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Chapter 1IntrodutionThe investigation of surfaes and interfaes is a rapidly developing �eld in modernsolid state physis. Experimental and theoretial tehniques have advaned tremen-dously during reent years. The possibility of growing metalli over-layers and multi-layers of high quality opened way to aess a ompletely new lass of system withremarkable properties: The ultrathin magneti �lms. The preparation of suh spe-imen has beome feasible with state of the art epitaxy in ombination with sophis-tiated vauum tehnology. With the moleular beam epitaxy (MBE), for example,thin layers an be grown in a preise and ontrolled way on an atomi sale. Si-multaneously, tehniques monitoring the growth and haraterizing these materialshemially, struturally and eletronially have advaned at the same pae. Withthe sanning tunneling mirosope (STM) the struture of surfaes an be studied inreal spae with atomi resolution. The STM an even be used to plae single atomsat a hosen position, and thus to \design" arti�ial materials atom by atom. Spin-polarized eletron tehniques have been developed to investigate the magnetism atsurfaes and in addition the reently disovered magneti dihroism an be employedto analyze the magneti properties. Disoveries like the inter-layer exhange ouplingand the giant magnetoresistane, that found their way into industrial appliation,lead to extensive researh ativities in the �eld of thin magneti �lms.In order to understand the omplex interations that lead to a spei� magnetistruture, it is neessary to develop a theoretial desription of the magnetism at sur-faes. An important ontribution to the understanding of the physis of surfaes hasbeen obtained from ab-initio alulations. With these methods, whih ontain theharge of the nulei as the only parameter, ground-state properties like lattie parame-ter, lattie struture, ohesive energies magneti moments and magneti struture anbe determined. Bandstrutures are alulated to guide the interpretation of experi-ments. The rapid progress in omputer tehnology made it possible to apply ab-initiomethods to larger and more omplex systems, e.g. systems with broken symmetry,like surfaes. The basis of suh alulations is the density funtional theory (DFT)by Hohenberg and Kohn [HK64℄ and Kohn and Sham [KS65℄, whih states, that theground-state properties of a many eletron system are ompletely determined by theeletron (harge) density. However, this theory ould not be applied until the loal1



2 CHAPTER 1. INTRODUCTION(spin) density approximation (LSDA) was introdued. This relatively simple approx-imation to the unknown exhange orrelation potential proved to be very suessful,desribing the eletroni struture of most material inluding the transition metals.On the basis of the DFT and the LSDA many bandstruture methods, whih di�erby the way the Kohn-Sham equations are solved, have been developed. The resultsof the present work have been obtain with the full-potential linearized augmentedplanewave method (FLAPW).The FLAPW method is an all-eletron method. The ore eletrons are treated(full-) relativistially, taking into aount only the spherial part of the potential. Thevalene eletrons are alulated in the salar-relativisti approximation inluding thefull potential. With no approximation to the shape of the potential being made,the FLAPW method is very suitable for open strutures and surfaes. Due to itselaborate expansion of the wavefuntions, inluding radial funtions near the atominulei, the FLAPW method an be applied to transition metals with their loalizedd-eletrons. Surfaes are approximated by a thin slab. The neessary extension tothe FLAPW method [KPF79℄ ontains an aurate desription of the vauum.The magnetism and the dimensionality (oordination) of transition-metal sys-tems are losely related. This fat an most easily be realized omparing the twoextreme ases of low and high dimension, free atoms and bulk materials. Nearly alltransition-metal atoms have magneti moments, whih are well desribed by Hund'srule. In ontrast, only 5 transition-metals (Cr, Mn, Fe, Co and Ni) remain magnetiin the bulk rystalline phase, with magneti moments that are substantially reduedompared to the free atoms.Reently, a lot of researh has been devoted to transition-metal monolayers,in partiular on noble-metal substrates [FPB+90, Sie92, LMF85, FFOW85, Ter87,BDZD89, FW91, WB93, Bl�u95℄. Beause of the �lled d-bands of the noble-metalsthe d-bands of the transition-metal monolayers hybridize very little with the sub-strate. This leads to a narrowing of the d-bands and an enhanement of the magnetimoments in the overlayers [Bl�u88, Bl�u95℄. In this ontext, Fe on the Cu (100) sur-fae belongs to the most extensively investigated systems. Fe on Cu(100) as wellas Mn on Cu(100) show omplex reonstrutions, whih are expeted to be drivenby magnetism. In general the atomi ground-state struture and also the magnetiground-state struture of systems with low dimension, like overlayers, lusters andnano-strutures, is more diÆult to predit, beause restritions to the phase-spae ofpossible strutures due to symmetry are dropped and more degrees of freedom haveto be relaxed.So far, mainly overlayers on (100) surfaes have been investigated, where the atomsin the monolayer from a square lattie. Two di�erent magneti strutures have beenfound, the ferromagneti p(1 � 1) and the antiferromagneti (2 � 2) struture. Itturns out, that the early transition-metals V, Cr and Mn prefer the antiferromagnetiordering (on Pd, Cu and Ag (100))1, while Fe, Co and Ni prefer the ferromagnetistruture. However, little work has been done on overlayers on the (111) surfae,1No magneti solution has been found for V on Cu (100).



3where the atom are arranged on a hexagonal lattie. Under the assumption, that theantiferromagneti ordering of the early transition-metals is predominantly driven bythe nearest neighbor exhange oupling, spin-frustration has to be expeted on thehexagonal lattie. This spin-frustration an be resolved by a non-ollinear ground-state. In fat, a Heisenberg model inluding only nearest neighbor interation leadsto a ground-state, where the spins on eah triangle of the hexagonal lattie form120Æ angles. Spin-frustrated antiferromagnets are a very general problem in lowdimensions. Other expeted examples are: i) Small Cr or Mn lusters, where eahatom ouples antiferromagnetially to it neighbors, ii) Mn monolayers on Fe substrate:Here the Mn atoms ouple antiferromagnetially to the nearest neighbor atoms in themonolayer plane, but ferromagnetially to the Fe atoms of the substrate, iii) stepsin a Fe overed Cr surfae: The Fe atoms ouple antiferromagnetially to the Crsubstrate. However, the Fe atom at the step edge has two Cr nearest neighbors withopposite magnetization, beause the Cr substrate ouples antiferromagnetially layerby layer normal to the surfae. In all these ases the orientation of the magnetimoments is unlear, and the ground-state might be a non-ollinear on�guration.The interest in the hexagonal overlayers is reinfored by the disovery of the om-plex (2 � 8) reonstrution of the Mn monolayer on Cu (100) [FHW92℄. Withinthis reonstrution the Mn atoms are loally hexagonal, while globally the overlayerstays ompatible with the geometry of the substrate. This feature suggests, that theMn monolayer prefers a hexagonal geometry. In order to investigate this Pentheva[Pen96℄ removed the inuene of the substrate and performed systemati alulationson unsupported monolayers (UML) of the 3d transition-metals. These alulationsshow, that Mn monolayers prefer the hexagonal struture. However, this result ouldonly be obtained from magneti alulations, non-magneti alulations yield a lowerenergy for the square lattie. This proves, that magnetism an have a strong impaton strutural properties. In addition, the investigation by Pentheva showed, that aollinear antiferromagneti on�guration, where four of the six nearest neighbors ofeah Mn atom have opposite magnetization and the other two atoms have parallelmagnetization, is lower in energy than the ferromagneti on�guration on the hexag-onal lattie, whih supports the assumption of a non-ollinear ground-state. Suhsystems an only be desribed aurately if both, the strutural and the magnetidegrees of freedom, are relaxed. Therefore, it is neessary to develop a method thatombines the alulation of the fores on the atoms with non-ollinear magnetism.So far the majority of ab-initio alulations have been performed allowing onlyparallel or anti-parallel orientation of magneti moments. With the present workwe took a �rst step towards an extension of the FLAPW method to non-ollinearmagnetism. Non-ollinear on�gurations of unsupported Cr monolayer with Ag(111)geometry and Mn monolayer with Cu(111) geometry have been ompared to the fer-romagneti phase and the antiferromagneti on�guration introdued by Pentheva.A non-ollinear struture proved to be lowest in energy in the ase of the Cr mono-layer. The results have been obtained non-selfonsistently in the frozen potentialapproximation.



4 CHAPTER 1. INTRODUCTIONIn hapter 2 the basis of the density funtional theory and the loal spin-densityapproximation are disussed. The Stoner model, whih provides the framework forthe interpretation of the results of the alulation, is briey reviewed. The FLAPWmethod is disussed in hapter 3. During this disussion we put emphasize to theomputation of the ontribution to the Hamiltonian and overlap matrix from themuÆn-tin spheres and the onstrution of the harge density in the spheres, be-ause the orresponding parts of the program have been hanged for the implementa-tion of the loal orbital extension. In hapter 4 the implementation of non-ollinearmagnetism is desribed and the approximations that have been made are disussed.Chapter 5 ontains a desription of the loal orbital extension that has been imple-mented as part of this work. The loal orbitals are extra basis funtions added to theFLAPW basis set, whih are ompletely loalized inside the muÆn-tins. With theimproved variational freedom due to this extension it is possible to used a ommonbasis set for the majority and minority spin-states, whih is neessary for an eÆientimplementation for future selfonsistent non-ollinear alulations. Test results arepresented, where the loal orbitals have been applied to the semiore states of bTungsten, f and hp Titanium. The results for the non-ollinear alulations onCr unsupported monolayers with Ag (111) geometry and the Mn monolayer with theCu (111) geometry are presented in hapter 6. All results are summarized in hapter7 and ideas for the experimental veri�ation are put forward. The approximationsmade and de�ienies of the urrent implementation are review and it is disussedhow the results an be improved by extending the method to allow selfonsistentnon-ollinear alulations.



Chapter 2The Density Funtional TheoryIn order to establish a deep understanding of the physial properties of solids, itis of major importane to develop a valid quantum-mehanial desription of thesesystems. However, the atom nulei and the eletrons onstitute a omplex many-body problem. A simpli�ation of this problem an be ahieved employing the Born-Oppenheimer-approximation, within whih the atomi nulei are onsidered pointharges at �xed positions. Thus, all quantum e�ets of the nulei are negleted. Thisapproximation, whih is made in the vast majority of �rst-priniple alulations, leadsto the following Shr�odinger equation.H	 = 8>><>>:� NXi=1 �h22mr2 + NXi;j=1i6=j e2jri � rjj + NXi=1 MX�=1 e2Z�jri � � �j9>>=>>;	(r1; : : : ; rN)= E	(r1; : : : ; rN) (2.1)However, due to the large dimension of 	 and the requirement of antisymmetry,whih means that 	 has to be expanded into a sum of Slater determinants, ratherthan simple produt-funtions, this equation an be solved only for tiny systems,inluding few eletrons. In order to deal with realisti materials, relevant in solidstate physis, further approximations have to be made.A breakthrough in the parameter-free ab-initio desription of omplex eletronisystems has been ahieved with the development of the density funtional theory byHohenberg and Kohn [HK64℄ and Kohn and Sham [KS65℄.2.1 The Theorem of Hohenberg and KohnThe all-eletron wavefuntion ontains all information available about an eletronisystem. However, not the whole information is needed to determine the ground stateproperties of a physial system. The measurable quantities are given by expetationvalues of the quantum-mehanial operators orresponding to the observable underonsideration. The entral idea of the density funtional theory [JG89℄ is to replae5



6 CHAPTER 2. THE DENSITY FUNCTIONAL THEORYthe omplex many partile wavefuntion by a far simpler quantity, the eletron den-sity, given by n(r) = h	j NXi=1 Æ(r� ri)j	i: (2.2)Hohenberg and Kohn were able to show for systems with a non-degenerate groundstate, that:� For a given external Potential Vext, the ground state energy and all other groundstate properties of the system are unique funtionals of the eletron density n(r).� The energy funtional is variational, i.e. the ground state density n0(r) mini-mizes the energy funtional E[n℄, under the subsidiary ondition that the num-ber of eletrons is kept onstant.E[n℄ > E[n0℄ = E0 for all n(r) 6= n0(r) (2.3)The density funtional formalism an be extended to degenerate ground states[Koh85, DG90℄. The seond part of the theorem implies, that the ground statedensity an be obtained from the minimization of the energy funtional.ÆE[n℄ = 0 (2.4)Levy [Lev79℄ provided a simpler and more general derivation of the above theorems,de�ning the energy funtional byE[n℄ = min	;n[	℄=nh	jHj	i: (2.5)However, no expliit representation of E[n℄ has been derived so far.2.2 The Kohn-Sham EquationsAn important step on the way to �nding an appliable approximation of the energyfuntional is the idea of Kohn and Sham [KS65℄. The entral onept of their theoryis to split the energy funtional into tree ontributions.E[n℄ = Ts[n℄ + U [n℄ + Ex[n℄ (2.6)Where Ts is the kineti energy of non-interating eletrons. The Coulomb energyU onsists of the interation of the eletrons with the external potential, whih isusually due to the atomi nulei, and the eletron-eletron interation in Hartreeapproximation. U [n℄ = Eext[n℄ + EH [n℄Eext[n℄ = Z Vext(r)n(r)d3r (2.7)EH [n℄ = 4�e22 Z n(r)n(r0)jr� r0j d3rd3r0



2.2. THE KOHN-SHAM EQUATIONS 7Equation 2.6 an be regarded as a de�nition of the exhange orrelation funtionalEx[n℄, whih ontains all remaining ontributions to E[n℄, i.e. the exhange andorrelation energy and orretion to the kineti energy due to the eletron-eletroninteration. The importane of this representation of E[n℄ has two reasons. Thekineti energy of the non-interating eletrons Ts, whih is a signi�ant ontributionto the total energy, an be alulated exatly. By that, many de�ienies due toinaurate treatment of the kineti energy by the Thomas-Fermi method are removed.In addition approximations to Ex[n℄ an be found, that lead to exellent results forthe ground state properties alulated for a wide variety of systems.An expliit formula for Ts[n℄ an be obtained using a speial ansatz for the eletrondensity. The density an be written as a sum of single partile wavefuntions, as inthe ase of non-interating eletrons.n(r) = 2 NXi=1 j i(r)j2 (2.8)Where, where the sum is over the oupied states and the fator \2" aounts for thespin degeneray. With this ansatz the kineti energy an be written as:Ts[n℄ = �2 NXi=1 Z  �i (r) �h22mr2 i(r)d3r (2.9)Instead of minimizing the energy funtional with respet to the eletron density,it an also be minimized with respet to the wavefuntions  i (or their omplexonjugates). In this ase the subsidiary ondition of partile onservation is replaedby the requirement of normalized wavefuntions.Z j i(r)j2d3r = 1 (2.10)This requirement is taken into aount by Lagrange parameters �i. Applying thevariational priniple yields the Kohn-Sham equations.f� �h22mr2 + Veff(r)g i(r) = �i i(r) (2.11)with Veff (r) = Vext(r) + VH(r) + Vx(r) (2.12)These equations have the form of a single partile Shr�odinger equations. However,the potential has been replaed by an e�etive potential onsisting of three ontribu-tions: The external potential Vext, the Hartree potentialVH(r) = 4�e2 Z n(r0)jr� r0jd3r (2.13)and the exhange orrelation potentialVx(r) = ÆEx[n(r)℄Æn(r) (2.14)



8 CHAPTER 2. THE DENSITY FUNCTIONAL THEORYSine VH and Vx depend on the eletron density, this formalism onstitutes a self-onsisteny problem.Even though the Kohn-Sham equations have the form of a single-eletron Shr�o-dinger equation, the formalism does not provide any justi�ation to interpret theLagrange parameters �i as exitation energies, nor to regard the wavefuntions asphysial eletron wavefuntions. Nevertheless, experiene shows, that doing so with-out formal justi�ation an be meaningful, and helps to understand the properties ofthe system under onsideration.2.3 Spin Density Funtional TheoryIn order to desribe magneti e�ets the density funtional theory has to be extendedto the ase of spin polarized eletrons. This is important for systems that possesnon-zero ground state magnetization, whih is the ase for most atoms, magnetisolids and surfaes and eletroni systems exposed to an external magneti �eld. Theneessary extension to the Hohenberg-Kohn theory an be formulated replaing theeletron density by the eletron density plus the magnetization density as fundamentalvariables. In this ase, the variational priniple beomesE[n(r);m(r)℄ � E[n0(r);m0(r)℄: (2.15)An alternative, but ompletely equivalent, formulation an be obtained using a fouromponent density matrix ��� instead of n(r) and m(r) [vBH72, K�ub95℄. In or-der to gain a generalized form of the Kohn-Sham equations, it is neessary at leastto introdue two omponent Pauli wavefuntions, that reprodue the eletron andmagnetization density.  i(r) =   1;i(r) 2;i(r)! (2.16)n(r) = NXi=1 j i(r)j2m(r) = NXi=1 �i (r)� i(r) (2.17)Applying the variational priniple again yields the Kohn-Sham equations, whih nowhave the form of Shr�odinger-Pauli equations.(� �h22mr2 + Veff(r) + � �Beff(r)) i(r) = �i i(r) (2.18)The additional e�etive magneti �eld onsists of two terms. One of them is due tothe variation of the exhange orrelation energy with respet to the magnetization



2.4. THE LOCAL SPIN DENSITY APPROXIMATION 9density. The seond term is the external B-�eld, if present.Beff(r) = Bx(r) +Bext(r)Bx(r) = ÆEx[n(r);m(r)℄Æm(r) (2.19)In many appliations, like for example ferromagneti and antiferromagneti solids,the magnetization is orientated along one partiular diretion. For these ollinearases the problem an be simpli�ed further. The z-axis an be hosen along thediretion of the magneti �eld. Therefore, the Hamiltonian of equation 2.18 beomesdiagonal in the two spin omponents of the wavefuntion, i.e. the spin-up and -down problems beome ompletely deoupled and an be solved independently. Theenergy and all other physial observables beome funtionals of the eletron densityand the magnitude of the magnetization density m(r) = jm(r)j rather than m(r), or,equivalently, of the spin-up and spin-down eletron densities n"(r) and n#r) whihare given by n�(r) = NXi=1 j i�(r)j (2.20)The vast majority of the spin-polarized density funtional alulations have beenperformed using this formalism.2.4 The Loal Spin Density ApproximationSo far, no approximations have been made. The density funtional formalism, out-lined in the previous setions, ould in priniple reprodue all ground state propertiesof any omplex many-eletron system exatly, if the exhange orrelation energy Exwas known. Unfortunately, no expliit representation of this funtional, that on-tains all many-body e�ets, has been found yet. Thus, approximations to Ex haveto be used. The most widely used and very suessful approximation is the loalspin density approximation (LSDA). The underlying idea is very simple. At eahpoint of spae Ex is approximated loally by the exhange orrelation energy of ahomogeneous eletron gas with the same eletron and magnetization density. Hene,the approximate funtional Ex is of the formEx[n(r); jm(r)j℄ = Z n(r)�x(n(r); jm(r)j)d3r (2.21)It is important to note, that �x is not a funtional, but a funtion of n(r) and jm(r)jat a partiular point of spae. As a onsequene of its loal de�nition �x and thus Exdepend only of the magnitude of the magnetization. This, in terms, leads to the fatthat Bx(r) and m(r) do always have the same diretion. Therefore, the exhangeorrelation potential and magneti �eld derived from 2.21 beomeVx(r) = �x(n(r); jm(r)j) + n(r)Æ�x(n(r); jm(r)j)Æn(r)



10 CHAPTER 2. THE DENSITY FUNCTIONAL THEORYBx(r) = n(r)Æ�x(n(r); jm(r)j)Æjm(r)j m̂(r): (2.22)Using the LSDA the Kohn-Sham equations take exatly the same form as the Hartreeequations, and they are no more diÆult to solve. In partiular, they are far easierto deal with than the Hartree-Fok equations beause of the loal e�etive potential.Intuitively one should expet, that the LSDA is valid only for slowly varying densities.Nevertheless, it has been applied suessfully to inhomogeneous systems.Expliit parameterizations of �x an be obtained for example from Hartree-Fokalulations for the homogeneous eletron gas. Of ourse, suh alulations do onlytake into aount the exhange e�ets, but neglet orrelation. Modern parameteri-zations of �x are based on quantum-mehanial many-body alulations. Most om-monly used are the parameterizations of v. Barth and Hedin [vBH72℄ and Moruzzi,Janak and Williams [MJW78℄, whih have been obtained applying the random phaseapproximation (RPA), the parameterization of Vosko, Wilk and Nusair [VWN80℄,that is based on Quantum-Monte-Carlo simulations by Ceperley and Alder [CA80℄,and goes beyond the RPA, and the parameterization of Perdew and Zunger [PZ81℄,whih is, in a ertain sense, a mixture of the previous two. The results of the presentwork have been obtained using the parameterization of Moruzzi, Janak and Williams.2.5 Determination of the Total EnergyIf the total energy of a system is needed, for example in order to alulate the equi-librium lattie onstant of a rystal, the Coulomb interation of the atomi nuleihas to be taken into aount. This extra ontribution Eii (ion-ion) has to be addedto the eletroni energy, given by 2.6.E[n℄ = Ts[n℄ + U [n℄ + Ex[n℄ + Eii; Eii = e2 MX�;�0=1�6=�0 Z�Z�0j� � � � �0j ; (2.23)where � sums over all atoms of the rystal with the position � �. In priniple, thisformula ould be used to alulate the total energy. However, for numerial reasons itis desirable to avoid the expliit appliation of the operatorr2. Therefore, the kinetienergy is alulated from the sum of the single partile eigenvalues �i. Rewriting theShr�odinger-Pauli equation 2.18 yields� �h22mr2 i(r) = �i i(r)� Veff(r) i(r)� � �Beff(r) i(r) (2.24)Multiplying from the left with R d3r  �i (r; �) and summing over the oupied statesgives the kineti energy.Ts[n℄ = NXi=1 �i � Z n(r)Veff(r)d3r � Z m(r) �Beff(r)d3r (2.25)



2.6. THE STONER MODEL OF ITINERANT MAGNETISM 11Using 2.7, 2.21 and assuming that the external potential is given by the atomi nuleiand that no external magneti �eld is present,Vext(r) = �4�e2 MX�=1 Z�jr� � �j ; Bext(r) = 0 (2.26)the total energy beomesE[n;m℄ = NXi=1 �i � Z n(r)Veff(r)d3r � Z m(r) �Bx(r)d3r� 4�e2 MX�=1 Z n(r)Z�jr� � �jd3r + 4�e2 12 Z n(r)n(r0)jr� r0j d3rd3r0+ Z n(r)�x(n(r); jm(r)j)d3r + 4�e2 MX�;�0=1�6=�0 Z�Z�0j� � � � �0 j : (2.27)Using 2.7 and 2.22 this an be simpli�ed further.E[n;m℄ = NXi=1 �i � Z n(r)Vx(r)d3r � Z m(r) �Bx(r)d3r� 4�e2 12 Z n(r)n(r0)jr� r0j d3rd3r0+ Z n(r)�x(n(r); jm(r)j)d3r + 4�e2 MX�;�0=1�6=�0 Z�Z�0j� � � � �0 j (2.28)Equation (2.28) holds exatly for the selfonsistent eletron and magnetization den-sity. During the iterations on the way to selfonsisteny this result represents onlyan approximation to the total energy. Another diÆulty arises, beause the Hartreeenergy and the ontribution from the Coulomb interation of the nulei are diver-gent. Weinert, Wimmer and Freeman [WWF82℄ showed how these singularities anbe aneled analytially.2.6 The Stoner Model of Itinerant MagnetismAlthough all results of the present work have been obtained from ab-initio alu-lations, a brief disussion of the Stoner Model will be given in this setion. Thismodel provides a framework within whih to interpret the results of the alulations.It is very important to keep these simple models in mind, in order to build onesphysial intuition. Comparing ones \intuitive" expetations with the outome of thealulations is ertainly the most important step on the way to understanding thephysis of a system. The magnetism of solid is determined by the interplay of the



12 CHAPTER 2. THE DENSITY FUNCTIONAL THEORYgain of exhange energy due to the formation of a loal moment and the inrease ofthe kineti energy, if not all k-states are double oupied within the Fermi sphere.This e�et an most easily be illustrated within the Stoner model for ferromagnets.The magnetization density m(r) = jm(r)j of solids is usually small ompared tothe eletron density n(r). Expanding the exhange orrelation energy �x(n(r); m(r))into a Taylor series in terms of the parameter � = mn yields�x(n; �) = �x(n; 0) + 12�00x(n; 0)�2 + : : : (2.29)Thus, the magneti �eld Bx beomesBx = 1n2 �00x(n; 0)m: (2.30)In the ase of ferromagnetismBx ats as an extra potential term ~Vx, that adds to thenon-magneti exhange orrelation potential V 0x. This term, whih is proportionalto m, has the same magnitude for both spin-diretions, but it is attrative for themajority-spin (+) and repulsive for the minority-spin(�).V �x(r) = V 0x(r)� ~Vx(r)m(r) (2.31)Within the Stoner theory this rising and lowering of the potential is expressed by aonstant. V �x(r) = V 0x(r)� 12IM (2.32)Where M is the total magneti moment per atom, and I is the exhange integral(Stoner parameter). Beause of this onstant shift the spatial shape of the potentialremains the same as in the non-magneti ase. Consequently, the solutions of theKohn-Sham equations also remain unhanged, only the single partile energies �i areshifted by the same amount as the potential. �i (r) =  0i (r); ��i = �0i � 12IM (2.33)Hene, the whole band struture is spin-split, but the shape of the bands remainsunhanged. As a result, the loal densities of states projeted on an atom for thespin-diretions �,n�(�), are also shifted by �12IM .n�(�) = n0(�� 12IM) (2.34)From this property of the density of states a riterion for the existene of ferromag-netism an be derived. Integrating the density of states up to the Fermi energy EFyields the number of eletrons N and the total magneti moment per atom M .N = Z�<EF �n0(�+ 12IM) + n0(�� 12IM)� d�M = Z�<EF �n0(�+ 12IM)� n0(�� 12IM)� d� (2.35)



2.6. THE STONER MODEL OF ITINERANT MAGNETISM 13These two equations determine the unknown Fermi energy and magneti moment.Requiring harge neutrality the �rst equation an be used to obtain the Fermi energyas a funtion of the magnetization EF = EF (M). Substituting this into the seondequation leads to a selfonsisteny problem for M .M = F (M); F (M) = Z�<EF (M) �n0(�+ 12IM)� n0(�� 12IM)� d� (2.36)The funtion F (M) has the following properties.� F (0) = 0� F (M) = �F (�M)� F (�1) = �M1� F 0(M) > 0Where M1 is the largest possible magnetization, reahed when only majority-spinstates are oupied. The graphi solution of 2.36 is illustrated in Fig. 2.1. Two

Figure 2.1: Graphi solution of the Stoner modelfuntions F (M), onsistent with the above properties, are plotted. In ase A onlythe trivial non-magneti solutionM = 0 is present, whereas in ase B three solutionsexist, two of whih have non-zero magnetization. From the properties of F (M)follows, that 2.36 always has solutions with non-zero magnetization, if the slope ofF (M) at M = 0 is larger than 1. From 2.36 follows that the slope of F (M) is givenby F 0(0) = In0(EF ): (2.37)



14 CHAPTER 2. THE DENSITY FUNCTIONAL THEORYThis �nally is the Stoner riterion for ferromagnetism:In0(EF ) > 1: (2.38)A big exhange integral and a large non-magneti density of states at the Fermienergy favors ferromagnetism. This result is not surprising, beause a large n0(EF )means, that only a small inrease in kineti energy has to be aepted to obtain alarge magnetization, and thus a large gain of exhange energy. In the most simpleapproximation the size of the density of states is proportional to the inverse of thebandwidth W . Thus, the smaller the bandwidth is, the larger the tendeny towardsmagnetism beomes. The limiting ase of zero bandwidth are atoms. Here theStoner riterion is always satis�ed, and the magneti moments are determined byHund's rule, with the exeption of the Lanthanides and the Atinides. The only bulkmaterials that ful�ll the Stoner riterion are Fe, Co and Ni. However, due to theredued oordination, the bandwidth at surfaes is smaller than in bulk materials.Thus, from the Stoner model one should expet an enhanement of magnetism atsurfaes and even new magneti materials, whih are non-magneti in their bulkrystalline phase, but beome magneti at the surfae.



Chapter 3The FLAPW Method
3.1 The FLAPW MethodThere are many possible ways to solve the Kohn-Sham equations. One very ommonmethod is to use some kind of basis set to represent the wavefuntions. A verysuitable hoie that is already suggested by Bloh's theorem are plane waves. Theyhave a lot of advantages: They are orthogonal, they are diagonal in momentumand any power of momentum and the implementation of planewave based methodsis rather straightforward beause of their simpliity. However, sine the eletronwavefuntions are varying very quikly near the ore, large wavevetors are neededto represent the wavefuntions aurately. This makes planewaves very ineÆient.To overome this problem one an employ pseudopotential tehniques, whih allowan aurate desription of the wavefuntions between the atoms, but avoid the fastosillations near the ore. Thus, less basis funtions are needed. Another way to solvethis problem is to use a basis set, whih ontains radial wavefuntions to desribe theosillations near the ore. This has already been suggested by Slater [Sla37℄. Theorresponding tehnique is alled the augmented planewave method (APW).
3.1.1 The APW Method and its ProblemsWithin the APW approah, spae is divided into spheres entered at eah atom site,the so-alled muÆn-tins, and the remaining interstitial region (f. �g. 3.1). Inside themuÆn-tins the potential is approximated to be spherially symmetri, and in manyimplementations the interstitial potential is set onstant. The restritions to thepotential are ommonly alled shape-approximations. Noting that planewaves solvethe Shr�odinger equation in a onstant potential, while spherial harmonis times aradial funtion are the solution in a spherial potential, suggests to expand the single15



16 CHAPTER 3. THE FLAPW METHOD

Figure 3.1: The division of spae in the APW method. The muÆn-tinspheres are surrounded by the interstitial region.partile wavefuntions1 ��(k; r) in terms of the following basis funtions:'G(k; r) = 8><>: ei(G+k)r interstitial regionXlm A�GL (k)ul(r)YL(r̂) muÆn-tin � (3.1)Where k is the Bloh vetor, 
 is the ell volume, G is a reiproal lattie vetor, Labbreviates the quantum numbers l and m and ul is the regular solution of the radialShr�odinger equation(� �h22m �2�r2 + �h22m l(l + 1)r2 + V (r)� El) rul(r) = 0 (3.2)Here El is an energy parameter and V (r) is the spherial omponent of the potential.The oeÆients A�GL (k) are determined from the requirement, that the wavefuntionshave to be ontinuous at the boundary of the muÆn-tin spheres.Hene, the APW's form a set of ontinuous basis funtions that over all spae.Where eah funtion onsists of a planewave in the interstitial region plus a sum offuntions, whih are solutions of the Shr�odinger equation to a given set of angularmomentum quantum numbers lm and a given parameter El, inside the muÆn-tinspheres.If the El were kept �xed, used only as a parameter during the onstrution of thebasis, the hamiltonian ould be set up in terms of this basis. This would lead to astandard seular equation for the band energies. Unfortunately, it turns out, that the1I will only disuss the appliation of FLAPW to systems that possess either 2- or 3-dimensionaltranslational symmetry, i.e. bulk rystals or thin rystal �lms.



3.1. THE FLAPW METHOD 17APW basis does not o�er enough variational freedom if the El are kept �xed. Anaurate desription an only be ahieved if they are set to the orresponding bandenergies. However, requiring the El's to equal the band energies, the latter an nolonger be determined by a simple diagonalization of the Hamiltonian matrix. Sinethe ul's depend on the band energies, the solution of the seular equation beomes anonlinear problem, whih is omputationally muh more demanding than a seularproblem.Another disadvantage of the APW method is, that it is diÆult to extend beyondthe spherially averaged muÆn-tin potential approximation, beause in the ase of ageneral potential the optimal hoie of El is no longer the band energy. And �nally,but less serious, if, for a given hoie of El, the radial funtions ul vanish at themuÆn tin radius, the boundary onditions on the spheres annot be satis�ed, i.e. theplanewaves and the radial funtions beome deoupled. This is alled the asymptoteproblem. It an already ause numerial diÆulties if ul beomes very small at thesphere boundary.Further information about the APW method an be found in the book byLouks [Lou67℄, whih also reprints several early papers inluding Slater's originalpubliation [Sla37℄.3.1.2 The Conept of LAPWThe basi idea of the linearized augmented planewave method (LAPW) is to add extravariational freedom to the basis inside the muÆn-tins, so that it is not neessary toset the El equal to the band energy. This is done by using not only the radial solutionof the Shr�odinger equation, but also its derivative with respet to the energy. Thisonstrution, whih was �rst suggested by Andersen [And75℄, an be regarded as alinearization of the APW. To realize this reall that in the APW method the ul'sdepend on the band energies and an thus be understood as funtions of r and �.Hene, ul an be expanded into a Taylor-series around El.ul(�; r) = ul(El; r) + _ul(El; r)(�� El) +O[(�� El)2℄ (3.3)Here _ul denotes the energy derivative of ul, �ul(�; r)=��, andO[(��El)2℄ denotes errorsthat are quadrati in the energy di�erene. Ergo, the LAPW method introdues anerror of order (�� El)2 in the wavefuntion. Therefore, aording to the variationalpriniple the error in the alulated band energies is of the order (�� El)4. Beauseof this high order, the linearization works very well even over rather broad energyregions. In most ases a single set of energy parameters is suÆient for the wholevalene band. However, sometimes the energy region has to be split up in two (veryrarely more) windows with separate sets of energy parameters.But let's turn to some important properties of the LAPW basis �rst, before dis-



18 CHAPTER 3. THE FLAPW METHODussing its quality and auray. The LAPW basis funtions are of the form'G(k; r) = 8><>: ei(G+k)r interstitial regionXL A�GL (k) ul(r)YL(r̂) +B�GL (k) _ul(r)YL(r̂) muÆn-tin � (3.4)with the extra term BkL _ul(r)YL(r̂) ompared to the APW method. The additionaloeÆient is determined by requiring that not only the basis funtions, but also theirderivatives with respet to r are ontinuous at the sphere boundaries. It is useful torequire the following normalization.hujui = Z RMT0 u2l (r)r2dr = 1 (3.5)Here RMT is the muÆn-tin radius. Taking the derivative of (3.5) with respet to theenergy it an easily be shown, that ul and _ul are orthogonal. _ul is alulated from aShr�odinger-like equation, derived by taking the energy derivative of (3.2).(� �h22m �2�r2 + �h22m l(l + 1)r2 + V (r)� El) r _ul(r) = rul(r) (3.6)Still the solution of this equation has to be made orthogonal to ul, sine any linearombination of _ul and ul also solves the equation. One the ul and _ul are madeorthogonal the basis funtions inside the spheres form a ompletely orthogonal basisset, sine the angular funtions Ylm(r̂) are also orthogonal. However, the LAPWfuntions are in general not orthogonal to the ore states, whih are treated separatelyin the LAPW method. This fat an ause problems in the presene of high lying orestates. A detailed disussion of these problems and strategies to irumvent them anbe found in the book by Singh [Sin94℄, whih inludes a very omprehensive reviewof many aspets of the LAPW method.With the onstrution of the LAPW basis the main problems of the APW methodare solved:� Sine it is no longer neessary to set the energy parameters equal the band ener-gies, the later an be determined by a single diagonalization of the Hamiltonianmatrix.� The LAPW method an be extended to nonspherial muÆn tin potentials withlittle diÆulty, beause the basis o�ers enough variational freedom. This leadsthen to the full-potential linearized augmented planewave method (FLAPW).� If ul is zero at the sphere boundary, its radial derivative and _ul are in generalnonzero. Hene, the boundary onditions an always be satis�ed and there isno asymptote problem.As a �nal remark it is worth mentioning, that the nonlinearity inherent to the APWmethod an only be irumvented at the expense of a larger eigenvalue problem. To



3.1. THE FLAPW METHOD 19see this, reall that within LAPW (and also within APW) the basis funtions arerepresented by planewaves. The funtions inside the muÆn tins are oupled to theplanewaves via the boundary onditions, and an only varied indiretly by a variationof the planewave oeÆients. Clearly, with a �nite number of planewaves, at maxi-mum the same number of funtions inside the spheres an be varied independently.Hene, to make use of the of the extra variational freedom, that the LAPW basis setallows ompared to the APW basis, i.e. to vary the ul's and the _ul's independently,more planewaves have to be used.3.1.3 The Conept of FLAPWIn the past the majority of appliations of APW and LAPW2 method employed shape-approximations on the potential used in the Hamiltonian. Typially, the potential inthe unit ell V (r) is approximated by V0(r),V (r) = 8<: V 0I = onst: interstitial regionV 0MT (r) muÆn-tin (3.7)using a onstant potential in the interstitial region and a spherially symmetri po-tential inside eah sphere.While the LAPW method yields aurate results for lose-paked metal systemsthe shape-approximation beomes diÆult to justify for rystals with open struturessuh as silizides, perovskides, surfaes or lusters.In the full-potential LAPW method (FLAPW) [Ham79, WKWF81℄ any shape-approximations in the interstitial region and inside the muÆn-tins are dropped. Thisgeneralization is ahieved by relaxing the onstant interstitial potential V 0I and thespherial muÆn-tin approximation V 0MT (r) due to the inlusion of a warped interstitialPV GI eiGr and the non-spherial terms inside the muÆn-tin spheres:V (r) = 8>><>>: XG V GI eiGr interstitial regionXL V LMT (r)YL(r̂) muÆn-tin (3.8)This method beame possible with the development of a tehnique for obtain-ing the Coulomb potential for a general periodi harge density without shape-approximations and with the inlusion of the Hamiltonian matrix elements due tothe warped interstitial and non-spherial terms of the potential. The harge densityis represented in the same way as the potential:�(r) = 8>><>>: XG �GI eiGr interstitial regionXL �LMT (r)YL(r̂) muÆn-tin (3.9)2There are APW and LAPW methods available whih inlude the warped interstitial potential[Koe72℄.



20 CHAPTER 3. THE FLAPW METHODDetail of the solution of the Poisson equation for an arbitrarily shaped periodi po-tential are desribed in setion 3.7.3.1.4 The Generalized Eigenvalue ProblemAfter disussing the FLAPW basis it is neessary to say a few words about theeigenvalue problem. The solution of the eigenvalue problem has to be arried outseparately for every Bloh vetor. And, of ause, the basis set and the Hamiltonianmatrix have to be set up for eah Bloh vetor. However, I will not add the index kto the basis funtions and the Hamiltonian matrix.There is one important fat that I have not mentioned so far. Even though plane-waves form an orthogonal basis set, the FLAPW funtions do not. The planewavesin the interstitial-region are non-orthogonal, beause the muÆn-tin are ut out, i.e.the integration,in terms of whih orthogonality is de�ned, does not streth over thewhole unit ell, but only over interstitial region. An additional ontribution omesfrom the muÆn-tin. Even though the ul(r)YL and _ul(r)YL are mutually orthogonal,in general eah planewave ouples to all funtions in the spheres.Due to the non-orthogonality of the basis funtions the overlap matrix S, de�nedby (3.10), is not a diagonal, but a hermitian matrix.SG0G = Z '�G0(r)'G(r)d3r (3.10)In (the more onvenient) Dira notation the eigenvalue problem has the followingform. Hj�ii = �ij�ii (3.11)Where j�ii denotes the eigenfuntion orresponding to the ith eigenvalue �i. Substi-tuting the expansion of the eigenfuntionsj�ii =XG iGj'Gi (3.12)we obtain XG iGHj'Gi = �iXG iGj'Gi (3.13)Multiplying this from the left with h'G0 j we �ndXG iGh'G0 jHj'Gi = �iXG iGh'G0 j'Gi (3.14)whih an be written in matrix formfH� �iSg i = 0 (3.15)where the eigenvetor i is the oeÆient vetor orresponding to the ith eigenvalue.(3.15) is alled a generalized eigenvalue problem.



3.1. THE FLAPW METHOD 21However, this problem an be redued to a standard eigenvalue problem using theCholesky deomposition. It an be shown (e.g. Stoer [Sto94℄), that any hermitianand positive de�nite matrix an be deomposed into a matrix produt of a lowertriangular with only positive diagonal elements matrix and its transposed. Clearly,the overlap matrix satis�es these onditions and an be writtenS = LLtr (3.16)Therefore (3.15) beomes Hi = �iLLtri (3.17)multiplying from the left with L�1 and introduing a unit matrix we getL�1H(L�1)trLtri = �iLtri (3.18)de�ning P = L�1H(L�1)tr; xi = Ltri (3.19)we �nally have Pxi = �ixi (3.20)Thus the generalized eigenvalue problem has been redued to a simple eigenvalueproblem. The eigenvetors i an be obtained by the bak-transformationi = (Ltr)�1xi (3.21)3.1.5 Film Calulations within FLAPWNowadays the physis of surfaes is an �eld of major interest and investigation. How-ever, surfaes are diÆult to treat, beause they break the translational symmetry,i.e. there is only the 2-dimensional symmetry parallel to the surfae left to be used toredue the problem, and a semi-in�nite problem is left perpendiular to the surfae.In our approah surfaes are approximated by thin �lms, typially 10{15 atomi lay-ers thik. Obviously, this approximation, whih is alled the thin-slab approximation,an only yield good results if the interation between the two surfaes of the �lm isweek enough, so that eah of them shows the properties of the surfaes of an idealsemi-in�nite rystal.In the ase of �lm alulations spae is divided into three distint regions, themuÆn-tins, the interstitial and the vauum region (f. �g. 3.2). The interstitialregion now strethes from �D=2 to D=2 in z-diretion, whih is de�ned to be thediretion perpendiular to the �lm. The representation of the wavefuntions inside themuÆn-tin spheres remains exatly the same as in the bulk ase. Sine the periodiityalong the z-diretion is lost, the unit ell extends prinipally from �1 to 1 in z-diretion. Still the wavefuntions an be expanded in terms of planewaves. However,the wavevetors perpendiular to the �lm are not de�ned in terms of D, but in terms
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Figure 3.2: The unit ell in �lm alulations. (I) denotes the muÆn-tinspheres surrounded by the interstitial region (II). On both sides the �lmis delimited by the vauum (III).of ~D, whih is hosen larger than D to gain greater variational freedom. Therefore,the planewaves have the form'GkG?(kk; r) = ei(Gk+kk)rk eiG?z (3.22)with G? = 2�n~D (3.23)where Gk and kk are the 2-dimensional wave- and Bloh vetors, rk is the parallelomponent of r and G? is the wavevetor perpendiular to the �lm. The basis fun-tions in the vauum region are onstruted in the same spirit as the funtions in themuÆn-tins. They onsist of planewaves parallel to the �lm, and a z-dependent fun-tion uGk(kk; z), whih solves the orresponding 1-dimensional Shr�odinger equation(3.24), plus its energy derivative _uGk(kk; z).(� �h22m �2�z2 + V0(z)� Eva + �h22m(Gk + kk)2)uGk(kk; z) = 0 (3.24)



3.2. RELATIVITY IN VALENCE ELECTRON CALCULATIONS 23Eva is the vauum energy parameter and V0(z) is the planar averaged part of thevauum potential. As in the ase of _ul in the muÆn-tins, the funtion _uGk(kk; z) isalulated from a Shr�odinger-like equation, whih an be obtained by deriving (3.24)with respet to the energy.(� �h22m �2�z2 + V0(z)� Eva + �h22m(Gk + kk)2) _uGk(kk; z) = uGk(kk; z) (3.25)The resulting basis funtions have the form'GkG?(kk; r) = nAGkG?(kk)uGk(kk; z) +BGkG?(kk) _uGk(kk; z)o ei(Gk+kk)rk (3.26)The oeÆients AGkG?(kk) and BGkG?(kk) are determined in exatly the same wayas it is done for the muÆn-tins by requiring that the funtions are ontinuous anddi�erentiable at the vauum boundary. It should be mentioned, that the vauumbasis funtions o�er less variational freedom than the basis set in the interstitialregion does. This an be seen by noting that there are only two funtions, uGk and_uGk times the orresponding planar planewave, to be mathed to all planewaves ofthe interstitial region with the same Gk. But there are generally far more than twodi�erent G?'s, i.e the number of basis funtions in the vauum region is signi�antlysmaller than in the interstitial region. However, this an be improved rather easily. Inequation 3.24 only one energy parameter Eva is used. Instead one an used a wholeseries of parameters Eiva to over an energy region. A possible hoie of the energyparameters ould be Eiva = EG?va = Eva� �h22mG2?, whih leads orrespondingly to G?dependent basis funtions uGkG?(kk; z). For more details see [NKD86℄. In general,however, the present approximations is aurate, the energy spetrum of the eletronsin the vauum region is small due to the work-funtion.Finally we would like to summarize the basis set used for thin �lm alulationwith the FLAPW method.
'GkG?(kk; r) = 8>>>>>>>>>><>>>>>>>>>>:

ei(Gk+kk)rk eiG?z Int.nAGkG?(kk)uGk(kk; z)+BGkG?(kk) _uGk(kk; z)o ei(Gk+kk)rk Va.XL A�GL (k)ul(r)YL(r̂) +B�GL (k) _ul(r)YL(r̂) MT � (3.27)
This expansion has been suggested by H. Krakauer, M. Posternak and A.J. Free-man [KPF79℄.3.2 Relativity in Valene Eletron CalulationsRelativisti e�ets are important for the orret numerial desription of ore orvalene eletrons. Both ore and valene eletrons have �nite wavefuntions near the



24 CHAPTER 3. THE FLAPW METHODnuleus, where the kineti energy is large. This kineti energy enhanement beomesmore signi�ant for heavier elements and ompounds. Additionally, only relativistie�ets, in partiular the spin-orbit-oupling, introdue a link between spatial andspin oordinates. Thus, information about the orientation of spins relative to thelattie an only be gained if relativity is taken into aount. For fully relativistidesription of the eletroni struture all relativisti e�ets (mass-veloity, Darwin-term, spin-orbit oupling) have to be taken into aount [SDKW℄. However, in manyappliations an approximation is used, where the spin-orbit interation is negleted.This approximation is alled the salar relativisti approximation.3.2.1 The Kohn-Sham-Dira EquationIn a relativisti density funtional theory the Kohn-Sham equation has the form of asingle partile Dira equationn� � p + (� � 1)m2 + V eff (r)o	 = E	 (3.28)
� =   0 �x�x 0 ! ; 0 �y�y 0 ! ; 0 �z�z 0 !!tr =  0 �� 0 ! (3.29)� =  I2 00 �I2 ! (3.30)Here, �x �y �z are the Pauli matries and � is the vetor of Pauli matries, p isthe momentum operator, and In denotes an (n � n) unit matrix. V eff is the e�e-tive potential, that ontains eletron-nuleon Coulomb potential, Hartree potentialand exhange-orrelation potential. In the ase of non-zero spin-polarization, V effbeomes spin-dependent. Finally, 	 is the relativisti four omponent wavefuntion.The straightforward way to solve this problem would be to expand eah of thefour omponents of	 in terms of the FLAPW basis. However, if all four omponentswere treated with the same auray, this would result in a basis set whih ontainsfour times as many funtions as in the non-relativisti (non-magneti) ase. Sinethe numerial e�ort of the Hamiltonian diagonalization sales with the dimension ofthe matrix to the power of three, this would inrease the omputing time needed forthe diagonalization by a fator of 64.The FLAPW implementation we use introdues some approximations to makerelativisti alulations more eÆient. One of these approximations is the salarrelativisti approximations, whih has been suggested by D.D. Koelling and B.N.Harmon [KH77℄, where the spin-orbit term is negleted, and spin and spatial oordi-nates beome deoupled. Hene, the Hamiltonian matrix redues to two matries ofhalf the size, whih an be diagonolized separately. This saves a fator of four in om-puting time. The salar relativisti approximation will be disussed more detailed in



3.2. RELATIVITY IN VALENCE ELECTRON CALCULATIONS 25the next setion. It should be noted, that relativisti e�ets are only signi�ant loseto the nuleus, where the kineti energy is large. It is therefore reasonable to treatthe interstitial region and the vauum non-relativistially. Thus, merely within themuÆn-tins the eletrons are treated relativistially. And only the large omponentof 	 is mathed to the non-relativisti wavefuntions at the boundary between themuÆn-tins and the interstitial region, beause the small omponent is already negli-gible at this distane from the nuleus. The small omponent is attahed to the largeomponent, and annot be varied independently. However, this is a sensible approxi-mation for two reasons: Firstly even inside the muÆn-tin sphere the large omponentis still muh bigger than the small omponent, and plays the more important role,and seondly the two omponents are determined by solving the salar relativistiequations for the spherially averaged potential. Therefore, they are very well suitedto desribe the wavefuntions.Hene, the size of the basis set and the Hamiltonian matrix remains the same asin non-relativisti alulations, but the problem has to be solved twie, one for eahdiretion of spin. This amounts to a numerial e�ort, that is equal to that needed inspin-polarized non-relativisti alulations.3.2.2 The Salar Relativisti ApproximationAs I pointed out in the previous setion, the eletrons are only treated relativistiallyinside the muÆn-tin spheres. Thus, the �rst problem that has to be addressed isthe onstrution of the relativisti radial funtion. This is done by solving the salarrelativisti equation, inluding only the spherially averaged part of the potential.The starting point is the following Dira equation.n� � p+ (� � 1)m2 + V (r)o	 = E	 (3.31)The solution of (3.31)is disussed in many textbooks, e.g. E.M. Rose [Ros61℄. Dueto spin-orbit oupling m and ms are not good quantum numbers any more, andthey have to be replaed by the quantum numbers � and � (or j and �), whih areeigenvalues of the operators K and the z-omponent of the total angular momentumjz (or the total angular momentum j and jz) respetively. K is de�ned byK = �(� � l+ 1) (3.32)The solutions of (3.31) have the form	 = 	�� =  g�(r)���if�(r)���� ! (3.33)Where g�(r) is the large omponent, f�(r) is the small omponent, ��� and ���� arespin angular funtions, whih are eigenfuntions of j, jz, K and s2 with eigenvalues j,�, � (-�) and s = 1=2 respetively. The spin angular funtions an be expanded into



26 CHAPTER 3. THE FLAPW METHODa sum of produts of spherial harmonis and Pauli spinors. Where the expansionoeÆients are the Clebsh-Gordon oeÆients. The radial funtions have to satisfythe following set of oupled equations.��rg�(r) = �� + 1r g�(r) + 2Mf�(r) (3.34)��rf�(r) = 1 (V (r)� E)g�(r) + �� 1r f�(r) (3.35)with M = m + 122 (E � V (r)) (3.36)This an be written in matrix form.0BBB� �� + 1r � ��r 2M1 (V (r)� E) �� 1r � ��r 1CCCA g�(r)f�(r) ! = 0 (3.37)To derive the salar relativisti approximation D.D. Koelling and B.N. Har-mon [KH77℄ introdue the following transformation. g�(r)��(r) ! = 0BB� 1 012M �+ 1r 1 1CCA g�(r)f�(r) ! (3.38)Using this transformation (3.37) beomes0BBBB� � ��r 2M12M �(�+ 1)r2 + 1 (V (r)� E)� 12M �+ 1r  ��r � M 0M ! �� 1r � ��r 1CCCCA g�(r)��(r) ! = 0 (3.39)Where M 0 denotes the derivative of M with respet to r (�M=�r). Multiplying the�rst line in (3.39) by (�+ 1)=2Mr and subtrating it from the seond yields0BBB� � ��r 2M12M l(l + 1)r2 + 1 (V (r)� E) + �+ 1r M 02M2 �2r � ��r 1CCCA g�(r)��(r) ! = 0(3.40)Where the identity �(�+1) = l(l+1) has been used. Realling, that � is the eigenvalueof K = �(� � l + 1) the term (� + 1)M 0=2M2r an be identi�ed as the spin-orbit



3.2. RELATIVITY IN VALENCE ELECTRON CALCULATIONS 27term. This term is dropped in the salar relativisti approximation, beause it is theonly one, that auses oupling of spin up and spin down ontributions. In the originalpaper this is interpreted as an average over all states for the two possible values of�, � = l; (j = l� 1=2) and � = �(l+1); (j = l+1=2). The radial funtions gl(r) and�l(r) (the index � has been replaed by l) an now be alulated from the followingset of di�erential equations.��rgl(r) = 2M�l(r) (3.41)��r�l(r) =  12M l(l + 1)r2 + 1 (V (r)� E)! gl(r)� 2r�l(r) (3.42)Deriving these equations with respet to the energy yields a set of equations for _gl(r)and _�l(r), whih are the relativisti analog of _ul(r).��r _gl(r) = 2M _�l(r) + 2 _M�l(r) (3.43)��r _�l(r) =  12M l(l + 1)r2 + 1 (V (r)� E)! _gl(r)� _M2M2 l(l + 1)r2 + 1! gl(r)� 2r _�l(r) (3.44)For numerial reasons the funtions gl(r) and �l(r) are replaed by p(r) = rgl(r) andq(r) = r�l(r). Thus, equations (3.41) { (3.44) beome��rp(r) = 2�1 + 122 (E � V (r))� q(r) + p(r)r (3.45)��r q(r) = 0� l(l + 1)2 �1 + 122 (E � V (r))� r2 + V (r)� E1A p(r)� q(r)r (3.46)��r _p(r) = 2��1 + 122 (E � V (r))� _q(r) + 122 q(r)�+ _p(r)r (3.47)��r _q(r) = 0� l(l + 1)2 �1 + 122 (E � V (r))� r2 + V (r)� E1A _p(r)�0� l(l + 1)42 �1 + 122 (E � V (r))� r2 + 11A p(r)� _q(r)r (3.48)This formulae have been obtained using the de�nition of M (3.36), _M = 1=22 andthe fat that m = 1 in Hartree units. In our implementation of FLAPW the radialwavefuntions are normalized aording to* gl�l !�����  gl�l !+ = Z RMT0 (g2l (r) + �2l (r))r2dr = 1 (3.49)



28 CHAPTER 3. THE FLAPW METHODHowever, g2l (r)+�2l (r) is not the harge density. The radial harge density is de�nedby �l(r) = * glfl !�����  glfl !+ = Z RMT0 (g2l (r) + f 2l (r))r2dr (3.50)The energy derivatives of the radial funtions have to be made orthogonal to theradial funtions (omp. setion(3.1.2)).* gl�l !�����  _gl_�l !+ = 0 (3.51)Thus, the salar relativisti FLAPW basis set is
'GkG?(r) = 8>>>>>>>>>><>>>>>>>>>>:

1p
 ei(Gk+kk)rk eiG?z Int:nAGkG?uGk(z) +BGkG? _uGk(z)o ei(Gk+kk)rk V a:X�lm A�Gklm  gl(r)�l(r) !Ylm(r̂) +B�Gklm  _gl(r)_�l(r) !Ylm(r̂) MT (3.52)
Note, that the Pauli-spinors have been omitted, sine the spin up and down prob-lems are solved independently within the salar relativisti approximation. Rewriting(3.40) HSP  gl(r)�l(r) ! = E  gl(r)�l(r) ! (3.53)with HSP = 0BBB� 12M l(l + 1)r2 + V (r) �2r �  ��r ��r �2m2 + V (r) 1CCCA (3.54)a matrix expression for the salar relativisti Hamiltonian inluding only the spheri-ally averaged part of the potential an be obtained.3.3 Constrution of the Hamiltonian MatrixThe FLAPW Hamiltonian and overlap matries onsist of three ontributions fromthe three regions into whih spae is divided.H = HI +HMT +HV (3.55)S = SI + SMT + SV (3.56)All three ontributions have to be omputed separately. Let's begin with the muÆn-tin spheres.



3.3. CONSTRUCTION OF THE HAMILTONIAN MATRIX 293.3.1 Contribution of the MuÆn-TinsThe ontribution of the muÆn-tin to the Hamiltonian matrix and the overlap matrixis given by:HG0GMT (k) = X� ZMT�  XL0 A�G0L0 (k)'�L0(r) +B�G0L0 (k) _'�L0(r)!�HMT� XL A�GL (k)'�L(r) +B�GL (k) _'�L(r)! d3r (3.57)SG0GMT (k) = X� ZMT�  XL0 A�G0L0 (k)'�L0(r) +B�G0L0 (k) _'�L0(r)!� XL A�GL (k)'�L(r) +B�GL (k) _'�L(r)! d3r (3.58)with '�L(r) =  gl(r)�l(r) !YL(r̂); _'�L(r) =  _gl(r)_�l(r) !YL(r̂) (3.59)Where we distinguish between the atom index � and the atom type index �(�). Inmost appliation the are symmetry equivalent atom in the unit ell, i.e. some atomsan be mapped onto eah other by spae group operations. Clearly, these atommust possess the same physial properties, e.g. the potential has to be equal. Asa onsequene, the Hamiltonian and the basis funtions '�L(r) do not di�er amongthe atoms of the same type. This fat is exploited in that the muÆn-tin potentialof an atom type is only stored one for the representative atom, and the matries3.61{3.64 is also alulated for the representative only. HMT� is the salar relativistiHamiltonian operator. It an be split up into two parts, the spherial HamiltonianHsp (3.54) and the nonspherial ontributions to the potential Vns.HMT� = H�sp + V �ns (3.60)The above integrations ontain the following matrix elements.t�''L0L = ZMT� '�L0(r)HMT�'�L(r)d3r (3.61)t�' _'L0L = ZMT� '�L0(r)HMT� _'�L(r)d3r (3.62)t� _''L0L = ZMT� _'�L0(r)HMT�'�L(r)d3r (3.63)t� _' _'L0L = ZMT� _'�L0(r)HMT� _'�L(r)d3r (3.64)These matrix elements do not depend on the A�GL (k) and B�GL (k) oeÆients. Thus,they are independent of the Bloh vetor and need to be alulated only one per



30 CHAPTER 3. THE FLAPW METHODiteration. The funtions '�L and _'�L have been onstruted to diagonalize the spherialpart H�sp of the muÆn-tin Hamiltonian HMT�.H�sp'�L = El'�L (3.65)H�sp _'�L + _H�sp'�L = El _'�L + '�L (3.66)However, _H�sp is smaller than H�sp, by a fator of 1=2 and is therefore negleted.H�sp _'�L+ = El _'�L + '�L (3.67)Multiplying these equations with '�L0(r) and _'�L0(r) respetively and integrating overthe muÆn-tins givesh'�L0 jH�sp'�LiMT� = Æll0Æmm0El (3.68)h'�L0 jH�sp _'�LiMT� = Æll0Æmm0 (3.69)h _'�L0 jH�sp'�LiMT� = 0 (3.70)h _'�L0 jH�sp _'�LiMT� = Æll0Æmm0Elh _'�Lj _'�LiMT� (3.71)Where the normalization ondition for '�L has been used. So, only the expetationvalues of the nonspherial part of the potential are left to be determined. Sine thepotential is also expanded into a produt of radial funtions and spherial harmonis,the orresponding integrals onsist of produt of a radial integrals and an angularintegrals over three spherial harmonis, the so-alled gaunt oeÆients.V �(r) =XL00 V �L00(r)YL00(r̂) (3.72)t�''L0L = Xl00 I�''l0ll00 Gm0mm00l0ll00 + Æll0 Æmm0El (3.73)t�' _'L0L = Xl00 I�' _'l0ll00 Gm0mm00l0ll00 + Æll0 Æmm0 (3.74)t� _''L0L = Xl00 I� _''l0ll00 Gm0mm00l0ll00 (3.75)t� _' _'L0L = Xl00 I� _' _'l0ll00 Gm0mm00l0ll00 + Æll0 Æmm0Elh _'�lmj _'�lmiMT� (3.76)with I�''l0ll00 = Z (g�l0 (r)g�l (r) + ��l0(r)��l (r))V �l00 (r)r2dr (3.77)I�' _'l0ll00 = Z (g�l0 (r) _g�l (r) + ��l0(r) _��l (r))V �l00 (r)r2dr (3.78)I� _''l0ll00 = Z ( _g�l0 (r)g�l (r) + _��l0(r)��l (r))V �l00 (r)r2dr (3.79)I� _' _'l0ll00 = Z ( _g�l0 (r) _g�l (r) + _��l0(r) _��l (r))V �l00 (r)r2dr (3.80)



3.3. CONSTRUCTION OF THE HAMILTONIAN MATRIX 31and Gmm0m00ll0l00 = Z Y �lmYl0m0Yl00m00d
 (3.81)The I matries ontain the radial integrals. Finally, the Hamiltonian and overlapmatrix elements beomeHG0GMT (k) = X� XL0L(A�G0L0 (k))�t�''L0L A�GL (k) + (B�G0L0 (k))�t� _' _'L0L B�GL (k)+(A�G0L0 (k))�t�' _'L0L B�GL (k) + (B�G0L0 (k))�t� _''L0L A�Gl (k) (3.82)SG0GMT (k) = X� XL (A�G0L (k))�A�GL (k) + (B�G0L (k))�B�GL (k)h _'�Lj _'�LiMT� (3.83)3.3.2 The Vauum ContributionThe vauum ontributions to the Hamiltonian and overlap matrix are.HG0GV (kk) = ZV �nAG0kG0?(kk)uG0k(kk; z) +BG0kG0?(kk) _uG0k(kk; z)o ei(G0k+kk)rk��HV �nAGkG?(kk)uGk(kk; z) +BGkG?(kk) _uGk(kk; z)o ei(Gk+kk)rk� d3rSG0GV (kk) = ZV �nAG0kG0?(kk)uG0k(kk; z) +BG0kG0?(kk) _uG0k(kk; z)o ei(G0k+kk)rk���nAGkG?(kk)uGk(kk; z) +BGkG?(kk) _uGk(kk; z)o ei(Gk+kk)rk� d3r(3.84)The treatment of the vauum region in FLAPW is in many way similar to the treat-ment of the muÆn-tins. As in the muÆn-tins the basis funtions are onstruted todiagonalize only a ertain part of the Hamiltonian. Here this part of the Hamiltonianinludes only the non-orrugated planar averaged part of the potential (Vn(z)), thatdepends only on z. HV = Hn + Vo(r) (3.85)The t-matries an be de�ned in the same way as inside the muÆn-tin spheres ((3.61){ (3.64)). tuuG0kGk(kk) = h'G0k(kk)jHV 'Gk(kk)iV (3.86)tu _uG0kGk(kk) = h'G0k(kk)jHV _'Gk(kk)iV (3.87)t _uuG0kGk(kk) = h _'G0k(kk)jHV 'Gk(kk)iV (3.88)t _u _uG0kGk(kk) = h _'G0k(kk)jHV _'Gk(kk)iV (3.89)The ontribution to these matries from Hn, are given by the analog of equations(3.68) { (3.71). The non-orrugated potential is expanded into z-dependent funtions



32 CHAPTER 3. THE FLAPW METHODand planewaves in the x-y-plane.Vo(r) =XG00k VG00k (z)eiG00kr (3.90)The ontribution due to the expetation values of VCO(r) onsists of a z-dependentintegral and an integral in the x-y-plane of the following form.Z e�iG0kreiG00kreiGkrdxdy = ÆG0k(Gk+G00k) (3.91)Thus, the t-matries are given bytuuG0kGk(kk) = IuuG0kGk(G0k�Gk)(kk) + ÆG0kGkEva (3.92)tu _uG0kGk(kk) = Iu _uG0kGk(G0k�Gk)(kk) + ÆG0kGk (3.93)t _uuG0kGk(kk) = I _uuG0kGk(G0k�Gk)(kk) (3.94)t _u _uG0kGk(kk) = I _u _uG0kGk(G0k�Gk)(kk) + ÆG0kGkEvah _uGk(kk)j _uGk(kk)iV (3.95)Where the I matries abbreviate the z-dependent integrals inluding V(G0k�Gk)(z).IuuG0kGkG00k (kk) = Z uG0k(kk)uGk(kk)VG00k (z)dz (3.96)Iu _uG0kGkG00k (kk) = Z uG0k(kk) _uGk(kk)VG00k (z)dz (3.97)I _uuG0kGkG00k (kk) = Z _uG0k(kk)uGk(kk)VG00k (z)dz (3.98)I _u _uG0kGkG00k (kk) = Z _uG0k(kk) _uGk(kk)VG00k (z)dz (3.99)The Hamiltonian and overlap matrix elements are alulated aording toHG0GV (kk) = (AG0kG0?(kk))�tuuG0kGk(kk)AGkG?(kk)+(AG0kG0?(kk))�tu _uG0kGk(kk)BGkG?(kk)+(BG0kG0?(kk))�t _uuG0kGk(kk)AGkG?(kk)+(BG0kG0?(kk))�t _u _uG0kGkBGkG?(kk)(kk) (3.100)SG0GV (kk) = (AG0kG0?(kk))�AGkG?(kk)ÆG0kGk+(BG0kG0?(kk))�BGkG?(kk)h _uGk(kk)j _uGk(kk)iV ÆG0kGk (3.101)3.3.3 The Interstitial ContributionThe interstitial ontributions to the Hamiltonian and overlap matrix have the follow-ing form. HGG0I (k) = 1
 ZI e�i(G+k)r  � �h22m 4+V (r)! ei(G0+k)rd3r (3.102)



3.3. CONSTRUCTION OF THE HAMILTONIAN MATRIX 33SGG0I = 1
 ZI e�i(G+k)rei(G0+k)rd3r (3.103)The potential is also expanded into planewaves in the interstitial region.V (r) =XG0 VG0e�iGr (3.104)Without the existene of the muÆn-tin spheres the integration would streth overthe entire unit ell and the integration beomes rather simple. The kineti energy isdiagonal in momentum spae and the potential is loal, diagonal is real spae and ofonvolution form in momentum spae.HGG0I (k) = �h22m jG+ kj2ÆGG0 + V(G�G0 )SGG0I = ÆGG0However, these matrix elements are not as straightforward to alulate as they appearat �rst glane, beause of the ompliated struture of the interstitial region. Theintegrations have to be performed only in between the muÆn-tins. Therefore, a stepfuntion �(r) has to be introdued, that uts out the muÆn-tins.�(r) = ( 1 interstitial region0 muÆn-tins (3.105)In �lm alulations the region between D=2 and ~D=2 has to be ut out too, but tokeep it simple we will disuss the only the bulk ase in this setion. Using the stepfuntion the matrix elements an be written:HGG0INT (k) = 1
 Zell e�i(G�G0 )rV (r)�(r)d3r+12(G0 + k)2 1
 Zell e�i(G�G0 )r�(r)d3r (3.106)SGG0INT = 1
 Zell e�i(G�G0 )r�(r)d3r (3.107)In momentum spae 3.106 beomes:) HGG0INT (k) = (V�)(G�G0) + �h22m(G0 + k)2�(G�G0 ) (3.108)SGG0INT = �(G�G0 ) (3.109)Where �G and (V�)G are the Fourier oeÆients of �(r) and V (r)�(r) respetively.Apparently these oeÆients are needed up to a ut-o� of 2Gmax. The step funtionan be Fourier transformed analytially.�G = ÆG;0 �X� e�iG� � 4�(R�MT )3
 j1(GR�MT )GR�MT



34 CHAPTER 3. THE FLAPW METHODThe Fourier transform of the produt of V (r) and �(r) is given by a onvolution inmomentum spae. (V�)G =XG0 VG0�(G�G0 )This onvolution depends on both, G and G0 , therefore the numerial e�ort inreaseslike (Gmax)6. However, (V�)G an be determined more eÆiently, using Fast-Fourier-Transform (FFT). In �g. 3.3 it is shown shematially how (V�)G an be obtainedusing FFT. Using this sheme the numerial e�ort inreases like (Gmax)3ln((Gmax)3)with Gmax.
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3.3.4 The MuÆn-Tin A- and B-CoeÆientsWithin FLAPW the eletron wavefuntions are expanded di�erently in the intersti-tial region and the muÆn-tins. Eah basis funtion onsists of a planewave in theinterstitial, whih is mathed to the radial funtions and spherial harmonis in themuÆn-tins. The oeÆients of the funtion inside the spheres are determined fromthe requirement, that the basis funtions and their derivatives are ontinuous at thesphere boundaries. These oeÆients play an important role, and they will be neededagain during the disussion of the loal orbitals in hapter 5. In this setion we willtherefore disuss how the mathing onditions an be solved and what propertiesthey indue.In many systems that the FLAPW method an be applied to some atom aresymmetry equivalent, i.e. these atoms an be mapped onto eah other by a spaegroup operation fRj�g. Suh a group of atoms is alled an atom type, representedby one of the atoms. Let fR�j� �g the operation that maps the atom � onto itsrepresentative. This atom an now be assigned a loal oordinate frame S� (f.�g. 3.4), where the origin of S� is at the atoms position3 p�. The loal frame is3The atom position is very frequently denoted by ��, whih would learly ause some onfusion
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µαp pFigure 3.4: Loal oordinate frames inside eah muÆn-tin.hosen suh that the unit vetors of the loal frame S� are mapped onto those of theglobal frame by Rg (R�S� = Sg). The loal frame of the representative atom S�is only translated with respet to the global frame, i.e. the same rotation R� mapsS� onto S�. The potential (and other quantities) inside the muÆn-tins an nowbe written in terms of the loal oordinate system. Due to the symmetry we �ndVMT�(r�) = VMT�(r�), where r� and r� are expanded in terms of the loal frames S�and S� respetively. As a onsequene the radial funtions4 ul(r) and the t-matriesare the same for all atoms of the same type. This way symmetry is exploited to savememory and omputer time (during the alulation of the t-matries).Any planewave an be expanded into spherial harmonis via the Rayleigh ex-pansion. eiKr = 4�XL il jl(rK) Y �L (K̂) YL(r̂) (3.110)Where r = jrj, K = jKj and K abbreviates (G+ k). Looked at from the loal frameK and p� appear rotated, besides the origin of the loal frame is shifted. Therefore,the planewave has the following form in the loal frame:ei(R�K)(r+R�p�) (3.111)Thus, the Rayleigh expansion of the planewave in the loal frame is given by:eiKp� 4�XL il jl(rK) Y �L (R�K̂) YL(r̂) (3.112)in this ontext.4Within this setion the radial funtions are denoted by ul(r) for simpliity, though in salarrelativisti alulating the large omponent gl(r) is used instead of ul(r).



36 CHAPTER 3. THE FLAPW METHODThe requirement of ontinuity of the wavefuntions at the sphere boundary leads tothe equation: XL A�GL (k) ul(RMT�)YL(r̂) +B�GL (k) _ul(RMT�)YL(r̂)= eiKp� 4�XL il jl(rK) Y �L (R�K̂) YL(r̂) (3.113)Where RMT� is the muÆn-tin radius of the atom type �. The seond requirement is,that the derivative with respet to r, denoted by �=�r = 0, is also ontinuous.XL A�GL (k) u0l(RMT�)YL(r̂) +B�GL (k) _u0l(RMT�)YL(r̂)= eiKp� 4�XL il Kj 0l(rK) Y �L (R�K̂) YL(r̂) (3.114)These onditions an only be satis�ed, if the oeÆients of eah spherial harmoniYL(r̂) are equal. Solving the resulting equations for A�GL (k) and B�GL (k) yields:A�GL (k) = eiKp�4� 1W il Y �L (R�K̂)[ _ul(RMT�)Kj 0l(RMT�K)� _u0l(RMT�)jl(RMT�K)℄B�GL (k) = eiKp�4� 1W il Y �L (R�K̂)[ul(RMT�)Kj 0l(RMT�K)� u0l(RMT�)jl(RMT�K)℄ (3.115)The Wronskian W is given by:W = [ _ul(RMT�)u0l(RMT�)� ul(RMT�) _u0l(RMT�)℄ (3.116)Transformation of the FLAPW basis funtions in systems that possessinversion symmetryPlanewaves transform in a very simple way under the operation r ! �r. Let I bethe inversion operator: IeiKr = e�iKr = �eiKr�� (3.117)The FLAPW basis funtions still have this property, i.e. 'G(k;�r) = '�G(k; r).Clearly, the system must possess inversion symmetry, beause only if there is anequivalent atom at the position�p� to eah atom � at position p�, the basis funtionsinside the orresponding spheres an be omplex onjugates. The value of the basisfuntion 'G(k; r) inside the muÆn-tin � is give by:'G(k; r) =XL A�GL (k) ul(r)YL(r̂) +B�GL (k) _ul(r)YL(r̂) (3.118)



3.3. CONSTRUCTION OF THE HAMILTONIAN MATRIX 37The vetor �r lies in the opposite muÆn-tin at the position �p�. Let's denote thisatom by ��. Thus, we �nd:'G(k;�r) =XL A��GL (k) ul(r)YL(r̂) +B��GL (k) _ul(r)YL(r̂) (3.119)The argument of the spherial harmoni is r̂ rather than �r̂, beause the vetoris expanded in the loal frame of the atom ��. Substituting the expliit form ofA��GL (k) and B��GL (k) from (3.115), yields:'G(k;�r) =XL eiK(�p�) il Y �L (�R�K̂) YL(r̂)fAul(r) +B _ul(r)g (3.120)Where it has been used, that p�� = �p� and R�� = �R�, A and B abbreviatesall terms in (3.115) that are real and do not depend on r or r̂. Using that YL(r̂) =(�1)l YL(r̂) (3.120) beomes:'G(k;�r) =XL e�iK(p�) (�i)l Y �L (R�K̂) YL(r̂)fAul(r) +B _ul(r)g (3.121)In the last step it an be exploited that Yl�m(r̂) = (�1)m Y �lm(r̂). Substitutingm0 = �m (3.121) beomes:'G(k;�r) =Xlm0 e�iK(p�) (�i)l Ylm0(R�K̂) Y �lm0(r̂)fAul(r) +B _ul(r)g (3.122)Hene, we have shown, that the FLAPW basis funtions transform aording to'G(k;�r) = '�G(k; r) (3.123)in the interstitial region and the muÆn-tins, if the system possesses inversion sym-metry.The Hamiltonian Matrix of Systems with Inversion SymmetryThe property of the FLAPW basis funtions derived in the previous setion leads toproperty of the Hamiltonian and overlap matrix. In systems that possess inversionsymmetry these two matries are real symmetri rather than omplex hermitian. TheHamiltonian depends expliitly on r via the potential. The matrix elements are givenby: HG0G(k) = Z '�G0(k; r)H(r)'G(k; rd3r (3.124)Substituting r0 = �r yields:HG0G(k) = Z 'G0(k; r0)H(r0)'�G(k; r0d3r (3.125)



38 CHAPTER 3. THE FLAPW METHODWhere (3.123) and H(r) = H(�r) have been used. In addition the Hamiltonianoperator is real, i.e. H(r) = H�(r). Thus, we �nally obtain:HG0G(k) = Z 'G0(k; r0)H�(r0)'�G(k; r0d3r= �HG0G(k)�� (3.126)Apparently, the same relation holds for the overlap matrix. The fat, that the twomatries are real means a great simpli�ation in atual alulation. In priniple,the diagonalization of a hermitian matrix is no more diÆult than in the real ase.However, one omplex multipliation ontains four real multipliation, and thereforethe omplex problem is far more \expensive" than the real, and the diagonalizationneeds the biggest part of the omputer-time in eah iteration.3.4 Brillouin Zone Integration and Fermi EnergyIf density funtional theory is applied to in�nite periodi solids, quantities that aregiven by integrals of funtions that depend on the band and the Bloh vetor overthe Brillouin zone have to be determined. These integrations streth only over theoupied part of the band, i.e. over the region of the Brillouin zone where the bandenergy ��(k) (� is the band index) is smaller than the Fermi energy. Hene, theintegrals are of the form 1VBZ ZBZ X�;��(k)<EFf�(k) d3k; (3.127)where f is the funtion to be integrated. Example of suh quantities are the numberof eletrons per unit ell N = 1VBZ ZBZ X�;��(k)<EF1 d3k; (3.128)the eletron (harge) density (f. setion 3.6) and the eigenvalue sum1VBZ ZBZ X�;��(k)<EF��(k) d3k: (3.129)Numerially, these integrations are performed on a disrete mesh in the Brillouinzone. In fat, only the irreduible part an be used to save omputer time. Thereare di�erent methods, that an be used to perform the integration, e.g. the speialpoints method [CC73, Cun74℄ and the tetrahedron method [JA71, LT72, BJA94℄. Thespeial points method is a method to integrate smoothly varying periodi funtionsof k. The funtion to be integrated has to be alulated a set of speial pointsin the (irreduible) Brillouin zone, eah of whih is assigned a weight. Thus, theBrillouin zone integration is transformed into a sum over a set of k-points. However,



3.4. BRILLOUIN ZONE INTEGRATION AND FERMI ENERGY 39these weights do not take into aount, that the integration strethes only over theoupied part of the bands. This problem is solved by inluding only those bandsinto the summation that have an energy below the Fermi energy at the k-point underonsideration. Thus, the integrals beome:1VBZ ZBZ X�;��(k)<EFf�(k) d3k �!Xk X�;��(k)<EFf�(k) w(k) (3.130)Alternatively, this integration an be viewed as an integration over the whole Brillouinzone, where the funtion to be integrated is given by a produt of the funtion f witha step funtion that uts out the region of the Brillouin zone, where the band energy isabove the Fermi energy. Clearly, the resulting funtion does not satisfy the onditionof being smoothly varying. Therefore, the speial k-points method does not onvergevery quikly, and rather many k-points are needed to obtain aurate results. Onthe other hand this method is simple to implement, beause the weights depend onlyon k and the band energy (via the step funtion) at eah k-point. Another problemarises from this \sharp" di�erentiation between oupied and empty bands (parts ofbands). Let's onsider a band that is very lose to the Fermi energy at a ertaink-point. During the iterations the energy of this band might rise above or drop belowthe Fermi energy. This leads to sudden hanges in the harge density, whih anslow down or even prevent the onvergene of the density. These sudden hanges arelearly a result of the disreetization in momentum spae. To avoid this problem,the sharp edges of the step funtion have to be removed. This an be done, e.g.by using the Fermi funtion (e(��EF )=kBT + 1)�1 rather than the step funtion. Inother words, the funtion to be integrated is arti�ially made smoothly varying. Thetemperature T an then be adjusted to obtain the best onvergene. This method isalled temperature broadening.In the urrent implementation of the FLAPW method the Fermi energy is deter-mined in two steps. First the bands are oupied (at all k-points simultaneously),starting from the lowest energy, until the sum of their weights equals the total numberof eletrons per unit ell, i.e. the disretized equivalent of (3.128) is solved at T = 0.Then the step funtion is replaed by the Fermi and the Fermi energy is determinedfrom the requirement that: N =Xk X� w(k; ��(k)� EF ) (3.131)Where the weights are given by:w(k; ��(k)� EF ) = w(k) 1e(��(k)�EF )=kBT + 1 (3.132)The weights w(k; ��(k) � EF ) are stored to be used for later Brillouin zone integra-tions.



40 CHAPTER 3. THE FLAPW METHOD3.5 Representation of the Density and the Poten-tialThe expansion of the harge density � 5 and the potential is very similar to expansionof the wavefuntion. In the interstitial-region the two quantities are expanded intothree-dimensional planewave, inside the muÆn-tins they are represented by spherialharmonis and radial funtions, whih are store on an exponential mesh and in thevauum they are expanded into two-dimensional planewave and z-depended funtions,whih are also given on an exponential mesh. However, the harge density is givenby �(r) =Xi j i(r)j2; (3.133)whih ontains ontains terms of the form ei(G�G0)r. Consequently, for a onsistentrepresentation the harge density ut-o� has to be twie the wavefuntion ut-o�Gmax. In setion 3.3.3 we explained, that the potential is also needed up to ut-o� of 2Gmax. This leads to a large number of oeÆients, that need to be stored.Fortunately, this number an be redued, if the symmetry of the system is exploited.Of ourse, the harge density and the potential posses the lattie symmetry.Therefore, the expansion into planewaves is more general than neessary. The Plane-waves an be replaed by symmetrized planewaves, the so alled stars. They arede�ned by: �3Ds (r) = 1Nop Xop eiRG(r�� ) (3.134)where fRj�g are the symmetry operation of the lattie spae group; if all the trans-lation vetors � are zero, the spae group is all symmorphi. By this onstrutionall planewaves, that are symmetry equivalent, are ombined to form one star. Thetwo-dimensional stars �2Ds (r) are de�ned in the same way, applying the operationsof the two-dimensional spae group only.The same arguments an be applied to the expansion of the � (V ) inside themuÆn-tins. In this ase the relevant symmetry group is the point group of theatom under onsideration. Thus, di�erent expansions are used at di�erent atoms ingeneral. The symmetrized funtions are alled lattie harmonis and they are linearombinations of spherial harmonis.K�(r̂) =Xm ��;mYL(r̂) (3.135)The lattie harmonis are real, orthonormal and invariant under the point groupoperations. Finally, the expansion of the the harge density has the form�(r) = 8><>: Ps �s�3Ds (r) r 2 IPs �s(z)�2Ds (r) r 2 VakuumP� ��� (r)K�(r̂) r 2MT � (3.136)5The harge density is related to the eletron density by �(r) = �en(r). However, the programis written in Hartree units, where e = 1, therefore � and n are equal.



3.6. CONSTRUCTION OF THE ELECTRON DENSITY 41The Potential is expanded in exatly the same way.3.6 Constrution of the Eletron DensityIn this setion we will disuss the determination of the harge density from the eigen-funtions. However, we will onentrate on the harge density inside the muÆn-tinspheres and two related issues, beause the formulae derived in this setion will bethe starting point for the disussion of the ontributions to the harge density ofthe loal orbitals (f. hap. 5). The loal orbitals are an extension to the FLAPWbasis set. They do not ontribute to the harge density in the interstitial and thevauum-region, beause they are ompletely loalized inside the muÆn-tins.In density funtional alulations of an in�nite periodi solid the eletron densityis given by an integral over the Brillouin zone (f. (2.20)).n(r) = 1VBZ ZBZ X�;��(k)<EF j �(k; r)j2d3k (3.137)Where VBZ is the volume of the Brillouin zone, � is the band index and EF isthe Fermi energy. In spin-polarized alulations the summation inludes also thespin-index � (f. (2.8)), while in a non-magneti alulation a fator \2" has to beadded to aount for the spin-degeneray. In the ase of �lm alulations the three-dimensional Brillouin zone is replaed by a two-dimensional Brillouin zone. In bothases integration methods that sample eigenfuntions and the eigenvalues on disretek-point are used to ompute the integrals. These methods transform the integrationinto a weighted sum over the k-points, where the hoie of k-points and their weightsdepend on the integration method used. These weights depend not only on the k-point, but also on the energy of a band, i.e. on the band (index), beause eah bandontributes to the eletron density only if its energy is below the Fermi energy.n(r) =Xk X� j �(k; r)j2w(�;k) (3.138)Within the FLAPW method the eigenfuntions are represented in terms of the oef-�ients of the augmented planewaves. �(k; r) =XG G� (k)'G(k; r) (3.139)Inside the muÆn-tin spheres eah planewave is oupled to a sum of spherial har-monis and radial funtions. Hene, in a sphere � an eigenfuntion is given by: �� (k; r) =XG G� (k)XL A�GL (k)u�l (r)YL(r̂) +B�GL (k) _u�l (r)YL(r̂) (3.140)The A�GL (k) and B�GL (k) oeÆients an be replaed by band dependent A- andB-oeÆients, obtained by performing the ontration over the planewaves: �� (k; r) =XL A�L;�(k)u�l (r)YL(r̂) +B�L;�(k) _u�l (r)YL(r̂); (3.141)



42 CHAPTER 3. THE FLAPW METHODwhere A�L;�(k) =XG G� (k)A�GL (k); B�L;�(k) =XG G� (k)B�GL (k): (3.142)3.6.1 \l-like" ChargeSine the wavefuntions are expanded into spherial harmonis inside the muÆn-tinspheres, they an be split up into ontributions with a ertain l-harater. �� (k; r) =Xl  ��;l(k; r) (3.143)The partile density of a ertain state depends on the square of the wavefuntion.Therefore, it ontains ross-terms with a mixture of di�erent l's.n�� (r) = 1VBZ ZBZXl j ��;l(k; r)j2 +Xl0l 2 � ��;l0(k; r)��  ��;l(k; r)d3k (3.144)If, however, the density is integrated over the muÆn-tin, the ross-terms vanish be-ause of the orthogonality of the spherial harmonis. Thus, the total eletron densityinside a sphere an be written as a sum over ontributions with de�nite l-harater.n�� =Xl n��;l; n��;l = 1VBZ ZBZ ZMT� j ��;l(k; r)j2d3rd3k (3.145)Where n��;l is alled \l-like" harge. We an also de�ne a k-dependent l-like hargeby: n��;l(k) = ZMT� j ��;l(k; r)j2d3r (3.146)Substituting (3.141) yields:n��;l(k) = lXm=�l jA�L;�(k)j2 + jB�L;�(k)j2 _N�l (3.147)Where _N�l = Z RMT�0 ( _u�l (r))2r2dr (3.148)and the orthogonality of the spherial harmonis, the normalization of u�l and theorthogonality of u�l and _u�l have been used.3.6.2 Determination of the Optimal Energy ParameterIn order to minimize the linearization error, the energy parameters should be hosenas lose to the band energies as possible. However, the band energies ��(k) depend onk whereas the energy parameters E�l are onstants. In addition, the radial funtionsontribute to the eigenfuntions of di�erent band with di�erent energies. Therefore,



3.6. CONSTRUCTION OF THE ELECTRON DENSITY 43deviations between ��(k) and E�l have to be aepted. An optimal hoie an beobtained from the requirement, that the energy parameters minimizeZBZ X�;��(k)<EF (��(k)� E�l )2 n��;l(k)d3k; (3.149)whih is the quadrati error weighted with the amount of harge that eah bandontributes to the l-like harge with the l-harater of the energy parameter. Settingthe derivative (�=�E�l ) equal to zero yields the optimal energy parameter:E�l = 0�ZBZ X�;��(k)<EF ��(k)n��;l(k)d3k1A,0�ZBZ X�;��(k)<EF n��;l(k)d3k1A (3.150)The Brillouin zone integration methods transform this into a sum over a disretek-point set.E�l =  Xk X� ��(k)n��;l(k)w(�;k)!, Xk X� n��;l(k)w(�;k)! (3.151)3.6.3 Constrution of the Eletron Density in the MuÆn-TinsSubstituting (3.141) into (3.137) yields the eletron density in the muÆn-tin spheres.n�(r) = 1VBZ ZBZ X�;��(k)<EF XL0 �A�L0;�(k)u�l0(r) +B�L0;�(k) _u�l0(r)�� Y �L0(r̂)XL �A�L;�(k)u�l (r) +B�L;�(k) _u�l (r)�YL(r̂)d3k (3.152)The partile density inside the muÆn-tins is also expanded into spherial harmonis.n�(r) =XL C�L(r)YL(r̂) (3.153)The oeÆients C�L00(r) an be determined by multiplying (3.152) with R d
YL00(r̂).C�L00(r) = 1VBZ ZBZ X�;��(k)<EF XL0 �A�L0;�(k)u�l0(r) +B�L0;�(k) _u�l0(r)��XL �A�L;�(k)u�l (r) +B�L;�(k) _u�l (r)�Gmm0m00ll0l00 d3k (3.154)with Gmm0m00ll0l00 = Z Y �lmYl0m0Yl00m00d
 (3.155)where it has been used, that the gaunt oeÆients are real, i.e.Z YlmY �l0m0Y �l00m00d
 = Z Y �lmYl0m0Yl00m00d
 (3.156)



44 CHAPTER 3. THE FLAPW METHODFinally, applying a Brillouin zone integration method yields:C�L00(r) = Xl0l  Xk X� Xm0m �A�L0;�(k)��A�L;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�l (r)+ Xl0l  Xk X� Xm0m �A�L0;�(k)��B�L;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r) _u�l (r)+ Xl0l  Xk X� Xm0m �B�L0;�(k)��A�L;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�l (r)+ Xl0l  Xk X� Xm0m �B�L0;�(k)��B�L;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r) _u�l (r)(3.157)3.6.4 Constrution of the Eletron Density in the InterstitialRegionIn the interstitial region the wavefuntions are represented in the following form. �(k; r) =XG G� (k)ei(G+k)r (3.158)Starting from (2.8) the eletron density is given by:n(r) = 1VBZ ZBZ X�;��(k)<EF XG0G00 �G0� (k)�� G00� (k)d3kei(G00�G0)r (3.159)The eletron density in the interstitial region is also expanded into planewaves.n(r) =XG nGeiGr (3.160)Hene, the planewave oeÆients of the eletron density are:nG = 1VBZ ZBZ X�;��(k)<EF XG0G00G00�G0=G �G0� (k)�� G00� (k)d3k (3.161)Apparently, the planewave ut-o� of the partile density has to be twie the ut-o�of the wavefuntion expansion (Gmax) to allow an aurate desription. The k andstate dependent densitynG� (k) = XG0G00G00�G0=G �G0� (k)�� G00� (k) =XG0 �G0� (k)�� (G+G0)� (k) (3.162)is given by a onvolution in momentum spae. For eah oeÆient a sum over G hasto be performed. Consequently, the numerial e�ort put into the determination of



3.6. CONSTRUCTION OF THE ELECTRON DENSITY 45nG� (k) sales proportional to the number of G-vetors squared, i.e. proportional to(Gmax)6. However, nG� (k) an be alulated more eÆiently using the fast Fouriertransform (FFT). First, G� (k) is Fourier transformed to real spae, where it is squaredon a real spae mesh yielding n�(k; r), then all states are summed up and �nally theresulting partile density is bak-transformed to momentum spae.G� (k) FFT�!  �(k; r) square�! n�(k; r) P��! n(k; r) FFT�1�! nG(k)With this sheme the numerial e�ort inreases proportional to (Gmax)3 ln((Gmax)3),whih is a major improvement for large systems. In a last step the planewaves haveto be ombined to form the three-dimensional stars.3.6.5 Constrution of the Eletron Density in the VauumRegionIn the vauum region the wavefuntions are expanded into two-dimensional plane-waves parallel to the surfae and z-dependent funtions perpendiular to the surfae. �(kk; r) = XGkG?GkG?� (kk) �AGkG?(kk)uGk(kk; z) +BGkG?(kk) _uGk(kk; z)� ei(Gk+kk)rk(3.163)Hene, the eletron density is given by:n(r) = 1VBZ ZBZ X�;��(k)<EF XG0kG0? XG00kG00?�G0kG0?� (kk) �AG0kG0?(kk)uG0k(kk; z) +BG0kG0?(kk) _uG0k(kk; z)����G00kG00?� (kk) �AG00kG00?(kk)uG00k (kk; z) +BG00kG00?(kk) _uG00k (kk; z)�� d3kei(G00k�G0k)rk (3.164)The partile density in the vauum is represented in the following form.n(r) =XGk nGk(z)eiGkrk (3.165)Performing the Brillouin zone integration on a disrete kk-mesh and arrying out thesummation over G0? and G00? we �nd that the oeÆients nGk(z) are:nGk(z) = Xkk X� XG0k �AG0k;�(kk)��A(Gk+G0k);�(kk)w(�;kk) uG0k(kk; z)u(Gk+G0k)(kk; z)+ Xkk X� XG0k �AG0k;�(kk)��B(Gk+G0k);�(kk)w(�;kk) uG0k(kk; z) _u(Gk+G0k)(kk; z)



46 CHAPTER 3. THE FLAPW METHOD+ Xkk X� XG0k �BG0k;�(kk)��A(Gk+G0k);�(kk)w(�;kk) _uG0k(kk; z)u(Gk+G0k)(kk; z)+ Xkk X� XG0k �BG0k;�(kk)��B(Gk+G0k);�(kk)w(�;kk) _uG0k(kk; z) _u(Gk+G0k)(kk; z)(3.166)withAGk;�(kk) =XG? GkG?� (kk)AGkG?(kk); BGk;�(kk) =XG? GkG?� (kk)BGkG?(kk)(3.167)Here, the terms of the formXG0k �AG0k;�(kk)��A(Gk+G0k);�(kk) uG0k(kk; z)u(Gk+G0k)(kk; z)represent onvolutions in momentum spae. Similar to the interstitial region theseterms ould be alulated more eÆiently, using two-dimensional fast Fourier trans-form. However, there are far less two-dimensional planewaves than three-dimensionalplanewaves. Therefore, the possible saving of omputer time is muh smaller.3.7 Constrution of the Coulomb PotentialThe Coulomb potential onsists of two parts, the Hartree term VH(r) and the externalpotential of the nulei Vi(r). V(r) = VH(r) + Vi(r) (3.168)The Hartree potential has to be determined from the harge density via the Poissonequation. �VH(r) = 4��(r) (3.169)In real spae the solution of 3.169 is given byVH(r) = Z 4��(r0)jr� r0jd3r: (3.170)In reiproal spae, however, the Poisson equation is diagonal, as a result the solutionis very simple. VH(G) = 4��(G)G2 (3.171)Therefore, and beause of the representation of the harge density and the poten-tial in the interstitial- and vauum-region, the solution of the Poisson equation inreiproal spae appears to be onvenient. However, due to the rather loalized oreand valene states the harge density hanges on a very small length sale near thenulei. Therefore, the planewave expansion of � onvergenes slowly, and a diret useof (3.171) is impratial, if not impossible. This diÆulty an be irumvent via thepseudoharge method.



3.7. CONSTRUCTION OF THE COULOMB POTENTIAL 473.7.1 The Pseudoharge MethodThe pseudoharge method, developed by Weinert [Wei81℄, is a very elegant tehniqueto alulate the interstitial and vauum Hartree potential. The underlying idea is todivide the solution of the Poisson equation into two steps. In the �rst step thetrue muÆn-tin harge is replaed by a onvergent pseudoharge density ~�, that leadsto the same potential outside the muÆn-tins. Then the interstitial (and vauum)potential is alulated in reiproal spae. In the seond step the muÆn-tin potentialis determined from the Dirihlet boundary value problem, de�ned by the exat muÆn-tin harge and the interstitial potential on the muÆn-tin sphere boundaries. Thepotential outside the the muÆn-tin spheres due to a harge distribution inside thesphere is determined ompletely by its multipole moments qL.V (r) = 1Xl=0 lXm=�l 4�2l + 1 qLrl+1YL(r̂); (3.172)However, the multipole moments do not de�ne the harge density uniquely. Theharge density is given by:�(r) = �I(r)�(r 2 I) +X� ��(r)�(r 2MT �) (3.173)Of ourse, in �lm alulation there is also a vauum harge, and we will ome bakto this later. 3.173 an be rewritten�(r) = �I(r) +X� [��(r)� �I(r)℄�(r 2MT �) (3.174)Thus, the interstitial harge has been extended into the muÆn-tin and subtratedthere again. The seond term in 3.174 an now be replaed by a pseudoharge ~��, thathas the same multipole moments (s. [Wei81℄ for details). The resultant pseudoharge~� is given by ~�(r) = �I(r) +X� ~q�(r) (3.175)~�(r) is onstruted to have a more rapidly onverging Fourier expansion than theoriginal harge density �(r). Therefore, the Poisson equation an now be solvedusing (3.171).Still, the muÆn-tin potential V �MT remains to be determined. For this step theexat muÆn-tin harge �� has to be used. Sine, the interstitial potential is alreadyknown at this point, the alulation of V �MT onstitutes a lassial spherially sym-metri Dirilet boundary value problem, whih an be solved by the Green's funtionmethod [Ja83℄.V �MT (r) = ZMT� ��(r0)G(r; r0)d3r0 � R2�4� IS� VI(r0)�G�n0 d
0 (3.176)



48 CHAPTER 3. THE FLAPW METHODThe seond integral is over the muÆn-tin sphere boundary S�, and it is neessary tosatis�es the boundary onditions. The Green's funtion is given by:G�(r; r0) = 4�Xl;m YL(r̂0)YL(r̂)2l + 1 rl<rl+1>  1� � r>RMT��2l+1! (3.177)where r> = maxfjrj; jr0jg, r< = minfjrj; jr0jg. Finally, the muÆn-tin potential hasto be expanded into lattie harmonis K�(r̂).V �MT (r) =X� V �MT;�(r)K�(r̂) (3.178)The potential of the nulei V �i (r) = eZ�jrj is added to the spherial (l = 0) omponentof the potential V �MT;0(r).The muÆn-tin potential is omputed in the same way for both, bulk and �lm al-ulations. Apparently, the interstitial and the vauum have to be treated di�erentlyis the two ases, due to the di�erent boundary onditions and the di�erent represen-tation of the vauum potential. Therefore, the next two setions the solution of thePoisson equation will be outlined separately for these ases in.3.7.2 Determination of the interstitial Coulomb Potential inBulk CalulationsIn the ase of bulk alulations we have periodi boundary onditions in three dimen-sions. Therefore, the solution of the Poisson equation,G2V (G) = 4�~�(G) (3.179)is very simple. Obviously, this equation an only be solved, if ~�(0) = 0. Sine ~�(0) isthe average harge density, this means, that harge neutrality is essential. Still, V (0)remains undetermined by 3.179, i.e. one has the freedom to shift the potential by aonstant. This is a onsequene of the periodi boundary onditions, beause theydo not �x the referene of the potential. Usually V (0) is hosen to be zero, hene theCoulomb potential in the interstitial-region is given by:VI(r) = XG6=0 4�~�(G)G2 eiGr =Xs6=0 4� ~�sG2s �3Ds (r) (3.180)where the �rst summation is expressed in terms of G-vetors and the seond in termsof stars.3.7.3 Determination of the interstitial and vauum CoulombPotential in Film CalulationsIn a �lm the translational symmetry in z-diretion is lost. Aordingly, the boundaryonditions are periodi in two dimensions only. In z-diretion the periodi boundary



3.7. CONSTRUCTION OF THE COULOMB POTENTIAL 49onditions are replaed by the requirement, that the potential approahes zero atin�nity. The latter ondition de�nes the absolute referene of the potential. As aonsequene of the symmetry breaking, the following expansion of V and � is mostsuitable to solve the Poisson equation:V (r) = V0(z) + XGk 6=0VGk(z)eiGkr (3.181)�(r) = �0(z) + XGk 6=0 �Gk(z)eiGkr (3.182)Substituting this into the Poisson equations yields: d2dz2 �G2k!VGk(z) = �4��Gk(z) (3.183)This equation is treated di�erently for Gk = 0 and Gk 6= 0.The Gk = 0 Component of the PotentialFor the Gk = 0 omponent of the potential the Poisson equation has the formd2dz2V0(z) = �4��0(z) (3.184)The Gk = 0 omponent of the pseudoharge density is given by:�0(z) = 8><>: �0;0I +PG? �0;G?I eiG?z jzj � D2�0V (z) jzj > D2 (3.185)The Poisson equation for the Gk = 0 an be integrated diretly. The result in thevauum region is given by: V 0V (z) = �4� Z 1z �V (z0)dz0; (3.186)with �V (z) = Z zD2 �0V (z0)dz0 + ��ID2 (3.187)where the average interstitial harge density ��I is given by:��I =XG? �0;G?I j0(Gn?D): (3.188)Here ��I does not equal �0;0I , beause the G? are de�ned in terms of ~D rather than D,i.e. the period of the z-dependent planewaves does not equal the integration interval.In the interstitial region the solution to (3.184) isV 0I (z) = �2��0;0I  z2 � D24 !� 4�XG? �0;G?IG?2 �eiG?z � eiG?D2 �� 4� Z 1D2 �V (z0)dz0(3.189)



50 CHAPTER 3. THE FLAPW METHODThe Gk 6= 0 Component of the PotentialIn the ase Gk 6= 0 the Poisson equation is solved via the Green's funtion method.VGk(z) = Z 1�1 �Gk(z)GGk(z � z0)dz0 (3.190)Where the Green's funtion is given by:GGk(z � z0) = 2�Gk ejGkjjz�z0j (3.191)This leads to the following solution in the vauum-regionV GkV (z) = 2�Gk eGkz Z z�1 �GkV (z0)e�Gkz0dz0 (3.192)+2�Gk e�Gkz Z �D2z �GkV (z0)eGkz0dz0+2�Gk e�GkzXG? �Gk;G?IGk + iG? �e(Gk+iG?)z � e�(Gk+iG?)z�and in the interstitial-regionV GkI (z) = 4�Xn �Gk;G?IG2 eiG?z (3.193)+2�Gk XG? �Gk;G?IG2 heGkz(Gk + iG?)e�(Gk�iG?)D2+ e�Gkz(Gk � iG?)e�(Gk+iG?)D2 i++2�Gk "eGkz Z 1�D2 �GkV (z)e�Gkz0dz0 + e�Gkz Z D2�1 �GkV (z)eGkz0dz0#3.8 Computation of the Exhange Correlation Po-tentialThe problem of the determination of the exhange orrelation potential is quit dif-ferent from the Coulomb potential. On one hand, V �x is a loal quantity, i.e. V �x(r)depends only on n"(r) and n#(r) at the same position r. Thus, the muÆn-tins, theinterstitial- and vauum-region an be treated independently. On the other hand,V �x and ��x are non-linear funtions of n" and n#. Therefore, V �x and ��x have to bealulated in real spae. V �x and ��x are determined in the same way. First, n" andn# are transformed to real spae, where V �x and ��x are alulated. Then V �x and��x are bak-transformed. Then, V �x is added to the Coulomb potential, yielding thespin-dependent potential V" and V#. ��x is needed for the determination of the totalenergy.



3.8. COMPUTATION OF THE EXCHANGE CORRELATION POTENTIAL 513.8.1 Calulation of ��x and V �x in the Interstitial-RegionIn the interstitial-region the harge density is expanded into three-dimensional starswith oeÆients n�s . Multiplying these by eiRG� yields the planewave oeÆientsn�G. If the spae group is symmorphi the star and planewave oeÆients are iden-tial. However, due to numerial inauray, the alulated oeÆients of symmetryequivalent planewaves are not exatly equal, and the orresponding star oeÆientis obtained from the average of the planewave oeÆients. In the next step a three-dimensional Fast-Fourier transform is arried out. Then the exhange orrelationpotential is alulated on a real spae mesh ri. Finally, V �x is bak-transformed, andthe star oeÆients are omputed.n�s �! n�G FFT�! n�(ri) �! V �x(ri) FFT�1�! V �;Gx �! V �;sx :3.8.2 Calulation of ��x and V �x in the Vauum-RegionThe vauum harge density is stored in terms of two-dimensional stars and a z-dependent exponential mesh zi. The Gk = 0 omponent reahes further into thevauum than the Gk 6= 0 omponents. In the so alled warping region the planewaveoeÆients on eah mesh point are determined by a multipliation with the phase fa-tor eiRGk� . Then, for eah grid point zi along the z-axis, the two-dimensional hargedensity is Fourier transformed to a real spae grid (rk; zi), where V �x is alulated.Afterwards, V �x is bak-transformed and the star oeÆients are omputed.n�(�2Ds ; zi) �! n�(Gk; zi) 2DFFT�! n�(rk; zi) �! V �x(rk; zi)2DFFT�1�! V �x(Gk; zi) �! V �x(�2Ds ; zi)Beyond the warping region the exhange orrelation potential is alulated diretlyon the z-dependent mesh.3.8.3 Calulation of ��x and V �x in the MuÆn-Tin SpheresThe muÆn-tin harge is expanded into lattie harmonis and radial funtions. Theradial funtions are stored on a disrete real-spae mesh. Thus, the transform to realspae a�ets only the angular part. The harge density is alulated on a set of speialangular points r̂i = (�i; �i). Again, the exhange orrelation potential is alulatedin real spae. Thereafter, the result V �x(r) is expanded into spherial harmonis YL.The YL are orthonormal, therefore the oeÆients an be obtained fromv�x;L(r) = Z YL(r̂)V �x(r; r̂)d
: (3.194)The hoie of the points r̂i = (�i; �i), on whih n�(r) and V �x(r) are alulated,depends on the integration method, that is used to perform the angular integration.In the urrent implementation (3.194) is omputed via a Gau�-Legendre integrationand the angular points are hosen suh, that the orthonormality ondition of the YLholds also for the angular mesh r̂i.



52 CHAPTER 3. THE FLAPW METHOD3.9 Minimization of the Energy FuntionalThe aim of eletroni struture alulations is to minimize the energy funtional withrespet to the eletron density. Within density funtional theory this minimizationis performed impliitly, by the determination of a selfonsistent density n(r). In theprevious setions we desribed, how an e�etive Potential an be alulated from aharge density, how the Kohn-Sham equations inluding this potential an be solvedand how a new eletron density an be alulated from the resulting single partilewavefuntions. Combining these steps de�nes a map:n0(r) = Ffn(r)g (3.195)The eletron density that minimizes the energy funtional n0(r) is a �x-point ofFfn(r)g, i.e. it solvesFfn0(r)g = 0; with Ffn(r)g = Ffn(r)g � n(r): (3.196)The density is expanded into a large set of basis funtions. Therefore, in atualalulations, the harge density is a oeÆient vetor of dimension n, where n istypially of the order of 104. Thus, (3.196) onstitutes a system of n nonlinearequations, whih an be solved by iteration:nm+1(r) = Ffnm(r)g (3.197)A starting density an be onstruted by a superposition of atomi densities. How-ever, this sheme is in general divergent. To ahieve onvergene the output densityhas to be mixed with the input density. Di�erent mixing shemes are disussed inthe following.3.9.1 \simple mixing"The slowest method is the \simple mixing", whih onverges only linearly.jÆn(m+1)jjÆn(m)j � onst. (3.198)Where Æn(m) is the di�erene of the density of the mth iteration and the unknown�x-point, Æn(m) = n(m) � n0. The density for the next iteration is onstruted as alinear ombination of n(m) and Ffnmg aording to:n(m+1) = (1� �)n(m) + �Ffnmg= n(m) + �Ffn(m)g (3.199)� is the so-alled mixing parameter. If it is hosen small enough the iteration on-verges and is very stable. In spin-polarized alulations di�erent mixing parametersan be used for the harge and the magnetization density. Usually, the spin mixingparameter an be hosen far larger than the parameter for the harge density. How-ever, for the type of systems we are interested in � is very small, requiring manyhundreds of iterations.



3.9. MINIMIZATION OF THE ENERGY FUNCTIONAL 533.9.2 The Newton-Raphson MethodIn the Newton-Raphson method the funtional Ffng is linearized around the ap-proximate solution n(m).Ffng � Ffn(m)g+ J fn(m)g(n� n(m)) (3.200)Where the Jaobian is de�ned by:J fn(m)(r)g = �Ffn(r)g�n(r0) �����n(m)(r) (3.201)In atual alulations the Jaobian is a n � n matrix. Similar to the well knownNewton method for one dimensional funtions, the next approximation to n0, n(m+1),is determined from the requirement, that the linearized funtional in (3.200) vanishesat n(m+1). Thus, n(m+1) is given by:n(m+1) = n(m) � hJfn(m)gi�1Ffn(m)g (3.202)The Newton-Raphson method onverges quadratially:jÆn(m+1)jjÆn(m)j2 � onst. (3.203)The major drawbak of this method is the diÆulty to evaluate the Jaobian. Evenif the funtional Ffng was know, the evaluation would be umbersome due to theenormous size of J fng. In addition, the Jaobian has to be inverted where theamount of alulation sales with ube of the dimension. A further problem is thatthe onvergene radius is rather small so that the method an only be used if n(m) isalready very lose to n0.3.9.3 Quasi-Newton MethodsWith the development of the Quasi-Newton methods it beame possible to exploit theadvantages of the Newton-Raphson method, i.e. to make use of the information that isontained in the Jaobian, for problems where the Jaobian annot be alulated or itsdetermination is too demanding. Rather than omputing the Jaobian eah iteration,an approximate Jaobian is set up and improved iteration by iteration. From thelinearization of Ffng (3.200) we �nd the following ondition for the Jaobian, whihis usually alled Quasi-Newton ondition:�n(m) = hJ (m)i�1�F (m) (3.204)�n(m) = n(m) � n(m�1); �F (m) = Ffn(m)g � Ffn(m�1)g



54 CHAPTER 3. THE FLAPW METHODQuasi-Newton methods onverge super-linearlyjÆn(m+1)jjÆn(m)j ! 0;and have a larger onvergene radius than the Newton-Raphson method. Sine theJaobian is build up iteration by iteration, the \history" of the previous iterationsis memorized in J , whereas the Jaobian of the Newton-Raphson method dependsonly on the previous iteration. In this sense the Newton-Raphson method is self-orretive [Bl�u88℄, it \forgets" inadequately hosen orretions. The Quasi-Newtonmethods sometimes need to be restarted, if the iteration onverges only slowly. Thisan happen if the starting density is very far from n0 or when physial or numerialparameters that a�et the alulations are hanged during the iteration. Equation(3.204) does not determine the Jaobian uniquely, instead (3.204) onstitutes a systemof n equations for n2 unknowns. The various Quasi-Newton shemes di�er by theansatz how the new information is used to build the inverse Jaobian. The methodsthat are implemented in the FLAPW ode are disussed in [Pen96℄.



Chapter 4Non-Collinear Magnetism inFLAPWThe implementation of the FLAPW method, outlined in the previous hapter, as-sumes ollinear magnetism, i.e. the magnetization density has to be direted alongthe z-axis everywhere in spae. In this ase, the Hamiltonian of the Shr�odinger-Pauliequation 2.18, whih in general onstitutes a two by two matrix, beomes diagonalin the two spin-omponents. In fat, one an think of the magnetization to be di-reted along any diretion, sine real spae and spin spae are ompletely deoupledwithin the salar-relativisti approximation. The z-axis is only hosen beause of thesimple form of the Pauli matrix �z. Another important simpli�ation, that reduesthe expense of alulations, is the fat, that the Hamiltonian and the overlap matrixbeome real symmetri instead of omplex hermitian, if the system possesses inver-sion symmetry. Finally, only the magnitude of the magnetization density needs to bestore. In fat, the partile and magnetization density, n and m an be replaed by aspin-up and -down density, n" and n#. In the same way V and B an be replaed byV" and V#.In the ase of general non-ollinear magnetism, all the simpli�ations listed aboveare lost. A B-�eld with non-zero x- and y-omponent means, that the Hamiltonianontains terms inluding �x and �y. Thus, the spin-up and -down omponents ofthe wavefuntions are no longer deoupled, leading to an eigenvalue problem twieas large as before. In addition, the Hamiltonian beomes expliitly omplex, due tothe presents of �y.A large amount of work in the �eld of selfonsistent ab-initio alulations onnon-ollinear magneti systems has been done by K�ubler and oworkers [SHK89,K�ub95, SK96℄ and referenes therein. Many aspets of non-ollinear magnetism anbe desribed within the piture of inter-atomi non-ollinear magnetism, where itis the di�erent atomi moments, whih are non-ollinear. Thus, the magnetizationat eah atom is predominantly direted along one partiular diretion, whih di�ersfrom atom to atom, but deviations from this diretion on the intra-atomi sale areexpeted to be small. Within FLAPW this an be realized assigning di�erent quan-55



56 CHAPTER 4. NON-COLLINEAR MAGNETISM IN FLAPWtization axis to eah atom, and allowing the magnetization inside the orrespondingmuÆn-tin to be direted along this axis only. Still, in the interstitial- and vauum-region one has to deal with a general non-ollinear magnetization.4.1 The Frozen Potential ApproximationThe frozen potential approximation allows the alulation of the total energy di�er-ene of (similar) systems, based on the eigenvalue sums of non-selfonsistent alula-tions. In this setion we will explain how this method an be employed to estimatethe energy di�erene of di�erent magneti on�gurations. In the spirit of the approx-imations outlined above, these on�gurations shall di�er, in that the diretions of themagnetization at eah atom, i.e. inside eah muÆn-tin, are di�erent. Let's onsidertwo on�gurations, denoted a and b. Aording to (2.28) the total energy of eah ofthem is given byE[n;m℄ = NXi=1 �i � Z n(r)Vx(r)d3r � Z m(r) �Bx(r)d3r� 124�e2 Z n(r)n(r0)jr� r0j d3rd3r0+ Z n(r)�x(n(r); jm(r)j)d3r + 4�e2 MX�;�0=1�6=�0 Z�Z�0j� � � � �0 j : (4.1)Let us assume now, that the di�erene of the eletron density between the two on�g-urations is negligible na(r) � nb(r), i.e. that a and b di�er only by their magnetization.As a onsequene, the Hartree energy of a and b is the same. Clearly, the Madelungenergy does not hange too. Hene, the energy di�erene is given byE[na;mb℄� E[nb;mb℄ = NXi=1 �ai � NXi=1 �bi� Z na(r)V ax(r) +ma(r) �Bax(r)� nb(r)V bx(r)�mb(r) �Bbx(r)d3r+ Z na(r)�x(na(r); jma(r)j)� nb(r)�x(nb(r); jmb(r)j)d3r: (4.2)From the loal harater of �x within the LSDA follows that Vx and �x depend onlyon the magnitude of the magnetization m(r) = jm(r)j. As a result, the magneti�eld Bx is always parallel to the magnetization, with its magnitude also dependingon m(r) only. Hene, 4.2 beomesE[na;mb℄� E[nb;mb℄ = NXi=1 �ai � NXi=1 �bi� Z na(r)Vx(na(r); ma(r)) +ma(r)Bx(na(r); ma(r))



4.1. THE FROZEN POTENTIAL APPROXIMATION 57�nb(r)Vx(nb(r); mb(r))�mb(r)Bx(nb(r); mb(r))d3r+ Z na(r)�x(na(r); ma(r))� nb(r)�x(nb(r); mb(r))d3r: (4.3)At this point, the seond approximation omes into play. We assume, that the mag-nitude of the magnetization inside the muÆn-tins does not hange with the diretion.Under this assumption, the ontributions from the muÆn-tin spheres to the two in-tegrals in 4.3 anel out exatly. This is a good approximation for the systems weare going to apply this theory to. Bl�ugel et al. [BDZD89℄ investigated the propertiesof 3d transition-metal monolayers on Ag(001) and unsupported monolayers (UML)with the same geometry. They ompared the ferromagneti with the (2 � 2) anti-ferromagneti struture, and found that the magneti moments of Mn and Fe hardlyhange, whereas the moments of Cr hange notieably but not drastially. Assumingthe validity of this approximation, the only error terms, that add to the di�erene ofthe eigenvalue sums, is due to the hange of the magnitude of the magnetization inthe interstitial- and vauum-region.E[na;mb℄� E[nb;mb℄ = NXi=1 �ai � NXi=1 �bi� ZI+V na(r)Vx(na(r); ma(r)) +ma(r)Bx(na(r); ma(r))�nb(r)Vx(nb(r); mb(r))�mb(r)Bx(nb(r); mb(r))d3r+ ZI+V na(r)�x(na(r); ma(r))� nb(r)�x(nb(r); mb(r))d3r (4.4)However, the magnetization of the interstitial- and vauum-region are small, and themagnitudes di�er only in a small region of spae between the atoms. Therefore, theontribution from the integrals in 4.4 an be negleted, and the di�erene of the totalenergy of two magneti on�gurations an be approximated by the di�erene of theeigenvalue sums. E[na;mb℄� E[nb;mb℄ � NXi=1 �ai � NXi=1 �bi (4.5)The bene�t of the frozen potential approximation is, that one one magneti on�g-uration has been alulated selfonsistently, the energy of other on�gurations anbe obtained from non-selfonsistent alulations. The input eletron and magnetiza-tion density for the latter is being obtained from the densities of the selfonsistentalulation, by a rotation of the diretion of magnetization inside the muÆn-tins. Inpratie, these alulations are arried out in two steps:� Perform a selfonsistent ollinear alulation� Determine the energy di�erene to other (non-ollinear) magneti on�gura-tions via the frozen potential approximation.Clearly, this is a great simpli�ation, ompared to selfonsistent non-ollinear al-ulations, beause no vetor-magnetization densities have to be generated or stored



58 CHAPTER 4. NON-COLLINEAR MAGNETISM IN FLAPWand no exhange orrelation potentials and magneti �elds have to be omputed fromsuh densities.Still, one problem remains to be solved. Obviously, the Hamiltonian, i.e. Veff andBeff , is needed in order to alulate the eigenvalues. Let's onsider the situation,where the magneti on�guration a has been alulated selfonsistently. Of ourse, inthis ase, V aeff and Baeff are known, but V beff and Bbeff are not. Assuming the validityof the approximations made above, i.e. that na(r) � nb(r) and that Bbx inside themuÆn-tins an be obtained from a rotation of Bax, only the exhange orrelationpotential and magneti �eld in the interstitial- and vauum-region, V IV;bx and BIV;bx ,remain unknown. An approximate Hamiltonian ~Hb an be onstruted using V IV;axand BIV;ax instead. The unknown exat Hamiltonian Hb is related to ~Hb by:~Hb = Hb + (V IV;ax + � �BIV;ax � V IV;bx � � �BIV;bx ) (4.6)Now, the error of the eigenvalues ��bi = ~�bi � �bi an be determined using �rst orderperturbation theory. Sine Vx depends only weakly on the magnetization, it an benegleted here. Thus, we have��bi = h bi j� � (BIV;ax �BIV;bx )j bi i: (4.7)Summing over the oupied states yieldsNXi=1��bi = ZI+V mb � (BIV;ax �BIV;bx )d3r: (4.8)This error term auses some diÆulties. Of ourse, the interstitial and vauum mag-netization and magneti �eld is small, but in ontrast to the error term in 4.3, whihdepend on the magnitudes ofm and B, here the error depend on the di�erene of thevetors BIV;ax � BIV;bx . Consider for example the ase, where a is the ferromagnetiand b is the antiferromagneti on�guration. Apparently, in one half of the intersti-tial region the magnetizations and magneti �elds are opposite to eah other, whilethe magnitudes are similar. If we used the selfonsistent ferromagneti B-�eld, toonstrut the approximate antiferromagneti Hamiltonian, it would favor the ferro-magneti solution, i.e. the ferromagneti eigenvalue sum would be lowered omparedto the antiferromagneti and vie versa.A solution to this problem is to set the interstitial and vauum magneti �eld tozero when onstruting the trial Hamiltonian. Then the error term 4.8 redues toNXi=1��bi = � ZI+V mb �BIV;bx d3r: (4.9)Now, we an make use of the fat, that mb and BIV;bx are always parallel. Ergo, theunknown exat eigenvalue sum is related to the approximate sum byNXi=1 �bi = NXi=1 ~�bi � ZI+V mbBIV;bx d3r: (4.10)



4.2. THE IMPLEMENTATION OF NON-COLLINEAR MAGNETISM 59If we perform this approximation for the two systems, a and b, that we want toompare, the di�erene of the two eigenvalue sums is given byNXi=1 �ai � NXi=1 �bi = NXi=1 ~�ai � NXi=1 ~�bi � ZI+V (maBIV;ax �mbBIV;bx )d3r: (4.11)Hene, the error we are left with depends only on the magnitudes of m and B.In fat, it is exatly the same term, that appeared already in 4.4, and it an benegleted. Eventually, the appliation of the frozen potential approximation hasto be supplemented by a third step, the elimination of the interstitial and vauummagneti �eld.4.2 The Implementation of Non-Collinear Mag-netismIn this setion we will explain, how the Hamiltonian matrix orresponding to theapproximate Hamiltonian ~H, with the B-�eld inside the muÆn-tin spheres rotated bya arbitrary angle, an be set up. Sine spin- and real-spae are ompletely deoupledwithin the salar-relativisti approximations, the spin-rotations an be performedwithout any e�et on the real-spae oordinates. It will be shown, that no hanges tothe onstrution of the muÆn-tin basis funtions or the determination of the t-matrixare neessary in order to set up ~H.The potential and the magneti �eld are represented in terms of V"(r) and V#(r),where up and down is de�ned in terms of the global z-axis before the rotation. Per-forming the rotation leaves both, V"(r) and V#(r), unhanged. In partiular, norotation needs to be applied to r. The only hange is, that now spin-up and -down isto be interpreted in terms of a loal quantization axis. Therefore, a loal spin-spaeoordinate frame S� is introdued for eah atom type (muÆn-tin). The global spin-oordinate frame Sg an be transformed into the loal frame by a rotation, given bythe Euler angles (�; �; 0). In this ase, the Euler angles are equivalent to the polarangles of the loal quantization axis in the global frame, � = '; � = #. Thus, thebasis vetors of the two frames are related to eah other byR(�; �; 0) êgi = ê�i ; (4.12)and the magnetization density and the magneti �eld, seen from the global frame,m�g(r) and B�g(r), are related to the same quantities seen from the loal frame bym�g(r) = R(�; �; 0) m�l(r)B�g(r) = R(�; �; 0) B�l(r): (4.13)where the index � indiates, that this orresponds to quantities inside the muÆn-tinof atom type �. The Pauli spinors transform aording to��g = U(2)(�; �; 0) ��l; (4.14)



60 CHAPTER 4. NON-COLLINEAR MAGNETISM IN FLAPWwith U(2)(�; �; 0) =  e�i�2 os(�2 ) �e�i�2 sin(�2 )e i�2 sin(�2 ) e i�2 os(�2 ) ! : (4.15)The unitary matrix U(2) is derived in most standard textbooks [OH93℄. In theollinear ase the radial funtions u�l� and _u�l� 1 are determined as solutions to the ra-dial Shr�odinger (salar-relativisti) equation 3.2 (3.41), inluding the spin-dependentpotential V�. Thus, the basis funtions inside the muÆn-tins are linear ombinationsof u�l"(r)YL(r̂)��" ; _u�l"(r)YL(r̂)��" ;u�l#(r)YL(r̂)��# ; _u�l#(r)YL(r̂)��# ; (4.16)where L abbreviates lm, and��g" = ��l" = ��" =  10!; ��g# = ��l# = ��# =  01!: (4.17)Afterwards, the spin-dependent t-matries (3.61 { 3.64) are alulated. This wholeproedure remains ompletely unhanged in the non-ollinear ase, with the only dif-ferene, that spin-up and -down means up and down in terms of the loal quantizationaxis. Consequently, the muÆn-tin basis set beomesu�l"(r)YL(r̂)��g" ; _u�l"(r)YL(r̂)��g" ;u�l#(r)YL(r̂)��g# ; _u�l#(r)YL(r̂)��g# ; (4.18)with��g" = U(2) ��l" =  e�i�2 os(�2 )e i�2 sin(�2 ) !; ��g# = U(2) ��l# =  �e�i�2 sin(�2 )e i�2 os(�2 ) !: (4.19)The next step is to onnet the planewaves, representing the basis funtions in theinterstitial region, to the muÆn-tin basis, with the aim to form a set of ontinuousand di�erentiable basis funtions. In the ollinear ase the planewaves with spin �are onneted to the muÆn-tin basis funtions with the same spin only. Hene, theboundary onditions that have to be satis�ed on the muÆn-tin sphere are:ei(k+G)r�� =XL �A�GL� (k)u�l�(r) +B�GL� (k) _u�l�(r)�YL(r̂)�� (4.20)In the non-ollinear ase eah funtion in the interstitial ouples to both, spin-up and-down, in the muÆn-tins. Therefore, the boundary onditions beome:ei(k+G)r�� =X�� XL �A�GL���(k)u�l��(r) +B�GL���(k) _u�l��(r)�YL(r̂)��g�� (4.21)1The radial funtions are denoted u only for onveniene. In the atual alulations the salar-relativisti approximation is employed, and therefore the large omponent of the radial funtion isused here.



4.2. THE IMPLEMENTATION OF NON-COLLINEAR MAGNETISM 61In order to alulate the A- and B-oeÆients, we multiply equation 4.21 with (��g" )�or (��g# )�, whih yieldsei(k+G)r(��g��)��� =XL �A�GL���(k)u�l��(r) +B�GL���(k) _u�l��(r)�YL(r̂): (4.22)Comparing this equation with 4.20 shows, that the non-ollinearA- and B-oeÆientsan be expressed in terms of the ollinear oeÆients.A�GL���(k) = (��g��)��� A�GL��(k)B�GL���(k) = (��g��)��� B�GL��(k) (4.23)Similarly, the ontribution of the muÆn-tin at atom � HG0�0G�MT� (k) to the non-ollinearHamiltonian HG0�0G�(k) an be expressed in term of the muÆn-tin ontributionHG0GMT��(k) to the ollinear spin-dependent Hamiltonian HG0G� (k).HG0G0MT��(k) = ZMT�  XL0 �A�G0L0� (k)u�l0�(r) +B�G0L0� (k) _u�l0�(r)�YL(r̂)��!�HMT�� XL �A�GL� (k)u�l�(r) +B�GL� (k) _u�l�(r)�YL(r̂)��! d3r (4.24)In the non-ollinear ase an additional summation over the loal spin �� has to beperformed.HG0�0G�MT� (k) =ZMT�  X��0 XL0 �A�G0L0�0��0(k)u�l0��0(r) +B�G0L0�0��0(k) _u�l0��0(r)�Y 0L(r̂)��g��0!�HMT� X�� XL �A�GL���(k)u�l��(r) +B�GL���(k) _u�l��(r)�YL(r̂)��g��! d3r (4.25)However, HMT� is diagonal in ��g�� , and (��g��0)���g�� = Æ�� 0�� . Hene, 4.25 beomes:HG0�0G�MT� (k) =X�� ZMT�  XL0 �A�G0L0�0��(k)u�l0��(r) +B�G0L0�0��(k) _u�l0��(r)�Y 0L(r̂)��g��!�HMT� XL �A�GL���(k)u�l��(r) +B�GL���(k) _u�l��(r)�YL(r̂)��g��! d3r (4.26)Using 4.23 and the fat that (��g��)�HMT���g�� = HG0G0MT���(k) 4.26 simpli�es to:HG0�0G�MT� (k) =X�� ((��g��)���0)�(��g��)���HG0G0MT���(k) (4.27)In omplete analogy the muÆn-tin ontribution to the non-ollinear overlap-matrixis given by: SG0�0G�MT� (k) =X�� ((��g��)���0)�(��g��)���SG0G0MT���(k) (4.28)



62 CHAPTER 4. NON-COLLINEAR MAGNETISM IN FLAPW4.3 Possible Extensions of the MethodThe results that have been obtained for the unsupported monolayers of Cr (Ag(111)geometry) and Mn (Cu(111) geometry) show (f. Chapter 6), that the auray of thefrozen potential approximation is limited. The main reason that auses the inaurayare the approximations that have to be made in the interstitial and vauum region.With these approximations made, the method an only be applied to systems withlarge loal magneti moments, well on�ned inside of the muÆn-tin spheres, and smallinterstitial and vauum magnetizations. The requirements are satis�ed reasonably bythe unsupported Cr monolayer in the Ag(111) geometry (Cr UML-Ag(111)), that wehave investigated, but for the Mn UML-Cu(111), with its smaller lattie onstant andloal magneti moments, the limits of this approximation is reahed (f. Chapter 6).However, the unsupported monolayers are already lose to the limit of free atoms, withtheir large magneti moments. Thus, in order to allow the appliation of the methodto a larger lass of systems it is neessary to extent the method to selfonsistent non-ollinear alulations. Di�erent ways of performing suh selfonsistent alulationsare thinkable.One option is to allow a general magnetization density in the interstitial region,with both, magnitude and diretion, depending on the position vetor r, while havingthe magnetization inside eah muÆn-tin point along a single diretion. This means,that, after eah iteration of a selfonsistent alulation, the magnetization densityin the interstitial and vauum region is alulated aording to (2.17). Inside themuÆn-tin sphere the expetation value of the magnetization is omputed along oneloal quantization axis only. Thus, the magnetization density inside the spheres is asalar rather than a vetor �eld.m�(r) = NXi=1  �i (r)�l i(r) (4.29)�l is the spin operator orresponding to the loal quantization axis. The diretionof the loal quantization axis an either be kept �xed, so that the magnetization isfored to be direted along a hosen diretion, or it an be determined selfonsistentlyafter eah iteration. Within this approximation the rotation of the atomi magnetimoments with respet to eah other, the inter-atomi non-ollinear magnetism, anbe desribed [SHK89, K�ub95, SK96℄, while hanges of the diretion of the mag-netization inside single atoms, the intra-atomi non-ollinear magnetism [NS96℄, isnegleted. The most general sheme is to allow the magnetization to have a di�erentdiretion everywhere in spae and, thus to inlude also the intra-atomi non-ollinearmagnetism. Thus, the magnetization density has to be alulated selfonsistentlyaording to (2.17) everywhere in spae. Suh alulations are most aurate, be-ause no approximations to the diretion of the magnetization are made. However,due to larger number of degrees of freedom and the small energy di�erenes that areassoiated with hanges of the diretion of the magnetization, many iterations areneeded on the way to selfonsisteny. Therefore, suh alulations may turn out tobe laborious.



Chapter 5The Loal Orbital ExtensionFor ertain appliations it is desirable to improve the variational freedom of theFLAPW basis set. As a result of the linearization around the energy parameter Elthe FLAPW method may only yield aurate results, if the alulated eigenvalues �are reasonably lose to the energy parameters. In some ases however, it is neessaryto deal with eigenvalues in a broader energy region. Our main motivation to imple-ment the loal orbitals was to obtain a spin-independent basis set. In the urrentimplementation of the FLAPW method the radial funtions ul and _ul are alulatedseparately for both spin diretions, with di�erent energy parameters. The energydi�erene between the spin-up and -down bands is of the order of 2eV at surfaes,therefore these states annot be treated aurately with a single set of radial fun-tions. A seond example where a greater variational freedom is needed are semiorestates. Semiore states are high lying ore states, typially 1 to 3 Ry (15 { 40 eV)below the Fermi energy. They show a small dispersion of the energy bands due to aweak overlap of their wavefuntions. So far, these states have either been added tothe ore, or treaded with a seond set of energy parameters in a separate energy win-dow (semiore window), the latter method is usually referred to as multiple windowFLAPW method. Both methods have serious disadvantages. If the semiore statesare added to the ore their dispersion is negleted. The ore states are treated like anatomi problem, i.e. the overlap with other atoms is negleted. This approximationleads to wrong results in appliations where the dispersion of these states plays animportant role, e.g. during the alulation of lattie onstants [Sin91a℄, phonon fre-quenies [SK91℄, fores or eletri �eld gradients [BSSS92℄. Another diÆulty arises,beause the FLAPW basis funtions are not orthogonal to the semiore states. Itan be shown, that the radial basis funtions are orthogonal to any ore state that iszero outside the muÆn-tin sphere. However, this ondition is satis�ed poorly by thesemiore states. Therefore, these states an appear in the valene eigenvalue spe-trum as the so alled \ghost-bands". The eigenvalues of these states are usually faro� the orret energy of the semiore state, due to the poor representation of thesestates within the valene FLAPW basis. A very good disussion of this problem anbe found in [Sin94℄. In multiple window alulations the dispersion of the semiorestates is treated orretly, but the ghost-band problem may still be present. The63



64 CHAPTER 5. THE LOCAL ORBITAL EXTENSIONimplementation of multiple windows in the urrent version of our FLAPW ode willbe disussed in the next setion.The loal orbitals are an extension to the FLAPW basis set, that has been in-trodued by Singh [Sin91b℄. The original motivation was the treatment of semiorestates, though the loal orbitals an be applied in any situation that demands for agreater variational freedom of the basis set. With this extension semiore and va-lene states an be treated in a single window, and the diÆulties desribed aboveare removed. During the implementation of the loal orbitals, their appliation tothe semiore states of titanium and tungsten served as a test.5.1 Multiple Window FLAPWIn a multiple window FLAPW alulation a seond set of basis funtions, that haveexatly the same form as in (3.4), but with di�erent energy parameters, is used.In order to distinguish these basis funtions an additional index \w", ounting thewindows, is introdued.'w;G(k; r) = 8><>: ei(G+k)r interstitial regionXL A�GL;w(k) ul;w(r)YL(r̂) +B�GL;w(k) _ul;w(r)YL(r̂) muÆn-tin � (5.1)If the planewave ut-o� in the semiore window was hosen to equal the ut-o� in thevalene window, Gmax, this would result in a twie bigger basis set as ompared tothe single window alulation. That means, however, that the solution of the seularproblem would take about eight times as long. Therefore, the overlap between the twowindows is usually negleted. This leads to the solution of two independent eigenvalueproblems per selfonsistent iteration, within whih the size of the eigenvalue problemis the same as it is in the ase of a single window alulation. Sine, the semiorestates have little dispersion, less k-points are needed in the semiore window, whihmakes this a rather eÆient sheme. However, negleting the overlap an lead toghost-bands in the valene window. And, in some appliations, the overlap has to beinluded to obtain aurate results [YFP+91℄.An improvement to this sheme an be ahieved, if the overlap between the win-dows is inluded in a seond-variation step. The Hamiltonian and overlap matrix anbe split into two parts: H = H0 +H0; S = S0 + S0 (5.2)Where H0 and S0 ontain all matrix elements exept those, that ouple the twowindows, i.e. H0 and S0 onsist of two ompletely independent matries, one for eahwindow. H0 and S0 ontain the overlap of the two windows. In the �rst variation stepthe two windows are treated separately, as desribed above, i.e. the two independentseular equations nH0w � �01;wS0wo 01;w = 0 (5.3)



5.2. IMPLEMENTATION OF THE LOCAL ORBITAL EXTENSION 65are solved, yielding the eigenfuntions 0i;w =XG i;w;G'w;G (5.4)in eah window. These eigenfuntions serve as a basis in the seond-variation step.The seular problem of the seond-variation step is muh smaller, using twie thenumber of oupied states in eah window usually gives a suÆient basis set. In theseond variation step the overlap between the windows is taken into aount. Thus,the semiore states an be treated very aurately within this sheme. However,the same k-point set has to be used in both windows. Therefore, this sheme isless eÆient, than alulations negleting the overlap. In the urrent version of ourFLAPW ode the latter sheme is implemented, i.e. multiple window alulation areperformed negleting the overlap between the windows.5.2 Implementation of the Loal Orbital Exten-sionThe loal orbitals are an extension to the FLAPW basis, that an be used to improvethe variational freedom for a spei� purpose, e.g. to improve the representation of thesemiore states. The extra basis funtions are ompletely loalized inside the muÆn-tin spheres, i.e. their value and derivative falls to zero at the muÆn-tin radius. Thus,no additional boundary onditions have to be satis�ed. This an be ahieved via alinear ombination inluding three radial funtion1, the standard FLAPW funtionsu�l and _u�l plus a further radial funtion u�lo. This new radial funtion is onstrutedin the same way as u�l , but with a di�erent energy parameter E�lo. If the loal orbitalsare used to treat semiore states, this energy parameter is set to the energy of thesestates. The loal orbitals an be used very spei�ally, e.g. if they are applied to the5p semiore states of tungsten only loal orbitals with p-harater are added to thebasis. Hene, very few extra funtions are needed, whih makes loal loal alulationsvery eÆient. In the ase of the tungsten 5p states only three loal orbitals per atom(l = 1, m = �1; 0; 1) are needed instead of to 60{100 augmented planewaves.At this point a few remarks about the notation that will be used throughoutthis hapter should be made. The ombination of the three radial funtion and aspherial harmoni, (a�lou�l (r) + b�lo _u�l (r) + �lou�lo(r))YL, will be alled loal orbital. lis the angular momentum quantum number of the loal orbital, l = llo. The indexlo ounts the di�erent loal orbital radial funtions. Let's onsider an example, thetreatment of the 2p, 3s and 3p semiore states of Ti. Three additional radial funtionsare needed, e.g. 2p: lo = 1, 3s: lo = 2 and 3p: lo = 3, thus llo=1 = 1, llo=2 = 0 andllo=3 = 1. The loal orbitals with lo = 1 and lo = 3 have the same angular momentumquantum number, they di�er only by their energy parameters, Elo=1 6= Elo=3 and, as1Within this setion the radial funtions are denoted ul(r) for simpliity, though in salar-relativisti alulating the funtions gl(r) and �l(r) are used instead of ul(r).



66 CHAPTER 5. THE LOCAL ORBITAL EXTENSIONa onsequene, by their radial funtions, ulo=1(r) 6= ulo=3(r). Latter in this hapterlinear ombinations of the loal orbitals will be onstruted, by formally oupling theloal orbitals to planewaves, as if boundary onditions had to be satis�ed. Theselinear ombinations will also be alled loal orbitals.5.3 Constrution of the Loal OrbitalsThe three funtions u�l , _u�l and u�lo have to be ombined, so that the value and thederivative of the loal orbital fall to zero at the muÆn-tin radius. Additionally, theresulting radial funtions an be required to be normalized. Hene, to determine theoeÆients of the radial funtions a�lo, b�lo and �lo we make use of the following threeonditions: a�lou�l (RMT�) + b�lo _u�l (RMT�) + �lou�lo(RMT�) = 0 (5.5)a�lo�u�l�r (RMT�) + b�lo� _u�l�r (RMT�) + �lo�u�lo�r (RMT�) = 0 (5.6)Z RMT�0 (a�lou�l (RMT�) + b�lo _u�l (RMT�) + �lou�lo(RMT�))2r2dr = 1 (5.7)Where, lo is the index of the loal orbital, whih is neessary beause more than oneloal orbital an be added for eah atom. Solving these equations for the oeÆientsyields: a�lo = K�a;lo�lo (5.8)b�lo = K�b;lo�lo (5.9)�lo = 1q(K�a;lo)2 + (K�b;lo)2 _N�l + 1 + 2K�a;loN�lo + 2K�b;lo _N�lo (5.10)with K�a;lo = 1W  u�lo(RMT�)� _u�l�r (RMT�)� �u�lo�r (RMT�) _u�l (RMT�)! (5.11)K�b;lo = � 1W  u�lo(RMT�)�u�l�r (RMT�)� �u�lo�r (RMT�)u�l (RMT�)! (5.12)with the WronskianW =  �u�l�r (RMT�) _u�l (RMT�)� u�l (RMT�)� _u�l�r (RMT�)! ; (5.13)where _N�l = Z RMT�0 ( _u�l )2r2dr (5.14)N�lo = Z RMT�0 u�l u�lor2dr (5.15)_N�lo = Z RMT�0 _u�l u�lor2dr; (5.16)



5.3. CONSTRUCTION OF THE LOCAL ORBITALS 67and is has been used, that Z RMT�0 (u�l )2r2dr = 1 (5.17)Z RMT�0 (u�lo)2r2dr = 1: (5.18)The index l in N�lo and _N�lo has been omitted, N�lo and _N�lo always refer to the overlapintegral of u�lo and the radial funtions that orresponding to the same angular mo-mentum quantum number l. Clearly, if E�lo is set equal to the energy parameter E�lwith the same l, the overlap integrals (5.15) and (5.16) beome N�lo = 1 and _N�lo = 0.This has been exploited to test the implementation of these integrals.In atual alulations linear ombinations of loal orbitals that satisfy Bloh'stheorem have to be onstruted. Therefore A-, B- and C-oeÆients are employed,whih are onstruted in the same way as the FLAPW A- and B-oeÆients (3.115).Hene the additional basis funtions are given by:'�;loGlo(k; r) =Xm �A�GloLo (k)u�l +B�GloLo (k) _u�l + C�GloLo (k)u�lo�YL(r̂) (5.19)with A�GloLo (k) = eiKlo� �a�lo4� 1W il Y �L (R�K̂lo)B�GloLo (k) = eiKlo� �b�lo4� 1W il Y �L (R�K̂lo)C�GloLo (k) = eiKlo� ��lo4� 1W il Y �L (R�K̂lo) (5.20)Where Klo abbreviates Glo + k and Lo abbreviates (lo;m). The loal orbitals areoupled to \�titious" planewaves, even though no boundary onditions have to besatis�ed. The vetors Glo an be hosen arbitrarily, subjet to the onstrain thatthey yield linearly independent funtions '�;loGlo(k; r). Finding suh vetors is straight-forward, e.g. by seleting planewaves one at a time and testing whether the orre-sponding '�;loGlo(k; r) is linearly independent of the previous loal orbitals. If this isthe ase, the planewave is aepted, otherwise it is rejeted. This proedure is arriedout separately for eah atom, i.e. the radial funtions and spherial harmonis at asingle atom form a loal orbital, whih is added to the FLAPW basis set. Appar-ently, this form of the oeÆients is more ompliated than neessary. The struturefator eiKlo� � alone would be enough to satisfy Bloh's theorem. However, a furthermodi�ation is needed when using the loal orbitals in the presents of inversion sym-metry. In this ase the origin is usually hosen at an inversion enter so that theseular equation beomes real (see setion 3.3.4). In order to exploit this with loalorbitals, linear ombinations that transform like planewaves ('(�r) = '�(r)) mustbe used. In this ase the loal orbitals at atoms that an be mapped onto eah othervia inversion have to be oupled to a ommon set of planewaves. If there are for



68 CHAPTER 5. THE LOCAL ORBITAL EXTENSIONexample two tungsten atoms in the unit ell, that are related by inversion, and theloal orbitals are used to treat the 5p states, a ommon set of six vetors Glo must befound, that generates six linearly independent '�;loGlo(k; r). The resulting loal orbitalshave nonzero values inside the muÆn-tin spheres of both atoms, and transform likeplanewaves (f. setion 3.3.4). Clearly, in a system that possesses inversion symme-try there has to have an \inversion partner" for every atom. However, this \partner"might ly in another unit ell. In this ase the property '(�r) = '�(r) is alreadyguaranteed by the struture onstant eiKlo� � and the fator il. The fators 4� and1=W do not have any e�et on the properties of the loal orbitals. They are merelysaling fators, and ould as well be omitted.5.4 Constrution of the Additional Hamiltonianand Overlap Matrix ElementsInluding the loal orbitals to the FLAPW basis set leads to extra Hamiltonian andoverlap matrix elements. When we write the new basis vetor as a super vetor on-taining the original FLAPW basis set 'G and the loal orbitals 'loGlo the Hamiltonianand overlap matrix an be written in the form: HG0G HGGloHGlo0G HGlo0Glo ! (5.21)and equivalently for S. The matrix elements of the loal orbitals with the augmentedplanewaves are given by:HGGlo(k) = Z ('G(k; r))�H'loGlo(k; r)d3r (5.22)SGGlo(k) = Z ('G(k; r))� 'loGlo(k; r)d3r (5.23)The matrix elements of the loal orbitals with other loal orbitals (or with themselves)are given by: HGlo0Glo(k) = Z �'lo0Glo0 (k; r)��H'loGlo(k; r)d3r (5.24)SGlo0Glo(k) = Z �'lo0Glo0 (k; r)�� 'loGlo(k; r)d3r (5.25)In general eah extra radial funtion orresponding to the index lo is assigned adi�erent set of G-vetors fGlog. However, (5.24) and (5.25) also over the ase wherelo0 = lo. In this ase Glo0 and Glo are di�erent G-vetors that orrespond to the sameradial funtion. Due to the on�nement of the loal orbitals to partiular muÆn-tinspheres, only on-site ontributions2 add to the Hamiltonian and overlap matrix.2The ontributions from di�erent atoms, say � and �0, are zero



5.4. HAMILTONIAN AND OVERLAP MATRIX ELEMENTS 695.4.1 The Overlap Matrix ElementsThe overlap matrix elements of the loal orbitals situated at atom � or a pair ofatoms related by inversion �;�� with the augmented planewaves is given by:SGGlo(k) = X(�;��( ZMT�  XL0 �A�GL0 (k)u�l0(r) +B�GL0 (k) _u�l0(r)�YL0(r̂)!� Xm �A�GloLo (k)u�l (r) +B�GloLo (k) _u�l (r) + C�GloLo (k)u�lo(r)�YL(r̂)! d3r(5.26)The sum over the atom pair (�;��) appears only in the ase of atoms that arerelated by inversion, otherwise the whole ontribution omes from a single muÆn-tin�. Using the orthogonality of the spherial harmonis, the orthogonality of u�l and_u�l and the normalization of u�l , (5.26) beomes:SGGlo(k) = X(�;��)Xm �A�GL (k)�� �A�GloLo (k) + C�GloLo (k)N�lo�+ �B�GL (k)�� �B�GloLo (k) _N�l + C�GloLo (k) _N�lo� (5.27)Where l is the angular momentum quantum number of the loal orbital l = llo. In thease of two atoms that an be mapped onto eah other by inversion the SGGlo(k) isgiven by a sum of the ontributions of the two atoms SGGlo(k) = SGGlo� (k)+SGGlo�� (k).However, it an be shown, that the two ontributions are related by:S�GGlo(k) = �S��GGlo(k)�� (5.28)Thus SGGlo(k) = 2 Re nS�GGlo(k)o (5.29)This relation has been used for the implementation of the loal orbitals. Substitutingthe A-, B- and C-oeÆients the overlap an be written:S�GGlo(k) =ei(Glo�G)� � �4�W �2 lXm=�lF �l (K)YL(R�K̂) (a�lo + �loN�lo)Y �L (R�K̂lo)+G�l (K)YL(R�K̂) �b�lo _N�lo + �lo _N�lo�Y �L (R�K̂lo) (5.30)Where F �l (K) = " _u�l (RMT�K)�jl�r (RMT�K)� � _u�l�r (RMT�)jl(RMT�K)#G�l (K) = "u�l (RMT�K)�jl�r (RMT�K)� �u�l�r (RMT�)jl(RMT�K)#; (5.31)



70 CHAPTER 5. THE LOCAL ORBITAL EXTENSIONK abbreviates G+k and K = jKj. This an be simpli�ed further using the additiontheorem for the spherial harmonis:Pl(os!) = 4�2l + 1 lXm=�l YL(k̂1)Y �L (k̂2) (5.32)Where ! is the angle between the two vetors. Applying this theorem (5.30) beomes:SGGlo� (k) = ei(Glo�G)� � �4�W �2 2l + 14� Pl(os!)�F �l (K) (a�lo + �loN�lo) +G�l (K) �b�lo _N�lo + �lo _N�lo�� (5.33)with os! = K̂ � K̂lo (5.34)The overlap between di�erent loal orbitals an be derived in exatly the same way.Clearly, it an only be non-zero, if the angular momentum quantum number l of theloal orbitals are equal llo = llo0.SGlo0Glo� (k) = ei(Glo�Glo0)� � �4�W �2 2l + 14� Pl(os!)�a�lo0 (a�lo + �loN�lo)+b�lo0 �b�lo _N�lo + �lo _N�lo�+ �lo0 �a�loN�lo0 + b�lo _N�lo0 + �loN�lo0;lo��(5.35)Where the normalization of u�lo andN�lo0;lo = Z RMT�0 u�lo0u�lor2dr (5.36)has been used. A relation whih is equivalent to (5.28) holds for the overlap betweendi�erent loal orbitals. Hene, the elements of the overlap matrix between loalorbitals situated at two atoms, that are related by inversion, an be written:SGlo0Glo(k) = 2 Re nSGlo0Glo� (k)o (5.37)5.4.2 The Hamiltonian Matrix ElementsThe Hamiltonian matrix elements of the loal orbitals situated at atom � or a pairof atoms related by inversion (�;��) with the augmented planewaves is given by:HGGlo(k) = 0�X�;��1AZMT�  XL0 �A�GL0 (k)u�l0(r) +B�GL0 (k) _u�l0(r)�YL0(r̂)!�HMT� Xm �A�GloLo (k)u�l (r) +B�GloLo (k) _u�l (r) + C�GloLo (k)u�lo(r)�YL(r̂)! d3r(5.38)



5.4. HAMILTONIAN AND OVERLAP MATRIX ELEMENTS 71As in the ase of the overlap matrix it an be shown, that the ontribution of anatom (�) and the inverse atom (��) are related by:H�GGlo(k) = �H��GGlo(k)�� (5.39)Thus HGGlo(k) = 2 Re nH�GGlo(k)o (5.40)(5.38) involves integrations of the formt�''L0Lo = ZMT� (u�l0YL0(r̂))�HMT�u�loYL(r̂)d3r (5.41)t� _''L0Lo = ZMT� ( _u�l0YL0(r̂))�HMT�u�loYL(r̂)d3r (5.42)in addition to ((3.61){(3.64)). For Hamiltonian matrix elements inluding two di�er-ent loal orbitals an additional integration is required.t�''Lo0Lo = ZMT� (u�lo0(r)YL0(r̂))�HMT�u�lo(r)YL(r̂)d3r (5.43)These t-matries do not depend onG, Glo or k. Therefore, they need to be alulatedonly one per iteration. The alulation of these matrix elements is performed in thesame way as the alulation of the analogous t-matries for the FLAPW basis ((3.73){(3.76)). If the energy parameters of the loal orbitals are set equal to the values ofthe energy parameters of the FLAPW radial funtions, the orresponding matrixelements beome equal. This relation has been used to test the implementation ofthe t-matries.The Hamiltonian matrix elements (5.38) an now be written in terms of the t-matries. H�GGlo(k) =XmL0 �A�GL0 (k)�� ht�''L0L A�GloLo (k) + t�' _'L0L B�GloLo (k) + t�''L0LoC�GloLo (k)i+ �B�GL0 (k)�� ht� _''L0L A�GloLo (k) + t� _' _'L0L B�GloLo (k) + t� _''L0LoC�GloLo (k)i (5.44)In analogy the Hamiltonian matrix elements inluding two loal orbitals are givenby: H�Glo0Glo(k) =Xmm0 �A�GLo0(k)�� ht�''L0L A�GloLo (k) + t�' _'L0L B�GloLo (k) + t�''L0LoC�GloLo (k)i+ �B�GLo0 (k)�� ht� _''L0L A�GloLo (k) + t� _' _'L0L B�GloLo (k) + t� _''L0LoC�GloLo (k)i+ �C�GLo0 (k)�� ht�''Lo0LA�GloLo (k) + t�' _'Lo0LB�GloLo (k) + t�''Lo0LoC�GloLo (k)i (5.45)Where the ontribution of atom pair �, �� an be obtained from:HGlo0Glo(k) = 2 Re nHGlo0Glo� (k)o (5.46)



72 CHAPTER 5. THE LOCAL ORBITAL EXTENSIONTests of the Hamiltonian and Overlap Matrix ElementsTo test the set-up of the Hamiltonian and overlap matrix, we solved the seularequation and ompared the semiore eigenvalues to those obtained from a two-windowalulation. The 5s and 5p states of f La and the 5p states of b W severed as testsystems. In both ases we performed selfonsistent two-window alulations. Thenwe determined the eigenvalues with loal orbitals at seleted points in the Brillouinzone non-selfonsistently, using the harge density of the two window alulation.For La we used a lattie onstant a = 9:8 a:u:, a sphere radius RMT = 3:3 a:u:and a planewave ut-o� RMTGmax = 10:0. The Brillouin zone integrations wereperformed using 60 speial k-points in the irreduible part of the Brillouin zone. TheW alulations were arried out at a lattie onstant of a = 5:91a:u: with a muÆn-tin radius of RMT = 2:456a:u: and a planewave ut-o� RMTGmax = 8:8, using 126k-points in the irreduible wedge of the Brillouin zone. For tehnial reasons we useda unit ell inluding two atoms in both ases. The results of these test are shownLanthanum 5s 5p2-window -1.816558 -0.659386 -0.548262loal orbital -1.816600 -0.664944 -0.549574Table 5.1: Semiore eigenvalues of La at the �-point, alulated with 2-window FLAPW and loal orbitals, using the same selfonsistent hargedensity (potential). The �rst value is the lower 5s eigenvalue, followed bythe lowest and highest 5p eigenvalue. All eigenvalues are twofold spin-degenerate. The energies (given in Ry units) are with respet to theaverage interstitial potential, whih is 0:5870 Ry below the Fermi energy.
Tungsten 5p2-window -1.679244 -1.605268loal orbital -1.608692 -1.605970Table 5.2: Semiore eigenvalues of W at the �-point. The �rst valueis the lowest 5p eigenvalue, followed by the highest 5p eigenvalue. Botheigenvalues are twofold spin-degenerate. The energies (given in Ry units)are with respet to the average interstitial potential, whih is 1:1540 Rybelow the Fermi energy.for seleted semiore eigenvalues in Fig. 5.1 and 5.2. The two methods are in good



5.5. THE ELECTRON DENSITY OF LOCAL ORBITALS 73agreement, the di�erene between the eigenvalues is of the order of 1 mRy. At otherk-points with lower symmetry these di�erenes are slightly larger. During the twowindow alulations the energy parameter in the semiore window for states withl = 2 and higher for La and states with l = 0, l = 2 and higher in the ase of Wwere set far above the semiore band energies (4 Ry) to avoid ghost-bands. However,later test showed, that this is not neessary in the ase of W, but that the arti�ialhoie of energy parameters does a�et the result of the alulations (e.g. the lattieonstant). Therefore, we expet, that the agreement would be even better, if theenergy parameters were set to the semiore band energy. We also arried out testswith W in four atom unit ell inluding an atom pair that an be mapped onto eahother by inversion. This was neessary beause suh atom pairs are a speial asein terms of the implementation of the loal orbitals. These tests yielded an equallygood agreement between the loal orbital and the two-window alulation.5.5 Constrution of the Eletron Density of LoalOrbitalsThe onstrution of the eletron density in the FLAPW method has been disussedin setion 3.6. Clearly, the loal orbitals lead to extra ontributions to the eletrondensity inside the spheres. If loal orbitals are used, the eigenfuntions of the Kohn-Sham equations are represented in the following form in the muÆn-tins. �� (k; r) =XG G� (k)XL �A�GL (k)u�l (r) +B�GL (k) _u�l (r)�YL(r̂)+Xlo XGlo Glo� (k)Xm �A�GloLo (k)u�l (r) +B�GloLo (k) _u�l (r) + C�GloLo (k)u�lo(r)�YL(r̂)(5.47)The G-dependent A-, B- and C-oeÆients an be replaed by band-dependent o-eÆients, performing the summation over the planewaves (f. (3.141)). �� (k; r) = XL �A�L;�(k)u�l (r) +B�L;�(k) _u�l (r)�YL(r̂)+ XLo �A�Lo;�(k)u�l (r) +B�Lo;�(k) _u�l (r) + C�Lo;�(k)u�lo(r)�YL(r̂) (5.48)A�Lo;�(k) =XGlo Glo� (k)A�GloLo (k); B�Lo;�(k) =XGlo Glo� (k)B�GloLo (k);C�Lo;�(k) =XGlo Glo� (k)C�GloLo (k) (5.49)



74 CHAPTER 5. THE LOCAL ORBITAL EXTENSION5.5.1 \l-like" ChargeThe l-like harge an still be de�ned in the same way as in setion 3.6.1 if loalorbitals are used. However, the extra terms have to be taken into aount. In setion3.6.1 we de�ned the k-dependent l-like harge by:n��;l(k) = ZMT� j ��;l(k; r)j2d3r (5.50)Substituting (5.48) yields:n��;l(k) = lXm=�l jA��L (k)j2 + jB��L (k)j2 _N�l+ 2Re( Xlollo=l lXm=�l �A�L;�(k)�� �A�Lo;�(k) + C�Lo;�(k)N�lo�+ �B�L;�(k)�� �B�Lo;�(k)) _N�l + C�Lo;�(k) _N�lo�)+ Xlo;lo0llo0=llo=l lXm=�l �A�lo0;m;�(k)�� �A�Lo;�(k) + C�Lo;�(k)N�lo�+ �B�lo0;m;�(k)�� �B�Lo;�(k)) _N�l + C�Lo;�(k) _N�lo�+ �C�lo0;m;�(k)�� �A�Lo;�(k)N�lo0 +B�Lo;�(k)) _N�lo0 + C�Lo;�(k)N�lo0;lo�(5.51)At this point, for the �rst time, a large number of ross-terms appear. This is aonsequene of the fat, that the extra radial funtions u�lo are not orthogonal to thestandard FLAPW radial funtions.5.5.2 The Optimal Loal Orbital Energy ParameterThe optimal hoie of the energy parameter for the loal orbitals is de�ned by therequirement, that it minimizes the linearization error weighted with the l-like hargeof the loal orbitals, i.e. the harge that the loal orbitals, whih orrespond to theenergy parameter, ontribute to the total harge (f. setion 3.6.2).ZBZ X�;��(k)<EF (��(k)� E�lo)2 n��;lo(k)d3k; (5.52)with n��;lo(k) = lloXm=�llo jC�Lo;�(k)j2 (5.53)



5.5. THE ELECTRON DENSITY OF LOCAL ORBITALS 75Setting the derivative (�=�E�lo) equal to zero yields the optimal energy parameter:E�lo = 0�ZBZ X�;��(k)<EF ��(k)n��;lo(k)d3k1A,0�ZBZ X�;��(k)<EF n��;lo(k)d3k1A (5.54)The Brillouin zone integration methods transform this into a sum over a disretek-point set.E�lo =  Xk X� ��(k)n��;lo(k)w(�;k)!, Xk X� n��;lo(k)w(�;k)! (5.55)There is one diÆulty that arises within loal orbital alulations. The FLAPWbasis funtions do ontribute to the semiore eigenfuntions. Reall that the loalorbitals are ompletely loalized in the muÆn-tin spheres. Therefore the omponentsof the eigenfuntions that streth beyond the spheres an only be desribed by theregular FLAPW funtions. Hene, if the valene (FLAPW) energy parameters aredetermined by (3.151) with the l-like harge de�ned by (3.147), the ontribution ofthe semiore states lowers the the energy parameters. This an lead to a ghost-bandproblem. It is therefore neessary to skip the semiore states in the sum over theband in (3.151). The loal orbitals, however, ontribute very little to the valenestates. Thus, a similar distintion is not neessary during the determination of theloal orbital energy parameters.5.5.3 Constrution of the Eletron Density in the MuÆn-Tins in the Presents of Loal OrbitalsSubstituting (5.48) into (3.137) yields the eletron density in the muÆn-tins.n�(r) = 1VBZ ZBZ X�;��(k)<EF  XL0 A�L0;�(k)u�l0(r) +B�L0;�(k) _u�l0(r)+XLo0 A�Lo0;�(k)u�l0 +B�Lo0;�(k) _u�l0 + C�Lo0;�(k)u�lo0!�Y �L0(r̂) XL A��L (k)u�l (r) +B�L;�(k) _u�l (r)+XLo A�Lo;�(k)u�l +B�Lo;�(k) _u�l + C�Lo;�(k)u�lo!YL(r̂)d3k (5.56)The oeÆients C�L00(r) (f. 3.153) an be determined by multiplying (5.56) withR d
YL00(r̂). If the Brillouin zone integration is performed on a disrete k-point setthe C�L00(r) are given by:C�L00(r) = Xl0l  Xk X� Xm0m �A�L0;�(k)��A�L;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�l (r)



76 CHAPTER 5. THE LOCAL ORBITAL EXTENSION+ Xl0l  Xk X� Xm0m �A�L0;�(k)��B�L;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r) _u�l (r)+ Xl0l  Xk X� Xm0m �B�L0;�(k)��A�L;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�l (r)+ Xl0l  Xk X� Xm0m �B�L0;�(k)��B�L;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r) _u�l (r)+ Xl0lo  Xk X� Xm0m �A�L0;�(k)��A�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�l (r)+ Xl0lo  Xk X� Xm0m �A�L0;�(k)��B�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r) _u�l (r)+ Xl0lo  Xk X� Xm0m �A�L0;�(k)��C�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�lo(r)+ Xl0lo  Xk X� Xm0m �B�L0;�(k)��A�Lo;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�l (r)+ Xl0lo  Xk X� Xm0m �B�L0;�(k)��B�Lo;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r) _u�l (r)+ Xl0lo  Xk X� Xm0m �B�L0;�(k)�� C�Lo;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�lo(r)+ Xlo0l  Xk X� Xm0m �A�Lo0;�(k)��A�L;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�l (r)+ Xlo0l  Xk X� Xm0m �A�Lo0;�(k)��B�L;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r) _u�l (r)+ Xlo0l  Xk X� Xm0m �A�Lo0;�(k)��C�L;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�lo(r)+ Xlo0l  Xk X� Xm0m �B�Lo0;�(k)��A�L;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�l (r)+ Xlo0l  Xk X� Xm0m �B�Lo0;�(k)��B�L;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r) _u�l (r)+ Xlo0l  Xk X� Xm0m �B�Lo0;�(k)��C�L;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�lo(r)+ Xlo0lo Xk X� Xm0m �A�Lo0;�(k)��A�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�l (r)+ Xlo0lo Xk X� Xm0m �A�Lo0;�(k)��B�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r) _u�l (r)+ Xlo0lo Xk X� Xm0m �A�Lo0;�(k)��C�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�l0(r)u�lo(r)



5.6. TEST CALCULATION ON TUNGSTEN AND TITANIUM 77+ Xlo0lo Xk X� Xm0m �B�Lo0;�(k)��A�Lo;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�l (r)+ Xlo0lo Xk X� Xm0m �B�Lo0;�(k)��B�Lo;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r) _u�l (r)+ Xlo0lo Xk X� Xm0m �B�Lo0;�(k)�� C�Lo;�(k)Gmm0m00ll0l00 w(�;k)! _u�l0(r)u�lo(r)+ Xlo0lo Xk X� Xm0m �C�Lo0;�(k)��A�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�lo0(r)u�l (r)+ Xlo0lo Xk X� Xm0m �C�Lo0;�(k)��B�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�lo0(r) _u�l (r)+ Xlo0lo Xk X� Xm0m �C�Lo0;�(k)�� C�Lo;�(k)Gmm0m00ll0l00 w(�;k)!u�lo0(r)u�lo(r)(5.57)Where the gaunt oeÆients Gmm0m00ll0l00 are de�ned by (3.155), and (3.156) hasbeen used. Apparently, there are only six ombinations of radial funtions(u�l0(r)u�l (r); u�lo0(r) _u�l (r); : : : ; u�lo0(r)u�lo(r)). Thus, the orresponding oeÆients anbe ombined, but still all oeÆients have to be alulated. (5.57) would simplifya lot, if the band-dependent oeÆients of the loal orbitals and the FLAPW basisfuntions, A�Lo;� and A�L;�, B�Lo;� and B�L;�, were ombined. However, this has not beendone in order to keep the old parts and the new parts of the program as separate aspossible, to avoid errors and simplify the maintenane.5.6 Test Calulation on Tungsten and Titanium
Titanium a0-f a0-hp �Ef�hp1-window 5.363 5.371 7.322-window 5.359 5.367 7.27loal orbital 5.366 5.374 7.182-window� 5.462 { {2-window�� 5.382 { {Table 5.3: Calulated lattie onstants for f and hp Ti in atomi units[a.u.℄. In the last olumn the f-hp energy (Ef � Ehp) di�erene isgiven in Ry units. (� the semiore s, d and higher energy parametershave been set to 4.0 Ry, �� the semiore s, d and higher and the valenep energy parameters have been set to 4.0 Ry)



78 CHAPTER 5. THE LOCAL ORBITAL EXTENSION
Tungsten a0-b1-window 5.9452-window 5.943loal orbital 5.9482-window� 6.050Table 5.4: Calulated lattie onstants for b W in atomi units [a.u.℄.(� the semiore s, d and higher energy parameters have been set to 4.0Ry and the valene p energy parameters have been set to 2.0 Ry)In order to test the implementation of the loal orbitals, and in partiular theonstrution of the harge density, we performed selfonsistent alulations of Ti andW. In both ases two-window and even one-window alulations lead to aurate re-sults, whih ompare very well with the results obtained from a treatment with loalorbitals. However, are must be taken hoosing the energy parameters, only if allenergy parameters are hosen reasonably lose to the band energies aurate resultsare obtained. During the �rst two-window alulations we set the valene p-energyparameter and all semiore energy parameters exept the p-parameter to values farabove the band energies, to avoid ghost-bands (in both ases the highest lying semi-ore state is a p-state). Further alulations showed, that this is not neessary forTi and W, and leads to wrong results. The Ti 3p-states are about 2.2 Ry lower inenergy than the valene states, whih make these states most likely to produe aghost-band in the valene-window. The 3s-states are another 1.7 Ry lower than the3p-states and ould therefore ause a ghost-band in the semiore-window. To avoidthe ghost-bands we �rst set the semiore s-, d- and higher energy parameters andthe valene p-parameter to 4.0 Ry (these energies are given relative to the averageinterstitial potential, whih is 0.62 Ry below the Fermi energy in the ase of Ti, and1.17 Ry for W. The values hange slightly (� 0.1 Ry) with the lattie onstant).The results of these total energy alulation are plotted in the uppermost urve inFig. 5.1. The alulated lattie onstant (f. Table 5.3) is slightly larger than thoseobtained from latter, more aurate, alulations. If the valene p-parameter is re-laxed, i.e. set to the omputed optimal value (f. Se. 3.6.2) after eah iteration, theresults hange substantially. The lattie onstant beame ever larger. Finally, we re-laxed all semiore and valene energy parameters, whih again lead to a onsiderablehange. The results of the last alulation agree very well with the loal orbital andeven with a one-window alulations. The omputed lattie onstants di�er by lessthan 0.15 %. The urves, whih orrespond to the two-window and the loal orbitalalulation are almost idential, whereas the one-window urve is shifted by about10 mRy. We repeated the alulations with relaxed energy parameters for hp Ti,in order to obtain the f-hp energy di�erene. Again the results obtain with the



5.6. TEST CALCULATION ON TUNGSTEN AND TITANIUM 79di�erent shemes were very lose to eah other (f. Table 5.3). The hp strutureis orretly predited to be lower in energy than the f struture, and the energydi�erene agrees reasonably well with the results of other authors [AWJE93℄.Clearly, setting the energy parameters to values far of the band energies has astrong e�et on the alulations. This result is surprising in the ase of the semiorestates of Ti, sine the s-, d- and f-like harge is the semiore window is extremely small(0.001 { 0.002 eletrons). Thus, one should expet the results to depend very little onthe orresponding parameters. However, if the energy parameters are raised abovea ertain value the number of nodes of the orresponding radial funtion inreases.In the ase of Ti this means, that , for example, the radial funtion u�0 has 4s or 5sharater rather than 3s. This leads to a higher probability of �nding the eletronfar from the nuleus, i.e. harge is pushed away from the nuleus. Apparently, thisauses the inrease of the lattie onstant.The results of the test alulations on W support this piture. If all energyparameters are relaxed, the results obtained from the three di�erent shemes agreevery well (f. Fig. 5.2). The alulated lattie onstants di�er by less than 0.1 %(f. Table 5.3) and lie within the range of the results of other authors [MH86, JF84,Koh95℄. If, however, the semiore s-, d-, f-, . . . and the valene p-energy parametersare raise above the band energies, the results hange signi�antly, the lattie onstantbeomes more than 1.5 % larger.Hene, we found, that in the ase of Ti and W, where no ghost-band problemarises, loal orbital, two-window and even one-window alulations agree very well.In system that do show ghost-band, these an, in general, not be removed by raisingthe orresponding energy parameter, beause this an have a strong e�et on thealulated properties.
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Figure 5.1: Total energy alulation of f (solid line) and hp (dashedline) Ti. The data-points marked with a square have been obtained bya 2 window alulation with the valene p energy-parameter set to 4.0Ry. The data-points with a diamond have been obtained by a 2 windowalulation with free valene p energy-parameter. In both ases the semi-ore s, d and higher energy parameters were set to 4.0 Ry. The resultsof the alulations with free semiore and valene energy parameters aremarked by plus signs (+). The data-points marked with rosses (x) andtriangles have been obtained by a loal orbital and a 1 window alulationwith free energy-parameters, respetively.
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Figure 5.2: Total energy alulation of b W. The data-points markedwith a square have been obtained by a 2 window alulation with thevalene p energy-parameter set to 2.0 Ry and semiore s, d and higherenergy-parameter set to 4.0 Ry. The results of a two-window alulationwith free energy-parameters are marked with plus-signs (+). The data-points marked with rosses (x) and triangles have been obtained by aloal orbital and a 1 window alulation with free energy-parametersrespetively.
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Chapter 6Non-Collinear Magnetism ofUnsupported Monolayers withf(111) Geometry3d transition-metal monolayers on noble-metal substrates represent very interestingphysial systems, both experimentally and theoretially [FPB+90, Sie92, LMF85,FFOW85, Ter87, BDZD89, FW91, WB93, Bl�u95℄. Due to �lled d-bands of the noble-metals the 3d-3d hybridization between the overlayer and the substrate is small,whih leads to a narrowing of the d-bands in the monolayer ompared to the bulktransition-metals. As a onsequene, magnetism is enhaned and the magneti mo-ments beome larger. Moreover, there is a possibility of new magneti materials,whih are non-magneti as bulk metals. So far most of the work has been done onoverlayers grown on the (100) orientated substrates, where the atoms of the mono-layer are arranged on a square lattie. It turns out, that the early transition-metals,V, Cr and Mn, order (2 � 2) antiferromagnetially on these surfaes, while Fe, Coand Ni prefer the p(1 � 1) ferromagneti on�guration. However, the (2 � 8) re-onstrution of Mn on Cu (100), whih loally has a hexagonal struture, suggeststhat some of the transition-metal monolayers prefer a hexagonal geometry. Thishas been investigated by Pentheva [Pen96℄ performing systemati alulations onunsupported 3d transition-metal monolayers with square and hexagonal geometry.The results prove, that in fat most 3d transition-metals exept Cr prefer the hexag-onal struture. However, this property is losely related to the magnetism of themonolayers, e.g. theoretial alulations suppressing the magnetism show that thenon-magneti quadrati UML of Mn is lower in energy than the hexagonal UML. Inaddition, Pentheva ompared two di�erent magneti on�gurations on the hexagonallattie, the ferromagneti struture and an antiferromagneti on�guration (Fig. 6.1(a)), where four of the six nearest neighbor atoms have opposite magnetization, butthe moments of the remaining two neighbors are parallel. Their alulations showed,that Cr and Mn prefer this antiferromagneti struture. Assuming that this anti-ferromagnetism is predominantly driven by the nearest neighbor exhange oupling83



84 CHAPTER 6. NON-COLLINEAR MAGNETISM OF MONOLAYERSleads to the onlusion that the hexagonal monolayers of these metals onstitute afrustrated spin-system.In order to �nd a andidate for a possible non-ollinear ground-state on�gura-tion we follow the idea of Wannier [Wan50℄. We assume a two-dimensional planarHeisenberg model or x-y model and onsider three atoms on a triangle. It an beshown, that if the oupling is antiferromagnetially, i.e. the Heisenberg parameter Jis positive, the ground-state of this system is a on�guration, where magneti mo-ments form 120Æ angles. At this point the idea of Wannier omes into play. Sinethis struture is ompatible with the hexagonal lattie, this is also the ground-stateof the hexagonal monolayer within the Heisenberg model. Therefore, we deided toompare this struture to the antiferromagneti struture introdued by Penthevaand a third ollinear antiferromagneti on�guration.The approximations we disussed in hapter 4 are only valid, if the magnetimoments inside the muÆn-tin spheres are large and do not hange muh with thediretion of the magnetization. Even more important for the auray of these ap-proximations is a small interstitial magnetization. Therefore, we deided to applyour method to an unsupported Cr monolayer with Ag (111) geometry. Cr possessesa large magneti moment, whih is enhaned due to the big lattie onstant of Ag.The lattie onstant also allows for a large muÆn-tin radius, whih leads to a betteron�nement of the total magnetization inside the muÆn-tin sphere. As a seondsystem we investigated a Mn UML with the geometry of the Cu(111) surfae. TheCu lattie onstant is signi�antly smaller and the loal magneti moments of thissystem are not as big as is the ase of the Cr UML-Ag(111). It turns out, that theMn UML-(111) is less aurately desribed by the frozen potential approximationthan the Cr UML-Ag(111).6.1 Model StruturesWe have investigated unsupported monolayers with hexagonal geometry with di�er-ent ollinear and non-ollinear magneti strutures. The unit ell of the ferromagnetistruture is p(1 � 1) and ontains one atom. The antiferromagneti on�gurationsas introdued by Pentheva (a) and the non-ollinear on�guration with 120Æ angles(b) are shown in Fig. 6.1, whih also ontains the unit ells, marked by dotted lines.The antiferromagneti unit ell ontains two atoms, is retangular and of twofoldsymmetry, while the unit ell of the 120Æ on�guration ontains three atoms and isof (p3� p3)R30Æ struture. It has the same shape as the p(1 � 1) unit ell, but itis rotated by 30Æ and p3 larger in linear dimension. We have also performed angledependent alulations. The energy di�erene has been alulated along two di�erentpaths, whih ontinuously transform the ferromagneti struture into the antiferro-magneti on�guration (Fig. 6.1 ()) or the 120Æ on�guration (Fig. 6.1 (d)). If theseond path is extended up to � = 180Æ we obtain an additional antiferromagnetion�guration with 2=3 of the magneti moments pointing along one diretion and1=3 pointing along the opposite diretion. This struture will be referred to as the
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Figure 6.1: (a) The antiferromagneti struture as introdue byPentheva. (b) The non-ollinear 120Æ on�guration. The ferromagnetistruture an be transformed by a ontinuous rotation into struture (a)via path () and struture (b) via path (d). Sine the alulations havebeen performed within the salar-relativisti approximation, whih ne-glets spin-orbit oupling, the diretion of the magneti moments withrespet to the lattie is undetermined. They are are drawn in plane onlyfor better illustration.180Æ on�guration.6.2 Calulational DetailsThe atual alulations have been performed using a unit ell ontaining six atoms.With this hoie all on�gurations an be treated with the same unit ell, and thusinauray in the energy di�erene due to di�erent k-point sets for the Brillouin zoneintegration an be avoided. The Ag and the Cu lattie onstants have been hosenaording to Moruzzi, Janak and Williams [MJW78℄ aAg = 7:79a:u:; aCu = 6:65a:u:We have used 15 k-points in the irreduible Brillouin zone (IBZ) for the k-integration.



86 CHAPTER 6. NON-COLLINEAR MAGNETISM OF MONOLAYERSAs planewave ut-o� for the wavefuntions we used Gmax = 3:2a:u:�1 in the ase ofthe Cr UML-Ag(111) and Gmax = 3:6a:u:�1 in the ase of the Mn UML-Cu(111),whih amounts to about 110 basis funtions per atom, while the potential and hargedensity are expanded up to 9:0a:u:�1. The non-spherial parts of the harge density,the potential and the wavefuntions have been expanded into spherial harmonis upto lmax = 8. We hose the muÆn-tin radius as large as possible RMT = 2:75a:u:.All parameters have been hosen orrespondingly to the parameters of Pentheva,exept the wavefuntion planewave ut-o�. Convergene tests with respet to theseparameters an be found in [Pen96℄.6.3 Auray of the Frozen Potential Approxima-tionThe energy di�erenes between the di�erent ollinear and non-ollinear magnetion�gurations have been alulated via the frozen potential approximation (FPA)(f. hap. 4). Within the frozen potential approximation the energy di�erene oftwo di�erent magneti on�gurations is estimated by the di�erene of the eigenvaluesums of non-selfonsistent alulations. First a selfonsistent ollinear (e.g. ferro-magneti) alulation is performed yielding a potential V (r) and a magneti �eldB(r). A trial Hamiltonian, from whih the eigenvalue sums are omputed, is on-struted by a rotation of the diretion of the magneti �eld, while the magnitudeB(r) is kept �xed (frozen). Within the loal spin-density approximation (LSDA)B(r) depends only loally on the magnitude of the magnetization m(r). Therefore,this approximation is valid, if the magnitude of the magnetization does not hangemuh with its diretion. The hexagonal Cr UML-Ag(111) satis�es this onditionvery niely. The selfonsistent magneti moments per atom, i.e. m(r) integrated overthe muÆn-tin sphere, show small di�erenes. The antiferromagneti moment is onlyabout 1% smaller that the ferromagneti moments, the 180Æ and the ferromagnetion�guration di�er by about 3% (f. Table 6.1). However, in FLAPW it is unlearAtomi magneti moments [in �B℄FM 4.14AFM 4.09180Æ ("#") m" = 4.02, m# = 3.99Table 6.1: Selfonsistent total magneti moment per atom of the CrUML-Ag(111) for di�erent ollinear magneti on�gurations.what has to be done with the interstitial magneti �eld. Leaving the interstitialmagneti �eld unhanged, i.e. using the magneti �eld obtained from a selfonsistent



6.4. RESULTS FOR THE Cr UML 87ferromagneti alulation, lead to very unsatisfatory results. The energy di�erenebetween the ferromagneti and the antiferromagneti struture is massively under-estimated, and the 180Æ ("#") on�guration is inorretly predited to be lowest inenergy (f. Table 6.2). How large the e�et of the interstitial magnetization is, anbe appreiated from a omparison of the two 180Æ on�gurations, with 2/3 ("#") and1/3 (#"#) of the magneti moments parallel to the interstitial magnetization. Thesetwo on�gurations, that are physially equivalent, di�er by 12 mRy/atom, whih isfar larger than the energy di�erenes we want to alulate. Clearly, the interstitialmagneti �eld favors the parallel orientation of the atomi moments. These results�E = E � EFM [mRy/atom℄Con�g. Selfonsistent FPA no av. FPA av.AFM -20.0 -3.6 -23.4180Æ ("#") -18.8 -9.0 -23.0180Æ (#"#) -18.8 +3.0 -23.0Table 6.2: Energy di�erenes between the ferromagneti on�gurationand di�erent ollinear antiferromagneti on�gurations of the Cr UML-Ag(111). The �rst olumn ontains the results of selfonsistent alula-tions. The frozen potential approximation without setting to zero (aver-aging) the interstitial and vauum magneti �eld (FPA no av.) yields theresults in the seond olumn. The last olumn (FPA av.) lists the resultsobtained with the frozen potential approximation, with zero interstitialand vauum magneti �eld.an be substantially improved, if the interstitial and vauum magneti �eld is setto zero (averaged) (f. setion 4.1). The orresponding alulation (f. Table 6.2)reprodue the orret trends. The antiferromagneti struture is orretly preditedto be lowest in energy, and the two physially equivalent 180Æ on�gurations havethe same energy. However, the energy di�erenes between the antiferromagneti andthe ferromagneti strutures are overestimated by about 15%. The averaging of themagneti �eld favors the antiferromagneti systems, beause they have smaller inter-stitial magnetizations and magneti �elds than the ferromagneti struture. Whenomparing two antiferromagneti on�guration the quantitative error is smaller, butstill present.6.4 Results for the Cr UMLOur alulations for the Cr UML indeed show, that the 120Æ on�guration is lowestin energy. This on�gurations is almost 4 mRy lower than the antiferromagneti



88 CHAPTER 6. NON-COLLINEAR MAGNETISM OF MONOLAYERSstruture, whih is the ollinear on�guration with the lowest energy we found (f.Table 6.3). This energy di�erene is learly larger than the the error we should�E = E � EFM [mRy/atom℄Con�g. FPA av.AFM -23.4180Æ -23.0120Æ -27.2Table 6.3: Energy di�erenes between di�erent ollinear antiferromag-neti strutures inluding the 120Æ on�guration and the ferromagnetistruture of the Cr UML-Ag(111). All results have been obtained fromthe frozen potential approximation where the interstitial and vauummagneti �eld has been set to zero (averaged) (FPA av.).expet, when omparing two antiferromagneti strutures. We also alulated theenergy dependene on the angle of the loal magnetization along two di�erent paths,whih transform the ferromagneti struture into the antiferromagneti (Fig. 6.1 ())and the 120Æ (Fig. 6.1 (d)) on�guration respetively. The results are presented inFig. 6.2. The urve that orresponds to paths Fig. 6.1 () shows a osine like shape,while the urve orresponding to 6.1 (d) possesses a pronouned minimum at 120Æ.Following the latter urve further leads to the 180Æ on�guration, whih is slightlyhigher in energy than the antiferromagneti on�guration. In order to hek ourinitial assumption of a Heisenberg like behavior, we �tted the data in Fig. 6.2 to theHeisenberg model inluding nearest neighbor interation only. Within this model theenergy per unit ell is given by:E = 12 MXi nn(i)Xj J1Si � Sj (6.1)The �rst sum is over the atoms in the unit ell and the seond sum is over the nearestneighbors of eah atom. For the path Fig. 6.1 () this amounts to the following energyper (2� 2) unit ell. E = 12J1S2[8 os(�) + 4℄ (6.2)For the path Fig. 6.1 (d) the energy per (p3�p3)R30Æ unit ell is given by:E = 12J1S2[12 os(�) + 6 os(2�)℄ (6.3)Sine the ab-initio alulations ontain more than just the spin interation energy,the energies are shifted by a onstant. Therefore, the atual funtions the results
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Figure 6.2: Energy dependene on the diretion of the loal magnetimoments as funtion of the diretion angle � relative to the diretion ofthe nearest neighbor atom for the Cr UML-Ag(111) along the two pathsaording to Fig. 6.1. The data points of the path that transforms theferromagneti struture into the antiferromagneti struture (Fig. 6.1 ())are marked with diamonds, while path Fig. 6.1 (d), whih transforms theferromagneti struture into the 120Æ and then to the 180Æ on�guration,is marked with rosses. For better visibility the data points are onnetedwith splines (solid lines). In addition, the funtions obtained form a leastsquare �t of the data to the Heisenberg model are shown (dashed lines).have been �tted to are: E = 12J1S2[8 os(�)℄ + C (6.4)and E = 12J1S2[12 os(�) + 6 os(2�)℄ + C (6.5)respetively. The �tted funtions are also plotted in Fig. 6.2. The linear parametersJ1 and C have been obtained from a least square �t. The �tted Heisenberg urvesare in good agreement with the data points. From both �ts the exhange integral J1an be alulated, using the loal magnetization from the selfonsistent ferromagnetialulation as S. The values that we obtained di�er by only about 2%. We found



90 CHAPTER 6. NON-COLLINEAR MAGNETISM OF MONOLAYERSJ1 = 0:168mRy=�2B for the paths aording to Fig. 6.1 () and J1 = 0:172mRy=�2Bfor the paths aording to Fig. 6.1 (d). These results justify the initial assumptionof a Heisenberg like behavior.Bandstruture of the Cr UML for Di�erent Spin Con�gurationsIn this setion we will explain how the bandstruture of the Cr UML hanges with theorientation of the loal magneti moments along path Fig. 6.1 (d). The orrespondingmagneti on�gurations, inluding the 120Æ on�guration, require a (p3�p3)R30Æunit ell, ontaining three atoms. Therefore, we will �rst disuss how the bandsin the Brillouin zone of the p(1 � 1) unit ell are \folded" into the Brillouin zoneorresponding to the larger unit ell. For simpliity this will be done for the band-struture obtained from a non-magneti alulation. The two Brillouin zones areshown in Fig. 6.3. The Brillouin zone of the (p3� p3)R30Æ unit ell is by a fator
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Figure 6.3: The Brillouin zones orresponding to the one and three atomunit ells. The smaller Brillouin zone, whih orresponds to the threeatoms unit ell, is rotated by 30Æ with respet to the larger Brillouinzone. The index of the symmetry points orresponds to the number ofatoms the unit ell ontains.three smaller, and it is rotated by 30Æ with respet to the Brillouin zone of the p(1�1)



6.4. RESULTS FOR THE Cr UML 91unit ell. All bandstrutures are plotted along the symmetry lines ��{ �M and ��{ �K.The index of the symmetry points orresponds to the number of atoms the unit ellontains. Due to the rotation of the Brillouin zone the symmetry line ��{ �M3 of the(p3 � p3)R30Æ Brillouin zone lies on the line ��{ �K1 of the p(1 � 1) Brillouin zone.Thus, the bandstruture along ��{ �K1 folds onto ��{ �M3 and orrespondingly ��{ �M1folds onto ��{ �K3.The bandstrutures of a non-magneti Cr UML with one and three atoms perunit ell are shown in Fig. 6.4. The UML learly possesses symmetry with respetto a reetion at the x-y-plane (z ! �z). Therefore, all eigenfuntion have to beeither even or odd with respet to this operation. Although no seletion rule for anexperiment an be derived from this symmetry, for better visibility the orrespondingbands are plotted separately. The left panels of Fig. 6.4 show the even bands of a non-magneti alulation, the right panels show the odd bands. The upper panels show thebandstruture resulting from non-magneti alulations ontaining one atom per unitell, the lower panels show the bandstruture resulting from alulations ontainingthree atoms. A �rst look reveals two types of bands. Around the Fermi energy we�nd the d-bands showing little dispersion. Below the Fermi energy and above about 2eV we �nd strongly dispersive bands. The latter are basially of s-symmetry for evenstates and of pz-symmetry in the ase of the odd states. Comparing the upper leftplot to the lower left graph it an be seen how the s-band (thik solid line) is foldedinto the smaller Brillouin zone of the three atom alulation. The part of this bandbetween �� and �K1 (marked (2) and(3)) beomes folded onto ��{ �M3. Part of the bandbetween �M1 and �� (1) an be identi�ed on ��{ �K1, while the bandstruture between�K3 and �M1 annot be found in the plot of the three atom unit ell. The latter partof the band ould be found on the symmetry line �K3{ �M3 of the smaller Brillouinzone, if it had been plotted. Instead another band (4) an be seen on ��{ �K3, whihoriginates from �K3{ �K1. In the same way the lowest two odd bands (upper right plotof Fig. 6.4 thik solid and dashed lines) are folded into the small Brillouin zone. Asa onsequene of the folding, the folded bands beome degenerate at high symmetrypoints.The non-ollinear magneti on�gurations break the symmetry and thus some ofthe degeneraies are lifted. In Fig. 6.5 the ferromagneti bandstruture is shown,as obtained from a selfonsistent alulation (upper left and right plots) and froma alulation within the frozen potential approximation with zero interstitial andvauum magneti �eld (lower left and right plots). Sine we used the ferromagnetipotential and magneti �eld for all non-selfonsistent alulations, the only di�erenebetween the two alulations is the removal of the interstitial magneti �eld. In theupper graphs the bands are plotted di�erently aording to their spin harater (solidlines indiate majority spin, dotted lines indiate minority spin). At �rst we see alarge exhange splitting between the majority and minority states, whih amountsto about 3.5 eV for bands with predominantly d-harater. This reets the largemagneti moment of about 4 �B. A loser look reveals that the spin splitting ofthe bands is not rigid as expeted from the simple Stoner model. The minority



92 CHAPTER 6. NON-COLLINEAR MAGNETISM OF MONOLAYERSbands show a larger dispersion, sine they are onsiderably higher in energy and assuh muh less loalized than the majority states. The FPA alulation shows aslightly smaller di�erene between the spin up and down bands due to the missinginterstitial and vauum magneti �eld. The most signi�ant di�erene is a gap in thep-band denoted (a) in Fig. 6.5 that results from the FPA, apart from this gap thebandstrutures are very similar.In Fig. 6.6 we present the bandstruture after a rotation of the magneti momentsof 30Æ and 60Æ aording to Fig. 6.1 (d). Due to the rotation of the magneti momentspin up and spin down eletrons hybridize (s). For small rotation angles (30Æ) weobserve an opening of band-gaps at the symmetry points (a-l), where the bands weredegenerate in the ferromagneti on�guration. The size of these gaps inreases withthe rotation angle. In addition some bands, that were degenerate along the symmetryline ��{ �K split up (m{r). At a ertain rotation angle the mixing of spin up and downstates is so strong, that the ferromagneti on�guration beomes meaningless as astarting point to explain the band topology. Spin up and down states form new linearombinations.At 90Æ and 120Æ the bandstruture has hange dramatially (Fig. 6.7). The 120Æon�guration is highly symmetri. As a result, bands, that were split at intermediateangles, beome degenerate at symmetry points and between �� and �K. A omparisonbetween the ferromagneti struture and the 120Æ on�guration shows, that the bandstruture has drastially hanged. For example two of the (odd) bands near �K (a,b)are ompletely di�erent for the two on�gurations. Suh di�erenes an be usedto investigate experimentally the existene of the 120Æ struture with methods thatprobe the bandstruture. However, two problems have to be taken into aount. First,the density funtional theory does not always predit the position of bands aurately.Therefore, it is neessary to use methods, that an probe also the dispersion of thebands, like angle resolved ultraviolet photo emission (ARUPS). The seond problem,that has to be taken into aount, is that the present alulations have been done withunsupported monolayers, whih leads to less dispersion, and inreases the exhangesplitting.
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3 33 3Figure 6.7: Bandstrutures of the 90Æ and 120Æ on�guration aordingto Fig. 6.1 (d). Both have been alulated within the frozen potentialapproximation and inlude three atoms per unit ell.



6.5. RESULTS FOR THE Mn UML 976.5 Results for the Mn UMLThe seond system that has been studied as part of this work is the Mn UML withCu(111) geometry. In order to hek whether the assumption underlying the FPA,that the magneti moments hange little with their diretion is valid, we performedselfonsistent alulations for di�erent ollinear on�gurations. As in the ase ofthe Cr monolayer the results show, that this assumption is justi�ed (f. Table 6.4).However, the Mn moments are onsiderably smaller than the Cr moments, and at theAtomi magneti moments [in �B℄FM 3.05AFM 3.08180Æ ("#") m" = 3.23, m# = 2.93Table 6.4: Selfonsistent loal magneti moment per atom of the MnUML-Cu(111) for di�erent ollinear magneti on�gurations.same time the sum of the interstitial and vauum magnetization is larger due to thesmaller lattie onstant of Cu. The ferromagneti alulations yielded an interstitialand vauum magnetization of 0.26 �B=atom for the Cr UML and 0.39 �B=atom forthe Mn UML. Thus, the ratio of loal and interstitial magnetization is signi�antlysmaller for the Mn monolayer, whih makes the approximation in the interstitialand vauum region less aurate in the ase of the Mn UML-Cu(111) system. As aonsequene, the energy di�erenes between the ferromagneti and the antiferromag-neti on�gurations (AFM and 180Æ) are more strongly overestimated than in thease of the Cr UML. The predited energy di�erenes are about 6 mRy/atom largerthan those obtained from selfonsistent alulations (f. Table 6.5). However, thealulated di�erenes between the two antiferromagneti strutures agree very well.The results of the angle dependent alulations are presented in Fig. 6.8. Inontrast to the Cr UML, we do not �nd the 120Æ on�guration to be lowest in energyfor the Mn UML. Instead, the omputed energy of the antiferromagneti on�gurationis more that 4 mRy/atom lower in energy. Even the 180Æ struture is predited tobe more stable than the 120Æ on�guration.The �gure also ontains the funtions obtained from a �t of the data to thenearest neighbor Heisenberg model. Apparently the data is not well desribed bythe Heisenberg model. The graph that orresponds to the rotation aording toFig. 6.1 does not possess a minimum at 120Æ in ontradition to the Heisenberg model.Instead the energy hanges very little with the rotation angle between 90Æ and 180Æ.In addition, the values for the exhange integral J1 di�er signi�antly between thetwo paths. From the alulation aording to path Fig. 6.1 () we obtained J1 =0:431mRy=�B, while path Fig. 6.1 (d) yielded J1 = 0:340mRy=�B. This di�erene
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�E = E � EFM [mRy/atom℄Con�g. Selfonsistent FPA av.AFM -26.3 -32.2180Æ -23.2 -29.2120Æ {.{ -27.8Table 6.5: Energy di�erenes between the ferromagneti on�gurationdi�erent ollinear antiferromagneti on�gurations of the Mn UML-Cu(111). The �rst row ontains the results of selfonsistent alulations.The seond row ontains the results obtained by the frozen potential ap-proximation where the interstitial and vauum magneti �eld has beenset to zero (averaged) (FPA av.).and the fat, that the antiferromagneti on�guration is lower in energy that the 120Æon�guration an be explained by inluding next nearest neighbor interation intothe Heisenberg model.If the next nearest neighbor interation is taken into aount, the energy of aHeisenberg spin system is given by:E = 12 MXi nn(i)Xj J1Si � Sj + 12 MXi nnn(i)Xj J2Si � Sj (6.6)Where j in the seond term sums over the nnn next nearest neighbors of eah atom i.Assuming this model the energy per unit ell along the two rotation paths beomesE = 12(J1 + J2)S2[8 os(�) + 4℄ (6.7)for path Fig. 6.1 () andE = 12J1S2[12 os(�) + 6 os(2�)℄ + 12J2S236 (6.8)for path Fig. 6.1 (d), where the next nearest neighbor interation ontributes only tothe onstant term. In the ase of the rotation aording to Fig. 6.1 () the ontributionto the energy is of the same form as the ontribution from the nearest neighborinteration. Thus, the value we have obtained from the Heisenberg �t is in fat thesum of J1 and J2, in terms of the model inluding next nearest neighbor interation.The very at shape of the funtional dependene of the energy on the rotationangle along the path Fig. 6.1 (d) annot be explained with the next nearest neighborinteration. We obtained a far better �t to the ab-initio data, when we inluded aterm os(3�) into the funtion the data has been �tted to. In terms of the Heisenberg
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100 CHAPTER 6. NON-COLLINEAR MAGNETISM OF MONOLAYERSthe ase of the Mn UML, where the ratio of the loal and interstitial magnetizationis smaller. The question of how muh of the predited properties of the Mn UML isatually physis, and how muh is an artifat due to the FPA an only be resolvedby arrying out selfonsistent non-ollinear alulations.



Chapter 7Conlusion and OutlookIn the present work we investigated the possibility and energetis of the non-ollinearmagneti ground-state for partiular ultrathin �lms. Ab-initio alulations basedon the density funtional theory in the loal spin-density approximation have beenperformed. For this purpose, the FLAPW method has been extended to allow non-selfonsistent alulations for systems with a non-ollinear orientation of the magnetimoments. These alulations have been performed within the frozen potential ap-proximation, where the energy di�erene of the magneti on�gurations is determinedby the di�erene of eigenvalue sums. A trial Hamiltonian has been onstruted bya rotation of the magneti �eld obtained from a selfonsistent ferromagneti alula-tion. This method has been applied to unsupported monolayers (UML) of Cr in thegeometry of Ag(111) and Mn in the geometry of Cu(111). The alulations predita non-ollinear ground-state for the Cr UML, with 120Æ angles between the mag-neti moments at nearest neighbor sites of the triangular lattie. The dependeneof the energy on the rotation angle of the loal magneti moments has been inves-tigated. Fitting the results to a model Hamiltonian showed, that the magnetism ofthe Cr UML is well desribed by the Heisenberg model inluding nearest neighborinteration only. The bandstruture of the Cr UML has been alulated for dif-ferent angles of the magneti moments. The results show, that the bandstruturestrongly depends on the magneti on�guration. Thus, experiments, whih probethe bandstruture like angle-resolved ultraviolet photo-emission (ARUPS) or inversephoto-emission (BIS), should be able to identify the non-ollinear ground-state. Inaddition, the predited non-ollinear magneti ground-state breaks the symmetry ofthe atomi lattie. Therefore, feeble superstruture extra-spots in low energy ele-tron di�ration (LEED) experiments should be expeted [TBF88℄, whih disappearor reappear, when the Neel temperature is rossed from below or above. Anotherway to identify the non-ollinear ground-state is given by magneti irular x-raydihroism (MCXD) measurements [DvdL96℄, whih allow the determination of theatual loal magnetization vetor.In the ase of the Mn UML with Cu(111) geometry we got a di�erent piture. Thefrozen potential approximation proved to be less aurate when applied to this system,due to the smaller loal magneti moments of Mn and the smaller lattie onstant101



102 CHAPTER 7. CONCLUSION AND OUTLOOKof Cu. Our alulations predited a ollinear antiferromagneti on�guration to belower in energy than the non-ollinear on�guration we have found for the Cr UML-Ag(111). In addition, the results were not well desribed by the Heisenberg model.Therefore, we annot rule out, that the true ground-state is a magneti on�gurationwe have not investigated, possibly inluding a larger unit ell. In order to obtainmore aurate results for the Mn monolayer selfonsistent alulations are neessary.In view of the future development to extend the method to allow an eÆientselfonsistent treatment of non-ollinear magnetism, the loal orbital extension hasbeen implemented. The loal orbitals are an extension to the FLAPW method insidethe muÆn-tin spheres near the atomi nulei. These extra basis funtions improvethe variational freedom of the FLAPW basis and make it possible to employ a spin-independent basis set. In order to test the implementation of the loal orbitals, theyhave been applied to the semiore states of b W, f and hp Ti. The resultshave been ompared to the results obtained from two-window alulations, wherethe semiore and valene states are treated within two independent energy windows(panels). Both shemes orretly predited hp Ti to be lower in energy than the fphase. The alulated lattie onstants where in good agreement. The ghost-bandproblem ould be avoided.The results that have been obtained for the unsupported monolayers of Cr(Ag(111) geometry) and Mn (Cu(111) geometry) show, that the auray of thefrozen potential approximation in the urrent implementation is limited. In order toimprove the auray and to allow the appliation of the method to a larger lass ofsystems, whih do not satisfy the requirement of large loal magneti moments whihare well-on�ned inside the muÆn-tin spheres around the atoms or that the magnitudeof the loal moments remains unhanged during rotation, it essential to extent themethod to selfonsistent non-ollinear alulations. Several ways of performing suhselfonsistent alulations are possible. One option is to allow a general magnetiza-tion density in the interstitial region, with both, magnitude and diretion, dependingon the position vetor r, while having the magnetization inside eah muÆn-tin pointalong a single diretion. Within this approximation the rotation of the atomi mag-neti moments with respet to eah other, the inter-atomi non-ollinear magnetism,an be desribed , while hanges of the diretion of the magnetization inside sin-gle atoms, the intra-atomi non-ollinear magnetism, is negleted. The most generalsheme is to allow the magnetization to have a di�erent diretion everywhere in spae,and thus to inlude also the intra-atomi non-ollinear magnetism.The ombination of non-ollinear magnetism with the possibility to alulate thefore ating on an atom to perform a struture optimization by moleular dynamis,whih is already implemented in our urrent FLAPW ode, opens the gate to futuretreatment of systems, where both the magneti properties, inluding the magnetiza-tion diretion, and the strutural properties are intimately interwoven, and the atomiand the magneti struture is a priori unlear. This is of partiular importane forlow dimensional systems, like reonstruted surfaes, ultrathin �lms with and withoutdefets, step edges, magneti hains at step edges, small magneti lusters or for the



103investigation of the growth (di�usion barrier and atom exhange mehanisms) andreation paths involving magneti atoms.
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