of ul(r).



36 CHAPTER 3. THE FLAPW METHODThe requirement of 
ontinuity of the wavefun
tions at the sphere boundary leads tothe equation: XL A�GL (k) ul(RMT�)YL(r̂) +B�GL (k) _ul(RMT�)YL(r̂)= eiKp� 4�XL il jl(rK) Y �L (R�K̂) YL(r̂) (3.113)Where RMT� is the muÆn-tin radius of the atom type �. The se
ond requirement is,that the derivative with respe
t to r, denoted by �=�r = 0, is also 
ontinuous.XL A�GL (k) u0l(RMT�)YL(r̂) +B�GL (k) _u0l(RMT�)YL(r̂)= eiKp� 4�XL il Kj 0l(rK) Y �L (R�K̂) YL(r̂) (3.114)These 
onditions 
an only be satis�ed, if the 
oeÆ
ients of ea
h spheri
al harmoni
YL(r̂) are equal. Solving the resulting equations for A�GL (k) and B�GL (k) yields:A�GL (k) = eiKp�4� 1W il Y �L (R�K̂)[ _ul(RMT�)Kj 0l(RMT�K)� _u0l(RMT�)jl(RMT�K)℄B�GL (k) = eiKp�4� 1W il Y �L (R�K̂)[ul(RMT�)Kj 0l(RMT�K)� u0l(RMT�)jl(RMT�K)℄ (3.115)The Wronskian W is given by:W = [ _ul(RMT�)u0l(RMT�)� ul(RMT�) _u0l(RMT�)℄ (3.116)Transformation of the FLAPW basis fun
tions in systems that possessinversion symmetryPlanewaves transform in a very simple way under the operation r ! �r. Let I bethe inversion operator: IeiKr = e�iKr = �eiKr�� (3.117)The FLAPW basis fun
tions still have this property, i.e. 'G(k;�r) = '�G(k; r).Clearly, the system must possess inversion symmetry, be
ause only if there is anequivalent atom at the position�p� to ea
h atom � at position p�, the basis fun
tionsinside the 
orresponding spheres 
an be 
omplex 
onjugates. The value of the basisfun
tion 'G(k; r) inside the muÆn-tin � is give by:'G(k; r) =XL A�GL (k) ul(r)YL(r̂) +B�GL (k) _ul(r)YL(r̂) (3.118)



3.3. CONSTRUCTION OF THE HAMILTONIAN MATRIX 37The ve
tor �r lies in the opposite muÆn-tin at the position �p�. Let's denote thisatom by ��. Thus, we �nd:'G(k;�r) =XL A��GL (k) ul(r)YL(r̂) +B��GL (k) _ul(r)YL(r̂) (3.119)The argument of the spheri
al harmoni
 is r̂ rather than �r̂, be
ause the ve
toris expanded in the lo
al frame of the atom ��. Substituting the expli
it form ofA��GL (k) and B��GL (k) from (3.115), yields:'G(k;�r) =XL eiK(�p�) il Y �L (�R�K̂) YL(r̂)fAul(r) +B _ul(r)g (3.120)Where it has been used, that p�� = �p� and R�� = �R�, A and B abbreviatesall terms in (3.115) that are real and do not depend on r or r̂. Using that YL(r̂) =(�1)l YL(r̂) (3.120) be
omes:'G(k;�r) =XL e�iK(p�) (�i)l Y �L (R�K̂) YL(r̂)fAul(r) +B _ul(r)g (3.121)In the last step it 
an be exploited that Yl�m(r̂) = (�1)m Y �lm(r̂). Substitutingm0 = �m (3.121) be
omes:'G(k;�r) =Xlm0 e�iK(p�) (�i)l Ylm0(R�K̂) Y �lm0(r̂)fAul(r) +B _ul(r)g (3.122)Hen
e, we have shown, that the FLAPW basis fun
tions transform a

ording to'G(k;�r) = '�G(k; r) (3.123)in the interstitial region and the muÆn-tins, if the system possesses inversion sym-metry.The Hamiltonian Matrix of Systems with Inversion SymmetryThe property of the FLAPW basis fun
tions derived in the previous se
tion leads toproperty of the Hamiltonian and overlap matrix. In systems that possess inversionsymmetry these two matri
es are real symmetri
 rather than 
omplex hermitian. TheHamiltonian depends expli
itly on r via the potential. The matrix elements are givenby: HG0G(k) = Z '�G0(k; r)H(r)'G(k; rd3r (3.124)Substituting r0 = �r yields:HG0G(k) = Z 'G0(k; r0)H(r0)'�G(k; r0d3r (3.125)



38 CHAPTER 3. THE FLAPW METHODWhere (3.123) and H(r) = H(�r) have been used. In addition the Hamiltonianoperator is real, i.e. H(r) = H�(r). Thus, we �nally obtain:HG0G(k) = Z 'G0(k; r0)H�(r0)'�G(k; r0d3r= �HG0G(k)�� (3.126)Apparently, the same relation holds for the overlap matrix. The fa
t, that the twomatri
es are real means a great simpli�
ation in a
tual 
al
ulation. In prin
iple,the diagonalization of a hermitian matrix is no more diÆ
ult than in the real 
ase.However, one 
omplex multipli
ation 
ontains four real multipli
ation, and thereforethe 
omplex problem is far more \expensive" than the real, and the diagonalizationneeds the biggest part of the 
omputer-time in ea
h iteration.3.4 Brillouin Zone Integration and Fermi EnergyIf density fun
tional theory is applied to in�nite periodi
 solids, quantities that aregiven by integrals of fun
tions that depend on the band and the Blo
h ve
tor overthe Brillouin zone have to be determined. These integrations stret
h only over theo

upied part of the band, i.e. over the region of the Brillouin zone where the bandenergy ��(k) (� is the band index) is smaller than the Fermi energy. Hen
e, theintegrals are of the form 1VBZ ZBZ X�;��(k)<EFf�(k) d3k; (3.127)where f is the fun
tion to be integrated. Example of su
h quantities are the numberof ele
trons per unit 
ell N = 1VBZ ZBZ X�;��(k)<EF1 d3k; (3.128)the ele
tron (
harge) density (
f. se
tion 3.6) and the eigenvalue sum1VBZ ZBZ X�;��(k)<EF��(k) d3k: (3.129)Numeri
ally, these integrations are performed on a dis
rete mesh in the Brillouinzone. In fa
t, only the irredu
ible part 
an be used to save 
omputer time. Thereare di�erent methods, that 
an be used to perform the integration, e.g. the spe
ialpoints method [CC73, Cun74℄ and the tetrahedron method [JA71, LT72, BJA94℄. Thespe
ial points method is a method to integrate smoothly varying periodi
 fun
tionsof k. The fun
tion to be integrated has to be 
al
ulated a set of spe
ial pointsin the (irredu
ible) Brillouin zone, ea
h of whi
h is assigned a weight. Thus, theBrillouin zone integration is transformed into a sum over a set of k-points. However,
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ount, that the integration stret
hes only over theo

upied part of the bands. This problem is solved by in
luding only those bandsinto the summation that have an energy below the Fermi energy at the k-point under
onsideration. Thus, the integrals be
ome:1VBZ ZBZ X�;��(k)<EFf�(k) d3k �!Xk X�;��(k)<EFf�(k) w(k) (3.130)Alternatively, this integration 
an be viewed as an integration over the whole Brillouinzone, where the fun
tion to be integrated is given by a produ
t of the fun
tion f witha step fun
tion that 
uts out the region of the Brillouin zone, where the band energy isabove the Fermi energy. Clearly, the resulting fun
tion does not satisfy the 
onditionof being smoothly varying. Therefore, the spe
ial k-points method does not 
onvergevery qui
kly, and rather many k-points are needed to obtain a

urate results. Onthe other hand this method is simple to implement, be
ause the weights depend onlyon k and the band energy (via the step fun
tion) at ea
h k-point. Another problemarises from this \sharp" di�erentiation between o

upied and empty bands (parts ofbands). Let's 
onsider a band that is very 
lose to the Fermi energy at a 
ertaink-point. During the iterations the energy of this band might rise above or drop belowthe Fermi energy. This leads to sudden 
hanges in the 
harge density, whi
h 
anslow down or even prevent the 
onvergen
e of the density. These sudden 
hanges are
learly a result of the dis
reetization in momentum spa
e. To avoid this problem,the sharp edges of the step fun
tion have to be removed. This 
an be done, e.g.by using the Fermi fun
tion (e(��EF )=kBT + 1)�1 rather than the step fun
tion. Inother words, the fun
tion to be integrated is arti�
ially made smoothly varying. Thetemperature T 
an then be adjusted to obtain the best 
onvergen
e. This method is
alled temperature broadening.In the 
urrent implementation of the FLAPW method the Fermi energy is deter-mined in two steps. First the bands are o

upied (at all k-points simultaneously),starting from the lowest energy, until the sum of their weights equals the total numberof ele
trons per unit 
ell, i.e. the dis
retized equivalent of (3.128) is solved at T = 0.Then the step fun
tion is repla
ed by the Fermi and the Fermi energy is determinedfrom the requirement that: N =Xk X� w(k; ��(k)� EF ) (3.131)Where the weights are given by:w(k; ��(k)� EF ) = w(k) 1e(��(k)�EF )=kBT + 1 (3.132)The weights w(k; ��(k) � EF ) are stored to be used for later Brillouin zone integra-tions.



40 CHAPTER 3. THE FLAPW METHOD3.5 Representation of the Density and the Poten-tialThe expansion of the 
harge density � 5 and the potential is very similar to expansionof the wavefun
tion. In the interstitial-region the two quantities are expanded intothree-dimensional planewave, inside the muÆn-tins they are represented by spheri
alharmoni
s and radial fun
tions, whi
h are store on an exponential mesh and in theva
uum they are expanded into two-dimensional planewave and z-depended fun
tions,whi
h are also given on an exponential mesh. However, the 
harge density is givenby �(r) =Xi j i(r)j2; (3.133)whi
h 
ontains 
ontains terms of the form ei(G�G0)r. Consequently, for a 
onsistentrepresentation the 
harge density 
ut-o� has to be twi
e the wavefun
tion 
ut-o�Gmax. In se
tion 3.3.3 we explained, that the potential is also needed up to 
ut-o� of 2Gmax. This leads to a large number of 
oeÆ
ients, that need to be stored.Fortunately, this number 
an be redu
ed, if the symmetry of the system is exploited.Of 
ourse, the 
harge density and the potential posses the latti
e symmetry.Therefore, the expansion into planewaves is more general than ne
essary. The Plane-waves 
an be repla
ed by symmetrized planewaves, the so 
alled stars. They arede�ned by: �3Ds (r) = 1Nop Xop eiRG(r�� ) (3.134)where fRj�g are the symmetry operation of the latti
e spa
e group; if all the trans-lation ve
tors � are zero, the spa
e group is 
all symmorphi
. By this 
onstru
tionall planewaves, that are symmetry equivalent, are 
ombined to form one star. Thetwo-dimensional stars �2Ds (r) are de�ned in the same way, applying the operationsof the two-dimensional spa
e group only.The same arguments 
an be applied to the expansion of the � (V ) inside themuÆn-tins. In this 
ase the relevant symmetry group is the point group of theatom under 
onsideration. Thus, di�erent expansions are used at di�erent atoms ingeneral. The symmetrized fun
tions are 
alled latti
e harmoni
s and they are linear
ombinations of spheri
al harmoni
s.K�(r̂) =Xm 
��;mYL(r̂) (3.135)The latti
e harmoni
s are real, orthonormal and invariant under the point groupoperations. Finally, the expansion of the the 
harge density has the form�(r) = 8><>: Ps �s�3Ds (r) r 2 IPs �s(z)�2Ds (r) r 2 VakuumP� ��� (r)K�(r̂) r 2MT � (3.136)5The 
harge density is related to the ele
tron density by �(r) = �en(r). However, the programis written in Hartree units, where e = 1, therefore � and n are equal.



3.6. CONSTRUCTION OF THE ELECTRON DENSITY 41The Potential is expanded in exa
tly the same way.3.6 Constru
tion of the Ele
tron DensityIn this se
tion we will dis
uss the determination of the 
harge density from the eigen-fun
tions. However, we will 
on
entrate on the 
harge density inside the muÆn-tinspheres and two related issues, be
ause the formulae derived in this se
tion will bethe starting point for the dis
ussion of the 
ontributions to the 
harge density ofthe lo
al orbitals (
f. 
hap. 5). The lo
al orbitals are an extension to the FLAPWbasis set. They do not 
ontribute to the 
harge density in the interstitial and theva
uum-region, be
ause they are 
ompletely lo
alized inside the muÆn-tins.In density fun
tional 
al
ulations of an in�nite periodi
 solid the ele
tron densityis given by an integral over the Brillouin zone (
f. (2.20)).n(r) = 1VBZ ZBZ X�;��(k)<EF j �(k; r)j2d3k (3.137)Where VBZ is the volume of the Brillouin zone, � is the band index and EF isthe Fermi energy. In spin-polarized 
al
ulations the summation in
ludes also thespin-index � (
f. (2.8)), while in a non-magneti
 
al
ulation a fa
tor \2" has to beadded to a

ount for the spin-degenera
y. In the 
ase of �lm 
al
ulations the three-dimensional Brillouin zone is repla
ed by a two-dimensional Brillouin zone. In both
ases integration methods that sample eigenfun
tions and the eigenvalues on dis
retek-point are used to 
ompute the integrals. These methods transform the integrationinto a weighted sum over the k-points, where the 
hoi
e of k-points and their weightsdepend on the integration method used. These weights depend not only on the k-point, but also on the energy of a band, i.e. on the band (index), be
ause ea
h band
ontributes to the ele
tron density only if its energy is below the Fermi energy.n(r) =Xk X� j �(k; r)j2w(�;k) (3.138)Within the FLAPW method the eigenfun
tions are represented in terms of the 
oef-�
ients of the augmented planewaves. �(k; r) =XG 
G� (k)'G(k; r) (3.139)Inside the muÆn-tin spheres ea
h planewave is 
oupled to a sum of spheri
al har-moni
s and radial fun
tions. Hen
e, in a sphere � an eigenfun
tion is given by: �� (k; r) =XG 
G� (k)XL A�GL (k)u�l (r)YL(r̂) +B�GL (k) _u�l (r)YL(r̂) (3.140)The A�GL (k) and B�GL (k) 
oeÆ
ients 
an be repla
ed by band dependent A- andB-
oeÆ
ients, obtained by performing the 
ontra
tion over the planewaves: �� (k; r) =XL A�L;�(k)u�l (r)YL(r̂) +B�L;�(k) _u�l (r)YL(r̂); (3.141)



42 CHAPTER 3. THE FLAPW METHODwhere A�L;�(k) =XG 
G� (k)A�GL (k); B�L;�(k) =XG 
G� (k)B�GL (k): (3.142)3.6.1 \l-like" ChargeSin
e the wavefun
tions are expanded into spheri
al harmoni
s inside the muÆn-tinspheres, they 
an be split up into 
ontributions with a 
ertain l-
hara
ter. �� (k; r) =Xl  ��;l(k; r) (3.143)The parti
le density of a 
ertain state depends on the square of the wavefun
tion.Therefore, it 
ontains 
ross-terms with a mixture of di�erent l's.n�� (r) = 1VBZ ZBZXl j ��;l(k; r)j2 +Xl0l 2 � ��;l0(k; r)��  ��;l(k; r)d3k (3.144)If, however, the density is integrated over the muÆn-tin, the 
ross-terms vanish be-
ause of the orthogonality of the spheri
al harmoni
s. Thus, the total ele
tron densityinside a sphere 
an be written as a sum over 
ontributions with de�nite l-
hara
ter.n�� =Xl n��;l; n��;l = 1VBZ ZBZ ZMT� j ��;l(k; r)j2d3rd3k (3.145)Where n��;l is 
alled \l-like" 
harge. We 
an also de�ne a k-dependent l-like 
hargeby: n��;l(k) = ZMT� j ��;l(k; r)j2d3r (3.146)Substituting (3.141) yields:n��;l(k) = lXm=�l jA�L;�(k)j2 + jB�L;�(k)j2 _N�l (3.147)Where _N�l = Z RMT�0 ( _u�l (r))2r2dr (3.148)and the orthogonality of the spheri
al harmoni
s, the normalization of u�l and theorthogonality of u�l and _u�l have been used.3.6.2 Determination of the Optimal Energy ParameterIn order to minimize the linearization error, the energy parameters should be 
hosenas 
lose to the band energies as possible. However, the band energies ��(k) depend onk whereas the energy parameters E�l are 
onstants. In addition, the radial fun
tions
ontribute to the eigenfun
tions of di�erent band with di�erent energies. Therefore,



3.6. CONSTRUCTION OF THE ELECTRON DENSITY 43deviations between ��(k) and E�l have to be a

epted. An optimal 
hoi
e 
an beobtained from the requirement, that the energy parameters minimizeZBZ X�;��(k)<EF (��(k)� E�l )2 n��;l(k)d3k; (3.149)whi
h is the quadrati
 error weighted with the amount of 
harge that ea
h band
ontributes to the l-like 
harge with the l-
hara
ter of the energy parameter. Settingthe derivative (�=�E�l ) equal to zero yields the optimal energy parameter:E�l = 0�ZBZ X�;��(k)<EF ��(k)n��;l(k)d3k1A,0�ZBZ X�;��(k)<EF n��;l(k)d3k1A (3.150)The Brillouin zone integration methods transform this into a sum over a dis
retek-point set.E�l =  Xk X� ��(k)n��;l(k)w(�;k)!, Xk X� n��;l(k)w(�;k)! (3.151)3.6.3 Constru
tion of the Ele
tron Density in the MuÆn-TinsSubstituting (3.141) into (3.137) yields the ele
tron density in the muÆn-tin spheres.n�(r) = 1VBZ ZBZ X�;��(k)<EF XL0 �A�L0;�(k)u�l0(r) +B�L0;�(k) _u�l0(r)�� Y �L0(r̂)XL �A�L;�(k)u�l (r) +B�L;�(k) _u�l (r)�YL(r̂)d3k (3.152)The parti
le density inside the muÆn-tins is also expanded into spheri
al harmoni
s.n�(r) =XL C�L(r)YL(r̂) (3.153)The 
oeÆ
ients C�L00(r) 
an be determined by multiplying (3.152) with R d
YL00(r̂).C�L00(r) = 1VBZ ZBZ X�;��(k)<EF XL0 �A�L0;�(k)u�l0(r) +B�L0;�(k) _u�l0(r)��XL �A�L;�(k)u�l (r) +B�L;�(k) _u�l (r)�Gmm0m00ll0l00 d3k (3.154)with Gmm0m00ll0l00 = Z Y �lmYl0m0Yl00m00d
 (3.155)where it has been used, that the gaunt 
oeÆ
ients are real, i.e.Z YlmY �l0m0Y �l00m00d
 = Z Y �lmYl0m0Yl00m00d
 (3.156)



44 CHAPTER 3. THE FLAPW METHODFinally, applying a Brillouin zone integration method yields:C�L00(r) = Xl0l  Xk X� Xm0m �A�L0;�(k)��A�L;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�l (r)+ Xl0l  Xk X� Xm0m �A�L0;�(k)��B�L;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r) _u�l (r)+ Xl0l  Xk X� Xm0m �B�L0;�(k)��A�L;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�l (r)+ Xl0l  Xk X� Xm0m �B�L0;�(k)��B�L;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r) _u�l (r)(3.157)3.6.4 Constru
tion of the Ele
tron Density in the InterstitialRegionIn the interstitial region the wavefun
tions are represented in the following form. �(k; r) =XG 
G� (k)ei(G+k)r (3.158)Starting from (2.8) the ele
tron density is given by:n(r) = 1VBZ ZBZ X�;��(k)<EF XG0G00 �
G0� (k)�� 
G00� (k)d3kei(G00�G0)r (3.159)The ele
tron density in the interstitial region is also expanded into planewaves.n(r) =XG nGeiGr (3.160)Hen
e, the planewave 
oeÆ
ients of the ele
tron density are:nG = 1VBZ ZBZ X�;��(k)<EF XG0G00G00�G0=G �
G0� (k)�� 
G00� (k)d3k (3.161)Apparently, the planewave 
ut-o� of the parti
le density has to be twi
e the 
ut-o�of the wavefun
tion expansion (Gmax) to allow an a

urate des
ription. The k andstate dependent densitynG� (k) = XG0G00G00�G0=G �
G0� (k)�� 
G00� (k) =XG0 �
G0� (k)�� 
(G+G0)� (k) (3.162)is given by a 
onvolution in momentum spa
e. For ea
h 
oeÆ
ient a sum over G hasto be performed. Consequently, the numeri
al e�ort put into the determination of
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ales proportional to the number of G-ve
tors squared, i.e. proportional to(Gmax)6. However, nG� (k) 
an be 
al
ulated more eÆ
iently using the fast Fouriertransform (FFT). First, 
G� (k) is Fourier transformed to real spa
e, where it is squaredon a real spa
e mesh yielding n�(k; r), then all states are summed up and �nally theresulting parti
le density is ba
k-transformed to momentum spa
e.
G� (k) FFT�!  �(k; r) square�! n�(k; r) P��! n(k; r) FFT�1�! nG(k)With this s
heme the numeri
al e�ort in
reases proportional to (Gmax)3 ln((Gmax)3),whi
h is a major improvement for large systems. In a last step the planewaves haveto be 
ombined to form the three-dimensional stars.3.6.5 Constru
tion of the Ele
tron Density in the Va
uumRegionIn the va
uum region the wavefun
tions are expanded into two-dimensional plane-waves parallel to the surfa
e and z-dependent fun
tions perpendi
ular to the surfa
e. �(kk; r) = XGkG?
GkG?� (kk) �AGkG?(kk)uGk(kk; z) +BGkG?(kk) _uGk(kk; z)� ei(Gk+kk)rk(3.163)Hen
e, the ele
tron density is given by:n(r) = 1VBZ ZBZ X�;��(k)<EF XG0kG0? XG00kG00?�
G0kG0?� (kk) �AG0kG0?(kk)uG0k(kk; z) +BG0kG0?(kk) _uG0k(kk; z)����
G00kG00?� (kk) �AG00kG00?(kk)uG00k (kk; z) +BG00kG00?(kk) _uG00k (kk; z)�� d3kei(G00k�G0k)rk (3.164)The parti
le density in the va
uum is represented in the following form.n(r) =XGk nGk(z)eiGkrk (3.165)Performing the Brillouin zone integration on a dis
rete kk-mesh and 
arrying out thesummation over G0? and G00? we �nd that the 
oeÆ
ients nGk(z) are:nGk(z) = Xkk X� XG0k �AG0k;�(kk)��A(Gk+G0k);�(kk)w(�;kk) uG0k(kk; z)u(Gk+G0k)(kk; z)+ Xkk X� XG0k �AG0k;�(kk)��B(Gk+G0k);�(kk)w(�;kk) uG0k(kk; z) _u(Gk+G0k)(kk; z)



46 CHAPTER 3. THE FLAPW METHOD+ Xkk X� XG0k �BG0k;�(kk)��A(Gk+G0k);�(kk)w(�;kk) _uG0k(kk; z)u(Gk+G0k)(kk; z)+ Xkk X� XG0k �BG0k;�(kk)��B(Gk+G0k);�(kk)w(�;kk) _uG0k(kk; z) _u(Gk+G0k)(kk; z)(3.166)withAGk;�(kk) =XG? 
GkG?� (kk)AGkG?(kk); BGk;�(kk) =XG? 
GkG?� (kk)BGkG?(kk)(3.167)Here, the terms of the formXG0k �AG0k;�(kk)��A(Gk+G0k);�(kk) uG0k(kk; z)u(Gk+G0k)(kk; z)represent 
onvolutions in momentum spa
e. Similar to the interstitial region theseterms 
ould be 
al
ulated more eÆ
iently, using two-dimensional fast Fourier trans-form. However, there are far less two-dimensional planewaves than three-dimensionalplanewaves. Therefore, the possible saving of 
omputer time is mu
h smaller.3.7 Constru
tion of the Coulomb PotentialThe Coulomb potential 
onsists of two parts, the Hartree term VH(r) and the externalpotential of the nu
lei Vi(r). V
(r) = VH(r) + Vi(r) (3.168)The Hartree potential has to be determined from the 
harge density via the Poissonequation. �VH(r) = 4��(r) (3.169)In real spa
e the solution of 3.169 is given byVH(r) = Z 4��(r0)jr� r0jd3r: (3.170)In re
ipro
al spa
e, however, the Poisson equation is diagonal, as a result the solutionis very simple. VH(G) = 4��(G)G2 (3.171)Therefore, and be
ause of the representation of the 
harge density and the poten-tial in the interstitial- and va
uum-region, the solution of the Poisson equation inre
ipro
al spa
e appears to be 
onvenient. However, due to the rather lo
alized 
oreand valen
e states the 
harge density 
hanges on a very small length s
ale near thenu
lei. Therefore, the planewave expansion of � 
onvergen
es slowly, and a dire
t useof (3.171) is impra
ti
al, if not impossible. This diÆ
ulty 
an be 
ir
umvent via thepseudo
harge method.



3.7. CONSTRUCTION OF THE COULOMB POTENTIAL 473.7.1 The Pseudo
harge MethodThe pseudo
harge method, developed by Weinert [Wei81℄, is a very elegant te
hniqueto 
al
ulate the interstitial and va
uum Hartree potential. The underlying idea is todivide the solution of the Poisson equation into two steps. In the �rst step thetrue muÆn-tin 
harge is repla
ed by a 
onvergent pseudo
harge density ~�, that leadsto the same potential outside the muÆn-tins. Then the interstitial (and va
uum)potential is 
al
ulated in re
ipro
al spa
e. In the se
ond step the muÆn-tin potentialis determined from the Diri
hlet boundary value problem, de�ned by the exa
t muÆn-tin 
harge and the interstitial potential on the muÆn-tin sphere boundaries. Thepotential outside the the muÆn-tin spheres due to a 
harge distribution inside thesphere is determined 
ompletely by its multipole moments qL.V (r) = 1Xl=0 lXm=�l 4�2l + 1 qLrl+1YL(r̂); (3.172)However, the multipole moments do not de�ne the 
harge density uniquely. The
harge density is given by:�(r) = �I(r)�(r 2 I) +X� ��(r)�(r 2MT �) (3.173)Of 
ourse, in �lm 
al
ulation there is also a va
uum 
harge, and we will 
ome ba
kto this later. 3.173 
an be rewritten�(r) = �I(r) +X� [��(r)� �I(r)℄�(r 2MT �) (3.174)Thus, the interstitial 
harge has been extended into the muÆn-tin and subtra
tedthere again. The se
ond term in 3.174 
an now be repla
ed by a pseudo
harge ~��, thathas the same multipole moments (s. [Wei81℄ for details). The resultant pseudo
harge~� is given by ~�(r) = �I(r) +X� ~q�(r) (3.175)~�(r) is 
onstru
ted to have a more rapidly 
onverging Fourier expansion than theoriginal 
harge density �(r). Therefore, the Poisson equation 
an now be solvedusing (3.171).Still, the muÆn-tin potential V �MT remains to be determined. For this step theexa
t muÆn-tin 
harge �� has to be used. Sin
e, the interstitial potential is alreadyknown at this point, the 
al
ulation of V �MT 
onstitutes a 
lassi
al spheri
ally sym-metri
 Diri
let boundary value problem, whi
h 
an be solved by the Green's fun
tionmethod [Ja
83℄.V �MT (r) = ZMT� ��(r0)G(r; r0)d3r0 � R2�4� IS� VI(r0)�G�n0 d
0 (3.176)



48 CHAPTER 3. THE FLAPW METHODThe se
ond integral is over the muÆn-tin sphere boundary S�, and it is ne
essary tosatis�es the boundary 
onditions. The Green's fun
tion is given by:G�(r; r0) = 4�Xl;m YL(r̂0)YL(r̂)2l + 1 rl<rl+1>  1� � r>RMT��2l+1! (3.177)where r> = maxfjrj; jr0jg, r< = minfjrj; jr0jg. Finally, the muÆn-tin potential hasto be expanded into latti
e harmoni
s K�(r̂).V �MT (r) =X� V �MT;�(r)K�(r̂) (3.178)The potential of the nu
lei V �i (r) = eZ�jrj is added to the spheri
al (l = 0) 
omponentof the potential V �MT;0(r).The muÆn-tin potential is 
omputed in the same way for both, bulk and �lm 
al-
ulations. Apparently, the interstitial and the va
uum have to be treated di�erentlyis the two 
ases, due to the di�erent boundary 
onditions and the di�erent represen-tation of the va
uum potential. Therefore, the next two se
tions the solution of thePoisson equation will be outlined separately for these 
ases in.3.7.2 Determination of the interstitial Coulomb Potential inBulk Cal
ulationsIn the 
ase of bulk 
al
ulations we have periodi
 boundary 
onditions in three dimen-sions. Therefore, the solution of the Poisson equation,G2V (G) = 4�~�(G) (3.179)is very simple. Obviously, this equation 
an only be solved, if ~�(0) = 0. Sin
e ~�(0) isthe average 
harge density, this means, that 
harge neutrality is essential. Still, V (0)remains undetermined by 3.179, i.e. one has the freedom to shift the potential by a
onstant. This is a 
onsequen
e of the periodi
 boundary 
onditions, be
ause theydo not �x the referen
e of the potential. Usually V (0) is 
hosen to be zero, hen
e theCoulomb potential in the interstitial-region is given by:VI(r) = XG6=0 4�~�(G)G2 eiGr =Xs6=0 4� ~�sG2s �3Ds (r) (3.180)where the �rst summation is expressed in terms of G-ve
tors and the se
ond in termsof stars.3.7.3 Determination of the interstitial and va
uum CoulombPotential in Film Cal
ulationsIn a �lm the translational symmetry in z-dire
tion is lost. A

ordingly, the boundary
onditions are periodi
 in two dimensions only. In z-dire
tion the periodi
 boundary
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onditions are repla
ed by the requirement, that the potential approa
hes zero atin�nity. The latter 
ondition de�nes the absolute referen
e of the potential. As a
onsequen
e of the symmetry breaking, the following expansion of V and � is mostsuitable to solve the Poisson equation:V (r) = V0(z) + XGk 6=0VGk(z)eiGkr (3.181)�(r) = �0(z) + XGk 6=0 �Gk(z)eiGkr (3.182)Substituting this into the Poisson equations yields: d2dz2 �G2k!VGk(z) = �4��Gk(z) (3.183)This equation is treated di�erently for Gk = 0 and Gk 6= 0.The Gk = 0 Component of the PotentialFor the Gk = 0 
omponent of the potential the Poisson equation has the formd2dz2V0(z) = �4��0(z) (3.184)The Gk = 0 
omponent of the pseudo
harge density is given by:�0(z) = 8><>: �0;0I +PG? �0;G?I eiG?z jzj � D2�0V (z) jzj > D2 (3.185)The Poisson equation for the Gk = 0 
an be integrated dire
tly. The result in theva
uum region is given by: V 0V (z) = �4� Z 1z �V (z0)dz0; (3.186)with �V (z) = Z zD2 �0V (z0)dz0 + ��ID2 (3.187)where the average interstitial 
harge density ��I is given by:��I =XG? �0;G?I j0(Gn?D): (3.188)Here ��I does not equal �0;0I , be
ause the G? are de�ned in terms of ~D rather than D,i.e. the period of the z-dependent planewaves does not equal the integration interval.In the interstitial region the solution to (3.184) isV 0I (z) = �2��0;0I  z2 � D24 !� 4�XG? �0;G?IG?2 �eiG?z � eiG?D2 �� 4� Z 1D2 �V (z0)dz0(3.189)



50 CHAPTER 3. THE FLAPW METHODThe Gk 6= 0 Component of the PotentialIn the 
ase Gk 6= 0 the Poisson equation is solved via the Green's fun
tion method.VGk(z) = Z 1�1 �Gk(z)GGk(z � z0)dz0 (3.190)Where the Green's fun
tion is given by:GGk(z � z0) = 2�Gk ejGkjjz�z0j (3.191)This leads to the following solution in the va
uum-regionV GkV (z) = 2�Gk eGkz Z z�1 �GkV (z0)e�Gkz0dz0 (3.192)+2�Gk e�Gkz Z �D2z �GkV (z0)eGkz0dz0+2�Gk e�GkzXG? �Gk;G?IGk + iG? �e(Gk+iG?)z � e�(Gk+iG?)z�and in the interstitial-regionV GkI (z) = 4�Xn �Gk;G?IG2 eiG?z (3.193)+2�Gk XG? �Gk;G?IG2 heGkz(Gk + iG?)e�(Gk�iG?)D2+ e�Gkz(Gk � iG?)e�(Gk+iG?)D2 i++2�Gk "eGkz Z 1�D2 �GkV (z)e�Gkz0dz0 + e�Gkz Z D2�1 �GkV (z)eGkz0dz0#3.8 Computation of the Ex
hange Correlation Po-tentialThe problem of the determination of the ex
hange 
orrelation potential is quit dif-ferent from the Coulomb potential. On one hand, V �x
 is a lo
al quantity, i.e. V �x
(r)depends only on n"(r) and n#(r) at the same position r. Thus, the muÆn-tins, theinterstitial- and va
uum-region 
an be treated independently. On the other hand,V �x
 and ��x
 are non-linear fun
tions of n" and n#. Therefore, V �x
 and ��x
 have to be
al
ulated in real spa
e. V �x
 and ��x
 are determined in the same way. First, n" andn# are transformed to real spa
e, where V �x
 and ��x
 are 
al
ulated. Then V �x
 and��x
 are ba
k-transformed. Then, V �x
 is added to the Coulomb potential, yielding thespin-dependent potential V" and V#. ��x
 is needed for the determination of the totalenergy.



3.8. COMPUTATION OF THE EXCHANGE CORRELATION POTENTIAL 513.8.1 Cal
ulation of ��x
 and V �x
 in the Interstitial-RegionIn the interstitial-region the 
harge density is expanded into three-dimensional starswith 
oeÆ
ients n�s . Multiplying these by eiRG� yields the planewave 
oeÆ
ientsn�G. If the spa
e group is symmorphi
 the star and planewave 
oeÆ
ients are iden-ti
al. However, due to numeri
al ina

ura
y, the 
al
ulated 
oeÆ
ients of symmetryequivalent planewaves are not exa
tly equal, and the 
orresponding star 
oeÆ
ientis obtained from the average of the planewave 
oeÆ
ients. In the next step a three-dimensional Fast-Fourier transform is 
arried out. Then the ex
hange 
orrelationpotential is 
al
ulated on a real spa
e mesh ri. Finally, V �x
 is ba
k-transformed, andthe star 
oeÆ
ients are 
omputed.n�s �! n�G FFT�! n�(ri) �! V �x
(ri) FFT�1�! V �;Gx
 �! V �;sx
 :3.8.2 Cal
ulation of ��x
 and V �x
 in the Va
uum-RegionThe va
uum 
harge density is stored in terms of two-dimensional stars and a z-dependent exponential mesh zi. The Gk = 0 
omponent rea
hes further into theva
uum than the Gk 6= 0 
omponents. In the so 
alled warping region the planewave
oeÆ
ients on ea
h mesh point are determined by a multipli
ation with the phase fa
-tor eiRGk� . Then, for ea
h grid point zi along the z-axis, the two-dimensional 
hargedensity is Fourier transformed to a real spa
e grid (rk; zi), where V �x
 is 
al
ulated.Afterwards, V �x
 is ba
k-transformed and the star 
oeÆ
ients are 
omputed.n�(�2Ds ; zi) �! n�(Gk; zi) 2DFFT�! n�(rk; zi) �! V �x
(rk; zi)2DFFT�1�! V �x
(Gk; zi) �! V �x
(�2Ds ; zi)Beyond the warping region the ex
hange 
orrelation potential is 
al
ulated dire
tlyon the z-dependent mesh.3.8.3 Cal
ulation of ��x
 and V �x
 in the MuÆn-Tin SpheresThe muÆn-tin 
harge is expanded into latti
e harmoni
s and radial fun
tions. Theradial fun
tions are stored on a dis
rete real-spa
e mesh. Thus, the transform to realspa
e a�e
ts only the angular part. The 
harge density is 
al
ulated on a set of spe
ialangular points r̂i = (�i; �i). Again, the ex
hange 
orrelation potential is 
al
ulatedin real spa
e. Thereafter, the result V �x
(r) is expanded into spheri
al harmoni
s YL.The YL are orthonormal, therefore the 
oeÆ
ients 
an be obtained fromv�x
;L(r) = Z YL(r̂)V �x
(r; r̂)d
: (3.194)The 
hoi
e of the points r̂i = (�i; �i), on whi
h n�(r) and V �x
(r) are 
al
ulated,depends on the integration method, that is used to perform the angular integration.In the 
urrent implementation (3.194) is 
omputed via a Gau�-Legendre integrationand the angular points are 
hosen su
h, that the orthonormality 
ondition of the YLholds also for the angular mesh r̂i.



52 CHAPTER 3. THE FLAPW METHOD3.9 Minimization of the Energy Fun
tionalThe aim of ele
troni
 stru
ture 
al
ulations is to minimize the energy fun
tional withrespe
t to the ele
tron density. Within density fun
tional theory this minimizationis performed impli
itly, by the determination of a self
onsistent density n(r). In theprevious se
tions we des
ribed, how an e�e
tive Potential 
an be 
al
ulated from a
harge density, how the Kohn-Sham equations in
luding this potential 
an be solvedand how a new ele
tron density 
an be 
al
ulated from the resulting single parti
lewavefun
tions. Combining these steps de�nes a map:n0(r) = Ffn(r)g (3.195)The ele
tron density that minimizes the energy fun
tional n0(r) is a �x-point ofFfn(r)g, i.e. it solvesFfn0(r)g = 0; with Ffn(r)g = Ffn(r)g � n(r): (3.196)The density is expanded into a large set of basis fun
tions. Therefore, in a
tual
al
ulations, the 
harge density is a 
oeÆ
ient ve
tor of dimension n, where n istypi
ally of the order of 104. Thus, (3.196) 
onstitutes a system of n nonlinearequations, whi
h 
an be solved by iteration:nm+1(r) = Ffnm(r)g (3.197)A starting density 
an be 
onstru
ted by a superposition of atomi
 densities. How-ever, this s
heme is in general divergent. To a
hieve 
onvergen
e the output densityhas to be mixed with the input density. Di�erent mixing s
hemes are dis
ussed inthe following.3.9.1 \simple mixing"The slowest method is the \simple mixing", whi
h 
onverges only linearly.jÆn(m+1)jjÆn(m)j � 
onst. (3.198)Where Æn(m) is the di�eren
e of the density of the mth iteration and the unknown�x-point, Æn(m) = n(m) � n0. The density for the next iteration is 
onstru
ted as alinear 
ombination of n(m) and Ffnmg a

ording to:n(m+1) = (1� �)n(m) + �Ffnmg= n(m) + �Ffn(m)g (3.199)� is the so-
alled mixing parameter. If it is 
hosen small enough the iteration 
on-verges and is very stable. In spin-polarized 
al
ulations di�erent mixing parameters
an be used for the 
harge and the magnetization density. Usually, the spin mixingparameter 
an be 
hosen far larger than the parameter for the 
harge density. How-ever, for the type of systems we are interested in � is very small, requiring manyhundreds of iterations.



3.9. MINIMIZATION OF THE ENERGY FUNCTIONAL 533.9.2 The Newton-Raphson MethodIn the Newton-Raphson method the fun
tional Ffng is linearized around the ap-proximate solution n(m).Ffng � Ffn(m)g+ J fn(m)g(n� n(m)) (3.200)Where the Ja
obian is de�ned by:J fn(m)(r)g = �Ffn(r)g�n(r0) �����n(m)(r) (3.201)In a
tual 
al
ulations the Ja
obian is a n � n matrix. Similar to the well knownNewton method for one dimensional fun
tions, the next approximation to n0, n(m+1),is determined from the requirement, that the linearized fun
tional in (3.200) vanishesat n(m+1). Thus, n(m+1) is given by:n(m+1) = n(m) � hJfn(m)gi�1Ffn(m)g (3.202)The Newton-Raphson method 
onverges quadrati
ally:jÆn(m+1)jjÆn(m)j2 � 
onst. (3.203)The major drawba
k of this method is the diÆ
ulty to evaluate the Ja
obian. Evenif the fun
tional Ffng was know, the evaluation would be 
umbersome due to theenormous size of J fng. In addition, the Ja
obian has to be inverted where theamount of 
al
ulation s
ales with 
ube of the dimension. A further problem is thatthe 
onvergen
e radius is rather small so that the method 
an only be used if n(m) isalready very 
lose to n0.3.9.3 Quasi-Newton MethodsWith the development of the Quasi-Newton methods it be
ame possible to exploit theadvantages of the Newton-Raphson method, i.e. to make use of the information that is
ontained in the Ja
obian, for problems where the Ja
obian 
annot be 
al
ulated or itsdetermination is too demanding. Rather than 
omputing the Ja
obian ea
h iteration,an approximate Ja
obian is set up and improved iteration by iteration. From thelinearization of Ffng (3.200) we �nd the following 
ondition for the Ja
obian, whi
his usually 
alled Quasi-Newton 
ondition:�n(m) = hJ (m)i�1�F (m) (3.204)�n(m) = n(m) � n(m�1); �F (m) = Ffn(m)g � Ffn(m�1)g



54 CHAPTER 3. THE FLAPW METHODQuasi-Newton methods 
onverge super-linearlyjÆn(m+1)jjÆn(m)j ! 0;and have a larger 
onvergen
e radius than the Newton-Raphson method. Sin
e theJa
obian is build up iteration by iteration, the \history" of the previous iterationsis memorized in J , whereas the Ja
obian of the Newton-Raphson method dependsonly on the previous iteration. In this sense the Newton-Raphson method is self-
orre
tive [Bl�u88℄, it \forgets" inadequately 
hosen 
orre
tions. The Quasi-Newtonmethods sometimes need to be restarted, if the iteration 
onverges only slowly. This
an happen if the starting density is very far from n0 or when physi
al or numeri
alparameters that a�e
t the 
al
ulations are 
hanged during the iteration. Equation(3.204) does not determine the Ja
obian uniquely, instead (3.204) 
onstitutes a systemof n equations for n2 unknowns. The various Quasi-Newton s
hemes di�er by theansatz how the new information is used to build the inverse Ja
obian. The methodsthat are implemented in the FLAPW 
ode are dis
ussed in [Pen96℄.



Chapter 4Non-Collinear Magnetism inFLAPWThe implementation of the FLAPW method, outlined in the previous 
hapter, as-sumes 
ollinear magnetism, i.e. the magnetization density has to be dire
ted alongthe z-axis everywhere in spa
e. In this 
ase, the Hamiltonian of the S
hr�odinger-Pauliequation 2.18, whi
h in general 
onstitutes a two by two matrix, be
omes diagonalin the two spin-
omponents. In fa
t, one 
an think of the magnetization to be di-re
ted along any dire
tion, sin
e real spa
e and spin spa
e are 
ompletely de
oupledwithin the s
alar-relativisti
 approximation. The z-axis is only 
hosen be
ause of thesimple form of the Pauli matrix �z. Another important simpli�
ation, that redu
esthe expense of 
al
ulations, is the fa
t, that the Hamiltonian and the overlap matrixbe
ome real symmetri
 instead of 
omplex hermitian, if the system possesses inver-sion symmetry. Finally, only the magnitude of the magnetization density needs to bestore. In fa
t, the parti
le and magnetization density, n and m 
an be repla
ed by aspin-up and -down density, n" and n#. In the same way V and B 
an be repla
ed byV" and V#.In the 
ase of general non-
ollinear magnetism, all the simpli�
ations listed aboveare lost. A B-�eld with non-zero x- and y-
omponent means, that the Hamiltonian
ontains terms in
luding �x and �y. Thus, the spin-up and -down 
omponents ofthe wavefun
tions are no longer de
oupled, leading to an eigenvalue problem twi
eas large as before. In addition, the Hamiltonian be
omes expli
itly 
omplex, due tothe presents of �y.A large amount of work in the �eld of self
onsistent ab-initio 
al
ulations onnon-
ollinear magneti
 systems has been done by K�ubler and 
oworkers [SHK89,K�ub95, SK96℄ and referen
es therein. Many aspe
ts of non-
ollinear magnetism 
anbe des
ribed within the pi
ture of inter-atomi
 non-
ollinear magnetism, where itis the di�erent atomi
 moments, whi
h are non-
ollinear. Thus, the magnetizationat ea
h atom is predominantly dire
ted along one parti
ular dire
tion, whi
h di�ersfrom atom to atom, but deviations from this dire
tion on the intra-atomi
 s
ale areexpe
ted to be small. Within FLAPW this 
an be realized assigning di�erent quan-55



56 CHAPTER 4. NON-COLLINEAR MAGNETISM IN FLAPWtization axis to ea
h atom, and allowing the magnetization inside the 
orrespondingmuÆn-tin to be dire
ted along this axis only. Still, in the interstitial- and va
uum-region one has to deal with a general non-
ollinear magnetization.4.1 The Frozen Potential ApproximationThe frozen potential approximation allows the 
al
ulation of the total energy di�er-en
e of (similar) systems, based on the eigenvalue sums of non-self
onsistent 
al
ula-tions. In this se
tion we will explain how this method 
an be employed to estimatethe energy di�eren
e of di�erent magneti
 
on�gurations. In the spirit of the approx-imations outlined above, these 
on�gurations shall di�er, in that the dire
tions of themagnetization at ea
h atom, i.e. inside ea
h muÆn-tin, are di�erent. Let's 
onsidertwo 
on�gurations, denoted a and b. A

ording to (2.28) the total energy of ea
h ofthem is given byE[n;m℄ = NXi=1 �i � Z n(r)Vx
(r)d3r � Z m(r) �Bx
(r)d3r� 124�e2 Z n(r)n(r0)jr� r0j d3rd3r0+ Z n(r)�x
(n(r); jm(r)j)d3r + 4�e2 MX�;�0=1�6=�0 Z�Z�0j� � � � �0 j : (4.1)Let us assume now, that the di�eren
e of the ele
tron density between the two 
on�g-urations is negligible na(r) � nb(r), i.e. that a and b di�er only by their magnetization.As a 
onsequen
e, the Hartree energy of a and b is the same. Clearly, the Madelungenergy does not 
hange too. Hen
e, the energy di�eren
e is given byE[na;mb℄� E[nb;mb℄ = NXi=1 �ai � NXi=1 �bi� Z na(r)V ax
(r) +ma(r) �Bax
(r)� nb(r)V bx
(r)�mb(r) �Bbx
(r)d3r+ Z na(r)�x
(na(r); jma(r)j)� nb(r)�x
(nb(r); jmb(r)j)d3r: (4.2)From the lo
al 
hara
ter of �x
 within the LSDA follows that Vx
 and �x
 depend onlyon the magnitude of the magnetization m(r) = jm(r)j. As a result, the magneti
�eld Bx
 is always parallel to the magnetization, with its magnitude also dependingon m(r) only. Hen
e, 4.2 be
omesE[na;mb℄� E[nb;mb℄ = NXi=1 �ai � NXi=1 �bi� Z na(r)Vx
(na(r); ma(r)) +ma(r)Bx
(na(r); ma(r))



4.1. THE FROZEN POTENTIAL APPROXIMATION 57�nb(r)Vx
(nb(r); mb(r))�mb(r)Bx
(nb(r); mb(r))d3r+ Z na(r)�x
(na(r); ma(r))� nb(r)�x
(nb(r); mb(r))d3r: (4.3)At this point, the se
ond approximation 
omes into play. We assume, that the mag-nitude of the magnetization inside the muÆn-tins does not 
hange with the dire
tion.Under this assumption, the 
ontributions from the muÆn-tin spheres to the two in-tegrals in 4.3 
an
el out exa
tly. This is a good approximation for the systems weare going to apply this theory to. Bl�ugel et al. [BDZD89℄ investigated the propertiesof 3d transition-metal monolayers on Ag(001) and unsupported monolayers (UML)with the same geometry. They 
ompared the ferromagneti
 with the 
(2 � 2) anti-ferromagneti
 stru
ture, and found that the magneti
 moments of Mn and Fe hardly
hange, whereas the moments of Cr 
hange noti
eably but not drasti
ally. Assumingthe validity of this approximation, the only error terms, that add to the di�eren
e ofthe eigenvalue sums, is due to the 
hange of the magnitude of the magnetization inthe interstitial- and va
uum-region.E[na;mb℄� E[nb;mb℄ = NXi=1 �ai � NXi=1 �bi� ZI+V na(r)Vx
(na(r); ma(r)) +ma(r)Bx
(na(r); ma(r))�nb(r)Vx
(nb(r); mb(r))�mb(r)Bx
(nb(r); mb(r))d3r+ ZI+V na(r)�x
(na(r); ma(r))� nb(r)�x
(nb(r); mb(r))d3r (4.4)However, the magnetization of the interstitial- and va
uum-region are small, and themagnitudes di�er only in a small region of spa
e between the atoms. Therefore, the
ontribution from the integrals in 4.4 
an be negle
ted, and the di�eren
e of the totalenergy of two magneti
 
on�gurations 
an be approximated by the di�eren
e of theeigenvalue sums. E[na;mb℄� E[nb;mb℄ � NXi=1 �ai � NXi=1 �bi (4.5)The bene�t of the frozen potential approximation is, that on
e one magneti
 
on�g-uration has been 
al
ulated self
onsistently, the energy of other 
on�gurations 
anbe obtained from non-self
onsistent 
al
ulations. The input ele
tron and magnetiza-tion density for the latter is being obtained from the densities of the self
onsistent
al
ulation, by a rotation of the dire
tion of magnetization inside the muÆn-tins. Inpra
ti
e, these 
al
ulations are 
arried out in two steps:� Perform a self
onsistent 
ollinear 
al
ulation� Determine the energy di�eren
e to other (non-
ollinear) magneti
 
on�gura-tions via the frozen potential approximation.Clearly, this is a great simpli�
ation, 
ompared to self
onsistent non-
ollinear 
al-
ulations, be
ause no ve
tor-magnetization densities have to be generated or stored



58 CHAPTER 4. NON-COLLINEAR MAGNETISM IN FLAPWand no ex
hange 
orrelation potentials and magneti
 �elds have to be 
omputed fromsu
h densities.Still, one problem remains to be solved. Obviously, the Hamiltonian, i.e. Veff andBeff , is needed in order to 
al
ulate the eigenvalues. Let's 
onsider the situation,where the magneti
 
on�guration a has been 
al
ulated self
onsistently. Of 
ourse, inthis 
ase, V aeff and Baeff are known, but V beff and Bbeff are not. Assuming the validityof the approximations made above, i.e. that na(r) � nb(r) and that Bbx
 inside themuÆn-tins 
an be obtained from a rotation of Bax
, only the ex
hange 
orrelationpotential and magneti
 �eld in the interstitial- and va
uum-region, V IV;bx
 and BIV;bx
 ,remain unknown. An approximate Hamiltonian ~Hb 
an be 
onstru
ted using V IV;ax
and BIV;ax
 instead. The unknown exa
t Hamiltonian Hb is related to ~Hb by:~Hb = Hb + (V IV;ax
 + � �BIV;ax
 � V IV;bx
 � � �BIV;bx
 ) (4.6)Now, the error of the eigenvalues ��bi = ~�bi � �bi 
an be determined using �rst orderperturbation theory. Sin
e Vx
 depends only weakly on the magnetization, it 
an benegle
ted here. Thus, we have��bi = h bi j� � (BIV;ax
 �BIV;bx
 )j bi i: (4.7)Summing over the o

upied states yieldsNXi=1��bi = ZI+V mb � (BIV;ax
 �BIV;bx
 )d3r: (4.8)This error term 
auses some diÆ
ulties. Of 
ourse, the interstitial and va
uum mag-netization and magneti
 �eld is small, but in 
ontrast to the error term in 4.3, whi
hdepend on the magnitudes ofm and B, here the error depend on the di�eren
e of theve
tors BIV;ax
 � BIV;bx
 . Consider for example the 
ase, where a is the ferromagneti
and b is the antiferromagneti
 
on�guration. Apparently, in one half of the intersti-tial region the magnetizations and magneti
 �elds are opposite to ea
h other, whilethe magnitudes are similar. If we used the self
onsistent ferromagneti
 B-�eld, to
onstru
t the approximate antiferromagneti
 Hamiltonian, it would favor the ferro-magneti
 solution, i.e. the ferromagneti
 eigenvalue sum would be lowered 
omparedto the antiferromagneti
 and vi
e versa.A solution to this problem is to set the interstitial and va
uum magneti
 �eld tozero when 
onstru
ting the trial Hamiltonian. Then the error term 4.8 redu
es toNXi=1��bi = � ZI+V mb �BIV;bx
 d3r: (4.9)Now, we 
an make use of the fa
t, that mb and BIV;bx
 are always parallel. Ergo, theunknown exa
t eigenvalue sum is related to the approximate sum byNXi=1 �bi = NXi=1 ~�bi � ZI+V mbBIV;bx
 d3r: (4.10)



4.2. THE IMPLEMENTATION OF NON-COLLINEAR MAGNETISM 59If we perform this approximation for the two systems, a and b, that we want to
ompare, the di�eren
e of the two eigenvalue sums is given byNXi=1 �ai � NXi=1 �bi = NXi=1 ~�ai � NXi=1 ~�bi � ZI+V (maBIV;ax
 �mbBIV;bx
 )d3r: (4.11)Hen
e, the error we are left with depends only on the magnitudes of m and B.In fa
t, it is exa
tly the same term, that appeared already in 4.4, and it 
an benegle
ted. Eventually, the appli
ation of the frozen potential approximation hasto be supplemented by a third step, the elimination of the interstitial and va
uummagneti
 �eld.4.2 The Implementation of Non-Collinear Mag-netismIn this se
tion we will explain, how the Hamiltonian matrix 
orresponding to theapproximate Hamiltonian ~H, with the B-�eld inside the muÆn-tin spheres rotated bya arbitrary angle, 
an be set up. Sin
e spin- and real-spa
e are 
ompletely de
oupledwithin the s
alar-relativisti
 approximations, the spin-rotations 
an be performedwithout any e�e
t on the real-spa
e 
oordinates. It will be shown, that no 
hanges tothe 
onstru
tion of the muÆn-tin basis fun
tions or the determination of the t-matrixare ne
essary in order to set up ~H.The potential and the magneti
 �eld are represented in terms of V"(r) and V#(r),where up and down is de�ned in terms of the global z-axis before the rotation. Per-forming the rotation leaves both, V"(r) and V#(r), un
hanged. In parti
ular, norotation needs to be applied to r. The only 
hange is, that now spin-up and -down isto be interpreted in terms of a lo
al quantization axis. Therefore, a lo
al spin-spa
e
oordinate frame S� is introdu
ed for ea
h atom type (muÆn-tin). The global spin-
oordinate frame Sg 
an be transformed into the lo
al frame by a rotation, given bythe Euler angles (�; �; 0). In this 
ase, the Euler angles are equivalent to the polarangles of the lo
al quantization axis in the global frame, � = '; � = #. Thus, thebasis ve
tors of the two frames are related to ea
h other byR(�; �; 0) êgi = ê�i ; (4.12)and the magnetization density and the magneti
 �eld, seen from the global frame,m�g(r) and B�g(r), are related to the same quantities seen from the lo
al frame bym�g(r) = R(�; �; 0) m�l(r)B�g(r) = R(�; �; 0) B�l(r): (4.13)where the index � indi
ates, that this 
orresponds to quantities inside the muÆn-tinof atom type �. The Pauli spinors transform a

ording to��g = U(2)(�; �; 0) ��l; (4.14)



60 CHAPTER 4. NON-COLLINEAR MAGNETISM IN FLAPWwith U(2)(�; �; 0) =  e�i�2 
os(�2 ) �e�i�2 sin(�2 )e i�2 sin(�2 ) e i�2 
os(�2 ) ! : (4.15)The unitary matrix U(2) is derived in most standard textbooks [OH93℄. In the
ollinear 
ase the radial fun
tions u�l� and _u�l� 1 are determined as solutions to the ra-dial S
hr�odinger (s
alar-relativisti
) equation 3.2 (3.41), in
luding the spin-dependentpotential V�. Thus, the basis fun
tions inside the muÆn-tins are linear 
ombinationsof u�l"(r)YL(r̂)��" ; _u�l"(r)YL(r̂)��" ;u�l#(r)YL(r̂)��# ; _u�l#(r)YL(r̂)��# ; (4.16)where L abbreviates lm, and��g" = ��l" = ��" =  10!; ��g# = ��l# = ��# =  01!: (4.17)Afterwards, the spin-dependent t-matri
es (3.61 { 3.64) are 
al
ulated. This wholepro
edure remains 
ompletely un
hanged in the non-
ollinear 
ase, with the only dif-feren
e, that spin-up and -down means up and down in terms of the lo
al quantizationaxis. Consequently, the muÆn-tin basis set be
omesu�l"(r)YL(r̂)��g" ; _u�l"(r)YL(r̂)��g" ;u�l#(r)YL(r̂)��g# ; _u�l#(r)YL(r̂)��g# ; (4.18)with��g" = U(2) ��l" =  e�i�2 
os(�2 )e i�2 sin(�2 ) !; ��g# = U(2) ��l# =  �e�i�2 sin(�2 )e i�2 
os(�2 ) !: (4.19)The next step is to 
onne
t the planewaves, representing the basis fun
tions in theinterstitial region, to the muÆn-tin basis, with the aim to form a set of 
ontinuousand di�erentiable basis fun
tions. In the 
ollinear 
ase the planewaves with spin �are 
onne
ted to the muÆn-tin basis fun
tions with the same spin only. Hen
e, theboundary 
onditions that have to be satis�ed on the muÆn-tin sphere are:ei(k+G)r�� =XL �A�GL� (k)u�l�(r) +B�GL� (k) _u�l�(r)�YL(r̂)�� (4.20)In the non-
ollinear 
ase ea
h fun
tion in the interstitial 
ouples to both, spin-up and-down, in the muÆn-tins. Therefore, the boundary 
onditions be
ome:ei(k+G)r�� =X�� XL �A�GL���(k)u�l��(r) +B�GL���(k) _u�l��(r)�YL(r̂)��g�� (4.21)1The radial fun
tions are denoted u only for 
onvenien
e. In the a
tual 
al
ulations the s
alar-relativisti
 approximation is employed, and therefore the large 
omponent of the radial fun
tion isused here.



4.2. THE IMPLEMENTATION OF NON-COLLINEAR MAGNETISM 61In order to 
al
ulate the A- and B-
oeÆ
ients, we multiply equation 4.21 with (��g" )�or (��g# )�, whi
h yieldsei(k+G)r(��g��)��� =XL �A�GL���(k)u�l��(r) +B�GL���(k) _u�l��(r)�YL(r̂): (4.22)Comparing this equation with 4.20 shows, that the non-
ollinearA- and B-
oeÆ
ients
an be expressed in terms of the 
ollinear 
oeÆ
ients.A�GL���(k) = (��g��)��� A�GL��(k)B�GL���(k) = (��g��)��� B�GL��(k) (4.23)Similarly, the 
ontribution of the muÆn-tin at atom � HG0�0G�MT� (k) to the non-
ollinearHamiltonian HG0�0G�(k) 
an be expressed in term of the muÆn-tin 
ontributionHG0GMT��(k) to the 
ollinear spin-dependent Hamiltonian HG0G� (k).HG0G0MT��(k) = ZMT�  XL0 �A�G0L0� (k)u�l0�(r) +B�G0L0� (k) _u�l0�(r)�YL(r̂)��!�HMT�� XL �A�GL� (k)u�l�(r) +B�GL� (k) _u�l�(r)�YL(r̂)��! d3r (4.24)In the non-
ollinear 
ase an additional summation over the lo
al spin �� has to beperformed.HG0�0G�MT� (k) =ZMT�  X��0 XL0 �A�G0L0�0��0(k)u�l0��0(r) +B�G0L0�0��0(k) _u�l0��0(r)�Y 0L(r̂)��g��0!�HMT� X�� XL �A�GL���(k)u�l��(r) +B�GL���(k) _u�l��(r)�YL(r̂)��g��! d3r (4.25)However, HMT� is diagonal in ��g�� , and (��g��0)���g�� = Æ�� 0�� . Hen
e, 4.25 be
omes:HG0�0G�MT� (k) =X�� ZMT�  XL0 �A�G0L0�0��(k)u�l0��(r) +B�G0L0�0��(k) _u�l0��(r)�Y 0L(r̂)��g��!�HMT� XL �A�GL���(k)u�l��(r) +B�GL���(k) _u�l��(r)�YL(r̂)��g��! d3r (4.26)Using 4.23 and the fa
t that (��g��)�HMT���g�� = HG0G0MT���(k) 4.26 simpli�es to:HG0�0G�MT� (k) =X�� ((��g��)���0)�(��g��)���HG0G0MT���(k) (4.27)In 
omplete analogy the muÆn-tin 
ontribution to the non-
ollinear overlap-matrixis given by: SG0�0G�MT� (k) =X�� ((��g��)���0)�(��g��)���SG0G0MT���(k) (4.28)



62 CHAPTER 4. NON-COLLINEAR MAGNETISM IN FLAPW4.3 Possible Extensions of the MethodThe results that have been obtained for the unsupported monolayers of Cr (Ag(111)geometry) and Mn (Cu(111) geometry) show (
f. Chapter 6), that the a

ura
y of thefrozen potential approximation is limited. The main reason that 
auses the ina

ura
yare the approximations that have to be made in the interstitial and va
uum region.With these approximations made, the method 
an only be applied to systems withlarge lo
al magneti
 moments, well 
on�ned inside of the muÆn-tin spheres, and smallinterstitial and va
uum magnetizations. The requirements are satis�ed reasonably bythe unsupported Cr monolayer in the Ag(111) geometry (Cr UML-Ag(111)), that wehave investigated, but for the Mn UML-Cu(111), with its smaller latti
e 
onstant andlo
al magneti
 moments, the limits of this approximation is rea
hed (
f. Chapter 6).However, the unsupported monolayers are already 
lose to the limit of free atoms, withtheir large magneti
 moments. Thus, in order to allow the appli
ation of the methodto a larger 
lass of systems it is ne
essary to extent the method to self
onsistent non-
ollinear 
al
ulations. Di�erent ways of performing su
h self
onsistent 
al
ulationsare thinkable.One option is to allow a general magnetization density in the interstitial region,with both, magnitude and dire
tion, depending on the position ve
tor r, while havingthe magnetization inside ea
h muÆn-tin point along a single dire
tion. This means,that, after ea
h iteration of a self
onsistent 
al
ulation, the magnetization densityin the interstitial and va
uum region is 
al
ulated a

ording to (2.17). Inside themuÆn-tin sphere the expe
tation value of the magnetization is 
omputed along onelo
al quantization axis only. Thus, the magnetization density inside the spheres is as
alar rather than a ve
tor �eld.m�(r) = NXi=1  �i (r)�l i(r) (4.29)�l is the spin operator 
orresponding to the lo
al quantization axis. The dire
tionof the lo
al quantization axis 
an either be kept �xed, so that the magnetization isfor
ed to be dire
ted along a 
hosen dire
tion, or it 
an be determined self
onsistentlyafter ea
h iteration. Within this approximation the rotation of the atomi
 magneti
moments with respe
t to ea
h other, the inter-atomi
 non-
ollinear magnetism, 
anbe des
ribed [SHK89, K�ub95, SK96℄, while 
hanges of the dire
tion of the mag-netization inside single atoms, the intra-atomi
 non-
ollinear magnetism [NS96℄, isnegle
ted. The most general s
heme is to allow the magnetization to have a di�erentdire
tion everywhere in spa
e and, thus to in
lude also the intra-atomi
 non-
ollinearmagnetism. Thus, the magnetization density has to be 
al
ulated self
onsistentlya

ording to (2.17) everywhere in spa
e. Su
h 
al
ulations are most a

urate, be-
ause no approximations to the dire
tion of the magnetization are made. However,due to larger number of degrees of freedom and the small energy di�eren
es that areasso
iated with 
hanges of the dire
tion of the magnetization, many iterations areneeded on the way to self
onsisten
y. Therefore, su
h 
al
ulations may turn out tobe laborious.



Chapter 5The Lo
al Orbital ExtensionFor 
ertain appli
ations it is desirable to improve the variational freedom of theFLAPW basis set. As a result of the linearization around the energy parameter Elthe FLAPW method may only yield a

urate results, if the 
al
ulated eigenvalues �are reasonably 
lose to the energy parameters. In some 
ases however, it is ne
essaryto deal with eigenvalues in a broader energy region. Our main motivation to imple-ment the lo
al orbitals was to obtain a spin-independent basis set. In the 
urrentimplementation of the FLAPW method the radial fun
tions ul and _ul are 
al
ulatedseparately for both spin dire
tions, with di�erent energy parameters. The energydi�eren
e between the spin-up and -down bands is of the order of 2eV at surfa
es,therefore these states 
annot be treated a

urately with a single set of radial fun
-tions. A se
ond example where a greater variational freedom is needed are semi
orestates. Semi
ore states are high lying 
ore states, typi
ally 1 to 3 Ry (15 { 40 eV)below the Fermi energy. They show a small dispersion of the energy bands due to aweak overlap of their wavefun
tions. So far, these states have either been added tothe 
ore, or treaded with a se
ond set of energy parameters in a separate energy win-dow (semi
ore window), the latter method is usually referred to as multiple windowFLAPW method. Both methods have serious disadvantages. If the semi
ore statesare added to the 
ore their dispersion is negle
ted. The 
ore states are treated like anatomi
 problem, i.e. the overlap with other atoms is negle
ted. This approximationleads to wrong results in appli
ations where the dispersion of these states plays animportant role, e.g. during the 
al
ulation of latti
e 
onstants [Sin91a℄, phonon fre-quen
ies [SK91℄, for
es or ele
tri
 �eld gradients [BSSS92℄. Another diÆ
ulty arises,be
ause the FLAPW basis fun
tions are not orthogonal to the semi
ore states. It
an be shown, that the radial basis fun
tions are orthogonal to any 
ore state that iszero outside the muÆn-tin sphere. However, this 
ondition is satis�ed poorly by thesemi
ore states. Therefore, these states 
an appear in the valen
e eigenvalue spe
-trum as the so 
alled \ghost-bands". The eigenvalues of these states are usually faro� the 
orre
t energy of the semi
ore state, due to the poor representation of thesestates within the valen
e FLAPW basis. A very good dis
ussion of this problem 
anbe found in [Sin94℄. In multiple window 
al
ulations the dispersion of the semi
orestates is treated 
orre
tly, but the ghost-band problem may still be present. The63



64 CHAPTER 5. THE LOCAL ORBITAL EXTENSIONimplementation of multiple windows in the 
urrent version of our FLAPW 
ode willbe dis
ussed in the next se
tion.The lo
al orbitals are an extension to the FLAPW basis set, that has been in-trodu
ed by Singh [Sin91b℄. The original motivation was the treatment of semi
orestates, though the lo
al orbitals 
an be applied in any situation that demands for agreater variational freedom of the basis set. With this extension semi
ore and va-len
e states 
an be treated in a single window, and the diÆ
ulties des
ribed aboveare removed. During the implementation of the lo
al orbitals, their appli
ation tothe semi
ore states of titanium and tungsten served as a test.5.1 Multiple Window FLAPWIn a multiple window FLAPW 
al
ulation a se
ond set of basis fun
tions, that haveexa
tly the same form as in (3.4), but with di�erent energy parameters, is used.In order to distinguish these basis fun
tions an additional index \w", 
ounting thewindows, is introdu
ed.'w;G(k; r) = 8><>: ei(G+k)r interstitial regionXL A�GL;w(k) ul;w(r)YL(r̂) +B�GL;w(k) _ul;w(r)YL(r̂) muÆn-tin � (5.1)If the planewave 
ut-o� in the semi
ore window was 
hosen to equal the 
ut-o� in thevalen
e window, Gmax, this would result in a twi
e bigger basis set as 
ompared tothe single window 
al
ulation. That means, however, that the solution of the se
ularproblem would take about eight times as long. Therefore, the overlap between the twowindows is usually negle
ted. This leads to the solution of two independent eigenvalueproblems per self
onsistent iteration, within whi
h the size of the eigenvalue problemis the same as it is in the 
ase of a single window 
al
ulation. Sin
e, the semi
orestates have little dispersion, less k-points are needed in the semi
ore window, whi
hmakes this a rather eÆ
ient s
heme. However, negle
ting the overlap 
an lead toghost-bands in the valen
e window. And, in some appli
ations, the overlap has to bein
luded to obtain a

urate results [YFP+91℄.An improvement to this s
heme 
an be a
hieved, if the overlap between the win-dows is in
luded in a se
ond-variation step. The Hamiltonian and overlap matrix 
anbe split into two parts: H = H0 +H0; S = S0 + S0 (5.2)Where H0 and S0 
ontain all matrix elements ex
ept those, that 
ouple the twowindows, i.e. H0 and S0 
onsist of two 
ompletely independent matri
es, one for ea
hwindow. H0 and S0 
ontain the overlap of the two windows. In the �rst variation stepthe two windows are treated separately, as des
ribed above, i.e. the two independentse
ular equations nH0w � �01;wS0wo 
01;w = 0 (5.3)



5.2. IMPLEMENTATION OF THE LOCAL ORBITAL EXTENSION 65are solved, yielding the eigenfun
tions 0i;w =XG 
i;w;G'w;G (5.4)in ea
h window. These eigenfun
tions serve as a basis in the se
ond-variation step.The se
ular problem of the se
ond-variation step is mu
h smaller, using twi
e thenumber of o

upied states in ea
h window usually gives a suÆ
ient basis set. In these
ond variation step the overlap between the windows is taken into a

ount. Thus,the semi
ore states 
an be treated very a

urately within this s
heme. However,the same k-point set has to be used in both windows. Therefore, this s
heme isless eÆ
ient, than 
al
ulations negle
ting the overlap. In the 
urrent version of ourFLAPW 
ode the latter s
heme is implemented, i.e. multiple window 
al
ulation areperformed negle
ting the overlap between the windows.5.2 Implementation of the Lo
al Orbital Exten-sionThe lo
al orbitals are an extension to the FLAPW basis, that 
an be used to improvethe variational freedom for a spe
i�
 purpose, e.g. to improve the representation of thesemi
ore states. The extra basis fun
tions are 
ompletely lo
alized inside the muÆn-tin spheres, i.e. their value and derivative falls to zero at the muÆn-tin radius. Thus,no additional boundary 
onditions have to be satis�ed. This 
an be a
hieved via alinear 
ombination in
luding three radial fun
tion1, the standard FLAPW fun
tionsu�l and _u�l plus a further radial fun
tion u�lo. This new radial fun
tion is 
onstru
tedin the same way as u�l , but with a di�erent energy parameter E�lo. If the lo
al orbitalsare used to treat semi
ore states, this energy parameter is set to the energy of thesestates. The lo
al orbitals 
an be used very spe
i�
ally, e.g. if they are applied to the5p semi
ore states of tungsten only lo
al orbitals with p-
hara
ter are added to thebasis. Hen
e, very few extra fun
tions are needed, whi
h makes lo
al lo
al 
al
ulationsvery eÆ
ient. In the 
ase of the tungsten 5p states only three lo
al orbitals per atom(l = 1, m = �1; 0; 1) are needed instead of to 60{100 augmented planewaves.At this point a few remarks about the notation that will be used throughoutthis 
hapter should be made. The 
ombination of the three radial fun
tion and aspheri
al harmoni
, (a�lou�l (r) + b�lo _u�l (r) + 
�lou�lo(r))YL, will be 
alled lo
al orbital. lis the angular momentum quantum number of the lo
al orbital, l = llo. The indexlo 
ounts the di�erent lo
al orbital radial fun
tions. Let's 
onsider an example, thetreatment of the 2p, 3s and 3p semi
ore states of Ti. Three additional radial fun
tionsare needed, e.g. 2p: lo = 1, 3s: lo = 2 and 3p: lo = 3, thus llo=1 = 1, llo=2 = 0 andllo=3 = 1. The lo
al orbitals with lo = 1 and lo = 3 have the same angular momentumquantum number, they di�er only by their energy parameters, Elo=1 6= Elo=3 and, as1Within this se
tion the radial fun
tions are denoted ul(r) for simpli
ity, though in s
alar-relativisti
 
al
ulating the fun
tions gl(r) and �l(r) are used instead of ul(r).



66 CHAPTER 5. THE LOCAL ORBITAL EXTENSIONa 
onsequen
e, by their radial fun
tions, ulo=1(r) 6= ulo=3(r). Latter in this 
hapterlinear 
ombinations of the lo
al orbitals will be 
onstru
ted, by formally 
oupling thelo
al orbitals to planewaves, as if boundary 
onditions had to be satis�ed. Theselinear 
ombinations will also be 
alled lo
al orbitals.5.3 Constru
tion of the Lo
al OrbitalsThe three fun
tions u�l , _u�l and u�lo have to be 
ombined, so that the value and thederivative of the lo
al orbital fall to zero at the muÆn-tin radius. Additionally, theresulting radial fun
tions 
an be required to be normalized. Hen
e, to determine the
oeÆ
ients of the radial fun
tions a�lo, b�lo and 
�lo we make use of the following three
onditions: a�lou�l (RMT�) + b�lo _u�l (RMT�) + 
�lou�lo(RMT�) = 0 (5.5)a�lo�u�l�r (RMT�) + b�lo� _u�l�r (RMT�) + 
�lo�u�lo�r (RMT�) = 0 (5.6)Z RMT�0 (a�lou�l (RMT�) + b�lo _u�l (RMT�) + 
�lou�lo(RMT�))2r2dr = 1 (5.7)Where, lo is the index of the lo
al orbital, whi
h is ne
essary be
ause more than onelo
al orbital 
an be added for ea
h atom. Solving these equations for the 
oeÆ
ientsyields: a�lo = K�a;lo
�lo (5.8)b�lo = K�b;lo
�lo (5.9)
�lo = 1q(K�a;lo)2 + (K�b;lo)2 _N�l + 1 + 2K�a;loN�lo + 2K�b;lo _N�lo (5.10)with K�a;lo = 1W  u�lo(RMT�)� _u�l�r (RMT�)� �u�lo�r (RMT�) _u�l (RMT�)! (5.11)K�b;lo = � 1W  u�lo(RMT�)�u�l�r (RMT�)� �u�lo�r (RMT�)u�l (RMT�)! (5.12)with the WronskianW =  �u�l�r (RMT�) _u�l (RMT�)� u�l (RMT�)� _u�l�r (RMT�)! ; (5.13)where _N�l = Z RMT�0 ( _u�l )2r2dr (5.14)N�lo = Z RMT�0 u�l u�lor2dr (5.15)_N�lo = Z RMT�0 _u�l u�lor2dr; (5.16)



5.3. CONSTRUCTION OF THE LOCAL ORBITALS 67and is has been used, that Z RMT�0 (u�l )2r2dr = 1 (5.17)Z RMT�0 (u�lo)2r2dr = 1: (5.18)The index l in N�lo and _N�lo has been omitted, N�lo and _N�lo always refer to the overlapintegral of u�lo and the radial fun
tions that 
orresponding to the same angular mo-mentum quantum number l. Clearly, if E�lo is set equal to the energy parameter E�lwith the same l, the overlap integrals (5.15) and (5.16) be
ome N�lo = 1 and _N�lo = 0.This has been exploited to test the implementation of these integrals.In a
tual 
al
ulations linear 
ombinations of lo
al orbitals that satisfy Blo
h'stheorem have to be 
onstru
ted. Therefore A-, B- and C-
oeÆ
ients are employed,whi
h are 
onstru
ted in the same way as the FLAPW A- and B-
oeÆ
ients (3.115).Hen
e the additional basis fun
tions are given by:'�;loGlo(k; r) =Xm �A�GloLo (k)u�l +B�GloLo (k) _u�l + C�GloLo (k)u�lo�YL(r̂) (5.19)with A�GloLo (k) = eiKlo� �a�lo4� 1W il Y �L (R�K̂lo)B�GloLo (k) = eiKlo� �b�lo4� 1W il Y �L (R�K̂lo)C�GloLo (k) = eiKlo� �
�lo4� 1W il Y �L (R�K̂lo) (5.20)Where Klo abbreviates Glo + k and Lo abbreviates (lo;m). The lo
al orbitals are
oupled to \�
titious" planewaves, even though no boundary 
onditions have to besatis�ed. The ve
tors Glo 
an be 
hosen arbitrarily, subje
t to the 
onstrain thatthey yield linearly independent fun
tions '�;loGlo(k; r). Finding su
h ve
tors is straight-forward, e.g. by sele
ting planewaves one at a time and testing whether the 
orre-sponding '�;loGlo(k; r) is linearly independent of the previous lo
al orbitals. If this isthe 
ase, the planewave is a

epted, otherwise it is reje
ted. This pro
edure is 
arriedout separately for ea
h atom, i.e. the radial fun
tions and spheri
al harmoni
s at asingle atom form a lo
al orbital, whi
h is added to the FLAPW basis set. Appar-ently, this form of the 
oeÆ
ients is more 
ompli
ated than ne
essary. The stru
turefa
tor eiKlo� � alone would be enough to satisfy Blo
h's theorem. However, a furthermodi�
ation is needed when using the lo
al orbitals in the presents of inversion sym-metry. In this 
ase the origin is usually 
hosen at an inversion 
enter so that these
ular equation be
omes real (see se
tion 3.3.4). In order to exploit this with lo
alorbitals, linear 
ombinations that transform like planewaves ('(�r) = '�(r)) mustbe used. In this 
ase the lo
al orbitals at atoms that 
an be mapped onto ea
h othervia inversion have to be 
oupled to a 
ommon set of planewaves. If there are for



68 CHAPTER 5. THE LOCAL ORBITAL EXTENSIONexample two tungsten atoms in the unit 
ell, that are related by inversion, and thelo
al orbitals are used to treat the 5p states, a 
ommon set of six ve
tors Glo must befound, that generates six linearly independent '�;loGlo(k; r). The resulting lo
al orbitalshave nonzero values inside the muÆn-tin spheres of both atoms, and transform likeplanewaves (
f. se
tion 3.3.4). Clearly, in a system that possesses inversion symme-try there has to have an \inversion partner" for every atom. However, this \partner"might ly in another unit 
ell. In this 
ase the property '(�r) = '�(r) is alreadyguaranteed by the stru
ture 
onstant eiKlo� � and the fa
tor il. The fa
tors 4� and1=W do not have any e�e
t on the properties of the lo
al orbitals. They are merelys
aling fa
tors, and 
ould as well be omitted.5.4 Constru
tion of the Additional Hamiltonianand Overlap Matrix ElementsIn
luding the lo
al orbitals to the FLAPW basis set leads to extra Hamiltonian andoverlap matrix elements. When we write the new basis ve
tor as a super ve
tor 
on-taining the original FLAPW basis set 'G and the lo
al orbitals 'loGlo the Hamiltonianand overlap matrix 
an be written in the form: HG0G HGGloHGlo0G HGlo0Glo ! (5.21)and equivalently for S. The matrix elements of the lo
al orbitals with the augmentedplanewaves are given by:HGGlo(k) = Z ('G(k; r))�H'loGlo(k; r)d3r (5.22)SGGlo(k) = Z ('G(k; r))� 'loGlo(k; r)d3r (5.23)The matrix elements of the lo
al orbitals with other lo
al orbitals (or with themselves)are given by: HGlo0Glo(k) = Z �'lo0Glo0 (k; r)��H'loGlo(k; r)d3r (5.24)SGlo0Glo(k) = Z �'lo0Glo0 (k; r)�� 'loGlo(k; r)d3r (5.25)In general ea
h extra radial fun
tion 
orresponding to the index lo is assigned adi�erent set of G-ve
tors fGlog. However, (5.24) and (5.25) also 
over the 
ase wherelo0 = lo. In this 
ase Glo0 and Glo are di�erent G-ve
tors that 
orrespond to the sameradial fun
tion. Due to the 
on�nement of the lo
al orbitals to parti
ular muÆn-tinspheres, only on-site 
ontributions2 add to the Hamiltonian and overlap matrix.2The 
ontributions from di�erent atoms, say � and �0, are zero



5.4. HAMILTONIAN AND OVERLAP MATRIX ELEMENTS 695.4.1 The Overlap Matrix ElementsThe overlap matrix elements of the lo
al orbitals situated at atom � or a pair ofatoms related by inversion �;�� with the augmented planewaves is given by:SGGlo(k) = X(�;��( ZMT�  XL0 �A�GL0 (k)u�l0(r) +B�GL0 (k) _u�l0(r)�YL0(r̂)!� Xm �A�GloLo (k)u�l (r) +B�GloLo (k) _u�l (r) + C�GloLo (k)u�lo(r)�YL(r̂)! d3r(5.26)The sum over the atom pair (�;��) appears only in the 
ase of atoms that arerelated by inversion, otherwise the whole 
ontribution 
omes from a single muÆn-tin�. Using the orthogonality of the spheri
al harmoni
s, the orthogonality of u�l and_u�l and the normalization of u�l , (5.26) be
omes:SGGlo(k) = X(�;��)Xm �A�GL (k)�� �A�GloLo (k) + C�GloLo (k)N�lo�+ �B�GL (k)�� �B�GloLo (k) _N�l + C�GloLo (k) _N�lo� (5.27)Where l is the angular momentum quantum number of the lo
al orbital l = llo. In the
ase of two atoms that 
an be mapped onto ea
h other by inversion the SGGlo(k) isgiven by a sum of the 
ontributions of the two atoms SGGlo(k) = SGGlo� (k)+SGGlo�� (k).However, it 
an be shown, that the two 
ontributions are related by:S�GGlo(k) = �S��GGlo(k)�� (5.28)Thus SGGlo(k) = 2 Re nS�GGlo(k)o (5.29)This relation has been used for the implementation of the lo
al orbitals. Substitutingthe A-, B- and C-
oeÆ
ients the overlap 
an be written:S�GGlo(k) =ei(Glo�G)� � �4�W �2 lXm=�lF �l (K)YL(R�K̂) (a�lo + 
�loN�lo)Y �L (R�K̂lo)+G�l (K)YL(R�K̂) �b�lo _N�lo + 
�lo _N�lo�Y �L (R�K̂lo) (5.30)Where F �l (K) = " _u�l (RMT�K)�jl�r (RMT�K)� � _u�l�r (RMT�)jl(RMT�K)#G�l (K) = "u�l (RMT�K)�jl�r (RMT�K)� �u�l�r (RMT�)jl(RMT�K)#; (5.31)



70 CHAPTER 5. THE LOCAL ORBITAL EXTENSIONK abbreviates G+k and K = jKj. This 
an be simpli�ed further using the additiontheorem for the spheri
al harmoni
s:Pl(
os!) = 4�2l + 1 lXm=�l YL(k̂1)Y �L (k̂2) (5.32)Where ! is the angle between the two ve
tors. Applying this theorem (5.30) be
omes:SGGlo� (k) = ei(Glo�G)� � �4�W �2 2l + 14� Pl(
os!)�F �l (K) (a�lo + 
�loN�lo) +G�l (K) �b�lo _N�lo + 
�lo _N�lo�� (5.33)with 
os! = K̂ � K̂lo (5.34)The overlap between di�erent lo
al orbitals 
an be derived in exa
tly the same way.Clearly, it 
an only be non-zero, if the angular momentum quantum number l of thelo
al orbitals are equal llo = llo0.SGlo0Glo� (k) = ei(Glo�Glo0)� � �4�W �2 2l + 14� Pl(
os!)�a�lo0 (a�lo + 
�loN�lo)+b�lo0 �b�lo _N�lo + 
�lo _N�lo�+ 
�lo0 �a�loN�lo0 + b�lo _N�lo0 + 
�loN�lo0;lo��(5.35)Where the normalization of u�lo andN�lo0;lo = Z RMT�0 u�lo0u�lor2dr (5.36)has been used. A relation whi
h is equivalent to (5.28) holds for the overlap betweendi�erent lo
al orbitals. Hen
e, the elements of the overlap matrix between lo
alorbitals situated at two atoms, that are related by inversion, 
an be written:SGlo0Glo(k) = 2 Re nSGlo0Glo� (k)o (5.37)5.4.2 The Hamiltonian Matrix ElementsThe Hamiltonian matrix elements of the lo
al orbitals situated at atom � or a pairof atoms related by inversion (�;��) with the augmented planewaves is given by:HGGlo(k) = 0�X�;��1AZMT�  XL0 �A�GL0 (k)u�l0(r) +B�GL0 (k) _u�l0(r)�YL0(r̂)!�HMT� Xm �A�GloLo (k)u�l (r) +B�GloLo (k) _u�l (r) + C�GloLo (k)u�lo(r)�YL(r̂)! d3r(5.38)



5.4. HAMILTONIAN AND OVERLAP MATRIX ELEMENTS 71As in the 
ase of the overlap matrix it 
an be shown, that the 
ontribution of anatom (�) and the inverse atom (��) are related by:H�GGlo(k) = �H��GGlo(k)�� (5.39)Thus HGGlo(k) = 2 Re nH�GGlo(k)o (5.40)(5.38) involves integrations of the formt�''L0Lo = ZMT� (u�l0YL0(r̂))�HMT�u�loYL(r̂)d3r (5.41)t� _''L0Lo = ZMT� ( _u�l0YL0(r̂))�HMT�u�loYL(r̂)d3r (5.42)in addition to ((3.61){(3.64)). For Hamiltonian matrix elements in
luding two di�er-ent lo
al orbitals an additional integration is required.t�''Lo0Lo = ZMT� (u�lo0(r)YL0(r̂))�HMT�u�lo(r)YL(r̂)d3r (5.43)These t-matri
es do not depend onG, Glo or k. Therefore, they need to be 
al
ulatedonly on
e per iteration. The 
al
ulation of these matrix elements is performed in thesame way as the 
al
ulation of the analogous t-matri
es for the FLAPW basis ((3.73){(3.76)). If the energy parameters of the lo
al orbitals are set equal to the values ofthe energy parameters of the FLAPW radial fun
tions, the 
orresponding matrixelements be
ome equal. This relation has been used to test the implementation ofthe t-matri
es.The Hamiltonian matrix elements (5.38) 
an now be written in terms of the t-matri
es. H�GGlo(k) =XmL0 �A�GL0 (k)�� ht�''L0L A�GloLo (k) + t�' _'L0L B�GloLo (k) + t�''L0LoC�GloLo (k)i+ �B�GL0 (k)�� ht� _''L0L A�GloLo (k) + t� _' _'L0L B�GloLo (k) + t� _''L0LoC�GloLo (k)i (5.44)In analogy the Hamiltonian matrix elements in
luding two lo
al orbitals are givenby: H�Glo0Glo(k) =Xmm0 �A�GLo0(k)�� ht�''L0L A�GloLo (k) + t�' _'L0L B�GloLo (k) + t�''L0LoC�GloLo (k)i+ �B�GLo0 (k)�� ht� _''L0L A�GloLo (k) + t� _' _'L0L B�GloLo (k) + t� _''L0LoC�GloLo (k)i+ �C�GLo0 (k)�� ht�''Lo0LA�GloLo (k) + t�' _'Lo0LB�GloLo (k) + t�''Lo0LoC�GloLo (k)i (5.45)Where the 
ontribution of atom pair �, �� 
an be obtained from:HGlo0Glo(k) = 2 Re nHGlo0Glo� (k)o (5.46)



72 CHAPTER 5. THE LOCAL ORBITAL EXTENSIONTests of the Hamiltonian and Overlap Matrix ElementsTo test the set-up of the Hamiltonian and overlap matrix, we solved the se
ularequation and 
ompared the semi
ore eigenvalues to those obtained from a two-window
al
ulation. The 5s and 5p states of f

 La and the 5p states of b

 W severed as testsystems. In both 
ases we performed self
onsistent two-window 
al
ulations. Thenwe determined the eigenvalues with lo
al orbitals at sele
ted points in the Brillouinzone non-self
onsistently, using the 
harge density of the two window 
al
ulation.For La we used a latti
e 
onstant a = 9:8 a:u:, a sphere radius RMT = 3:3 a:u:and a planewave 
ut-o� RMTGmax = 10:0. The Brillouin zone integrations wereperformed using 60 spe
ial k-points in the irredu
ible part of the Brillouin zone. TheW 
al
ulations were 
arried out at a latti
e 
onstant of a = 5:91a:u: with a muÆn-tin radius of RMT = 2:456a:u: and a planewave 
ut-o� RMTGmax = 8:8, using 126k-points in the irredu
ible wedge of the Brillouin zone. For te
hni
al reasons we useda unit 
ell in
luding two atoms in both 
ases. The results of these test are shownLanthanum 5s 5p2-window -1.816558 -0.659386 -0.548262lo
al orbital -1.816600 -0.664944 -0.549574Table 5.1: Semi
ore eigenvalues of La at the �-point, 
al
ulated with 2-window FLAPW and lo
al orbitals, using the same self
onsistent 
hargedensity (potential). The �rst value is the lower 5s eigenvalue, followed bythe lowest and highest 5p eigenvalue. All eigenvalues are twofold spin-degenerate. The energies (given in Ry units) are with respe
t to theaverage interstitial potential, whi
h is 0:5870 Ry below the Fermi energy.
Tungsten 5p2-window -1.679244 -1.605268lo
al orbital -1.608692 -1.605970Table 5.2: Semi
ore eigenvalues of W at the �-point. The �rst valueis the lowest 5p eigenvalue, followed by the highest 5p eigenvalue. Botheigenvalues are twofold spin-degenerate. The energies (given in Ry units)are with respe
t to the average interstitial potential, whi
h is 1:1540 Rybelow the Fermi energy.for sele
ted semi
ore eigenvalues in Fig. 5.1 and 5.2. The two methods are in good
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e between the eigenvalues is of the order of 1 mRy. At otherk-points with lower symmetry these di�eren
es are slightly larger. During the twowindow 
al
ulations the energy parameter in the semi
ore window for states withl = 2 and higher for La and states with l = 0, l = 2 and higher in the 
ase of Wwere set far above the semi
ore band energies (4 Ry) to avoid ghost-bands. However,later test showed, that this is not ne
essary in the 
ase of W, but that the arti�
ial
hoi
e of energy parameters does a�e
t the result of the 
al
ulations (e.g. the latti
e
onstant). Therefore, we expe
t, that the agreement would be even better, if theenergy parameters were set to the semi
ore band energy. We also 
arried out testswith W in four atom unit 
ell in
luding an atom pair that 
an be mapped onto ea
hother by inversion. This was ne
essary be
ause su
h atom pairs are a spe
ial 
asein terms of the implementation of the lo
al orbitals. These tests yielded an equallygood agreement between the lo
al orbital and the two-window 
al
ulation.5.5 Constru
tion of the Ele
tron Density of Lo
alOrbitalsThe 
onstru
tion of the ele
tron density in the FLAPW method has been dis
ussedin se
tion 3.6. Clearly, the lo
al orbitals lead to extra 
ontributions to the ele
trondensity inside the spheres. If lo
al orbitals are used, the eigenfun
tions of the Kohn-Sham equations are represented in the following form in the muÆn-tins. �� (k; r) =XG 
G� (k)XL �A�GL (k)u�l (r) +B�GL (k) _u�l (r)�YL(r̂)+Xlo XGlo 
Glo� (k)Xm �A�GloLo (k)u�l (r) +B�GloLo (k) _u�l (r) + C�GloLo (k)u�lo(r)�YL(r̂)(5.47)The G-dependent A-, B- and C-
oeÆ
ients 
an be repla
ed by band-dependent 
o-eÆ
ients, performing the summation over the planewaves (
f. (3.141)). �� (k; r) = XL �A�L;�(k)u�l (r) +B�L;�(k) _u�l (r)�YL(r̂)+ XLo �A�Lo;�(k)u�l (r) +B�Lo;�(k) _u�l (r) + C�Lo;�(k)u�lo(r)�YL(r̂) (5.48)A�Lo;�(k) =XGlo 
Glo� (k)A�GloLo (k); B�Lo;�(k) =XGlo 
Glo� (k)B�GloLo (k);C�Lo;�(k) =XGlo 
Glo� (k)C�GloLo (k) (5.49)



74 CHAPTER 5. THE LOCAL ORBITAL EXTENSION5.5.1 \l-like" ChargeThe l-like 
harge 
an still be de�ned in the same way as in se
tion 3.6.1 if lo
alorbitals are used. However, the extra terms have to be taken into a

ount. In se
tion3.6.1 we de�ned the k-dependent l-like 
harge by:n��;l(k) = ZMT� j ��;l(k; r)j2d3r (5.50)Substituting (5.48) yields:n��;l(k) = lXm=�l jA��L (k)j2 + jB��L (k)j2 _N�l+ 2Re( Xlollo=l lXm=�l �A�L;�(k)�� �A�Lo;�(k) + C�Lo;�(k)N�lo�+ �B�L;�(k)�� �B�Lo;�(k)) _N�l + C�Lo;�(k) _N�lo�)+ Xlo;lo0llo0=llo=l lXm=�l �A�lo0;m;�(k)�� �A�Lo;�(k) + C�Lo;�(k)N�lo�+ �B�lo0;m;�(k)�� �B�Lo;�(k)) _N�l + C�Lo;�(k) _N�lo�+ �C�lo0;m;�(k)�� �A�Lo;�(k)N�lo0 +B�Lo;�(k)) _N�lo0 + C�Lo;�(k)N�lo0;lo�(5.51)At this point, for the �rst time, a large number of 
ross-terms appear. This is a
onsequen
e of the fa
t, that the extra radial fun
tions u�lo are not orthogonal to thestandard FLAPW radial fun
tions.5.5.2 The Optimal Lo
al Orbital Energy ParameterThe optimal 
hoi
e of the energy parameter for the lo
al orbitals is de�ned by therequirement, that it minimizes the linearization error weighted with the l-like 
hargeof the lo
al orbitals, i.e. the 
harge that the lo
al orbitals, whi
h 
orrespond to theenergy parameter, 
ontribute to the total 
harge (
f. se
tion 3.6.2).ZBZ X�;��(k)<EF (��(k)� E�lo)2 n��;lo(k)d3k; (5.52)with n��;lo(k) = lloXm=�llo jC�Lo;�(k)j2 (5.53)



5.5. THE ELECTRON DENSITY OF LOCAL ORBITALS 75Setting the derivative (�=�E�lo) equal to zero yields the optimal energy parameter:E�lo = 0�ZBZ X�;��(k)<EF ��(k)n��;lo(k)d3k1A,0�ZBZ X�;��(k)<EF n��;lo(k)d3k1A (5.54)The Brillouin zone integration methods transform this into a sum over a dis
retek-point set.E�lo =  Xk X� ��(k)n��;lo(k)w(�;k)!, Xk X� n��;lo(k)w(�;k)! (5.55)There is one diÆ
ulty that arises within lo
al orbital 
al
ulations. The FLAPWbasis fun
tions do 
ontribute to the semi
ore eigenfun
tions. Re
all that the lo
alorbitals are 
ompletely lo
alized in the muÆn-tin spheres. Therefore the 
omponentsof the eigenfun
tions that stret
h beyond the spheres 
an only be des
ribed by theregular FLAPW fun
tions. Hen
e, if the valen
e (FLAPW) energy parameters aredetermined by (3.151) with the l-like 
harge de�ned by (3.147), the 
ontribution ofthe semi
ore states lowers the the energy parameters. This 
an lead to a ghost-bandproblem. It is therefore ne
essary to skip the semi
ore states in the sum over theband in (3.151). The lo
al orbitals, however, 
ontribute very little to the valen
estates. Thus, a similar distin
tion is not ne
essary during the determination of thelo
al orbital energy parameters.5.5.3 Constru
tion of the Ele
tron Density in the MuÆn-Tins in the Presents of Lo
al OrbitalsSubstituting (5.48) into (3.137) yields the ele
tron density in the muÆn-tins.n�(r) = 1VBZ ZBZ X�;��(k)<EF  XL0 A�L0;�(k)u�l0(r) +B�L0;�(k) _u�l0(r)+XLo0 A�Lo0;�(k)u�l0 +B�Lo0;�(k) _u�l0 + C�Lo0;�(k)u�lo0!�Y �L0(r̂) XL A��L (k)u�l (r) +B�L;�(k) _u�l (r)+XLo A�Lo;�(k)u�l +B�Lo;�(k) _u�l + C�Lo;�(k)u�lo!YL(r̂)d3k (5.56)The 
oeÆ
ients C�L00(r) (
f. 3.153) 
an be determined by multiplying (5.56) withR d
YL00(r̂). If the Brillouin zone integration is performed on a dis
rete k-point setthe C�L00(r) are given by:C�L00(r) = Xl0l  Xk X� Xm0m �A�L0;�(k)��A�L;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�l (r)



76 CHAPTER 5. THE LOCAL ORBITAL EXTENSION+ Xl0l  Xk X� Xm0m �A�L0;�(k)��B�L;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r) _u�l (r)+ Xl0l  Xk X� Xm0m �B�L0;�(k)��A�L;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�l (r)+ Xl0l  Xk X� Xm0m �B�L0;�(k)��B�L;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r) _u�l (r)+ Xl0lo  Xk X� Xm0m �A�L0;�(k)��A�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�l (r)+ Xl0lo  Xk X� Xm0m �A�L0;�(k)��B�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r) _u�l (r)+ Xl0lo  Xk X� Xm0m �A�L0;�(k)��C�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�lo(r)+ Xl0lo  Xk X� Xm0m �B�L0;�(k)��A�Lo;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�l (r)+ Xl0lo  Xk X� Xm0m �B�L0;�(k)��B�Lo;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r) _u�l (r)+ Xl0lo  Xk X� Xm0m �B�L0;�(k)�� C�Lo;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�lo(r)+ Xlo0l  Xk X� Xm0m �A�Lo0;�(k)��A�L;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�l (r)+ Xlo0l  Xk X� Xm0m �A�Lo0;�(k)��B�L;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r) _u�l (r)+ Xlo0l  Xk X� Xm0m �A�Lo0;�(k)��C�L;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�lo(r)+ Xlo0l  Xk X� Xm0m �B�Lo0;�(k)��A�L;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�l (r)+ Xlo0l  Xk X� Xm0m �B�Lo0;�(k)��B�L;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r) _u�l (r)+ Xlo0l  Xk X� Xm0m �B�Lo0;�(k)��C�L;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�lo(r)+ Xlo0lo Xk X� Xm0m �A�Lo0;�(k)��A�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�l (r)+ Xlo0lo Xk X� Xm0m �A�Lo0;�(k)��B�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r) _u�l (r)+ Xlo0lo Xk X� Xm0m �A�Lo0;�(k)��C�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�lo(r)



5.6. TEST CALCULATION ON TUNGSTEN AND TITANIUM 77+ Xlo0lo Xk X� Xm0m �B�Lo0;�(k)��A�Lo;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�l (r)+ Xlo0lo Xk X� Xm0m �B�Lo0;�(k)��B�Lo;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r) _u�l (r)+ Xlo0lo Xk X� Xm0m �B�Lo0;�(k)�� C�Lo;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�lo(r)+ Xlo0lo Xk X� Xm0m �C�Lo0;�(k)��A�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�lo0(r)u�l (r)+ Xlo0lo Xk X� Xm0m �C�Lo0;�(k)��B�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�lo0(r) _u�l (r)+ Xlo0lo Xk X� Xm0m �C�Lo0;�(k)�� C�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�lo0(r)u�lo(r)(5.57)Where the gaunt 
oeÆ
ients Gmm0m00ll0l00 are de�ned by (3.155), and (3.156) hasbeen used. Apparently, there are only six 
ombinations of radial fun
tions(u�l0(r)u�l (r); u�lo0(r) _u�l (r); : : : ; u�lo0(r)u�lo(r)). Thus, the 
orresponding 
oeÆ
ients 
anbe 
ombined, but still all 
oeÆ
ients have to be 
al
ulated. (5.57) would simplifya lot, if the band-dependent 
oeÆ
ients of the lo
al orbitals and the FLAPW basisfun
tions, A�Lo;� and A�L;�, B�Lo;� and B�L;�, were 
ombined. However, this has not beendone in order to keep the old parts and the new parts of the program as separate aspossible, to avoid errors and simplify the maintenan
e.5.6 Test Cal
ulation on Tungsten and Titanium
Titanium a0-f

 a0-h
p �Ef

�h
p1-window 5.363 5.371 7.322-window 5.359 5.367 7.27lo
al orbital 5.366 5.374 7.182-window� 5.462 { {2-window�� 5.382 { {Table 5.3: Cal
ulated latti
e 
onstants for f

 and h
p Ti in atomi
 units[a.u.℄. In the last 
olumn the f

-h
p energy (Ef

 � Eh
p) di�eren
e isgiven in Ry units. (� the semi
ore s, d and higher energy parametershave been set to 4.0 Ry, �� the semi
ore s, d and higher and the valen
ep energy parameters have been set to 4.0 Ry)
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Tungsten a0-b

1-window 5.9452-window 5.943lo
al orbital 5.9482-window� 6.050Table 5.4: Cal
ulated latti
e 
onstants for b

 W in atomi
 units [a.u.℄.(� the semi
ore s, d and higher energy parameters have been set to 4.0Ry and the valen
e p energy parameters have been set to 2.0 Ry)In order to test the implementation of the lo
al orbitals, and in parti
ular the
onstru
tion of the 
harge density, we performed self
onsistent 
al
ulations of Ti andW. In both 
ases two-window and even one-window 
al
ulations lead to a

urate re-sults, whi
h 
ompare very well with the results obtained from a treatment with lo
alorbitals. However, 
are must be taken 
hoosing the energy parameters, only if allenergy parameters are 
hosen reasonably 
lose to the band energies a

urate resultsare obtained. During the �rst two-window 
al
ulations we set the valen
e p-energyparameter and all semi
ore energy parameters ex
ept the p-parameter to values farabove the band energies, to avoid ghost-bands (in both 
ases the highest lying semi-
ore state is a p-state). Further 
al
ulations showed, that this is not ne
essary forTi and W, and leads to wrong results. The Ti 3p-states are about 2.2 Ry lower inenergy than the valen
e states, whi
h make these states most likely to produ
e aghost-band in the valen
e-window. The 3s-states are another 1.7 Ry lower than the3p-states and 
ould therefore 
ause a ghost-band in the semi
ore-window. To avoidthe ghost-bands we �rst set the semi
ore s-, d- and higher energy parameters andthe valen
e p-parameter to 4.0 Ry (these energies are given relative to the averageinterstitial potential, whi
h is 0.62 Ry below the Fermi energy in the 
ase of Ti, and1.17 Ry for W. The values 
hange slightly (� 0.1 Ry) with the latti
e 
onstant).The results of these total energy 
al
ulation are plotted in the uppermost 
urve inFig. 5.1. The 
al
ulated latti
e 
onstant (
f. Table 5.3) is slightly larger than thoseobtained from latter, more a

urate, 
al
ulations. If the valen
e p-parameter is re-laxed, i.e. set to the 
omputed optimal value (
f. Se
. 3.6.2) after ea
h iteration, theresults 
hange substantially. The latti
e 
onstant be
ame ever larger. Finally, we re-laxed all semi
ore and valen
e energy parameters, whi
h again lead to a 
onsiderable
hange. The results of the last 
al
ulation agree very well with the lo
al orbital andeven with a one-window 
al
ulations. The 
omputed latti
e 
onstants di�er by lessthan 0.15 %. The 
urves, whi
h 
orrespond to the two-window and the lo
al orbital
al
ulation are almost identi
al, whereas the one-window 
urve is shifted by about10 mRy. We repeated the 
al
ulations with relaxed energy parameters for h
p Ti,in order to obtain the f

-h
p energy di�eren
e. Again the results obtain with the
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hemes were very 
lose to ea
h other (
f. Table 5.3). The h
p stru
tureis 
orre
tly predi
ted to be lower in energy than the f

 stru
ture, and the energydi�eren
e agrees reasonably well with the results of other authors [AWJE93℄.Clearly, setting the energy parameters to values far of the band energies has astrong e�e
t on the 
al
ulations. This result is surprising in the 
ase of the semi
orestates of Ti, sin
e the s-, d- and f-like 
harge is the semi
ore window is extremely small(0.001 { 0.002 ele
trons). Thus, one should expe
t the results to depend very little onthe 
orresponding parameters. However, if the energy parameters are raised abovea 
ertain value the number of nodes of the 
orresponding radial fun
tion in
reases.In the 
ase of Ti this means, that , for example, the radial fun
tion u�0 has 4s or 5s
hara
ter rather than 3s. This leads to a higher probability of �nding the ele
tronfar from the nu
leus, i.e. 
harge is pushed away from the nu
leus. Apparently, this
auses the in
rease of the latti
e 
onstant.The results of the test 
al
ulations on W support this pi
ture. If all energyparameters are relaxed, the results obtained from the three di�erent s
hemes agreevery well (
f. Fig. 5.2). The 
al
ulated latti
e 
onstants di�er by less than 0.1 %(
f. Table 5.3) and lie within the range of the results of other authors [MH86, JF84,Koh95℄. If, however, the semi
ore s-, d-, f-, . . . and the valen
e p-energy parametersare raise above the band energies, the results 
hange signi�
antly, the latti
e 
onstantbe
omes more than 1.5 % larger.Hen
e, we found, that in the 
ase of Ti and W, where no ghost-band problemarises, lo
al orbital, two-window and even one-window 
al
ulations agree very well.In system that do show ghost-band, these 
an, in general, not be removed by raisingthe 
orresponding energy parameter, be
ause this 
an have a strong e�e
t on the
al
ulated properties.
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Titanium
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Figure 5.1: Total energy 
al
ulation of f

 (solid line) and h
p (dashedline) Ti. The data-points marked with a square have been obtained bya 2 window 
al
ulation with the valen
e p energy-parameter set to 4.0Ry. The data-points with a diamond have been obtained by a 2 window
al
ulation with free valen
e p energy-parameter. In both 
ases the semi-
ore s, d and higher energy parameters were set to 4.0 Ry. The resultsof the 
al
ulations with free semi
ore and valen
e energy parameters aremarked by plus signs (+). The data-points marked with 
rosses (x) andtriangles have been obtained by a lo
al orbital and a 1 window 
al
ulationwith free energy-parameters, respe
tively.
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Tungsten
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Figure 5.2: Total energy 
al
ulation of b

 W. The data-points markedwith a square have been obtained by a 2 window 
al
ulation with thevalen
e p energy-parameter set to 2.0 Ry and semi
ore s, d and higherenergy-parameter set to 4.0 Ry. The results of a two-window 
al
ulationwith free energy-parameters are marked with plus-signs (+). The data-points marked with 
rosses (x) and triangles have been obtained by alo
al orbital and a 1 window 
al
ulation with free energy-parametersrespe
tively.
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Chapter 6Non-Collinear Magnetism ofUnsupported Monolayers withf

(111) Geometry3d transition-metal monolayers on noble-metal substrates represent very interestingphysi
al systems, both experimentally and theoreti
ally [FPB+90, Sie92, LMF85,FFOW85, Ter87, BDZD89, FW91, WB93, Bl�u95℄. Due to �lled d-bands of the noble-metals the 3d-3d hybridization between the overlayer and the substrate is small,whi
h leads to a narrowing of the d-bands in the monolayer 
ompared to the bulktransition-metals. As a 
onsequen
e, magnetism is enhan
ed and the magneti
 mo-ments be
ome larger. Moreover, there is a possibility of new magneti
 materials,whi
h are non-magneti
 as bulk metals. So far most of the work has been done onoverlayers grown on the (100) orientated substrates, where the atoms of the mono-layer are arranged on a square latti
e. It turns out, that the early transition-metals,V, Cr and Mn, order 
(2 � 2) antiferromagneti
ally on these surfa
es, while Fe, Coand Ni prefer the p(1 � 1) ferromagneti
 
on�guration. However, the 
(2 � 8) re-
onstru
tion of Mn on Cu (100), whi
h lo
ally has a hexagonal stru
ture, suggeststhat some of the transition-metal monolayers prefer a hexagonal geometry. Thishas been investigated by Pent
heva [Pen96℄ performing systemati
 
al
ulations onunsupported 3d transition-metal monolayers with square and hexagonal geometry.The results prove, that in fa
t most 3d transition-metals ex
ept Cr prefer the hexag-onal stru
ture. However, this property is 
losely related to the magnetism of themonolayers, e.g. theoreti
al 
al
ulations suppressing the magnetism show that thenon-magneti
 quadrati
 UML of Mn is lower in energy than the hexagonal UML. Inaddition, Pent
heva 
ompared two di�erent magneti
 
on�gurations on the hexagonallatti
e, the ferromagneti
 stru
ture and an antiferromagneti
 
on�guration (Fig. 6.1(a)), where four of the six nearest neighbor atoms have opposite magnetization, butthe moments of the remaining two neighbors are parallel. Their 
al
ulations showed,that Cr and Mn prefer this antiferromagneti
 stru
ture. Assuming that this anti-ferromagnetism is predominantly driven by the nearest neighbor ex
hange 
oupling83



84 CHAPTER 6. NON-COLLINEAR MAGNETISM OF MONOLAYERSleads to the 
on
lusion that the hexagonal monolayers of these metals 
onstitute afrustrated spin-system.In order to �nd a 
andidate for a possible non-
ollinear ground-state 
on�gura-tion we follow the idea of Wannier [Wan50℄. We assume a two-dimensional planarHeisenberg model or x-y model and 
onsider three atoms on a triangle. It 
an beshown, that if the 
oupling is antiferromagneti
ally, i.e. the Heisenberg parameter Jis positive, the ground-state of this system is a 
on�guration, where magneti
 mo-ments form 120Æ angles. At this point the idea of Wannier 
omes into play. Sin
ethis stru
ture is 
ompatible with the hexagonal latti
e, this is also the ground-stateof the hexagonal monolayer within the Heisenberg model. Therefore, we de
ided to
ompare this stru
ture to the antiferromagneti
 stru
ture introdu
ed by Pent
hevaand a third 
ollinear antiferromagneti
 
on�guration.The approximations we dis
ussed in 
hapter 4 are only valid, if the magneti
moments inside the muÆn-tin spheres are large and do not 
hange mu
h with thedire
tion of the magnetization. Even more important for the a

ura
y of these ap-proximations is a small interstitial magnetization. Therefore, we de
ided to applyour method to an unsupported Cr monolayer with Ag (111) geometry. Cr possessesa large magneti
 moment, whi
h is enhan
ed due to the big latti
e 
onstant of Ag.The latti
e 
onstant also allows for a large muÆn-tin radius, whi
h leads to a better
on�nement of the total magnetization inside the muÆn-tin sphere. As a se
ondsystem we investigated a Mn UML with the geometry of the Cu(111) surfa
e. TheCu latti
e 
onstant is signi�
antly smaller and the lo
al magneti
 moments of thissystem are not as big as is the 
ase of the Cr UML-Ag(111). It turns out, that theMn UML-(111) is less a

urately des
ribed by the frozen potential approximationthan the Cr UML-Ag(111).6.1 Model Stru
turesWe have investigated unsupported monolayers with hexagonal geometry with di�er-ent 
ollinear and non-
ollinear magneti
 stru
tures. The unit 
ell of the ferromagneti
stru
ture is p(1 � 1) and 
ontains one atom. The antiferromagneti
 
on�gurationsas introdu
ed by Pent
heva (a) and the non-
ollinear 
on�guration with 120Æ angles(b) are shown in Fig. 6.1, whi
h also 
ontains the unit 
ells, marked by dotted lines.The antiferromagneti
 unit 
ell 
ontains two atoms, is re
tangular and of twofoldsymmetry, while the unit 
ell of the 120Æ 
on�guration 
ontains three atoms and isof (p3� p3)R30Æ stru
ture. It has the same shape as the p(1 � 1) unit 
ell, but itis rotated by 30Æ and p3 larger in linear dimension. We have also performed angledependent 
al
ulations. The energy di�eren
e has been 
al
ulated along two di�erentpaths, whi
h 
ontinuously transform the ferromagneti
 stru
ture into the antiferro-magneti
 
on�guration (Fig. 6.1 (
)) or the 120Æ 
on�guration (Fig. 6.1 (d)). If these
ond path is extended up to � = 180Æ we obtain an additional antiferromagneti

on�guration with 2=3 of the magneti
 moments pointing along one dire
tion and1=3 pointing along the opposite dire
tion. This stru
ture will be referred to as the
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Figure 6.1: (a) The antiferromagneti
 stru
ture as introdu
e byPent
heva. (b) The non-
ollinear 120Æ 
on�guration. The ferromagneti
stru
ture 
an be transformed by a 
ontinuous rotation into stru
ture (a)via path (
) and stru
ture (b) via path (d). Sin
e the 
al
ulations havebeen performed within the s
alar-relativisti
 approximation, whi
h ne-gle
ts spin-orbit 
oupling, the dire
tion of the magneti
 moments withrespe
t to the latti
e is undetermined. They are are drawn in plane onlyfor better illustration.180Æ 
on�guration.6.2 Cal
ulational DetailsThe a
tual 
al
ulations have been performed using a unit 
ell 
ontaining six atoms.With this 
hoi
e all 
on�gurations 
an be treated with the same unit 
ell, and thusina

ura
y in the energy di�eren
e due to di�erent k-point sets for the Brillouin zoneintegration 
an be avoided. The Ag and the Cu latti
e 
onstants have been 
hosena

ording to Moruzzi, Janak and Williams [MJW78℄ aAg = 7:79a:u:; aCu = 6:65a:u:We have used 15 k-points in the irredu
ible Brillouin zone (IBZ) for the k-integration.
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ut-o� for the wavefun
tions we used Gmax = 3:2a:u:�1 in the 
ase ofthe Cr UML-Ag(111) and Gmax = 3:6a:u:�1 in the 
ase of the Mn UML-Cu(111),whi
h amounts to about 110 basis fun
tions per atom, while the potential and 
hargedensity are expanded up to 9:0a:u:�1. The non-spheri
al parts of the 
harge density,the potential and the wavefun
tions have been expanded into spheri
al harmoni
s upto lmax = 8. We 
hose the muÆn-tin radius as large as possible RMT = 2:75a:u:.All parameters have been 
hosen 
orrespondingly to the parameters of Pent
heva,ex
ept the wavefun
tion planewave 
ut-o�. Convergen
e tests with respe
t to theseparameters 
an be found in [Pen96℄.6.3 A

ura
y of the Frozen Potential Approxima-tionThe energy di�eren
es between the di�erent 
ollinear and non-
ollinear magneti

on�gurations have been 
al
ulated via the frozen potential approximation (FPA)(
f. 
hap. 4). Within the frozen potential approximation the energy di�eren
e oftwo di�erent magneti
 
on�gurations is estimated by the di�eren
e of the eigenvaluesums of non-self
onsistent 
al
ulations. First a self
onsistent 
ollinear (e.g. ferro-magneti
) 
al
ulation is performed yielding a potential V (r) and a magneti
 �eldB(r). A trial Hamiltonian, from whi
h the eigenvalue sums are 
omputed, is 
on-stru
ted by a rotation of the dire
tion of the magneti
 �eld, while the magnitudeB(r) is kept �xed (frozen). Within the lo
al spin-density approximation (LSDA)B(r) depends only lo
ally on the magnitude of the magnetization m(r). Therefore,this approximation is valid, if the magnitude of the magnetization does not 
hangemu
h with its dire
tion. The hexagonal Cr UML-Ag(111) satis�es this 
onditionvery ni
ely. The self
onsistent magneti
 moments per atom, i.e. m(r) integrated overthe muÆn-tin sphere, show small di�eren
es. The antiferromagneti
 moment is onlyabout 1% smaller that the ferromagneti
 moments, the 180Æ and the ferromagneti

on�guration di�er by about 3% (
f. Table 6.1). However, in FLAPW it is un
learAtomi
 magneti
 moments [in �B℄FM 4.14AFM 4.09180Æ ("#") m" = 4.02, m# = 3.99Table 6.1: Self
onsistent total magneti
 moment per atom of the CrUML-Ag(111) for di�erent 
ollinear magneti
 
on�gurations.what has to be done with the interstitial magneti
 �eld. Leaving the interstitialmagneti
 �eld un
hanged, i.e. using the magneti
 �eld obtained from a self
onsistent
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al
ulation, lead to very unsatisfa
tory results. The energy di�eren
ebetween the ferromagneti
 and the antiferromagneti
 stru
ture is massively under-estimated, and the 180Æ ("#") 
on�guration is in
orre
tly predi
ted to be lowest inenergy (
f. Table 6.2). How large the e�e
t of the interstitial magnetization is, 
anbe appre
iated from a 
omparison of the two 180Æ 
on�gurations, with 2/3 ("#") and1/3 (#"#) of the magneti
 moments parallel to the interstitial magnetization. Thesetwo 
on�gurations, that are physi
ally equivalent, di�er by 12 mRy/atom, whi
h isfar larger than the energy di�eren
es we want to 
al
ulate. Clearly, the interstitialmagneti
 �eld favors the parallel orientation of the atomi
 moments. These results�E = E � EFM [mRy/atom℄Con�g. Self
onsistent FPA no av. FPA av.AFM -20.0 -3.6 -23.4180Æ ("#") -18.8 -9.0 -23.0180Æ (#"#) -18.8 +3.0 -23.0Table 6.2: Energy di�eren
es between the ferromagneti
 
on�gurationand di�erent 
ollinear antiferromagneti
 
on�gurations of the Cr UML-Ag(111). The �rst 
olumn 
ontains the results of self
onsistent 
al
ula-tions. The frozen potential approximation without setting to zero (aver-aging) the interstitial and va
uum magneti
 �eld (FPA no av.) yields theresults in the se
ond 
olumn. The last 
olumn (FPA av.) lists the resultsobtained with the frozen potential approximation, with zero interstitialand va
uum magneti
 �eld.
an be substantially improved, if the interstitial and va
uum magneti
 �eld is setto zero (averaged) (
f. se
tion 4.1). The 
orresponding 
al
ulation (
f. Table 6.2)reprodu
e the 
orre
t trends. The antiferromagneti
 stru
ture is 
orre
tly predi
tedto be lowest in energy, and the two physi
ally equivalent 180Æ 
on�gurations havethe same energy. However, the energy di�eren
es between the antiferromagneti
 andthe ferromagneti
 stru
tures are overestimated by about 15%. The averaging of themagneti
 �eld favors the antiferromagneti
 systems, be
ause they have smaller inter-stitial magnetizations and magneti
 �elds than the ferromagneti
 stru
ture. When
omparing two antiferromagneti
 
on�guration the quantitative error is smaller, butstill present.6.4 Results for the Cr UMLOur 
al
ulations for the Cr UML indeed show, that the 120Æ 
on�guration is lowestin energy. This 
on�gurations is almost 4 mRy lower than the antiferromagneti
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ture, whi
h is the 
ollinear 
on�guration with the lowest energy we found (
f.Table 6.3). This energy di�eren
e is 
learly larger than the the error we should�E = E � EFM [mRy/atom℄Con�g. FPA av.AFM -23.4180Æ -23.0120Æ -27.2Table 6.3: Energy di�eren
es between di�erent 
ollinear antiferromag-neti
 stru
tures in
luding the 120Æ 
on�guration and the ferromagneti
stru
ture of the Cr UML-Ag(111). All results have been obtained fromthe frozen potential approximation where the interstitial and va
uummagneti
 �eld has been set to zero (averaged) (FPA av.).expe
t, when 
omparing two antiferromagneti
 stru
tures. We also 
al
ulated theenergy dependen
e on the angle of the lo
al magnetization along two di�erent paths,whi
h transform the ferromagneti
 stru
ture into the antiferromagneti
 (Fig. 6.1 (
))and the 120Æ (Fig. 6.1 (d)) 
on�guration respe
tively. The results are presented inFig. 6.2. The 
urve that 
orresponds to paths Fig. 6.1 (
) shows a 
osine like shape,while the 
urve 
orresponding to 6.1 (d) possesses a pronoun
ed minimum at 120Æ.Following the latter 
urve further leads to the 180Æ 
on�guration, whi
h is slightlyhigher in energy than the antiferromagneti
 
on�guration. In order to 
he
k ourinitial assumption of a Heisenberg like behavior, we �tted the data in Fig. 6.2 to theHeisenberg model in
luding nearest neighbor intera
tion only. Within this model theenergy per unit 
ell is given by:E = 12 MXi nn(i)Xj J1Si � Sj (6.1)The �rst sum is over the atoms in the unit 
ell and the se
ond sum is over the nearestneighbors of ea
h atom. For the path Fig. 6.1 (
) this amounts to the following energyper 
(2� 2) unit 
ell. E = 12J1S2[8 
os(�) + 4℄ (6.2)For the path Fig. 6.1 (d) the energy per (p3�p3)R30Æ unit 
ell is given by:E = 12J1S2[12 
os(�) + 6 
os(2�)℄ (6.3)Sin
e the ab-initio 
al
ulations 
ontain more than just the spin intera
tion energy,the energies are shifted by a 
onstant. Therefore, the a
tual fun
tions the results
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Figure 6.2: Energy dependen
e on the dire
tion of the lo
al magneti
moments as fun
tion of the dire
tion angle � relative to the dire
tion ofthe nearest neighbor atom for the Cr UML-Ag(111) along the two pathsa

ording to Fig. 6.1. The data points of the path that transforms theferromagneti
 stru
ture into the antiferromagneti
 stru
ture (Fig. 6.1 (
))are marked with diamonds, while path Fig. 6.1 (d), whi
h transforms theferromagneti
 stru
ture into the 120Æ and then to the 180Æ 
on�guration,is marked with 
rosses. For better visibility the data points are 
onne
tedwith splines (solid lines). In addition, the fun
tions obtained form a leastsquare �t of the data to the Heisenberg model are shown (dashed lines).have been �tted to are: E = 12J1S2[8 
os(�)℄ + C (6.4)and E = 12J1S2[12 
os(�) + 6 
os(2�)℄ + C (6.5)respe
tively. The �tted fun
tions are also plotted in Fig. 6.2. The linear parametersJ1 and C have been obtained from a least square �t. The �tted Heisenberg 
urvesare in good agreement with the data points. From both �ts the ex
hange integral J1
an be 
al
ulated, using the lo
al magnetization from the self
onsistent ferromagneti

al
ulation as S. The values that we obtained di�er by only about 2%. We found
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ording to Fig. 6.1 (
) and J1 = 0:172mRy=�2Bfor the paths a

ording to Fig. 6.1 (d). These results justify the initial assumptionof a Heisenberg like behavior.Bandstru
ture of the Cr UML for Di�erent Spin Con�gurationsIn this se
tion we will explain how the bandstru
ture of the Cr UML 
hanges with theorientation of the lo
al magneti
 moments along path Fig. 6.1 (d). The 
orrespondingmagneti
 
on�gurations, in
luding the 120Æ 
on�guration, require a (p3�p3)R30Æunit 
ell, 
ontaining three atoms. Therefore, we will �rst dis
uss how the bandsin the Brillouin zone of the p(1 � 1) unit 
ell are \folded" into the Brillouin zone
orresponding to the larger unit 
ell. For simpli
ity this will be done for the band-stru
ture obtained from a non-magneti
 
al
ulation. The two Brillouin zones areshown in Fig. 6.3. The Brillouin zone of the (p3� p3)R30Æ unit 
ell is by a fa
tor
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Figure 6.3: The Brillouin zones 
orresponding to the one and three atomunit 
ells. The smaller Brillouin zone, whi
h 
orresponds to the threeatoms unit 
ell, is rotated by 30Æ with respe
t to the larger Brillouinzone. The index of the symmetry points 
orresponds to the number ofatoms the unit 
ell 
ontains.three smaller, and it is rotated by 30Æ with respe
t to the Brillouin zone of the p(1�1)
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ell. All bandstru
tures are plotted along the symmetry lines ��{ �M and ��{ �K.The index of the symmetry points 
orresponds to the number of atoms the unit 
ell
ontains. Due to the rotation of the Brillouin zone the symmetry line ��{ �M3 of the(p3 � p3)R30Æ Brillouin zone lies on the line ��{ �K1 of the p(1 � 1) Brillouin zone.Thus, the bandstru
ture along ��{ �K1 folds onto ��{ �M3 and 
orrespondingly ��{ �M1folds onto ��{ �K3.The bandstru
tures of a non-magneti
 Cr UML with one and three atoms perunit 
ell are shown in Fig. 6.4. The UML 
learly possesses symmetry with respe
tto a re
e
tion at the x-y-plane (z ! �z). Therefore, all eigenfun
tion have to beeither even or odd with respe
t to this operation. Although no sele
tion rule for anexperiment 
an be derived from this symmetry, for better visibility the 
orrespondingbands are plotted separately. The left panels of Fig. 6.4 show the even bands of a non-magneti
 
al
ulation, the right panels show the odd bands. The upper panels show thebandstru
ture resulting from non-magneti
 
al
ulations 
ontaining one atom per unit
ell, the lower panels show the bandstru
ture resulting from 
al
ulations 
ontainingthree atoms. A �rst look reveals two types of bands. Around the Fermi energy we�nd the d-bands showing little dispersion. Below the Fermi energy and above about 2eV we �nd strongly dispersive bands. The latter are basi
ally of s-symmetry for evenstates and of pz-symmetry in the 
ase of the odd states. Comparing the upper leftplot to the lower left graph it 
an be seen how the s-band (thi
k solid line) is foldedinto the smaller Brillouin zone of the three atom 
al
ulation. The part of this bandbetween �� and �K1 (marked (2) and(3)) be
omes folded onto ��{ �M3. Part of the bandbetween �M1 and �� (1) 
an be identi�ed on ��{ �K1, while the bandstru
ture between�K3 and �M1 
annot be found in the plot of the three atom unit 
ell. The latter partof the band 
ould be found on the symmetry line �K3{ �M3 of the smaller Brillouinzone, if it had been plotted. Instead another band (4) 
an be seen on ��{ �K3, whi
horiginates from �K3{ �K1. In the same way the lowest two odd bands (upper right plotof Fig. 6.4 thi
k solid and dashed lines) are folded into the small Brillouin zone. Asa 
onsequen
e of the folding, the folded bands be
ome degenerate at high symmetrypoints.The non-
ollinear magneti
 
on�gurations break the symmetry and thus some ofthe degenera
ies are lifted. In Fig. 6.5 the ferromagneti
 bandstru
ture is shown,as obtained from a self
onsistent 
al
ulation (upper left and right plots) and froma 
al
ulation within the frozen potential approximation with zero interstitial andva
uum magneti
 �eld (lower left and right plots). Sin
e we used the ferromagneti
potential and magneti
 �eld for all non-self
onsistent 
al
ulations, the only di�eren
ebetween the two 
al
ulations is the removal of the interstitial magneti
 �eld. In theupper graphs the bands are plotted di�erently a

ording to their spin 
hara
ter (solidlines indi
ate majority spin, dotted lines indi
ate minority spin). At �rst we see alarge ex
hange splitting between the majority and minority states, whi
h amountsto about 3.5 eV for bands with predominantly d-
hara
ter. This re
e
ts the largemagneti
 moment of about 4 �B. A 
loser look reveals that the spin splitting ofthe bands is not rigid as expe
ted from the simple Stoner model. The minority
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e they are 
onsiderably higher in energy and assu
h mu
h less lo
alized than the majority states. The FPA 
al
ulation shows aslightly smaller di�eren
e between the spin up and down bands due to the missinginterstitial and va
uum magneti
 �eld. The most signi�
ant di�eren
e is a gap in thep-band denoted (a) in Fig. 6.5 that results from the FPA, apart from this gap thebandstru
tures are very similar.In Fig. 6.6 we present the bandstru
ture after a rotation of the magneti
 momentsof 30Æ and 60Æ a

ording to Fig. 6.1 (d). Due to the rotation of the magneti
 momentspin up and spin down ele
trons hybridize (s). For small rotation angles (30Æ) weobserve an opening of band-gaps at the symmetry points (a-l), where the bands weredegenerate in the ferromagneti
 
on�guration. The size of these gaps in
reases withthe rotation angle. In addition some bands, that were degenerate along the symmetryline ��{ �K split up (m{r). At a 
ertain rotation angle the mixing of spin up and downstates is so strong, that the ferromagneti
 
on�guration be
omes meaningless as astarting point to explain the band topology. Spin up and down states form new linear
ombinations.At 90Æ and 120Æ the bandstru
ture has 
hange dramati
ally (Fig. 6.7). The 120Æ
on�guration is highly symmetri
. As a result, bands, that were split at intermediateangles, be
ome degenerate at symmetry points and between �� and �K. A 
omparisonbetween the ferromagneti
 stru
ture and the 120Æ 
on�guration shows, that the bandstru
ture has drasti
ally 
hanged. For example two of the (odd) bands near �K (a,b)are 
ompletely di�erent for the two 
on�gurations. Su
h di�eren
es 
an be usedto investigate experimentally the existen
e of the 120Æ stru
ture with methods thatprobe the bandstru
ture. However, two problems have to be taken into a

ount. First,the density fun
tional theory does not always predi
t the position of bands a

urately.Therefore, it is ne
essary to use methods, that 
an probe also the dispersion of thebands, like angle resolved ultraviolet photo emission (ARUPS). The se
ond problem,that has to be taken into a

ount, is that the present 
al
ulations have been done withunsupported monolayers, whi
h leads to less dispersion, and in
reases the ex
hangesplitting.



6.4. RESULTS FOR THE Cr UML 93
1 atom per unit cell selfconsistent non-magnetic

3 atoms per unit cell selfconsistent non-magnetic

even

odd

odd

even

1 2

3

1
2

3

1 2

3

12

3 4

12

3 4

12

3 4

3 3 3 3Figure 6.4: Bandstru
tures as obtained from a self
onsistent non-magneti
 
al
ulation in
luding one atom per unit 
ell (upper left andright plot) and three atoms per unit 
ell (lower left and right plot). Bandswith even and odd symmetry with respe
t to z-re
e
tion (z ! �z) areplotted separately.
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Figure 6.5: Bandstru
tures of the ferromagneti
 Cr UML as obtainedfrom a self
onsistent 
al
ulation (upper left and right plot) and withinthe frozen potential approximation (lower left and right plot). Bothin
lude three atoms per unit 
ell.
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on�guration a

ordingto Fig. 6.1 (d). Both have been 
al
ulated within the frozen potentialapproximation and in
lude three atoms per unit 
ell.
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on�guration a

ordingto Fig. 6.1 (d). Both have been 
al
ulated within the frozen potentialapproximation and in
lude three atoms per unit 
ell.



6.5. RESULTS FOR THE Mn UML 976.5 Results for the Mn UMLThe se
ond system that has been studied as part of this work is the Mn UML withCu(111) geometry. In order to 
he
k whether the assumption underlying the FPA,that the magneti
 moments 
hange little with their dire
tion is valid, we performedself
onsistent 
al
ulations for di�erent 
ollinear 
on�gurations. As in the 
ase ofthe Cr monolayer the results show, that this assumption is justi�ed (
f. Table 6.4).However, the Mn moments are 
onsiderably smaller than the Cr moments, and at theAtomi
 magneti
 moments [in �B℄FM 3.05AFM 3.08180Æ ("#") m" = 3.23, m# = 2.93Table 6.4: Self
onsistent lo
al magneti
 moment per atom of the MnUML-Cu(111) for di�erent 
ollinear magneti
 
on�gurations.same time the sum of the interstitial and va
uum magnetization is larger due to thesmaller latti
e 
onstant of Cu. The ferromagneti
 
al
ulations yielded an interstitialand va
uum magnetization of 0.26 �B=atom for the Cr UML and 0.39 �B=atom forthe Mn UML. Thus, the ratio of lo
al and interstitial magnetization is signi�
antlysmaller for the Mn monolayer, whi
h makes the approximation in the interstitialand va
uum region less a

urate in the 
ase of the Mn UML-Cu(111) system. As a
onsequen
e, the energy di�eren
es between the ferromagneti
 and the antiferromag-neti
 
on�gurations (AFM and 180Æ) are more strongly overestimated than in the
ase of the Cr UML. The predi
ted energy di�eren
es are about 6 mRy/atom largerthan those obtained from self
onsistent 
al
ulations (
f. Table 6.5). However, the
al
ulated di�eren
es between the two antiferromagneti
 stru
tures agree very well.The results of the angle dependent 
al
ulations are presented in Fig. 6.8. In
ontrast to the Cr UML, we do not �nd the 120Æ 
on�guration to be lowest in energyfor the Mn UML. Instead, the 
omputed energy of the antiferromagneti
 
on�gurationis more that 4 mRy/atom lower in energy. Even the 180Æ stru
ture is predi
ted tobe more stable than the 120Æ 
on�guration.The �gure also 
ontains the fun
tions obtained from a �t of the data to thenearest neighbor Heisenberg model. Apparently the data is not well des
ribed bythe Heisenberg model. The graph that 
orresponds to the rotation a

ording toFig. 6.1 does not possess a minimum at 120Æ in 
ontradi
tion to the Heisenberg model.Instead the energy 
hanges very little with the rotation angle between 90Æ and 180Æ.In addition, the values for the ex
hange integral J1 di�er signi�
antly between thetwo paths. From the 
al
ulation a

ording to path Fig. 6.1 (
) we obtained J1 =0:431mRy=�B, while path Fig. 6.1 (d) yielded J1 = 0:340mRy=�B. This di�eren
e
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�E = E � EFM [mRy/atom℄Con�g. Self
onsistent FPA av.AFM -26.3 -32.2180Æ -23.2 -29.2120Æ {.{ -27.8Table 6.5: Energy di�eren
es between the ferromagneti
 
on�gurationdi�erent 
ollinear antiferromagneti
 
on�gurations of the Mn UML-Cu(111). The �rst row 
ontains the results of self
onsistent 
al
ulations.The se
ond row 
ontains the results obtained by the frozen potential ap-proximation where the interstitial and va
uum magneti
 �eld has beenset to zero (averaged) (FPA av.).and the fa
t, that the antiferromagneti
 
on�guration is lower in energy that the 120Æ
on�guration 
an be explained by in
luding next nearest neighbor intera
tion intothe Heisenberg model.If the next nearest neighbor intera
tion is taken into a

ount, the energy of aHeisenberg spin system is given by:E = 12 MXi nn(i)Xj J1Si � Sj + 12 MXi nnn(i)Xj J2Si � Sj (6.6)Where j in the se
ond term sums over the nnn next nearest neighbors of ea
h atom i.Assuming this model the energy per unit 
ell along the two rotation paths be
omesE = 12(J1 + J2)S2[8 
os(�) + 4℄ (6.7)for path Fig. 6.1 (
) andE = 12J1S2[12 
os(�) + 6 
os(2�)℄ + 12J2S236 (6.8)for path Fig. 6.1 (d), where the next nearest neighbor intera
tion 
ontributes only tothe 
onstant term. In the 
ase of the rotation a

ording to Fig. 6.1 (
) the 
ontributionto the energy is of the same form as the 
ontribution from the nearest neighborintera
tion. Thus, the value we have obtained from the Heisenberg �t is in fa
t thesum of J1 and J2, in terms of the model in
luding next nearest neighbor intera
tion.The very 
at shape of the fun
tional dependen
e of the energy on the rotationangle along the path Fig. 6.1 (d) 
annot be explained with the next nearest neighborintera
tion. We obtained a far better �t to the ab-initio data, when we in
luded aterm 
os(3�) into the fun
tion the data has been �tted to. In terms of the Heisenberg
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Figure 6.8: Energy dependen
e on the dire
tion of the lo
al magneti
moments as fun
tion of the dire
tion angle � relative to the dire
tion ofthe nearest neighbor atom for the Mn UML-Cu(111) along the two pathsa

ording to Fig. 6.1. The data points of the path that transforms theferromagneti
 stru
ture into the antiferromagneti
 stru
ture (Fig. 6.1 (
))are marked with diamonds, while path Fig. 6.1 (d), whi
h transforms theferromagneti
 stru
ture into the 120Æ and then to the 180Æ 
on�guration,is marked with 
rosses. For better visibility the data points are 
onne
tedwith splines (solid lines). In addition, the fun
tions obtained form a leastsquare �t of the data to the Heisenberg model are shown (dashed lines).model this means, that the energy dependen
e on the angle is more 
omplex thanthe simple 
os form, and a Fourier series (in
luding only the even (
os) terms) has tobe used instead.Sin
e, the results of the 
al
ulations are not well des
ribed by the Heisenbergmodel in the 
ase of the Mn UML-Cu(111), our initial assumption (of a Heisenberglike behavior) is not justi�ed. Therefore, we 
annot be sure, that the true ground-state is a magneti
 stru
ture we have not investigated, whi
h might have a largerunit 
ell.However, during the analysis of the results it must be kept in mind, that thea

ura
y of the frozen for
e approximation is limited. This is parti
ularly 
riti
al in
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ase of the Mn UML, where the ratio of the lo
al and interstitial magnetizationis smaller. The question of how mu
h of the predi
ted properties of the Mn UML isa
tually physi
s, and how mu
h is an artifa
t due to the FPA 
an only be resolvedby 
arrying out self
onsistent non-
ollinear 
al
ulations.



Chapter 7Con
lusion and OutlookIn the present work we investigated the possibility and energeti
s of the non-
ollinearmagneti
 ground-state for parti
ular ultrathin �lms. Ab-initio 
al
ulations basedon the density fun
tional theory in the lo
al spin-density approximation have beenperformed. For this purpose, the FLAPW method has been extended to allow non-self
onsistent 
al
ulations for systems with a non-
ollinear orientation of the magneti
moments. These 
al
ulations have been performed within the frozen potential ap-proximation, where the energy di�eren
e of the magneti
 
on�gurations is determinedby the di�eren
e of eigenvalue sums. A trial Hamiltonian has been 
onstru
ted bya rotation of the magneti
 �eld obtained from a self
onsistent ferromagneti
 
al
ula-tion. This method has been applied to unsupported monolayers (UML) of Cr in thegeometry of Ag(111) and Mn in the geometry of Cu(111). The 
al
ulations predi
ta non-
ollinear ground-state for the Cr UML, with 120Æ angles between the mag-neti
 moments at nearest neighbor sites of the triangular latti
e. The dependen
eof the energy on the rotation angle of the lo
al magneti
 moments has been inves-tigated. Fitting the results to a model Hamiltonian showed, that the magnetism ofthe Cr UML is well des
ribed by the Heisenberg model in
luding nearest neighborintera
tion only. The bandstru
ture of the Cr UML has been 
al
ulated for dif-ferent angles of the magneti
 moments. The results show, that the bandstru
turestrongly depends on the magneti
 
on�guration. Thus, experiments, whi
h probethe bandstru
ture like angle-resolved ultraviolet photo-emission (ARUPS) or inversephoto-emission (BIS), should be able to identify the non-
ollinear ground-state. Inaddition, the predi
ted non-
ollinear magneti
 ground-state breaks the symmetry ofthe atomi
 latti
e. Therefore, feeble superstru
ture extra-spots in low energy ele
-tron di�ra
tion (LEED) experiments should be expe
ted [TBF88℄, whi
h disappearor reappear, when the Neel temperature is 
rossed from below or above. Anotherway to identify the non-
ollinear ground-state is given by magneti
 
ir
ular x-raydi
hroism (MCXD) measurements [DvdL96℄, whi
h allow the determination of thea
tual lo
al magnetization ve
tor.In the 
ase of the Mn UML with Cu(111) geometry we got a di�erent pi
ture. Thefrozen potential approximation proved to be less a

urate when applied to this system,due to the smaller lo
al magneti
 moments of Mn and the smaller latti
e 
onstant101



102 CHAPTER 7. CONCLUSION AND OUTLOOKof Cu. Our 
al
ulations predi
ted a 
ollinear antiferromagneti
 
on�guration to belower in energy than the non-
ollinear 
on�guration we have found for the Cr UML-Ag(111). In addition, the results were not well des
ribed by the Heisenberg model.Therefore, we 
annot rule out, that the true ground-state is a magneti
 
on�gurationwe have not investigated, possibly in
luding a larger unit 
ell. In order to obtainmore a

urate results for the Mn monolayer self
onsistent 
al
ulations are ne
essary.In view of the future development to extend the method to allow an eÆ
ientself
onsistent treatment of non-
ollinear magnetism, the lo
al orbital extension hasbeen implemented. The lo
al orbitals are an extension to the FLAPW method insidethe muÆn-tin spheres near the atomi
 nu
lei. These extra basis fun
tions improvethe variational freedom of the FLAPW basis and make it possible to employ a spin-independent basis set. In order to test the implementation of the lo
al orbitals, theyhave been applied to the semi
ore states of b

 W, f

 and h
p Ti. The resultshave been 
ompared to the results obtained from two-window 
al
ulations, wherethe semi
ore and valen
e states are treated within two independent energy windows(panels). Both s
hemes 
orre
tly predi
ted h
p Ti to be lower in energy than the f

phase. The 
al
ulated latti
e 
onstants where in good agreement. The ghost-bandproblem 
ould be avoided.The results that have been obtained for the unsupported monolayers of Cr(Ag(111) geometry) and Mn (Cu(111) geometry) show, that the a

ura
y of thefrozen potential approximation in the 
urrent implementation is limited. In order toimprove the a

ura
y and to allow the appli
ation of the method to a larger 
lass ofsystems, whi
h do not satisfy the requirement of large lo
al magneti
 moments whi
hare well-
on�ned inside the muÆn-tin spheres around the atoms or that the magnitudeof the lo
al moments remains un
hanged during rotation, it essential to extent themethod to self
onsistent non-
ollinear 
al
ulations. Several ways of performing su
hself
onsistent 
al
ulations are possible. One option is to allow a general magnetiza-tion density in the interstitial region, with both, magnitude and dire
tion, dependingon the position ve
tor r, while having the magnetization inside ea
h muÆn-tin pointalong a single dire
tion. Within this approximation the rotation of the atomi
 mag-neti
 moments with respe
t to ea
h other, the inter-atomi
 non-
ollinear magnetism,
an be des
ribed , while 
hanges of the dire
tion of the magnetization inside sin-gle atoms, the intra-atomi
 non-
ollinear magnetism, is negle
ted. The most generals
heme is to allow the magnetization to have a di�erent dire
tion everywhere in spa
e,and thus to in
lude also the intra-atomi
 non-
ollinear magnetism.The 
ombination of non-
ollinear magnetism with the possibility to 
al
ulate thefor
e a
ting on an atom to perform a stru
ture optimization by mole
ular dynami
s,whi
h is already implemented in our 
urrent FLAPW 
ode, opens the gate to futuretreatment of systems, where both the magneti
 properties, in
luding the magnetiza-tion dire
tion, and the stru
tural properties are intimately interwoven, and the atomi
and the magneti
 stru
ture is a priori un
lear. This is of parti
ular importan
e forlow dimensional systems, like re
onstru
ted surfa
es, ultrathin �lms with and withoutdefe
ts, step edges, magneti
 
hains at step edges, small magneti
 
lusters or for the



103investigation of the growth (di�usion barrier and atom ex
hange me
hanisms) andrea
tion paths involving magneti
 atoms.
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