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Chapter 1

Introduction

The investigation of surfaces and interfaces is a rapidly developing field in modern
solid state physics. Experimental and theoretical techniques have advanced tremen-
dously during recent years. The possibility of growing metallic over-layers and multi-
layers of high quality opened way to access a completely new class of system with
remarkable properties: The ultrathin magnetic films. The preparation of such spec-
imen has become feasible with state of the art epitaxy in combination with sophis-
ticated vacuum technology. With the molecular beam epitaxy (MBE), for example,
thin layers can be grown in a precise and controlled way on an atomic scale. Si-
multaneously, techniques monitoring the growth and characterizing these materials
chemically, structurally and electronically have advanced at the same pace. With
the scanning tunneling microscope (STM) the structure of surfaces can be studied in
real space with atomic resolution. The STM can even be used to place single atoms
at a chosen position, and thus to “design” artificial materials atom by atom. Spin-
polarized electron techniques have been developed to investigate the magnetism at
surfaces and in addition the recently discovered magnetic dichroism can be employed
to analyze the magnetic properties. Discoveries like the inter-layer exchange coupling
and the giant magnetoresistance, that found their way into industrial application,
lead to extensive research activities in the field of thin magnetic films.

In order to understand the complex interactions that lead to a specific magnetic
structure, it is necessary to develop a theoretical description of the magnetism at sur-
faces. An important contribution to the understanding of the physics of surfaces has
been obtained from ab-initio calculations. With these methods, which contain the
charge of the nuclei as the only parameter, ground-state properties like lattice parame-
ter, lattice structure, cohesive energies magnetic moments and magnetic structure can
be determined. Bandstructures are calculated to guide the interpretation of experi-
ments. The rapid progress in computer technology made it possible to apply ab-initio
methods to larger and more complex systems, e.g. systems with broken symmetry,
like surfaces. The basis of such calculations is the density functional theory (DFT)
by Hohenberg and Kohn [HK64] and Kohn and Sham [KS65], which states, that the
ground-state properties of a many electron system are completely determined by the
electron (charge) density. However, this theory could not be applied until the local
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(spin) density approximation (LSDA) was introduced. This relatively simple approx-
imation to the unknown exchange correlation potential proved to be very successful,
describing the electronic structure of most material including the transition metals.
On the basis of the DFT and the LSDA many bandstructure methods, which differ
by the way the Kohn-Sham equations are solved, have been developed. The results
of the present work have been obtain with the full-potential linearized augmented
planewave method (FLAPW).

The FLAPW method is an all-electron method. The core electrons are treated
(full-) relativistically, taking into account only the spherical part of the potential. The
valence electrons are calculated in the scalar-relativistic approximation including the
full potential. With no approximation to the shape of the potential being made,
the FLAPW method is very suitable for open structures and surfaces. Due to its
elaborate expansion of the wavefunctions, including radial functions near the atomic
nuclei, the FLAPW method can be applied to transition metals with their localized
d-electrons. Surfaces are approximated by a thin slab. The necessary extension to
the FLAPW method [KPF79] contains an accurate description of the vacuum.

The magnetism and the dimensionality (coordination) of transition-metal sys-
tems are closely related. This fact can most easily be realized comparing the two
extreme cases of low and high dimension, free atoms and bulk materials. Nearly all
transition-metal atoms have magnetic moments, which are well described by Hund’s
rule. In contrast, only 5 transition-metals (Cr, Mn, Fe, Co and Ni) remain magnetic
in the bulk crystalline phase, with magnetic moments that are substantially reduced
compared to the free atoms.

Recently, a lot of research has been devoted to transition-metal monolayers,
in particular on noble-metal substrates [FPB*90, Sie92, LMF85, FFOWS85, Ter87,
BDZD89, FW91, WB93, Blii95]. Because of the filled d-bands of the noble-metals
the d-bands of the transition-metal monolayers hybridize very little with the sub-
strate. This leads to a narrowing of the d-bands and an enhancement of the magnetic
moments in the overlayers [Blii88, Blii95]. In this context, Fe on the Cu (100) sur-
face belongs to the most extensively investigated systems. Fe on Cu(100) as well
as Mn on Cu(100) show complex reconstructions, which are expected to be driven
by magnetism. In general the atomic ground-state structure and also the magnetic
ground-state structure of systems with low dimension, like overlayers, clusters and
nano-structures, is more difficult to predict, because restrictions to the phase-space of
possible structures due to symmetry are dropped and more degrees of freedom have
to be relaxed.

So far, mainly overlayers on (100) surfaces have been investigated, where the atoms
in the monolayer from a square lattice. Two different magnetic structures have been
found, the ferromagnetic p(1 x 1) and the antiferromagnetic ¢(2 x 2) structure. It
turns out, that the early transition-metals V, Cr and Mn prefer the antiferromagnetic
ordering (on Pd, Cu and Ag (100))!, while Fe, Co and Ni prefer the ferromagnetic
structure. However, little work has been done on overlayers on the (111) surface,

!No magnetic solution has been found for V on Cu (100).



where the atom are arranged on a hexagonal lattice. Under the assumption, that the
antiferromagnetic ordering of the early transition-metals is predominantly driven by
the nearest neighbor exchange coupling, spin-frustration has to be expected on the
hexagonal lattice. This spin-frustration can be resolved by a non-collinear ground-
state. In fact, a Heisenberg model including only nearest neighbor interaction leads
to a ground-state, where the spins on each triangle of the hexagonal lattice form
120° angles. Spin-frustrated antiferromagnets are a very general problem in low
dimensions. Other expected examples are: i) Small Cr or Mn clusters, where each
atom couples antiferromagnetically to it neighbors, ii) Mn monolayers on Fe substrate:
Here the Mn atoms couple antiferromagnetically to the nearest neighbor atoms in the
monolayer plane, but ferromagnetically to the Fe atoms of the substrate, iii) steps
in a Fe covered Cr surface: The Fe atoms couple antiferromagnetically to the Cr
substrate. However, the Fe atom at the step edge has two Cr nearest neighbors with
opposite magnetization, because the Cr substrate couples antiferromagnetically layer
by layer normal to the surface. In all these cases the orientation of the magnetic
moments is unclear, and the ground-state might be a non-collinear configuration.

The interest in the hexagonal overlayers is reinforced by the discovery of the com-
plex ¢(2 x 8) reconstruction of the Mn monolayer on Cu (100) [FHW92]. Within
this reconstruction the Mn atoms are locally hexagonal, while globally the overlayer
stays compatible with the geometry of the substrate. This feature suggests, that the
Mn monolayer prefers a hexagonal geometry. In order to investigate this Pentcheva
[Pen96) removed the influence of the substrate and performed systematic calculations
on unsupported monolayers (UML) of the 3d transition-metals. These calculations
show, that Mn monolayers prefer the hexagonal structure. However, this result could
only be obtained from magnetic calculations, non-magnetic calculations yield a lower
energy for the square lattice. This proves, that magnetism can have a strong impact
on structural properties. In addition, the investigation by Pentcheva showed, that a
collinear antiferromagnetic configuration, where four of the six nearest neighbors of
each Mn atom have opposite magnetization and the other two atoms have parallel
magnetization, is lower in energy than the ferromagnetic configuration on the hexag-
onal lattice, which supports the assumption of a non-collinear ground-state. Such
systems can only be described accurately if both, the structural and the magnetic
degrees of freedom, are relaxed. Therefore, it is necessary to develop a method that
combines the calculation of the forces on the atoms with non-collinear magnetism.

So far the majority of ab-initio calculations have been performed allowing only
parallel or anti-parallel orientation of magnetic moments. With the present work
we took a first step towards an extension of the FLAPW method to non-collinear
magnetism. Non-collinear configurations of unsupported Cr monolayer with Ag(111)
geometry and Mn monolayer with Cu(111) geometry have been compared to the fer-
romagnetic phase and the antiferromagnetic configuration introduced by Pentcheva.
A non-collinear structure proved to be lowest in energy in the case of the Cr mono-
layer. The results have been obtained non-selfconsistently in the frozen potential
approximation.
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In chapter 2 the basics of the density functional theory and the local spin-density
approximation are discussed. The Stoner model, which provides the framework for
the interpretation of the results of the calculation, is briefly reviewed. The FLAPW
method is discussed in chapter 3. During this discussion we put emphasize to the
computation of the contribution to the Hamiltonian and overlap matrix from the
muffin-tin spheres and the construction of the charge density in the spheres, be-
cause the corresponding parts of the program have been changed for the implementa-
tion of the local orbital extension. In chapter 4 the implementation of non-collinear
magnetism is described and the approximations that have been made are discussed.
Chapter 5 contains a description of the local orbital extension that has been imple-
mented as part of this work. The local orbitals are extra basis functions added to the
FLAPW basis set, which are completely localized inside the muffin-tins. With the
improved variational freedom due to this extension it is possible to used a common
basis set for the majority and minority spin-states, which is necessary for an efficient
implementation for future selfconsistent non-collinear calculations. Test results are
presented, where the local orbitals have been applied to the semicore states of bcc
Tungsten, fcc and hcp Titanium. The results for the non-collinear calculations on
Cr unsupported monolayers with Ag (111) geometry and the Mn monolayer with the
Cu (111) geometry are presented in chapter 6. All results are summarized in chapter
7 and ideas for the experimental verification are put forward. The approximations
made and deficiencies of the current implementation are review and it is discussed
how the results can be improved by extending the method to allow selfconsistent
non-collinear calculations.



Chapter 2

The Density Functional Theory

In order to establish a deep understanding of the physical properties of solids, it
is of major importance to develop a valid quantum-mechanical description of these
systems. However, the atom nuclei and the electrons constitute a complex many-
body problem. A simplification of this problem can be achieved employing the Born-
Oppenheimer-approximation, within which the atomic nuclei are considered point
charges at fixed positions. Thus, all quantum effects of the nuclei are neglected. This
approximation, which is made in the vast majority of first-principle calculations, leads
to the following Schrodinger equation.

N2, N o2 o2 ZH
HY = - —V°+ U(ry,...,ry)
EQm i 1\ ;;m_"'”
i#]
= E\I/(I'l,...,I'N) (21)

However, due to the large dimension of ¥ and the requirement of antisymmetry,
which means that ¥ has to be expanded into a sum of Slater determinants, rather
than simple product-functions, this equation can be solved only for tiny systems,
including few electrons. In order to deal with realistic materials, relevant in solid
state physics, further approximations have to be made.

A breakthrough in the parameter-free ab-initio description of complex electronic
systems has been achieved with the development of the density functional theory by
Hohenberg and Kohn [HK64] and Kohn and Sham [KS65].

2.1 The Theorem of Hohenberg and Kohn

The all-electron wavefunction contains all information available about an electronic
system. However, not the whole information is needed to determine the ground state
properties of a physical system. The measurable quantities are given by expectation
values of the quantum-mechanical operators corresponding to the observable under
consideration. The central idea of the density functional theory [JG89] is to replace

5
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the complex many particle wavefunction by a far simpler quantity, the electron den-
sity, given by

n(r) = (¥ 3 6(r — ;)| ¥). (2.2)

i=1
Hohenberg and Kohn were able to show for systems with a non-degenerate ground
state, that:

e For a given external Potential V,,;, the ground state energy and all other ground
state properties of the system are unique functionals of the electron density n(r).

e The energy functional is variational, i.e. the ground state density ng(r) mini-
mizes the energy functional E[n], under the subsidiary condition that the num-
ber of electrons is kept constant.

E[n| > E[ng] = Ey for all n(r) # ne(r) (2.3)

The density functional formalism can be extended to degenerate ground states
[Koh85, DG90]. The second part of the theorem implies, that the ground state
density can be obtained from the minimization of the energy functional.

SE[n] =0 (2.4)

Levy [Lev79] provided a simpler and more general derivation of the above theorems,
defining the energy functional by

E[n] = min (¥|H|T). (2.5)

¥.n[Pl=n

However, no explicit representation of E[n| has been derived so far.

2.2 The Kohn-Sham Equations

An important step on the way to finding an applicable approximation of the energy
functional is the idea of Kohn and Sham [KS65]. The central concept of their theory
is to split the energy functional into tree contributions.

Eln| = Ty[n] + Uln| 4+ Ey[n] (2.6)

Where T is the kinetic energy of non-interacting electrons. The Coulomb energy
U consists of the interaction of the electrons with the external potential, which is
usually due to the atomic nuclei, and the electron-electron interaction in Hartree
approximation.

Uln] = FEeun] + Eg[n]
Eomiln] = / Viws(£)1(2)dr (2.7)

2 !
Egln] = 4w%/7n(r)n(f)d3rd3r'
r—r
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Equation 2.6 can be regarded as a definition of the exchange correlation functional
E,.[n], which contains all remaining contributions to E[n], i.e. the exchange and
correlation energy and correction to the kinetic energy due to the electron-electron
interaction. The importance of this representation of E[n| has two reasons. The
kinetic energy of the non-interacting electrons T, which is a significant contribution
to the total energy, can be calculated exactly. By that, many deficiencies due to
inaccurate treatment of the kinetic energy by the Thomas-Fermi method are removed.
In addition approximations to E,.[n] can be found, that lead to excellent results for
the ground state properties calculated for a wide variety of systems.

An explicit formula for Ty[n| can be obtained using a special ansatz for the electron
density. The density can be written as a sum of single particle wavefunctions, as in
the case of non-interacting electrons.

n(r) = 2 [¢:(o)f 23

Where, where the sum is over the occupied states and the factor “2” accounts for the
spin degeneracy. With this ansatz the kinetic energy can be written as:

Tn) = =23 [ 61065 Vu(r)Pr (2.9)

Instead of minimizing the energy functional with respect to the electron density,
it can also be minimized with respect to the wavefunctions v; (or their complex
conjugates). In this case the subsidiary condition of particle conservation is replaced
by the requirement of normalized wavefunctions.

[ i)t =1 (2.10)

This requirement is taken into account by Lagrange parameters ¢;. Applying the
variational principle yields the Kohn-Sham equations.

(o V% 4 Vags (D (1) = eth(r) (211)

with
Vers(r) = Vear(r) + Vi (r) + Vao(r) (2.12)
These equations have the form of a single particle Schrodinger equations. However,

the potential has been replaced by an effective potential consisting of three contribu-
tions: The external potential V,,;, the Hartree potential

/
Vi(r) = 471'62/ :(_rzldﬁ‘r (2.13)
and the exchange correlation potential
EZ'C
Vm(r) = M (2_14)

on(r)
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Since Vg and V,. depend on the electron density, this formalism constitutes a self-
consistency problem.

Even though the Kohn-Sham equations have the form of a single-electron Schro-
dinger equation, the formalism does not provide any justification to interpret the
Lagrange parameters ¢; as excitation energies, nor to regard the wavefunctions as
physical electron wavefunctions. Nevertheless, experience shows, that doing so with-
out formal justification can be meaningful, and helps to understand the properties of
the system under consideration.

2.3 Spin Density Functional Theory

In order to describe magnetic effects the density functional theory has to be extended
to the case of spin polarized electrons. This is important for systems that posses
non-zero ground state magnetization, which is the case for most atoms, magnetic
solids and surfaces and electronic systems exposed to an external magnetic field. The
necessary extension to the Hohenberg-Kohn theory can be formulated replacing the
electron density by the electron density plus the magnetization density as fundamental
variables. In this case, the variational principle becomes

E[n(r), m(r)] > Elno(r), mo(r)]. (2.15)

An alternative, but completely equivalent, formulation can be obtained using a four
component density matrix p,g instead of n(r) and m(r) [vBH72, Kiib95]. In or-
der to gain a generalized form of the Kohn-Sham equations, it is necessary at least
to introduce two component Pauli wavefunctions, that reproduce the electron and
magnetization density.

s = (o) 219
>

nr) = 3 )
mr) = Y ()ow) (2.17)

Applying the variational principle again yields the Kohn-Sham equations, which now
have the form of Schrodinger-Pauli equations.

{—;L—mv2+V6ff(r)+a'-Beff(r)}'l,bi(r) = e;1b,(r) (2.18)

The additional effective magnetic field consists of two terms. One of them is due to
the variation of the exchange correlation energy with respect to the magnetization
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density. The second term is the external B-field, if present.

Beff(r) = By(r) + Begi(r)
dEg[n(r), m(r)]

Bie(r) dm(r)

(2.19)

In many applications, like for example ferromagnetic and antiferromagnetic solids,
the magnetization is orientated along one particular direction. For these collinear
cases the problem can be simplified further. The z-axis can be chosen along the
direction of the magnetic field. Therefore, the Hamiltonian of equation 2.18 becomes
diagonal in the two spin components of the wavefunction, i.e. the spin-up and -
down problems become completely decoupled and can be solved independently. The
energy and all other physical observables become functionals of the electron density
and the magnitude of the magnetization density m(r) = |m(r)| rather than m(r), or,
equivalently, of the spin-up and spin-down electron densities n4(r) and n;r) which
are given by

ng(r) = ; [i0 (x))| (2.20)

The vast majority of the spin-polarized density functional calculations have been
performed using this formalism.

2.4 The Local Spin Density Approximation

So far, no approximations have been made. The density functional formalism, out-
lined in the previous sections, could in principle reproduce all ground state properties
of any complex many-electron system exactly, if the exchange correlation energy E,.
was known. Unfortunately, no explicit representation of this functional, that con-
tains all many-body effects, has been found yet. Thus, approximations to F,. have
to be used. The most widely used and very successful approximation is the local
spin density approximation (LSDA). The underlying idea is very simple. At each
point of space E,. is approximated locally by the exchange correlation energy of a
homogeneous electron gas with the same electron and magnetization density. Hence,
the approximate functional E,. is of the form

Epe[n(r), m(r)[] = /n(r)ﬁzc(n(r), m(r)|)d*r (2.21)

It is important to note, that €. is not a functional, but a function of n(r) and |m(r)|
at a particular point of space. As a consequence of its local definition €,. and thus E,,
depend only of the magnitude of the magnetization. This, in terms, leads to the fact
that B,.(r) and m(r) do always have the same direction. Therefore, the exchange
correlation potential and magnetic field derived from 2.21 become

J€ze(n(r), [m(r)|)
dn(r)

Vae(r) = e€ze(n(r),[m(r)|) + n(r)
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B,.(r) = n(r)5EEC(Z|(2&r;n(r)|)rh(r). (2.22)

Using the LSDA the Kohn-Sham equations take exactly the same form as the Hartree
equations, and they are no more difficult to solve. In particular, they are far easier
to deal with than the Hartree-Fock equations because of the local effective potential.
Intuitively one should expect, that the LSDA is valid only for slowly varying densities.
Nevertheless, it has been applied successfully to inhomogeneous systems.

Explicit parameterizations of €,. can be obtained for example from Hartree-Fock
calculations for the homogeneous electron gas. Of course, such calculations do only
take into account the exchange effects, but neglect correlation. Modern parameteri-
zations of €,. are based on quantum-mechanical many-body calculations. Most com-
monly used are the parameterizations of v. Barth and Hedin [vBH72] and Moruzzi,
Janak and Williams [MJW78], which have been obtained applying the random phase
approximation (RPA), the parameterization of Vosko, Wilk and Nusair [VWN80],
that is based on Quantum-Monte-Carlo simulations by Ceperley and Alder [CA80],
and goes beyond the RPA, and the parameterization of Perdew and Zunger [PZ81],
which is, in a certain sense, a mixture of the previous two. The results of the present
work have been obtained using the parameterization of Moruzzi, Janak and Williams.

2.5 Determination of the Total Energy

If the total energy of a system is needed, for example in order to calculate the equi-
librium lattice constant of a crystal, the Coulomb interaction of the atomic nuclei
has to be taken into account. This extra contribution Ej; (ion-ion) has to be added
to the electronic energy, given by 2.6.

M VAYAS
E[n] = Ti[n] + Uln] + Eyc[n] + Ei, E;; = € P (2.23)
pop' =1 [t — ]
uFp

where p sums over all atoms of the crystal with the position 7#. In principle, this
formula could be used to calculate the total energy. However, for numerical reasons it
is desirable to avoid the explicit application of the operator V2. Therefore, the kinetic
energy is calculated from the sum of the single particle eigenvalues ¢;. Rewriting the
Schrodinger-Pauli equation 2.18 yields
R,
— 5, Vi) = €tpi(r) = Vegs(r)9h;(r) — 0 Begs(r)9;(r) (2.24)

Multiplying from the left with [ d*r ¢}(r,o) and summing over the occupied states
gives the kinetic energy.

T,[n] = ;e —/n(r)Veff(r)d?’r—/m(r)-Beff(r)d?’r (2.25)
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Using 2.7, 2.21 and assuming that the external potential is given by the atomic nuclei
and that no external magnetic field is present,

M 1
9 Z

—7‘)’“" Bezt(r) =0 (226)

the total energy becomes
N
En,m] = > ¢— /n(r)V;ff(r)dsr — /m(r) - Bao(r)d’r
i=1

M Zu 1 !
Ame? / nfr) 2" d*r + 4me*= / n(r)n(r’) )d3rd3r'
=/ e =T 2/ |r—r|

+ [ n)encln(e), [m(r) ) + 4re? S 22
€xe : T 2 s rt :
uFp
Using 2.7 and 2.22 this can be simplified further.
N
Eln,m] = > ¢ — /n(r)Vzc(r)d?’r — /m(r) - Byo(r)dr
i—1
— 4W621/Md37‘d37'1
2J) |r—r|
o [ nenle), me) s+ dre S 2L (2o
n E(L‘C n ) r me HH,Zl |TM _ TMI| .
puFp

Equation (2.28) holds exactly for the selfconsistent electron and magnetization den-
sity. During the iterations on the way to selfconsistency this result represents only
an approximation to the total energy. Another difficulty arises, because the Hartree
energy and the contribution from the Coulomb interaction of the nuclei are diver-
gent. Weinert, Wimmer and Freeman [WWF82] showed how these singularities can
be canceled analytically.

2.6 The Stoner Model of Itinerant Magnetism

Although all results of the present work have been obtained from ab-initio calcu-
lations, a brief discussion of the Stoner Model will be given in this section. This
model provides a framework within which to interpret the results of the calculations.
It is very important to keep these simple models in mind, in order to build ones
physical intuition. Comparing ones “intuitive” expectations with the outcome of the
calculations is certainly the most important step on the way to understanding the
physics of a system. The magnetism of solid is determined by the interplay of the
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gain of exchange energy due to the formation of a local moment and the increase of
the kinetic energy, if not all k-states are double occupied within the Fermi sphere.
This effect can most easily be illustrated within the Stoner model for ferromagnets.

The magnetization density m(r) = |m(r)| of solids is usually small compared to
the electron density n(r). Expanding the exchange correlation energy €,.(n(r), m(r))
into a Taylor series in terms of the parameter £ = 7 yields

1
€zc(1, &) = €4¢(n,0) + 3 " (n,0)E* + ... (2.29)
Thus, the magnetic field B,,. becomes
1
B, = ﬁegc(n, 0)m. (2.30)

In the case of ferromagnetism B, acts as an extra potential term Vmc, that adds to the
non-magnetic exchange correlation potential V2. This term, which is proportional
to m, has the same magnitude for both spin-directions, but it is attractive for the
majority-spin (4) and repulsive for the minority-spin(—).

Vie(r) = Vot () F Vaelr)m(r) (2.31)

Within the Stoner theory this rising and lowering of the potential is expressed by a

constant. )

VE(r) = V() F 3 IM (2.32)
Where M is the total magnetic moment per atom, and [ is the exchange integral
(Stoner parameter). Because of this constant shift the spatial shape of the potential
remains the same as in the non-magnetic case. Consequently, the solutions of the
Kohn-Sham equations also remain unchanged, only the single particle energies ¢; are
shifted by the same amount as the potential.

G =0, = F M (2.33)

1

Hence, the whole band structure is spin-split, but the shape of the bands remains
unchanged. As a result, the local densities of states projected on an atom for the
spin-directions +,n* (¢), are also shifted by +£5IM.

nt(e) = n®(e + %IM) (2.34)

From this property of the density of states a criterion for the existence of ferromag-
netism can be derived. Integrating the density of states up to the Fermi energy Ep
yields the number of electrons N and the total magnetic moment per atom M.

1 1
No= [no(e +ITM) 4 (e —IM)] de
e<Ep 2 2

M = /5<EF [no(e + %IM) — (e — %IM)] de (2.35)
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These two equations determine the unknown Fermi energy and magnetic moment.
Requiring charge neutrality the first equation can be used to obtain the Fermi energy
as a function of the magnetization Er = Er(M). Substituting this into the second
equation leads to a selfconsistency problem for M.

M =F(M), F(M)= /E<EF(M) [no(e v %IM) e — %IM) de  (2.36)

The function F(M) has the following properties.
e F(0)=0
e F(M)=—-F(—M)
o F(+o0) = + My
o F'(M)>0

Where M, is the largest possible magnetization, reached when only majority-spin
states are occupied. The graphic solution of 2.36 is illustrated in Fig. 2.1. Two

Figure 2.1: Graphic solution of the Stoner model

functions F(M), consistent with the above properties, are plotted. In case A only
the trivial non-magnetic solution M = 0 is present, whereas in case B three solutions
exist, two of which have non-zero magnetization. From the properties of F (M)
follows, that 2.36 always has solutions with non-zero magnetization, if the slope of
F(M) at M = 0 is larger than 1. From 2.36 follows that the slope of F(M) is given
by

F'(0) = In"(ER). (2.37)
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This finally is the Stoner criterion for ferromagnetism:
In’(Er) > 1. (2.38)

A big exchange integral and a large non-magnetic density of states at the Fermi
energy favors ferromagnetism. This result is not surprising, because a large n’(Er)
means, that only a small increase in kinetic energy has to be accepted to obtain a
large magnetization, and thus a large gain of exchange energy. In the most simple
approximation the size of the density of states is proportional to the inverse of the
bandwidth W. Thus, the smaller the bandwidth is, the larger the tendency towards
magnetism becomes. The limiting case of zero bandwidth are atoms. Here the
Stoner criterion is always satisfied, and the magnetic moments are determined by
Hund’s rule, with the exception of the Lanthanides and the Actinides. The only bulk
materials that fulfill the Stoner criterion are Fe, Co and Ni. However, due to the
reduced coordination, the bandwidth at surfaces is smaller than in bulk materials.
Thus, from the Stoner model one should expect an enhancement of magnetism at
surfaces and even new magnetic materials, which are non-magnetic in their bulk
crystalline phase, but become magnetic at the surface.



Chapter 3

The FLAPW Method

3.1 The FLAPW Method

There are many possible ways to solve the Kohn-Sham equations. One very common
method is to use some kind of basis set to represent the wavefunctions. A very
suitable choice that is already suggested by Bloch’s theorem are plane waves. They
have a lot of advantages: They are orthogonal, they are diagonal in momentum
and any power of momentum and the implementation of planewave based methods
is rather straightforward because of their simplicity. However, since the electron
wavefunctions are varying very quickly near the core, large wavevectors are needed
to represent the wavefunctions accurately. This makes planewaves very inefficient.
To overcome this problem one can employ pseudopotential techniques, which allow
an accurate description of the wavefunctions between the atoms, but avoid the fast
oscillations near the core. Thus, less basis functions are needed. Another way to solve
this problem is to use a basis set, which contains radial wavefunctions to describe the
oscillations near the core. This has already been suggested by Slater [Sla37]. The
corresponding technique is called the augmented planewave method (APW).

3.1.1 The APW Method and its Problems

Within the APW approach, space is divided into spheres centered at each atom site,
the so-called muffin-tins, and the remaining interstitial region (cf. fig. 3.1). Inside the
muffin-tins the potential is approximated to be spherically symmetric, and in many
implementations the interstitial potential is set constant. The restrictions to the
potential are commonly called shape-approximations. Noting that planewaves solve
the Schrodinger equation in a constant potential, while spherical harmonics times a
radial function are the solution in a spherical potential, suggests to expand the single

15
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Figure 3.1: The division of space in the APW method. The muffin-tin
spheres are surrounded by the interstitial region.

particle wavefunctions' ¢, (k,r) in terms of the following basis functions:

(Gl interstitial region

pa(k,T) = 1 S A5G (1), (1) Y, (F) muffin-tin g (3.1)

Where k is the Bloch vector, €2 is the cell volume, G is a reciprocal lattice vector, L
abbreviates the quantum numbers [ and m and wu; is the regular solution of the radial
Schrodinger equation

omor:  2m 12

{ B2 52 e (14 1) V() - El} rug(r) = 0 (3.2)

Here E; is an energy parameter and V' (r) is the spherical component of the potential.
The coefficients A¥® (k) are determined from the requirement, that the wavefunctions
have to be continuous at the boundary of the muffin-tin spheres.

Hence, the APW’s form a set of continuous basis functions that cover all space.
Where each function consists of a planewave in the interstitial region plus a sum of
functions, which are solutions of the Schrodinger equation to a given set of angular
momentum quantum numbers /m and a given parameter Ej, inside the muffin-tin
spheres.

If the E; were kept fixed, used only as a parameter during the construction of the
basis, the hamiltonian could be set up in terms of this basis. This would lead to a
standard secular equation for the band energies. Unfortunately, it turns out, that the

'T will only discuss the application of FLAPW to systems that possess either 2- or 3-dimensional
translational symmetry, i.e. bulk crystals or thin crystal films.
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APW basis does not offer enough variational freedom if the E; are kept fixed. An
accurate description can only be achieved if they are set to the corresponding band
energies. However, requiring the E;’s to equal the band energies, the latter can no
longer be determined by a simple diagonalization of the Hamiltonian matrix. Since
the u;’s depend on the band energies, the solution of the secular equation becomes a
nonlinear problem, which is computationally much more demanding than a secular
problem.

Another disadvantage of the APW method is, that it is difficult to extend beyond
the spherically averaged muffin-tin potential approximation, because in the case of a
general potential the optimal choice of E; is no longer the band energy. And finally,
but less serious, if, for a given choice of Ej, the radial functions u; vanish at the
muffin tin radius, the boundary conditions on the spheres cannot be satisfied, i.e. the
planewaves and the radial functions become decoupled. This is called the asymptote
problem. It can already cause numerical difficulties if u; becomes very small at the
sphere boundary.

Further information about the APW method can be found in the book by
Loucks [Lou67], which also reprints several early papers including Slater’s original
publication [Sla37].

3.1.2 The Concept of LAPW

The basic idea of the linearized augmented planewave method (LAPW) is to add extra
variational freedom to the basis inside the muffin-tins, so that it is not necessary to
set the Ej equal to the band energy. This is done by using not only the radial solution
of the Schrodinger equation, but also its derivative with respect to the energy. This
construction, which was first suggested by Andersen [And75], can be regarded as a
linearization of the APW. To realize this recall that in the APW method the u;’s
depend on the band energies and can thus be understood as functions of r and e.
Hence, u; can be expanded into a Taylor-series around Ej.

we,r) = w(Ey,r) + w(E,r)(e — E) + O[(e — E;)? (3.3)

Here 1 denotes the energy derivative of u;, Ou;(e, ) /0¢, and O[(e— E;)?] denotes errors
that are quadratic in the energy difference. Ergo, the LAPW method introduces an
error of order (¢ — E;)? in the wavefunction. Therefore, according to the variational
principle the error in the calculated band energies is of the order (e — E;)*. Because
of this high order, the linearization works very well even over rather broad energy
regions. In most cases a single set of energy parameters is sufficient for the whole
valence band. However, sometimes the energy region has to be split up in two (very
rarely more) windows with separate sets of energy parameters.

But let’s turn to some important properties of the LAPW basis first, before dis-
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cussing its quality and accuracy. The LAPW basis functions are of the form

el (Gl interstitial region

vc(k,r) = 3 ARG (k) w(r)Yi(#) + BYC (k) w(r)Yy(f) muffin-tin g

(3.4)
with the extra term BXu,;(r)Yy(£) compared to the APW method. The additional
coefficient is determined by requiring that not only the basis functions, but also their
derivatives with respect to r are continuous at the sphere boundaries. It is useful to
require the following normalization.

(uu) = /ORMT ul(r)ridr = 1 (3.5)

Here Rys7 is the muffin-tin radius. Taking the derivative of (3.5) with respect to the
energy it can easily be shown, that u; and 1, are orthogonal. ; is calculated from a
Schrodinger-like equation, derived by taking the energy derivative of (3.2).

{ 82 RPI(I+1)

o2 T am 2 +V(r)— El} riy(r) = ru(r) (3.6)
Still the solution of this equation has to be made orthogonal to u;, since any linear
combination of 7%; and u; also solves the equation. Once the u; and u; are made
orthogonal the basis functions inside the spheres form a completely orthogonal basis
set, since the angular functions Y}, (#) are also orthogonal. However, the LAPW
functions are in general not orthogonal to the core states, which are treated separately
in the LAPW method. This fact can cause problems in the presence of high lying core
states. A detailed discussion of these problems and strategies to circumvent them can
be found in the book by Singh [Sin94], which includes a very comprehensive review
of many aspects of the LAPW method.

With the construction of the LAPW basis the main problems of the APW method
are solved:

e Since it is no longer necessary to set the energy parameters equal the band ener-
gies, the later can be determined by a single diagonalization of the Hamiltonian
matrix.

e The LAPW method can be extended to nonspherical muffin tin potentials with
little difficulty, because the basis offers enough variational freedom. This leads
then to the full-potential linearized augmented planewave method (FLAPW).

e If u; is zero at the sphere boundary, its radial derivative and u; are in general
nonzero. Hence, the boundary conditions can always be satisfied and there is
no asymptote problem.

As a final remark it is worth mentioning, that the nonlinearity inherent to the APW
method can only be circumvented at the expense of a larger eigenvalue problem. To
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see this, recall that within LAPW (and also within APW) the basis functions are
represented by planewaves. The functions inside the muffin tins are coupled to the
planewaves via the boundary conditions, and can only varied indirectly by a variation
of the planewave coefficients. Clearly, with a finite number of planewaves, at maxi-
mum the same number of functions inside the spheres can be varied independently.
Hence, to make use of the of the extra variational freedom, that the LAPW basis set
allows compared to the APW basis, i.e. to vary the u;’s and the 4;’s independently,
more planewaves have to be used.

3.1.3 The Concept of FLAPW

In the past the majority of applications of APW and LAPW? method employed shape-
approximations on the potential used in the Hamiltonian. Typically, the potential in
the unit cell V(r) is approximated by Vj(r),

V(r) =

V) = const. interstitial region
(3.7)

Var(r) muffin-tin

using a constant potential in the interstitial region and a spherically symmetric po-
tential inside each sphere.

While the LAPW method yields accurate results for close-packed metal systems
the shape-approximation becomes difficult to justify for crystals with open structures
such as silizides, perovskides, surfaces or clusters.

In the full-potential LAPW method (FLAPW) [Ham79, WKWF81| any shape-
approximations in the interstitial region and inside the muffin-tins are dropped. This
generalization is achieved by relaxing the constant interstitial potential V and the
spherical muffin-tin approximation V1 (r) due to the inclusion of a warped interstitial
> VEe!GT and the non-spherical terms inside the muffin-tin spheres:

> VSeGr interstitial region

V(r) = (3.8)

G
Z Viir(r)Yr(#) muffin-tin
i3

This method became possible with the development of a technique for obtain-
ing the Coulomb potential for a general periodic charge density without shape-
approximations and with the inclusion of the Hamiltonian matrix elements due to
the warped interstitial and non-spherical terms of the potential. The charge density
is represented in the same way as the potential:

Z pGeiCr interstitial region
G

> phr(r)Yr(#) muffin-tin

L

2There are APW and LAPW methods available which include the warped interstitial potential
[KoeT2].

p(r) = (3.9)
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Detail of the solution of the Poisson equation for an arbitrarily shaped periodic po-
tential are described in section 3.7.

3.1.4 The Generalized Eigenvalue Problem

After discussing the FLAPW basis it is necessary to say a few words about the
eigenvalue problem. The solution of the eigenvalue problem has to be carried out
separately for every Bloch vector. And, of cause, the basis set and the Hamiltonian
matrix have to be set up for each Bloch vector. However, I will not add the index k
to the basis functions and the Hamiltonian matrix.

There is one important fact that I have not mentioned so far. Even though plane-
waves form an orthogonal basis set, the FLAPW functions do not. The planewaves
in the interstitial-region are non-orthogonal, because the muffin-tin are cut out, i.e.
the integration,in terms of which orthogonality is defined, does not stretch over the
whole unit cell, but only over interstitial region. An additional contribution comes
from the muffin-tin. Even though the u;(r)Y; and 4;(r)Y7 are mutually orthogonal,
in general each planewave couples to all functions in the spheres.

Due to the non-orthogonality of the basis functions the overlap matrix S, defined
by (3.10), is not a diagonal, but a hermitian matrix.

§e'G — / ot (1) g (r)d3r (3.10)

In (the more convenient) Dirac notation the eigenvalue problem has the following
form.

Hi¢i) = €il¢i) (3.11)

Where |¢;) denotes the eigenfunction corresponding to the i* eigenvalue ¢;. Substi-
tuting the expansion of the eigenfunctions

i) = %Cz'(;|§0(;> (3.12)

we obtain

Y ccHtlpe) =&Y ciclea) (3.13)
G G
Multiplying this from the left with (¢q/| we find
Y cicleog [Hlpe) =&Y cialpglva) (3.14)
G G
which can be written in matrix form

where the eigenvector c; is the coefficient vector corresponding to the i*" eigenvalue.
(3.15) is called a generalized eigenvalue problem.
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However, this problem can be reduced to a standard eigenvalue problem using the
Cholesky decomposition. It can be shown (e.g. Stoer [Sto94]), that any hermitian
and positive definite matrix can be decomposed into a matrix product of a lower
triangular with only positive diagonal elements matrix and its transposed. Clearly,
the overlap matrix satisfies these conditions and can be written

S = LL”" (3.16)

Therefore (3.15) becomes
HCZ' = EiLLtTCi (317)

multiplying from the left with L ! and introducing a unit matrix we get

L 'H(L Y)"L"¢c; = ¢L"¢; (3.18)
defining
P=L'H(LY" x;,=L"¢ (3.19)
we finally have
PXZ' = €X; (320)

Thus the generalized eigenvalue problem has been reduced to a simple eigenvalue
problem. The eigenvectors ¢; can be obtained by the back-transformation

c; = (L")~ 'x; (3.21)

3.1.5 Film Calculations within FLAPW

Nowadays the physics of surfaces is an field of major interest and investigation. How-
ever, surfaces are difficult to treat, because they break the translational symmetry,
i.e. there is only the 2-dimensional symmetry parallel to the surface left to be used to
reduce the problem, and a semi-infinite problem is left perpendicular to the surface.
In our approach surfaces are approximated by thin films, typically 10-15 atomic lay-
ers thick. Obviously, this approximation, which is called the thin-slab approximation,
can only yield good results if the interaction between the two surfaces of the film is
week enough, so that each of them shows the properties of the surfaces of an ideal
semi-infinite crystal.

In the case of film calculations space is divided into three distinct regions, the
muffin-tins, the interstitial and the vacuum region (cf. fig. 3.2). The interstitial
region now stretches from —D/2 to D/2 in z-direction, which is defined to be the
direction perpendicular to the film. The representation of the wavefunctions inside the
muffin-tin spheres remains exactly the same as in the bulk case. Since the periodicity
along the z-direction is lost, the unit cell extends principally from —oo to oo in z-
direction. Still the wavefunctions can be expanded in terms of planewaves. However,
the wavevectors perpendicular to the film are not defined in terms of D, but in terms
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\ Z

Figure 3.2: The unit cell in film calculations. (I) denotes the muffin-tin
spheres surrounded by the interstitial region (II). On both sides the film
is delimited by the vacuum (III).

of D, which is chosen larger than D to gain greater variational freedom. Therefore,
the planewaves have the form

paya. (ky,r) = el GIrkn ¢ (3.22)
with )
™
G =— 3.23
L= (3.23)

where G| and k| are the 2-dimensional wave- and Bloch vectors, r| is the parallel
component of r and GG, is the wavevector perpendicular to the film. The basis func-
tions in the vacuum region are constructed in the same spirit as the functions in the
muffin-tins. They consist of planewaves parallel to the film, and a z-dependent func-
tion ug, (kj, 2), which solves the corresponding 1-dimensional Schrédinger equation
(3.24), plus its energy derivative iq, (k|, 2).

o n? 2
T om a2 + Vo (2) = Eyac + %(GH + k||) UG, (kH’ z) =0 (3.24)
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Eyac is the vacuum energy parameter and Vp(z) is the planar averaged part of the
vacuum potential. As in the case of % in the muffin-tins, the function ug, (kj, 2) is
calculated from a Schrédinger-like equation, which can be obtained by deriving (3.24)
with respect to the energy.

n’ o h 2| .
~558 T V0(2) = Buae + 5 (G + k)" gy (ki 2) = ug (K, 2) - (3.25)

The resulting basis functions have the form

$GGL (kll’ 1‘) = {AG”GJ_ (k||)uG|| (klla Z) + BGHGJ_ (k||)uGH (k||’ z)} eItk (3'26)

The coefficients Agq, (k) and Bg,q, (k|) are determined in exactly the same way
as it is done for the muffin-tins by requiring that the functions are continuous and
differentiable at the vacuum boundary. It should be mentioned, that the vacuum
basis functions offer less variational freedom than the basis set in the interstitial
region does. This can be seen by noting that there are only two functions, ug, and
U, times the corresponding planar planewave, to be matched to all planewaves of
the interstitial region with the same G/. But there are generally far more than two
different G ’s, i.e the number of basis functions in the vacuum region is significantly
smaller than in the interstitial region. However, this can be improved rather easily. In
equation 3.24 only one energy parameter E,,. is used. Instead one can used a whole
series of parameters E¢ . to cover an energy region. A possible choice of the energy
parameters could be E ., = ESL = E,,. — %Gi, which leads correspondingly to G |
dependent basis functions ug g, (k||, z). For more details see [NKD86]. In general,
however, the present approximations is accurate, the energy spectrum of the electrons
in the vacuum region is small due to the work-function.

Finally we would like to summarize the basis set used for thin film calculation

with the FLAPW method.

(oG k)

el T giGLz Int.

{AGHGJ— (kH)uGH (kH, Z)
(pGHGL(kH’r) = +BGHGJ_ (kH)uG” (kH,Z)} ei(G”Jrk”)l'H Vac. (327)

S A8 0ulr)Va(s) + BS(ir)Yals) MT 4

This expansion has been suggested by H. Krakauer, M. Posternak and A.J. Free-
man [KPF79].

3.2 Relativity in Valence Electron Calculations

Relativistic effects are important for the correct numerical description of core or
valence electrons. Both core and valence electrons have finite wavefunctions near the
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nucleus, where the kinetic energy is large. This kinetic energy enhancement becomes
more significant for heavier elements and compounds. Additionally, only relativistic
effects, in particular the spin-orbit-coupling, introduce a link between spatial and
spin coordinates. Thus, information about the orientation of spins relative to the
lattice can only be gained if relativity is taken into account. For fully relativistic
description of the electronic structure all relativistic effects (mass-velocity, Darwin-
term, spin-orbit coupling) have to be taken into account [SDKW]. However, in many
applications an approximation is used, where the spin-orbit interaction is neglected.
This approximation is called the scalar relativistic approximation.

3.2.1 The Kohn-Sham-Dirac Equation

In a relativistic density functional theory the Kohn-Sham equation has the form of a
single particle Dirac equation

{ea-p+(B-1)me+ V! (r)} & = BT (3.28)
(o) (ne)os)-(a) o
3= ( Ig _012 ) (3.30)

Here, 0, 0, 0, are the Pauli matrices and o is the vector of Pauli matrices, p is
the momentum operator, and I,, denotes an (n x n) unit matrix. V¢// is the effec-
tive potential, that contains electron-nucleon Coulomb potential, Hartree potential
and exchange-correlation potential. In the case of non-zero spin-polarization, V¢/f
becomes spin-dependent. Finally, ¥ is the relativistic four component wavefunction.

The straightforward way to solve this problem would be to expand each of the
four components of ¥ in terms of the FLAPW basis. However, if all four components
were treated with the same accuracy, this would result in a basis set which contains
four times as many functions as in the non-relativistic (non-magnetic) case. Since
the numerical effort of the Hamiltonian diagonalization scales with the dimension of
the matrix to the power of three, this would increase the computing time needed for
the diagonalization by a factor of 64.

The FLAPW implementation we use introduces some approximations to make
relativistic calculations more efficient. One of these approximations is the scalar
relativistic approximations, which has been suggested by D.D. Koelling and B.N.
Harmon [KH77|, where the spin-orbit term is neglected, and spin and spatial coordi-
nates become decoupled. Hence, the Hamiltonian matrix reduces to two matrices of
half the size, which can be diagonolized separately. This saves a factor of four in com-
puting time. The scalar relativistic approximation will be discussed more detailed in
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the next section. It should be noted, that relativistic effects are only significant close
to the nucleus, where the kinetic energy is large. It is therefore reasonable to treat
the interstitial region and the vacuum non-relativistically. Thus, merely within the
muffin-tins the electrons are treated relativistically. And only the large component
of ¥ is matched to the non-relativistic wavefunctions at the boundary between the
muffin-tins and the interstitial region, because the small component is already negli-
gible at this distance from the nucleus. The small component is attached to the large
component, and cannot be varied independently. However, this is a sensible approxi-
mation for two reasons: Firstly even inside the muffin-tin sphere the large component
is still much bigger than the small component, and plays the more important role,
and secondly the two components are determined by solving the scalar relativistic
equations for the spherically averaged potential. Therefore, they are very well suited
to describe the wavefunctions.

Hence, the size of the basis set and the Hamiltonian matrix remains the same as
in non-relativistic calculations, but the problem has to be solved twice, once for each
direction of spin. This amounts to a numerical effort, that is equal to that needed in
spin-polarized non-relativistic calculations.

3.2.2 The Scalar Relativistic Approximation

As T pointed out in the previous section, the electrons are only treated relativistically
inside the muffin-tin spheres. Thus, the first problem that has to be addressed is
the construction of the relativistic radial function. This is done by solving the scalar
relativistic equation, including only the spherically averaged part of the potential.
The starting point is the following Dirac equation.

{ca-p+(B-1)m+V(r)} ¥ =EP (3.31)

The solution of (3.31)is discussed in many textbooks, e.g. E.M. Rose [Ros61]. Due
to spin-orbit coupling m and m, are not good quantum numbers any more, and
they have to be replaced by the quantum numbers x and p (or j and u), which are
eigenvalues of the operators K and the z-component of the total angular momentum
j. (or the total angular momentum j and j,) respectively. K is defined by

K =p(c-1+1) (3.32)

The solutions of (3.31) have the form

=0, = ( ”?“((:));W“ ) (3.33)

Where g, (r) is the large component, f,(r) is the small component, x,, and x_, are
spin angular functions, which are eigenfunctions of j, j,, K and s? with eigenvalues j,
K, k (-k) and s = 1/2 respectively. The spin angular functions can be expanded into
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a sum of products of spherical harmonics and Pauli spinors. Where the expansion
coefficients are the Clebsch-Gordon coefficients. The radial functions have to satisfy
the following set of coupled equations.

0 K+1

Eg,{(r) = - gk(r) + 2Mcf,(r) (3.34)
0 1 -1
5 e(1) = Z(V(r) = B)gu(r) + " —fu(r) (3.35)
with ]
M=m+ 2—02(E —V(r)) (3.36)
This can be written in matrix form.
k+1 0
B T B E 2MC < gn(r) ) =0 (3 37)
EV()—E) k-1 0 Ta(r) .
c( r r or

To derive the scalar relativistic approximation D.D. Koelling and B.N. Har-
mon [KH77] introduce the following transformation.

1 0

(E0) | 2w J(56) o

Using this transformation (3.37) becomes

_9
or
1 kk+1) 1 1 ;<;+1<a M') k—1 0

2Mec

or M

2Mec  r? +E(V(r)_E)_2Mc r r or
9x(7) _
( ) ) =0 (3.39)

Where M’ denotes the derivative of M with respect to r (OM/dr). Multiplying the
first line in (3.39) by (k + 1)/2Mcr and subtracting it from the second yields

0

- 2M

or ¢ (gn(r) =0
1 I(l+1) 1 K+1 M 2 0 ¢u(r) )
are 2 VOB T g e

(3.40)
Where the identity x(k+1) = [(I+1) has been used. Recalling, that & is the eigenvalue
of K = B(o -1+ 1) the term (k + 1)M' /2M?cr can be identified as the spin-orbit
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term. This term is dropped in the scalar relativistic approximation, because it is the
only one, that causes coupling of spin up and spin down contributions. In the original
paper this is interpreted as an average over all states for the two possible values of
kyk=1,(j=1-1/2)and Kk = —(I+1),(j =1+ 1/2). The radial functions g;(r) and
é1(r) (the index s has been replaced by [) can now be calculated from the following
set of differential equations.

() = 2Mep(r) (3.41)

200) = (i o4 200 - D)) - ) (64

Deriving these equations with respect to the energy yields a set of equations for ai(r)
and ¢;(r), which are the relativistic analog of ,(r).

%g,(r) = 2Meci(r) + 2Megy(r) (3.43)

%(;'Sl(r) _ < 1 l(l+1)+1(V(r)—E)> a(r)

2Mc r? c

- (21\]\442cl(l; 2 %) gi(r) = %éﬁz(r) (3.44)

For numerical reasons the functions g;(r) and ¢;(r) are replaced by p(r) = rg,(r) and
q(r) = cr¢y(r). Thus, equations (3.41) — (3.44) become

Do) = 2 (14 guB -V ))) o) + 27 (3.49

9 I(1+1) q(r)

5t (2 (14 =(E— V() E) plr (3.46)

D = 2((1+ 5B -V ))) i) + ppal(r)) + (— (3.47)

9y I(1+1) E)

or 1" (2 (14 (B~ V() 7 o

I(1+1) _d(r)
(4c2 (14 3% (E-V(r))r2 * 1) p(r) == (3.48)

This formulae have been obtained using the definition of M (3.36), M = 1/2¢* and

the fact that m = 1 in Hartree units. In our implementation of FLAPW the radial
wavefunctions are normalized according to

<< glz )‘ ( gﬁlz >> = /ORMT(gf(T) + @i (r))rdr =1 (3.49)
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However, g7(r) + ¢?(r) is not the charge density. The radial charge density is defined

’ p)=((4) (4)) = [ we)+ e 50

The energy derivatives of the radial functions have to be made orthogonal to the
radial functions (comp. section(3.1.2)).

<<glz><<gbi>>:0 (3.51)

Thus, the scalar relativistic FLAPW basis set is

(1. .
= UG KTy G2 Int
e e nt.
v Q
. i(G+k|)r
va. (r) = {AGHGLUGII(Z)+BGHGLUGH(Z)} eI Vac. (3.52)

St G0y )pmter+ 325 (40 ) i) iz

\

Note, that the Pauli-spinors have been omitted, since the spin up and down prob-
lems are solved independently within the scalar relativistic approximation. Rewriting

(3.40)
a(r) \ _ gi(r)
Hsp ( i) ) - E( ok ) (3.53)
with 1 I(l+1) 2 0
v +V(r g
Hop=| M 7 5 v roo o (3.54)
Cor —2mc? + V(r)

a matrix expression for the scalar relativistic Hamiltonian including only the spheri-
cally averaged part of the potential can be obtained.

3.3 Construction of the Hamiltonian Matrix

The FLAPW Hamiltonian and overlap matrices consist of three contributions from
the three regions into which space is divided.

H = H;+Hyr+Hy (3.55)
S = S;+Syr+Sy (3.56)

All three contributions have to be computed separately. Let’s begin with the muffin-
tin spheres.
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3.3.1 Contribution of the Muffin-Tins

The contribution of the muffin-tin to the Hamiltonian matrix and the overlap matrix
is given by:

HEEM) = X[ (S A 00e ) + B 005 0) Ao

I L'

> A0 () () + BzG<k>¢fz<r>) & (3.57)

s5800 = X[ (S st + B 0 )
5 A1 (k)5 (1) +BzG<k>¢fz<r>) P (359)

T (e (g o

Where we distinguish between the atom index p and the atom type index a(u). In
most application the are symmetry equivalent atom in the unit cell, i.e. some atoms
can be mapped onto each other by space group operations. Clearly, these atom
must possess the same physical properties, e.g. the potential has to be equal. As
a consequence, the Hamiltonian and the basis functions ¢¢(r) do not differ among
the atoms of the same type. This fact is exploited in that the muffin-tin potential
of an atom type is only stored once for the representative atom, and the matrices
3.61-3.64 is also calculated for the representative only. H s« is the scalar relativistic
Hamiltonian operator. It can be split up into two parts, the spherical Hamiltonian
Msp (3.54) and the nonspherical contributions to the potential V.

Hura = HE + VS (3.60)

The above integrations contain the following matrix elements.

67 = [ e Hamad )d (3.61)
MTC

67 = [ e Hamedd )d (3.62)
MTC

6 = [ @) Hamag (0)d (3.63)

6 = [ @) Hama g 0)d (3.64)

These matrix elements do not depend on the A*S(k) and B“€ (k) coefficients. Thus,
they are independent of the Bloch vector and need to be calculated only once per
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iteration. The functions ¢¢ and ¢¢ have been constructed to diagonalize the spherical
part Hg, of the muffin-tin Hamiltonian H 7.

Hoper = Bl (3.65)
He, 01 + Hopwt = Eigf + ¢f (3.66)

(6]

@, by a factor of 1/c* and is therefore neglected.

However, ﬁ?p is smaller than #
Hoe 1+ = Bigh + ¢ (3.67)

Multiplying these equations with ¢¢,(r) and ¢$,(r) respectively and integrating over
the muffin-tins gives

é‘ll’ 5mm’ El

Q

(o [ HoppL) M
<¢%’|%?p()b%>MTa = O Omm’

(P HG eI MTe = 0

(T | HoppT)mre = Ouwdmm Et(F |97 ) Mo
Where the normalization condition for ¢ has been used. So, only the expectation
values of the nonspherical part of the potential are left to be determined. Since the
potential is also expanded into a product of radial functions and spherical harmonics,
the corresponding integrals consist of product of a radial integrals and an angular

integrals over three spherical harmonics, the so-called gaunt coefficients.

Ve(r) = LZ Vi ()Y (£) (3.72)
156 = ;Iﬁﬁf momm” L 5y B (3.73)
1357 = ;Iﬁﬁf’ e Sy 6, (3.74)
1998 = %j[ﬁﬁ,é"Gm’,Wm” (3.75)
to8e = %:Iﬁlf’,? T 86 ot Bt (D | D) a0 (3.76)

with

Loyt = / (g5 (r) g7 (r) + &5 (r) @ (r)) Vi (r)r*dr (3.77)
g = / (g5 (r)a7 (r) + 5 (r) o7 () Vi (r)rPdr (3.78)
Lt = / (G5 (r)gi*(r) + 5 (r)¢7* () Vi (r)rPdr (3.79)

LR = [0 + g )V (ryrdr (3.80)
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and
mm'm :/Y,;‘ny,m, e A2 (3.81)

The I matrices contain the radial integrals. Finally, the Hamiltonian and overlap
matrix elements become

L'L

+(ALT (K)) ¢35 BLS (k) + (BL™ (k))t7ff AL (k) (3.82)

Huf (k) = 33 (A7 (k)25 ALS (k) + (B (k)27 BLC (k)
7

Syir (k) = 30D (A1% (1)) ALC (k) + (B (K))* BL (K) (05 163) arrw (3.83)

3.3.2 The Vacuum Contribution

The vacuum contributions to the Hamiltonian and overlap matrix are.

) = /V ({AG'”Gl (kue, (K, 2) + Bery o, (k) )i, (k”az)} ei(G'\\+k\\)r||)*
v ({AGHGL (kj)ug, (ky, 2) + Ba o, (k))ua, (K, z)} e"(GIIJrkH)rn) Br

Sy ¢ (k) = /V({AG’MG’l(kII)uG’H(kIIaZ)+BG’HG’l(kII)ﬂG’H(kII’Z)} et )”

({AGIIGJ- (k”)uG” (klla Z) + BGHGJ_ (kH)’l'LGH (kH’ z)} ei(GHJrkH)"II) d3r
(3.84)

The treatment of the vacuum region in FLAPW is in many way similar to the treat-
ment of the muffin-tins. As in the muffin-tins the basis functions are constructed to
diagonalize only a certain part of the Hamiltonian. Here this part of the Hamiltonian
includes only the non-corrugated planar averaged part of the potential (V,.(z)), that
depends only on z.

HV = an + V;O(I') (385)

The t-matrices can be defined in the same way as inside the muffin-tin spheres ((3.61)
- (3.64)).

taha, (k) = (va, (k) Hvee, (k)))v (3.86)
g’\\GH (ky) = <(’DGIII (kll)|%V‘/’G” (k))v (3.87)
g\\GH (k) (Par, (k) [ Hvee, (k))v (3.88)
éﬂ’HGH k) = (oe, (k) Hvee, (k) (3.89)

The contribution to these matrices from H,., are given by the analog of equations
(3.68) — (3.71). The non-corrugated potential is expanded into z-dependent functions
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and planewaves in the X—y—plane

= Va2 (3.90)

GII

The contribution due to the expectation values of Voo(r) consists of a z-dependent
integral and an integral in the x-y-plane of the following form.

/ —iG'|r zG|| etGH"d.’L‘dy = 5G’”(GH+G1|’) (391)
Thus, the t-matrices are given by
tlé%Gn (k“) - Iél’tuGH —c))(K)) +de @) Buac (3.92)
G’|G|| (kH) - IngGH G'|-Gy) (kll) ( 4)
Where the I matrices abbreviate the z- dependent integrals including VG,” —a)(2).
Iaara) = [ ueykue, () Ve (2)d (3.96)
I g ) = [ ey (ke (k) Ve ()2 (3.97)
I o) = [ e k), (k) Ve (2)d (3.98)
Ia arla) = [ iy ki, () Ve (2)d2 (3.99)
The Hamiltonian and overlap matrix elements are calculated according to
Hy (k) = (Agye, (k)))'t& q, (k) Ae . (k)
+(Age, (k)))t@ 6, (k) Beyo. k)
+(Beye, (k)))'td o, (k) A, (k)
+(Ba e, (ky))* G’GHBGHGL(kH)(k) (3.100)

SS’IG(kH) = (AGhG’J_(kH))*AG”GJ_(kH)(SG’HGH
+(Bay e, (k)" Beye. (ki) (e, (k) ie, (k)))via q, (3.101)

3.3.3 The Interstitial Contribution

The interstitial contributions to the Hamiltonian and overlap matrix have the follow-
ing form.

HIGG _ Q/ —i(G+K)r ( YAV )> i(G+k)r g3, (3.102)
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’ 1 i o
gGG  _ _/ —i(G+K)r i(G +k)r g3 3103
: al.e e r ( )
The potential is also expanded into planewaves in the interstitial region.

Vi)=Y Vge S (3.104)
GI

Without the existence of the muffin-tin spheres the integration would stretch over
the entire unit cell and the integration becomes rather simple. The kinetic energy is
diagonal in momentum space and the potential is local, diagonal is real space and of
convolution form in momentum space.

’ K2
HP¢ (k) = %‘G +k[*ge + Vig-q)

'
GG
St

= lgg’

However, these matrix elements are not as straightforward to calculate as they appear
at first glance, because of the complicated structure of the interstitial region. The
integrations have to be performed only in between the muffin-tins. Therefore, a step
function ©(r) has to be introduced, that cuts out the muffin-tins.

(3.105)

1 interstitial region
O(r) = { 0 muffin-tins

In film calculations the region between D/2 and D/2 has to be cut out too, but to
keep it simple we will discuss the only the bulk case in this section. Using the step
function the matrix elements can be written:

' 1 i f
Hiyy (k) Q e UG-Gy (r)O(r)dr
cell
1 ! ]_ . !
+=(G +k)?= [ e UG CIro(r)dr (3.106)
2 Q Jeent
' 1 i I}
SG8. = Q e HG=CIrg(r)d?r (3.107)
cell
In momentum space 3.106 becomes:
, R
= Hivp (k) = (VO) g g+ %(G +k)’Og gy  (3.108)
Stvr = Oc-a') (3.109)

Where O¢g and (VO)g are the Fourier coefficients of ©(r) and V(r)O(r) respectively.
Apparently these coefficients are needed up to a cut-off of 2G,,,,. The step function
can be Fourier transformed analytically.

Og = 0go — Z o IGT® Ar(R3r)® 51(GRYr)

Q GRS,y
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The Fourier transform of the product of V(r) and O(r) is given by a convolution in

momentum space.
(VO)e = Z VG’@(GfG’)
GI

This convolution depends on both, G and G, therefore the numerical effort increases
like (Gmaz)®. However, (VO)g can be determined more efficiently, using Fast-Fourier-
Transform (FFT). In fig. 3.3 it is shown schematically how (V©O)g can be obtained
using FFT. Using this scheme the numerical effort increases like (G oz ) n((Gmaz)?)
with Gz

.5
cut-off 2Gmax 0 \
vie) T, v —

Figure 3.3: Schematic representation of the calculation of (VO)g. First
@( ) is Fourier transformed analytically with a cut-off of 2G,,,, yielding
O©g. Then O¢ and Vg are fast Fourier transformed and multiplied on
a real space mesh. Finally, the result (VO)(r) is back-transformed to
momentum space.

o

V() s (VO)G)

3.3.4 The Muffin-Tin A- and B-Coefficients

Within FLAPW the electron wavefunctions are expanded differently in the intersti-
tial region and the muffin-tins. Each basis function consists of a planewave in the
interstitial, which is matched to the radial functions and spherical harmonics in the
muffin-tins. The coefficients of the function inside the spheres are determined from
the requirement, that the basis functions and their derivatives are continuous at the
sphere boundaries. These coefficients play an important role, and they will be needed
again during the discussion of the local orbitals in chapter 5. In this section we will
therefore discuss how the matching conditions can be solved and what properties
they induce.

In many systems that the FLAPW method can be applied to some atom are
symmetry equivalent, i.e. these atoms can be mapped onto each other by a space
group operation {R|r}. Such a group of atoms is called an atom type, represented
by one of the atoms. Let {R¥|r*} the operation that maps the atom p onto its
representative. This atom can now be assigned a local coordinate frame S* (cf.
fig. 3.4), where the origin of S* is at the atoms position® p#. The local frame is

3The atom position is very frequently denoted by 7#, which would clearly cause some confusion
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p pH

»
>

Figure 3.4: Local coordinate frames inside each muffin-tin.

chosen such that the unit vectors of the local frame S* are mapped onto those of the
global frame by R? (R*S* = S9). The local frame of the representative atom S¢
is only translated with respect to the global frame, i.e. the same rotation R* maps
S# onto S®. The potential (and other quantities) inside the muffin-tins can now
be written in terms of the local coordinate system. Due to the symmetry we find
Ve (r®) = Vayru (r#), where r® and r# are expanded in terms of the local frames S*
and S* respectively. As a consequence the radial functions? u;(r) and the t-matrices
are the same for all atoms of the same type. This way symmetry is exploited to save
memory and computer time (during the calculation of the t-matrices).

Any planewave can be expanded into spherical harmonics via the Rayleigh ex-
pansion.

e®r = 4r 3" 5i(rK) Y7 (K) Yi(#) (3.110)

Where r = |r|, K = |K| and K abbreviates (G + k). Looked at from the local frame
K and p* appear rotated, besides the origin of the local frame is shifted. Therefore,
the planewave has the following form in the local frame:

ei(R”K)(!‘-i-R”p“) (3111)

Thus, the Rayleigh expansion of the planewave in the local frame is given by:

e®P" 4 ST i(rK) Y7 (R'K) Yi(F) (3.112)
L

in this context.
4Within this section the radial functions are denoted by wu;(r) for simplicity, though in scalar
relativistic calculating the large component g;(r) is used instead of w;(r).
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The requirement of continuity of the wavefunctions at the sphere boundary leads to
the equation:

> ALE (k) w(Ryre)Yi(#) + BES (k) ty(Rure) Yi(E)

L
= %P 41 N4 ji(rK) Y (R'K) Y5 (#) (3.113)
L

Where R« is the muffin-tin radius of the atom type a. The second requirement is,
that the derivative with respect to r, denoted by 9/8r = ', is also continuous.

> ALE (k) wi(Rarre) Y () + BES (k) g (Rura) Yi(E)

= %P 41 ¥ i Kjj(rK) Y7 (R*K) Y (£) (3.114)
L

These conditions can only be satisfied, if the coefficients of each spherical harmonic
Y7(£) are equal. Solving the resulting equations for A*% (k) and B¥S (k) yields:

ARG (k) = eiKp“47r%il Y; (R*K)
[i(Rarra ) K jj(Ryrre K) — iy Ryrra ) ji(Rarre K))
B¢ (k) = eiKp“4ﬂ%il Y; (R*K)
[ui(Rarre ) K jj(Rurre K) — wi(Rarre ) ji( Rasre K
(3.115)
The Wronskian W is given by:

W = [’L.Ll(RMTa)U;(RMTa) — Ul(RMTa)’l.j,;(RMTQ)] (3116)

Transformation of the FLAPW basis functions in systems that possess
inversion symmetry

Planewaves transform in a very simple way under the operation r — —r. Let Z be
the inversion operator:
Ter = ¢ Kr = () (3.117)

The FLAPW basis functions still have this property, i.e. pg(k, —r) = ¢g(k,r).
Clearly, the system must possess inversion symmetry, because only if there is an
equivalent atom at the position —p* to each atom u at position p#, the basis functions
inside the corresponding spheres can be complex conjugates. The value of the basis
function ¢g(k,r) inside the muffin-tin y is give by:

pa(kr) = ; A% (k) w(r)Yy(®) + BES (k) i(r)Yy(E) (3.118)
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The vector —r lies in the opposite muffin-tin at the position —p#. Let’s denote this
atom by —p. Thus, we find:

=2 A HG (k) wi(r)Yi(®) + BpC (k) tu(r)Yi () (3.119)

The argument of the spherical harmonic is # rather than —f, because the vector
is expanded in the local frame of the atom —pu. Substituting the explicit form of
A;"C (k) and B;*% (k) from (3.115), yields:

pa(k,—1) =Y e®OP) i Y (—RMK) Yy (#){ Aw(r) + Biy(r)} (3.120)
L
Where it has been used, that p™ = —p* and R™* = —R*, A and B abbreviates

all terms in (3.115) that are real and do not depend on r or #. Using that Yz (f) =
(—1)! Y7(#) (3.120) becomes:

Ze—“‘ P) (=)' Y (RMK) Y., (#){Aw(r) + Biy(r)} (3.121)

In the last step it can be exploited that Y, ,,(¥) = (—=1)™ Y;;,(¥). Substituting
m' = —m (3.121) becomes:

Ze"K ) Vi (RPK) Y%, (8){ Awi(r) + Big(r)}  (3.122)

Hence, we have shown, that the FLAPW basis functions transform according to

el (ka —I‘) = QOE(k, I‘) (3'123)

in the interstitial region and the muffin-tins, if the system possesses inversion sym-
metry.

The Hamiltonian Matrix of Systems with Inversion Symmetry

The property of the FLAPW basis functions derived in the previous section leads to
property of the Hamiltonian and overlap matrix. In systems that possess inversion
symmetry these two matrices are real symmetric rather than complex hermitian. The
Hamiltonian depends explicitly on r via the potential. The matrix elements are given
by:

H%¢(k /goG, (k,r)H(r)pg(k, rdr (3.124)

Substituting r' = —r yields:

HEYC (k) = / oe (k, T)VH () pk (k, r'd®r (3.125)
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Where (3.123) and H(r) = #(—r) have been used. In addition the Hamiltonian
operator is real, i.e. H(r) = H*(r). Thus, we finally obtain:

HEC) = [ g, )1 ()¢ (k,'d’r
_ (HG’G(k))* (3.126)

Apparently, the same relation holds for the overlap matrix. The fact, that the two
matrices are real means a great simplification in actual calculation. In principle,
the diagonalization of a hermitian matrix is no more difficult than in the real case.
However, one complex multiplication contains four real multiplication, and therefore
the complex problem is far more “expensive” than the real, and the diagonalization
needs the biggest part of the computer-time in each iteration.

3.4 Brillouin Zone Integration and Fermi Energy

If density functional theory is applied to infinite periodic solids, quantities that are
given by integrals of functions that depend on the band and the Bloch vector over
the Brillouin zone have to be determined. These integrations stretch only over the
occupied part of the band, i.e. over the region of the Brillouin zone where the band
energy €,(k) (v is the band index) is smaller than the Fermi energy. Hence, the
integrals are of the form

é/Bz > fu(k) &%, (3.127)

V,ey (k) <EF

where f is the function to be integrated. Example of such quantities are the number
of electrons per unit cell

1
N:—/ S 1 d, (3.128)
VBZ BZV,ey(k)<EF

the electron (charge) density (cf. section 3.6) and the eigenvalue sum

)
— > ek) dk. (3.129)
VBZ Bz v,er(k)<Ep

Numerically, these integrations are performed on a discrete mesh in the Brillouin
zone. In fact, only the irreducible part can be used to save computer time. There
are different methods, that can be used to perform the integration, e.g. the special
points method [CC73, Cun74] and the tetrahedron method [JA71, LT72, BJA94]. The
special points method is a method to integrate smoothly varying periodic functions
of k. The function to be integrated has to be calculated a set of special points
in the (irreducible) Brillouin zone, each of which is assigned a weight. Thus, the
Brillouin zone integration is transformed into a sum over a set of k-points. However,
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these weights do not take into account, that the integration stretches only over the
occupied part of the bands. This problem is solved by including only those bands
into the summation that have an energy below the Fermi energy at the k-point under
consideration. Thus, the integrals become:

é/Bz Y Ak PR Y Y LK) wk) (3.130)

I/,Ey(k)<EF k I/,Ey(k)<EF

Alternatively, this integration can be viewed as an integration over the whole Brillouin
zone, where the function to be integrated is given by a product of the function f with
a step function that cuts out the region of the Brillouin zone, where the band energy is
above the Fermi energy. Clearly, the resulting function does not satisfy the condition
of being smoothly varying. Therefore, the special k-points method does not converge
very quickly, and rather many k-points are needed to obtain accurate results. On
the other hand this method is simple to implement, because the weights depend only
on k and the band energy (via the step function) at each k-point. Another problem
arises from this “sharp” differentiation between occupied and empty bands (parts of
bands). Let’s consider a band that is very close to the Fermi energy at a certain
k-point. During the iterations the energy of this band might rise above or drop below
the Fermi energy. This leads to sudden changes in the charge density, which can
slow down or even prevent the convergence of the density. These sudden changes are
clearly a result of the discreetization in momentum space. To avoid this problem,
the sharp edges of the step function have to be removed. This can be done, e.g.
by using the Fermi function (e(c~Fr)/¥sT 1 1)~! rather than the step function. In
other words, the function to be integrated is artificially made smoothly varying. The
temperature T can then be adjusted to obtain the best convergence. This method is
called temperature broadening.

In the current implementation of the FLAPW method the Fermi energy is deter-
mined in two steps. First the bands are occupied (at all k-points simultaneously),
starting from the lowest energy, until the sum of their weights equals the total number
of electrons per unit cell, i.e. the discretized equivalent of (3.128) is solved at T' = 0.
Then the step function is replaced by the Fermi and the Fermi energy is determined
from the requirement that:

N=% wke,(k) - Ep) (3.131)

Where the weights are given by:

1

w(k, e, (k) — Ep) = w(k)e(ey(k)fEF)/kBT +1

(3.132)

The weights w(k,¢,(k) — Er) are stored to be used for later Brillouin zone integra-
tions.
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3.5 Representation of the Density and the Poten-
tial

The expansion of the charge density p ® and the potential is very similar to expansion
of the wavefunction. In the interstitial-region the two quantities are expanded into
three-dimensional planewave, inside the muffin-tins they are represented by spherical
harmonics and radial functions, which are store on an exponential mesh and in the
vacuum they are expanded into two-dimensional planewave and z-depended functions,
which are also given on an exponential mesh. However, the charge density is given

by

p(r) = [ei(r)], (3.133)
(]

which contains contains terms of the form e/ (G=Gr. Consequently, for a consistent
representation the charge density cut-off has to be twice the wavefunction cut-off
Gmaez- In section 3.3.3 we explained, that the potential is also needed up to cut-
off of 2G,,4,. This leads to a large number of coefficients, that need to be stored.
Fortunately, this number can be reduced, if the symmetry of the system is exploited.
Of course, the charge density and the potential posses the lattice symmetry.
Therefore, the expansion into planewaves is more general than necessary. The Plane-
waves can be replaced by symmetrized planewaves, the so called stars. They are

defined by:

*P(r) = 1 3 eRGET) (3.134)

N0p op

where {R|7} are the symmetry operation of the lattice space group; if all the trans-
lation vectors T are zero, the space group is call symmorphic. By this construction
all planewaves, that are symmetry equivalent, are combined to form one star. The
two-dimensional stars ®2(r) are defined in the same way, applying the operations
of the two-dimensional space group only.

The same arguments can be applied to the expansion of the p (V) inside the
muffin-tins. In this case the relevant symmetry group is the point group of the
atom under consideration. Thus, different expansions are used at different atoms in
general. The symmetrized functions are called lattice harmonics and they are linear
combinations of spherical harmonics.

K, () = Y ¢, Ya(d) (3.135)

The lattice harmonics are real, orthonormal and invariant under the point group
operations. Finally, the expansion of the the charge density has the form

Zs pS(I)::D (I‘) rc I
p(r) =3 S, ps(2)@?(r) r € Vakuum (3.136)
>y (r)Ky(#) re MT*
5The charge density is related to the electron density by p(r) = —en(r). However, the program
is written in Hartree units, where e = 1, therefore p and n are equal.
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The Potential is expanded in exactly the same way.

3.6 Construction of the Electron Density

In this section we will discuss the determination of the charge density from the eigen-
functions. However, we will concentrate on the charge density inside the muffin-tin
spheres and two related issues, because the formulae derived in this section will be
the starting point for the discussion of the contributions to the charge density of
the local orbitals (cf. chap. 5). The local orbitals are an extension to the FLAPW
basis set. They do not contribute to the charge density in the interstitial and the
vacuum-region, because they are completely localized inside the muffin-tins.

In density functional calculations of an infinite periodic solid the electron density
is given by an integral over the Brillouin zone (cf. (2.20)).

n(r) = / (K, 1) 2%k (3.137)
VBZ BZVE,, K)<Ep

Where Vg is the volume of the Brillouin zone, v is the band index and FEf is
the Fermi energy. In spin-polarized calculations the summation includes also the
spin-index o (cf. (2.8)), while in a non-magnetic calculation a factor “2” has to be
added to account for the spin-degeneracy. In the case of film calculations the three-
dimensional Brillouin zone is replaced by a two-dimensional Brillouin zone. In both
cases integration methods that sample eigenfunctions and the eigenvalues on discrete
k-point are used to compute the integrals. These methods transform the integration
into a weighted sum over the k-points, where the choice of k-points and their weights
depend on the integration method used. These weights depend not only on the k-
point, but also on the energy of a band, i.e. on the band (index), because each band
contributes to the electron density only if its energy is below the Fermi energy.

= Zk:Z [ (k, 1) Pw (v, k) (3.138)

Within the FLAPW method the eigenfunctions are represented in terms of the coef-
ficients of the augmented planewaves.

¥, (k,r) Zc Joa(k,r) (3.139)

Inside the muffin-tin spheres each planewave is coupled to a sum of spherical har-
monics and radial functions. Hence, in a sphere p an eigenfunction is given by:

¥y (k,r) Zc (k) 3 ALE (k)uf (r) Ya(#) + BL® (k)af (r) Yz () (3.140)

L
The A4(k) and B¥S(k) coefficients can be replaced by band dependent A- and

B-coefficients, obtained by performing the contraction over the planewaves:

V¥ (k, ) ZA Yi(8) + BY (K)id (r) Vi (£), (3.141)
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where

Ap, (k) = %: ¢ ()ALT(k), B, (k)= %: ¢’ (k) BLE (k). (3.142)

3.6.1 “[-like” Charge

Since the wavefunctions are expanded into spherical harmonics inside the muffin-tin
spheres, they can be split up into contributions with a certain [-character.

Y (k,r) Z¢ (3.143)

The particle density of a certain state depends on the square of the wavefunction.
Therefore, it contains cross-terms with a mixture of different [’s.

/BZZW’ (k,r) |+ 32 (v (k, 1)) ol (K, ) dk (3.144)
l )

If, however, the density is integrated over the muffin-tin, the cross-terms vanish be-
cause of the orthogonality of the spherical harmonics. Thus, the total electron density
inside a sphere can be written as a sum over contributions with definite 1-character.

b p 3k
ny ;n%l, ny,, = Vo /BZ /MT“ ol (k,r)[Pd*rd’k (3.145)

Where n”
by:

is called “I-like” charge. We can also define a k-dependent l-like charge

v,l

ny,1(k) =/ ¢k, 1) [d’r (3.146)
MTH
Substituting (3.141) yields:

l
(k) = > AL, (K)]* +[BE, (k)]*Nf (3.147)
m=—I
Where
Ne = [ () (3.148)
0

and the orthogonality of the spherical harmonics, the normalization of uf* and the
orthogonality of u* and uf* have been used.

3.6.2 Determination of the Optimal Energy Parameter

In order to minimize the linearization error, the energy parameters should be chosen
as close to the band energies as possible. However, the band energies €, (k) depend on
k whereas the energy parameters Ej* are constants. In addition, the radial functions
contribute to the eigenfunctions of different band with different energies. Therefore,
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deviations between €,(k) and Ef* have to be accepted. An optimal choice can be
obtained from the requirement, that the energy parameters minimize

/BZ > (a(k) = BY) njy(k)d’F, (3.149)

v,e,(k)<Ep

which is the quadratic error weighted with the amount of charge that each band
contributes to the 1-like charge with the l-character of the energy parameter. Setting
the derivative (0/0E}) equal to zero yields the optimal energy parameter:

(-/BZ ZE ev(k)nl (k) )/(/BZ Z nf,"l(k)d?’k) (3.150)

The Brillouin zone integration methods transform this into a sum over a discrete
k-point set.

By = (;;e,,(k)nﬁ,l(k)w(u, v) / (;;n;ﬂ,(k)w(v, ) (3151)

3.6.3 Construction of the Electron Density in the Muffin-
Tins

Substituting (3.141) into (3.137) yields the electron density in the muffin-tin spheres.

) = o [ S (At (kU (r) + B, ()i () Y3 (8)
XL: (Aﬁ,u(k)ul (r) + Bﬁ,y(k)ﬂ?(r)) Yi(#)d3k (3.152)

The particle density inside the muffin-tins is also expanded into spherical harmonics.
=Y CHr)Yi(#) (3.153)
L

The coefficients CF. (7 ) can be determined by multiplying (3.152) with [ dQY7.(£).

Ch.(r) = / AL (K)ud(r) + BY (K)ag(r))
Vor Joz, 2 2 (Aiului(r) + B ()i ()
> (Aﬁ,y(k)ul (r) + B, (K)ig(r)) G ™" d°k (3.154)
L
with
mm'm' _ / Y, Yime Yoo dS2 (3.155)

where it has been used, that the gaunt coefficients are real, i.e.

/ YimYyi Vb ,dQ = / Y, Yo Vi dQ (3.156)
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Finally, applying a Brillouin zone integration method yields:

oh(r) = z(zzz A% ()

mml mll

A Ull

mml mH

lll lll ull

m mm/mu
Az, (

v i Ul/

m mm/mu
BL

v llll” ull

\/ \/ \/ \/
*

(3.157)

3.6.4 Construction of the Electron Density in the Interstitial
Region

In the interstitial region the wavefunctions are represented in the following form.

Z & (k)elGHr (3.158)

Starting from (2.8) the electron density is given by:
]_ / el 3 Sl all
n(r) = — & (k)d®kel(G"-G)r 3.159
O =0 Jos, 2, 3 (00) 7 (3.159)

The electron density in the interstitial region is also expanded into planewaves.

=Y nCelGr (3.160)
G
Hence, the planewave coefficients of the electron density are:

né = /B ) 2 > (%) S (k)dk (3.161)

e (k)<Ep _G'G"
G'"-G'=G
Apparently, the planewave cut-off of the particle density has to be twice the cut-off
of the wavefunction expansion (G,,;) to allow an accurate description. The k and
state dependent density

nSk)= 3 (S'%) S k) =Y (¥ k) S (k) (3.162)

GIGH G/
G'"-G'=G

is given by a convolution in momentum space. For each coefficient a sum over G has
to be performed. Consequently, the numerical effort put into the determination of
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n& (k) scales proportional to the number of G-vectors squared, i.e. proportional to
(Gmaz)®. However, n%(k) can be calculated more efficiently using the fast Fourier
transform (FFT). First, ¢ (k) is Fourier transformed to real space, where it is squared
on a real space mesh yielding n,(k,r), then all states are summed up and finally the

resulting particle density is back-transformed to momentum space.

Sk) L o) TN n(kr) 25 n(kr) TED nS(k)

v

With this scheme the numerical effort increases proportional to (Gmaz)® In((Gmaz)?),
which is a major improvement for large systems. In a last step the planewaves have
to be combined to form the three-dimensional stars.

3.6.5 Construction of the Electron Density in the Vacuum
Region

In the vacuum region the wavefunctions are expanded into two-dimensional plane-
waves parallel to the surface and z-dependent functions perpendicular to the surface.

GG . i r
(k) = 3 e ' (k) (Ag e, (ky)ug, (ky, 2) + Ba o, (k) i, (K|, 2)) €SItk
GG
(3.163)
Hence, the electron density is given by:

() :VBZ/BZVZ > %

ev(k <EFG’HG’ G’H’G”

( % ) (A, (k)ugy (k) 2) + Baye, (k) iy (k) 2 ))>
( ) (Aayer ey k), 2) + Begor (k) iy (k). - ))> o
(G- (3.164)

The particle density in the vacuum is represented in the following form.

r) = n%iI(z)e I (3.165)
G|

Performing the Brillouin zone integration on a discrete k-mesh and carrying out the
summation over G', and G’/ we find that the coefficients n®1(z) are:

n®i(z) = Y33 (Aay k) A, e (kv k) e (k) 2)ue, say) (k) 2)

)
K v G’ I

+ ZZZ(AG' (k)" Bay e (k)w(v, k) ue (K, 2)ive, vy (k) 2)

kH v G
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+ X3 (Baywlk) Ay e (k)w(v, k) e (ky, 2)ug, rar) (k) 2)

kv G|
+ Y33 (Bayu(k) Bey ik w(v, k) de (K, 2)ig, rar)(K), 2)
kv G|
(3.166)
with
Ag, (k) ch “(k)Ag e, k),  Bayw(ky) ch “(ky)Be,c, (k)
(3.167)

Here, the terms of the form
Z(AG;‘,u(ku)) Ac+a)o (k) ve (K, 2)ue +a) (K, 2)
Gj

represent convolutions in momentum space. Similar to the interstitial region these
terms could be calculated more efficiently, using two-dimensional fast Fourier trans-
form. However, there are far less two-dimensional planewaves than three-dimensional
planewaves. Therefore, the possible saving of computer time is much smaller.

3.7 Construction of the Coulomb Potential

The Coulomb potential consists of two parts, the Hartree term Vg (r) and the external
potential of the nuclei V;(r).

Ve(r) = Vi(r) + Vi(r) (3.168)

The Hartree potential has to be determined from the charge density via the Poisson
equation.

AVy(r) = 4mp(r) (3.169)
In real space the solution of 3.169 is given by
dmp(r')
Vu(r) = 1 d’r. (3.170)

In reciprocal space, however, the Poisson equation is diagonal, as a result the solution
is very simple.

4rp(G)

G2

Therefore, and because of the representation of the charge density and the poten-
tial in the interstitial- and vacuum-region, the solution of the Poisson equation in
reciprocal space appears to be convenient. However, due to the rather localized core
and valence states the charge density changes on a very small length scale near the
nuclei. Therefore, the planewave expansion of p convergences slowly, and a direct use
of (3.171) is impractical, if not impossible. This difficulty can be circumvent via the
pseudocharge method.

Va(G) = (3.171)
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3.7.1 The Pseudocharge Method

The pseudocharge method, developed by Weinert [Wei81], is a very elegant technique
to calculate the interstitial and vacuum Hartree potential. The underlying idea is to
divide the solution of the Poisson equation into two steps. In the first step the
true muffin-tin charge is replaced by a convergent pseudocharge density p, that leads
to the same potential outside the muffin-tins. Then the interstitial (and vacuum)
potential is calculated in reciprocal space. In the second step the muffin-tin potential
is determined from the Dirichlet boundary value problem, defined by the exact muffin-
tin charge and the interstitial potential on the muffin-tin sphere boundaries. The
potential outside the the muffin-tin spheres due to a charge distribution inside the
sphere is determined completely by its multipole moments qr,.

r):f; Z il Lvi(e), (3.172)

=0 m=—

However, the multipole moments do not define the charge density uniquely. The
charge density is given by:

p(r) = pr(r)O(r € I) + ) pa(r)O(r € MT*) (3.173)

Of course, in film calculation there is also a vacuum charge, and we will come back
to this later. 3.173 can be rewritten

p(r )+ Z Pa(r) — pr(r)|O(r € MT?) (3.174)

Thus, the interstitial charge has been extended into the muffin-tin and subtracted
there again. The second term in 3.174 can now be replaced by a pseudocharge 5%, that
has the same multipole moments (s. [Wei81] for details). The resultant pseudocharge
p is given by

3(x) = pr(r) + 3 (1) (3.175)

p(r) is constructed to have a more rapidly converging Fourier expansion than the
original charge density p(r). Therefore, the Poisson equation can now be solved
using (3.171).

Still, the muffin-tin potential V}, remains to be determined. For this step the
exact muffin-tin charge p, has to be used. Since, the interstitial potential is already
known at this point, the calculation of Vj;, constitutes a classical spherically sym-
metric Diriclet boundary value problem, which can be solved by the Green’s function
method [Jac83].

R? oG
[ _ i "N 33, (o] !
Ve (r) = /MTQ pal(r)Glr, v — ]g Vi(r') 5 de (3.176)
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The second integral is over the muffin-tin sphere boundary S§¢, and it is necessary to
satisfies the boundary conditions. The Green’s function is given by:

YL I‘I YL( )

rl ro 24
G%(r,r') =4n Z ST (1—( ) ) (3.177)

T'> RMTa

where r~ = maz{|r|, |t'|}, r« = min{|r|,|r'|}. Finally, the muffin-tin potential has
to be expanded into lattice harmonics K, (¥).

The potential of the nuclei V,*(r) = % is added to the spherical (I = 0) component

of the potential Vi1 ,(r).

The muffin-tin potential is computed in the same way for both, bulk and film cal-
culations. Apparently, the interstitial and the vacuum have to be treated differently
is the two cases, due to the different boundary conditions and the different represen-
tation of the vacuum potential. Therefore, the next two sections the solution of the
Poisson equation will be outlined separately for these cases in.

3.7.2 Determination of the interstitial Coulomb Potential in
Bulk Calculations

In the case of bulk calculations we have periodic boundary conditions in three dimen-
sions. Therefore, the solution of the Poisson equation,

G’V (G) = 475(G) (3.179)

is very simple. Obviously, this equation can only be solved, if 5(0) = 0. Since 5(0) is
the average charge density, this means, that charge neutrality is essential. Still, V(0)
remains undetermined by 3.179, i.e. one has the freedom to shift the potential by a
constant. This is a consequence of the periodic boundary conditions, because they
do not fix the reference of the potential. Usually V(0) is chosen to be zero, hence the
Coulomb potential in the interstitial-region is given by:

47Tﬁ(G) iGr 47Tps
V}(I’) = E TBG = E G2 (I)SD( ) (3180)
G#0 s#£0

where the first summation is expressed in terms of G-vectors and the second in terms
of stars.

3.7.3 Determination of the interstitial and vacuum Coulomb
Potential in Film Calculations

In a film the translational symmetry in z-direction is lost. Accordingly, the boundary
conditions are periodic in two dimensions only. In z-direction the periodic boundary
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conditions are replaced by the requirement, that the potential approaches zero at
infinity. The latter condition defines the absolute reference of the potential. As a
consequence of the symmetry breaking, the following expansion of V' and p is most
suitable to solve the Poisson equation:

V(r) = V},(z)+(§ Vg, (2)e"%1" (3.181)
p(r) = po(2)+ 2 pGH(z)eiG”” (3.182)
G| #0

Substituting this into the Poisson equations yields:

(dd— - Gﬁ) Vo, (2) = —4mpa, (2 (3183)

This equation is treated differently for G| = 0 and G|} # 0.

The G| = 0 Component of the Potential

For the G| = 0 component of the potential the Poisson equation has the form

j—;Vg(z) = —4mpy(2) (3.184)

The G| = 0 component of the pseudocharge density is given by:
I’ +Ta, proteds |2 <
po(z) = (3.185)
Py (2) 2] > %
The Poisson equation for the ) = 0 can be integrated directly. The result in the
vacuum region is given by:

V(2) = —4n / " o (2)d2, (3.186)
with
oy(z) = /QZ pY(2)d2' + ﬁ[g (3.187)
where the average interstitial charge d2ensity pr is given by:
pr= Gzp‘}’Gijo(GﬁD)- (3.188)
L

Here p; does not equal p?’o, because the G | are defined in terms of D rather than D,
i.e. the period of the z-dependent planewaves does not equal the integration interval.
In the interstitial region the solution to (3.184) is

o

D? ’ , ,
V2(z) = —2mpy° <z2 - T) — ATy pCIﬂQ (ezG“ — ezGl%) — 47 /D oy (2')d2'
G B

2 (3.189)
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The G| # 0 Component of the Potential

In the case G| # 0 the Poisson equation is solved via the Green’s function method.

Ve, (2) = [ °:o pa, (2)Ga, (2 — 2)d2! (3.190)

Where the Green’s function is given by:

Gg (z—2) = é—”ec’n“’ (3.191)

This leads to the following solution in the vacuum-region

2 z '
VVGH (2) = G_7T60”z /_oo pS” (z')e~C1 gz (3.192)

_D
+2_7re—GHZ / 2 p‘G/H (ZI)eG”ZIdzI
GH z

+2_7Te,GHZ ﬁ (e(GHJriGJ_)z _ e*(GquiGl)z)
G| . G| +1G,
and in the interstitial-region
Gl1.GL
Vilz) = dny %eic’ﬂ (3.193)
o ﬁ [eGHZ(G +i@G e~ (GG F
G = @ I +1GL)e

+ 6_GHZ(G|| — Z'Gl)e_(G”—HGL)%] +

2 o0 : 7 ,
_|_G_7r [eGZ/D pgn(z)e*G”Z dzl_i_efG”z/‘2 pgll(Z)eGHZ dzl]
l el

) —o0

3.8 Computation of the Exchange Correlation Po-
tential

The problem of the determination of the exchange correlation potential is quit dif-
ferent from the Coulomb potential. On one hand, V2 is a local quantity, i.e. V.%(r)
depends only on nt(r) and n|(r) at the same position r. Thus, the muffin-tins, the
interstitial- and vacuum-region can be treated independently. On the other hand,
V7 and €7, are non-linear functions of ny and n;. Therefore, V7, and €7, have to be
calculated in real space. V], and €7, are determined in the same way. First, n; and
n, are transformed to real space, where V7 and €7, are calculated. Then V7, and
€7. are back-transformed. Then, V7 is added to the Coulomb potential, yielding the
spin-dependent potential V; and V). €, is needed for the determination of the total
energy.
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3.8.1 Calculation of ¢/, and V7 in the Interstitial-Region

In the interstitial-region the charge density is expanded into three-dimensional stars
with coefficients n?. Multiplying these by eRG7T yields the planewave coefficients
ng. If the space group is symmorphic the star and planewave coefficients are iden-
tical. However, due to numerical inaccuracy, the calculated coefficients of symmetry
equivalent planewaves are not exactly equal, and the corresponding star coefficient
is obtained from the average of the planewave coefficients. In the next step a three-
dimensional Fast-Fourier transform is carried out. Then the exchange correlation
potential is calculated on a real space mesh r;. Finally, V7 is back-transformed, and
the star coefficients are computed.

FFT-?
—

n? — n% Fry n’(r;) — Vo(r;) VoG — VoS,

S

3.8.2 Calculation of ¢/, and V7 in the Vacuum-Region

The vacuum charge density is stored in terms of two-dimensional stars and a z-
dependent exponential mesh z;. The G| = 0 component reaches further into the
vacuum than the G| # 0 components. In the so called warping region the planewave
coeflicients on each mesh point are determined by a multiplication with the phase fac-
tor e®®GIT. Then, for each grid point z; along the z-axis, the two-dimensional charge
density is Fourier transformed to a real space grid (r, z;), where V7, is calculated.
Afterwards, V7, is back-transformed and the star coefficients are computed.

n (2P, z) —  n%(Gyz) BT no(rgz)  — Va(r),z)

2DFFT!
— Vmac(GH’zl) — Vzac(q)gD’zl)

Beyond the warping region the exchange correlation potential is calculated directly

on the z-dependent mesh.

3.8.3 Calculation of ¢, and V., in the Muffin-Tin Spheres

The muffin-tin charge is expanded into lattice harmonics and radial functions. The
radial functions are stored on a discrete real-space mesh. Thus, the transform to real
space affects only the angular part. The charge density is calculated on a set of special
angular points #; = (6;, #;). Again, the exchange correlation potential is calculated
in real space. Thereafter, the result V,2(r) is expanded into spherical harmonics Y7,.
The Y, are orthonormal, therefore the coefficients can be obtained from

v L (r) = / Yy (8) V2 (r, #)dS2. (3.194)

zc,L

The choice of the points ¥; = (6;,¢;), on which n?(r) and V2(r) are calculated,
depends on the integration method, that is used to perform the angular integration.
In the current implementation (3.194) is computed via a Gaufi-Legendre integration
and the angular points are chosen such, that the orthonormality condition of the Y7,
holds also for the angular mesh r;.
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3.9 Minimization of the Energy Functional

The aim of electronic structure calculations is to minimize the energy functional with
respect to the electron density. Within density functional theory this minimization
is performed implicitly, by the determination of a selfconsistent density n(r). In the
previous sections we described, how an effective Potential can be calculated from a
charge density, how the Kohn-Sham equations including this potential can be solved
and how a new electron density can be calculated from the resulting single particle
wavefunctions. Combining these steps defines a map:

n'(r) = F{n(r)} (3.195)

The electron density that minimizes the energy functional ng(r) is a fix-point of
F{n(r)}, i.e. it solves

F{ng(r)} =0, with F{n(r)} = F{n(r)} — n(r). (3.196)

The density is expanded into a large set of basis functions. Therefore, in actual
calculations, the charge density is a coefficient vector of dimension n, where n is
typically of the order of 10*. Thus, (3.196) constitutes a system of n nonlinear
equations, which can be solved by iteration:

n™(r) = F{n™(r)} (3.197)

A starting density can be constructed by a superposition of atomic densities. How-
ever, this scheme is in general divergent. To achieve convergence the output density
has to be mixed with the input density. Different mixing schemes are discussed in
the following.

3.9.1 “simple mixing”

The slowest method is the “simple mixing”, which converges only linearly.
‘5n(m+1) |

7|5n(m)| < const. (3.198)

Where 6n(™ is the difference of the density of the m® iteration and the unknown
fix-point, én(™ = n(™ — n;. The density for the next iteration is constructed as a
linear combination of n{™ and F{n™} according to:

nm) = (1 -a)n™ 4+ oF{n™}
n™ 4 aF{n™} (3.199)

a is the so-called mixing parameter. If it is chosen small enough the iteration con-
verges and is very stable. In spin-polarized calculations different mixing parameters
can be used for the charge and the magnetization density. Usually, the spin mixing
parameter can be chosen far larger than the parameter for the charge density. How-
ever, for the type of systems we are interested in « is very small, requiring many
hundreds of iterations.
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3.9.2 The Newton-Raphson Method

In the Newton-Raphson method the functional F{n} is linearized around the ap-
proximate solution n(™).

F{n} ~ F{n™} + F{n™}(n — nl™) (3.200)
Where the Jacobian is defined by:

_ 0F{n(r)}

T {n™ (r)} = e (3.201)

n(™ (r)

In actual calculations the Jacobian is a m x m matrix. Similar to the well known
Newton method for one dimensional functions, the next approximation to ng, n(™*,
is determined from the requirement, that the linearized functional in (3.200) vanishes

at n(™*1), Thus, n(™*Y is given by:
™) = [ {nlm}] " Fintm) (3.202)

The Newton-Raphson method converges quadratically:

‘6n(m+1) |
W S const. (3203)

The major drawback of this method is the difficulty to evaluate the Jacobian. Even
if the functional F{n} was know, the evaluation would be cumbersome due to the
enormous size of J{n}. In addition, the Jacobian has to be inverted where the
amount of calculation scales with cube of the dimension. A further problem is that
the convergence radius is rather small so that the method can only be used if n(™ is
already very close to ng.

3.9.3 Quasi-Newton Methods

With the development of the Quasi-Newton methods it became possible to exploit the
advantages of the Newton-Raphson method, i.e. to make use of the information that is
contained in the Jacobian, for problems where the Jacobian cannot be calculated or its
determination is too demanding. Rather than computing the Jacobian each iteration,
an approximate Jacobian is set up and improved iteration by iteration. From the
linearization of F{n} (3.200) we find the following condition for the Jacobian, which
is usually called Quasi-Newton condition:

Antm = [gm] T AFm (3.204)
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Quasi-Newton methods converge super-linearly

[Gn(m+1)|

R N
|ontm)] ’

and have a larger convergence radius than the Newton-Raphson method. Since the
Jacobian is build up iteration by iteration, the “history” of the previous iterations
is memorized in J, whereas the Jacobian of the Newton-Raphson method depends
only on the previous iteration. In this sense the Newton-Raphson method is self-
corrective [Bli88], it “forgets” inadequately chosen corrections. The Quasi-Newton
methods sometimes need to be restarted, if the iteration converges only slowly. This
can happen if the starting density is very far from ng or when physical or numerical
parameters that affect the calculations are changed during the iteration. Equation
(3.204) does not determine the Jacobian uniquely, instead (3.204) constitutes a system
of n equations for n? unknowns. The various Quasi-Newton schemes differ by the
ansatz how the new information is used to build the inverse Jacobian. The methods
that are implemented in the FLAPW code are discussed in [Pen96].



Chapter 4

Non-Collinear Magnetism in
FLAPW

The implementation of the FLAPW method, outlined in the previous chapter, as-
sumes collinear magnetism, i.e. the magnetization density has to be directed along
the z-axis everywhere in space. In this case, the Hamiltonian of the Schrédinger-Pauli
equation 2.18, which in general constitutes a two by two matrix, becomes diagonal
in the two spin-components. In fact, one can think of the magnetization to be di-
rected along any direction, since real space and spin space are completely decoupled
within the scalar-relativistic approximation. The z-axis is only chosen because of the
simple form of the Pauli matrix o,. Another important simplification, that reduces
the expense of calculations, is the fact, that the Hamiltonian and the overlap matrix
become real symmetric instead of complex hermitian, if the system possesses inver-
sion symmetry. Finally, only the magnitude of the magnetization density needs to be
store. In fact, the particle and magnetization density, n and m can be replaced by a
spin-up and -down density, n+ and n|. In the same way V and B can be replaced by
VT and Vl

In the case of general non-collinear magnetism, all the simplifications listed above
are lost. A B-field with non-zero x- and y-component means, that the Hamiltonian
contains terms including o, and o,. Thus, the spin-up and -down components of
the wavefunctions are no longer decoupled, leading to an eigenvalue problem twice
as large as before. In addition, the Hamiltonian becomes explicitly complex, due to
the presents of o,.

A large amount of work in the field of selfconsistent ab-initio calculations on
non-collinear magnetic systems has been done by Kiibler and coworkers [SHK89,
Kiib95, SK96] and references therein. Many aspects of non-collinear magnetism can
be described within the picture of inter-atomic non-collinear magnetism, where it
is the different atomic moments, which are non-collinear. Thus, the magnetization
at each atom is predominantly directed along one particular direction, which differs
from atom to atom, but deviations from this direction on the intra-atomic scale are
expected to be small. Within FLAPW this can be realized assigning different quan-

95



56 CHAPTER 4. NON-COLLINEAR MAGNETISM IN FLAPW

tization axis to each atom, and allowing the magnetization inside the corresponding
muffin-tin to be directed along this axis only. Still, in the interstitial- and vacuum-
region one has to deal with a general non-collinear magnetization.

4.1 The Frozen Potential Approximation

The frozen potential approximation allows the calculation of the total energy differ-
ence of (similar) systems, based on the eigenvalue sums of non-selfconsistent calcula-
tions. In this section we will explain how this method can be employed to estimate
the energy difference of different magnetic configurations. In the spirit of the approx-
imations outlined above, these configurations shall differ, in that the directions of the
magnetization at each atom, i.e. inside each muffin-tin, are different. Let’s consider
two configurations, denoted a and b. According to (2.28) the total energy of each of
them is given by

Eln,m] = Zez / VWie(r)dPr — / m(r) - Byo(r)d*r

2 T
Mo ZHzZ¥

+ [ n0)eaelnlr), mE)])dr + dre PO A
uFEp

Let us assume now, that the difference of the electron density between the two config-
urations is negligible n(r) ~ n®(r), i.e. that a and b differ only by their magnetization.
As a consequence, the Hartree energy of a and b is the same. Clearly, the Madelung
energy does not change too. Hence, the energy difference is given by

N

E[n*, m’] — E[n®, m®] = ;ef — ;ef
/ U(r)Ve(r) + m?(r) - By (r) — n°(r)V,(r) — m®(r) - B}, (r)d’r
+/ r)ege(n®(r), m(r)]) — n’(r)eze(n’(r), [m®(r))d’r. (4.2)

From the local character of €., within the LSDA follows that V. and €., depend only
on the magnitude of the magnetization m(r) = |m(r)|. As a result, the magnetic
field B,. is always parallel to the magnetization, with its magnitude also depending
on m(r) only. Hence, 4.2 becomes

N N
En*m’]— En’ ,m’ =>"e —> ¢

i=1

- / (1) Vae(n? (r), m*(r)) + m®(r) Bye(n(r), m®(r))
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—nP (1) Vae(n(r), m®(r)) — m®(r) Byo(n®(r), m(x))d>r
—|—/na(r)emc(na(r),m“(r)) — nP(r)ege(nP(r), m*(r))d>r. (4.3)

At this point, the second approximation comes into play. We assume, that the mag-
nitude of the magnetization inside the muffin-tins does not change with the direction.
Under this assumption, the contributions from the muffin-tin spheres to the two in-
tegrals in 4.3 cancel out exactly. This is a good approximation for the systems we
are going to apply this theory to. Bliigel et al. [BDZD89] investigated the properties
of 3d transition-metal monolayers on Ag(001) and unsupported monolayers (UML)
with the same geometry. They compared the ferromagnetic with the ¢(2 x 2) anti-
ferromagnetic structure, and found that the magnetic moments of Mn and Fe hardly
change, whereas the moments of Cr change noticeably but not drastically. Assuming
the validity of this approximation, the only error terms, that add to the difference of
the eigenvalue sums, is due to the change of the magnitude of the magnetization in
the interstitial- and vacuum-region.

N N
En®,m’] — E[n*,m’] =3 e = > ¢
i=1 i=1

- /HV n® (1) Vae(n® (r), m*(r)) + m(r) Bye(n(r), m®(r))
—nP(r)Vye(n®(r), m*(r)) — mb(r) Bye(n®(r), m*(r))dr
+ /I+V n%(r)eze(n?(r), m?(r)) — n’(r)eze(nb(r), m*(xr))d>r (4.4)

However, the magnetization of the interstitial- and vacuum-region are small, and the
magnitudes differ only in a small region of space between the atoms. Therefore, the
contribution from the integrals in 4.4 can be neglected, and the difference of the total
energy of two magnetic configurations can be approximated by the difference of the
eigenvalue sums.

N N
En*m’]— En®,m" = > e —> ¢ (4.5)
=1 i=1

The benefit of the frozen potential approximation is, that once one magnetic config-
uration has been calculated selfconsistently, the energy of other configurations can
be obtained from non-selfconsistent calculations. The input electron and magnetiza-
tion density for the latter is being obtained from the densities of the selfconsistent
calculation, by a rotation of the direction of magnetization inside the muffin-tins. In
practice, these calculations are carried out in two steps:

e Perform a selfconsistent collinear calculation

e Determine the energy difference to other (non-collinear) magnetic configura-
tions via the frozen potential approximation.

Clearly, this is a great simplification, compared to selfconsistent non-collinear cal-
culations, because no vector-magnetization densities have to be generated or stored
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and no exchange correlation potentials and magnetic fields have to be computed from
such densities.

Still, one problem remains to be solved. Obviously, the Hamiltonian, i.e. V,¢¢ and
B.fs, is needed in order to calculate the eigenvalues. Let’s consider the situation,
where the magnetic configuration a has been calculated selfconsistently. Of course, in
this case, V%, and BZ;, are known, but V;; and Bl are not. Assuming the validity
of the approximations made above, i.e. that n3(r) ~ n®(r) and that B?, inside the
muffin-tins can be obtained from a rotation of B2, only the exchange correlation
potential and magnetic field in the interstitial- and vacuum-region, V.IV'"* and BIV’t,
remain unknown. An approximate Hamiltonian H® can be constructed using V[V
and BIV¢ instead. The unknown exact Hamiltonian #? is related to H? by:

H =1 + (VI 4 o . BIVa _ yIVE _ 5. BIVY) (4.6)

Now, the error of the eigenvalues Ae? = € — ¢ can be determined using first order

perturbation theory. Since V,, depends only weakly on the magnetization, it can be
neglected here. Thus, we have

Aei = (ilo - (B — By )|y). (4.7)

Summing over the occupied states yields

N
Y A = m’ - (BIV* — BIV")dPr. (4.8)
= I+v

This error term causes some difficulties. Of course, the interstitial and vacuum mag-
netization and magnetic field is small, but in contrast to the error term in 4.3, which
depend on the magnitudes of m and B, here the error depend on the difference of the
vectors BIV:® — BIV'?. Consider for example the case, where a is the ferromagnetic
and b is the antiferromagnetic configuration. Apparently, in one half of the intersti-
tial region the magnetizations and magnetic fields are opposite to each other, while
the magnitudes are similar. If we used the selfconsistent ferromagnetic B-field, to
construct the approximate antiferromagnetic Hamiltonian, it would favor the ferro-
magnetic solution, i.e. the ferromagnetic eigenvalue sum would be lowered compared
to the antiferromagnetic and vice versa.

A solution to this problem is to set the interstitial and vacuum magnetic field to
zero when constructing the trial Hamiltonian. Then the error term 4.8 reduces to

N
Z Aef = — m? - Bi‘cf’bd?’r. (4.9)
i=1 +v

Now, we can make use of the fact, that m® and BIV? are always parallel. Ergo, the
unknown exact eigenvalue sum is related to the approximate sum by

N N
b ~b b IV i3
E e-:E € — m’ B ’d’r. 4.10
z:1 1 1_1 1 I+V xrc ( )
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If we perform this approximation for the two systems, a and b, that we want to
compare, the difference of the two eigenvalue sums is given by

N N N

N
Ye-Yd=Ya -y /I (meBIVa — mpBIVO @y, (4.11)
=1 1 i=1

i=1 +V

Hence, the error we are left with depends only on the magnitudes of m and B.
In fact, it is exactly the same term, that appeared already in 4.4, and it can be
neglected. Eventually, the application of the frozen potential approximation has
to be supplemented by a third step, the elimination of the interstitial and vacuum
magnetic field.

4.2 The Implementation of Non-Collinear Mag-
netism

In this section we will explain, how the Hamiltonian matrix corresponding to the
approximate Hamiltonian H, with the B-field inside the muffin-tin spheres rotated by
a arbitrary angle, can be set up. Since spin- and real-space are completely decoupled
within the scalar-relativistic approximations, the spin-rotations can be performed
without any effect on the real-space coordinates. It will be shown, that no changes to
the construction of the muffin-tin basis functions or the determination of the t-matrix
are necessary in order to set up H.

The potential and the magnetic field are represented in terms of Vi(r) and V(r),
where up and down is defined in terms of the global z-axis before the rotation. Per-
forming the rotation leaves both, Vi(r) and V|(r), unchanged. In particular, no
rotation needs to be applied to r. The only change is, that now spin-up and -down is
to be interpreted in terms of a local quantization axis. Therefore, a local spin-space
coordinate frame S is introduced for each atom type (muffin-tin). The global spin-
coordinate frame S9 can be transformed into the local frame by a rotation, given by
the Euler angles («, 3,0). In this case, the Euler angles are equivalent to the polar
angles of the local quantization axis in the global frame, « = ¢, § = 9. Thus, the
basis vectors of the two frames are related to each other by

R(e,B,0) & =&, (4.12)

and the magnetization density and the magnetic field, seen from the global frame,
m?*?(r) and B®(r), are related to the same quantities seen from the local frame by

m*(r) = R(e,3,0) m*(r)
B*(r) = R(a,3,0) B¥(r). (4.13)

where the index « indicates, that this corresponds to quantities inside the muffin-tin
of atom type a. The Pauli spinors transform according to

x* = U@ (a, 8,0) x*, (4.14)
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with

U@ (a, 5,0) = ( j , (4.15)

The unitary matrix U® is derived in most standard textbooks [OH93]. In the
collinear case the radial functions u$, and % ! are determined as solutions to the ra-
dial Schrédinger (scalar-relativistic) equation 3.2 (3.41), including the spin-dependent

potential V. Thus, the basis functions inside the muffin-tins are linear combinations
of

up (MYo(B)xT, @] (r)Yo(®)x?, (4.16)

where L abbreviates Im, and

(e (07 (07 1 (e (07 (07 O

Afterwards, the spin-dependent ¢-matrices (3.61 — 3.64) are calculated. This whole
procedure remains completely unchanged in the non-collinear case, with the only dif-
ference, that spin-up and -down means up and down in terms of the local quantization
axis. Consequently, the muffin-tin basis set becomes

uip (MY (@)X, a(r)Yo(R)xs?,

up (MYr(®)x?,  ag (r)Yo(E)x)?, (4.18)
with
=2 c0s(B —e 2" sin(2)
a9 _ @ yal _ e '2 605(2) ag _ @ ol — 6' 2/ 4.19
X1 X <e%sin(§) ’ Xy X e%cos(g) (4.19)

The next step is to connect the planewaves, representing the basis functions in the
interstitial region, to the muffin-tin basis, with the aim to form a set of continuous
and differentiable basis functions. In the collinear case the planewaves with spin o
are connected to the muffin-tin basis functions with the same spin only. Hence, the
boundary conditions that have to be satisfied on the muffin-tin sphere are:

SR (ALS (k)ufy (r) + BEG (Kk)isgy (1)) Yi(8)xo (4.20)

In the non-collinear case each function in the interstitial couples to both, spin-up and
-down, in the muffin-tins. Therefore, the boundary conditions become:

Uy, = 35 (AN (K)ua (1) + Bl (K)igh (1)) Yz (8)x22 (4.21)
o® L

!The radial functions are denoted u only for convenience. In the actual calculations the scalar-
relativistic approximation is employed, and therefore the large component of the radial function is
used here.
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In order to calculate the A- and B-coefficients, we multiply equation 4.21 with (x{?)*
or (x7?)*, which yields

(G X = 3 (Aligge (K)ufya (r) + Bigna (K)ifya (r)) Yo (). (4.22)
L

Comparing this equation with 4.20 shows, that the non-collinear A- and B-coefficients
can be expressed in terms of the collinear coefficients.

Alfgoa (k) = (X52) X0 Alge (k)
Biga(k) = (Xo2)"xo Biga(k) (4.23)
Similarly, the contribution of the muffin-tin at atom p H$.%.%% (k) to the non-collinear

Hamiltonian HS'7'G?(k) can be expressed in term of the muffin-tin contribution
HGS. (k) to the collinear spin-dependent Hamiltonian HS'& (k).

HEE00 = [ (S (A 000500 + B (0, ) Yili)e ) Harm

(S (2 00uz ) + BEEGEO) Vilew ) (420

In the non-collinear case an additional summation over the local spin ¢ has to be
performed.

HE75" 0 =
s (355 (A2 00 (1) 4 B 0 (1) Y@ ) P
MT“ Uozl LI
G a G e 2\, 29 | 73
(Z Z (ALUUO‘ (k)ula“ (T) + BLUUO‘ (k)ula“ (T)) YL(r)XU"‘> d r (425)
o® L
However, H 7w is diagonal in x54, and (xou/)*Xo8 = dsarsa. Hence, 4.25 becomes:
R0 -
' o el .« . a
3 (5 (A (00500 (1) 4 B (00 () Y302 ) P
o r
(Z (415 e (K)ufsa(r) + Bliha (K)ifsa(r)) Yo (£)x52 ) d’r (4.26)
L
Using 4.23 and the fact that (x24)*Hyrexol = HSS . (k) 4.26 simplifies to:
HG 7.5 (k) = 3 (x6%)"Xo' )" (xo8) " Xo Hiprn e (K) (4.27)

In complete analogy the muffin-tin contribution to the non-collinear overlap-matrix
is given by:
St (k) = D ((Xo%)*Xo')* (X02) *Xo Shisoe (K) (4.28)

oo
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4.3 Possible Extensions of the Method

The results that have been obtained for the unsupported monolayers of Cr (Ag(111)
geometry) and Mn (Cu(111) geometry) show (cf. Chapter 6), that the accuracy of the
frozen potential approximation is limited. The main reason that causes the inaccuracy
are the approximations that have to be made in the interstitial and vacuum region.
With these approximations made, the method can only be applied to systems with
large local magnetic moments, well confined inside of the muffin-tin spheres, and small
interstitial and vacuum magnetizations. The requirements are satisfied reasonably by
the unsupported Cr monolayer in the Ag(111) geometry (Cr UML-Ag(111)), that we
have investigated, but for the Mn UML-Cu(111), with its smaller lattice constant and
local magnetic moments, the limits of this approximation is reached (cf. Chapter 6).
However, the unsupported monolayers are already close to the limit of free atoms, with
their large magnetic moments. Thus, in order to allow the application of the method
to a larger class of systems it is necessary to extent the method to selfconsistent non-
collinear calculations. Different ways of performing such selfconsistent calculations
are thinkable.

One option is to allow a general magnetization density in the interstitial region,
with both, magnitude and direction, depending on the position vector r, while having
the magnetization inside each muffin-tin point along a single direction. This means,
that, after each iteration of a selfconsistent calculation, the magnetization density
in the interstitial and vacuum region is calculated according to (2.17). Inside the
muffin-tin sphere the expectation value of the magnetization is computed along one
local quantization axis only. Thus, the magnetization density inside the spheres is a
scalar rather than a vector field.

m?(r) = ; Vi (r)o'i(r) (4.29)

o' is the spin operator corresponding to the local quantization axis. The direction
of the local quantization axis can either be kept fixed, so that the magnetization is
forced to be directed along a chosen direction, or it can be determined selfconsistently
after each iteration. Within this approximation the rotation of the atomic magnetic
moments with respect to each other, the inter-atomic non-collinear magnetism, can
be described [SHK89, Kiib95, SK96], while changes of the direction of the mag-
netization inside single atoms, the intra-atomic non-collinear magnetism [NS96], is
neglected. The most general scheme is to allow the magnetization to have a different
direction everywhere in space and, thus to include also the intra-atomic non-collinear
magnetism. Thus, the magnetization density has to be calculated selfconsistently
according to (2.17) everywhere in space. Such calculations are most accurate, be-
cause no approximations to the direction of the magnetization are made. However,
due to larger number of degrees of freedom and the small energy differences that are
associated with changes of the direction of the magnetization, many iterations are
needed on the way to selfconsistency. Therefore, such calculations may turn out to
be laborious.



Chapter 5

The Local Orbital Extension

For certain applications it is desirable to improve the variational freedom of the
FLAPW basis set. As a result of the linearization around the energy parameter E;
the FLAPW method may only yield accurate results, if the calculated eigenvalues e
are reasonably close to the energy parameters. In some cases however, it is necessary
to deal with eigenvalues in a broader energy region. Our main motivation to imple-
ment the local orbitals was to obtain a spin-independent basis set. In the current
implementation of the FLAPW method the radial functions «; and ; are calculated
separately for both spin directions, with different energy parameters. The energy
difference between the spin-up and -down bands is of the order of 2eV at surfaces,
therefore these states cannot be treated accurately with a single set of radial func-
tions. A second example where a greater variational freedom is needed are semicore
states. Semicore states are high lying core states, typically 1 to 3 Ry (15 — 40 eV)
below the Fermi energy. They show a small dispersion of the energy bands due to a
weak overlap of their wavefunctions. So far, these states have either been added to
the core, or treaded with a second set of energy parameters in a separate energy win-
dow (semicore window), the latter method is usually referred to as multiple window
FLAPW method. Both methods have serious disadvantages. If the semicore states
are added to the core their dispersion is neglected. The core states are treated like an
atomic problem, i.e. the overlap with other atoms is neglected. This approximation
leads to wrong results in applications where the dispersion of these states plays an
important role, e.g. during the calculation of lattice constants [Sin91a], phonon fre-
quencies [SK91], forces or electric field gradients [BSSS92]. Another difficulty arises,
because the FLAPW basis functions are not orthogonal to the semicore states. It
can be shown, that the radial basis functions are orthogonal to any core state that is
zero outside the muffin-tin sphere. However, this condition is satisfied poorly by the
semicore states. Therefore, these states can appear in the valence eigenvalue spec-
trum as the so called “ghost-bands”. The eigenvalues of these states are usually far
off the correct energy of the semicore state, due to the poor representation of these
states within the valence FLAPW basis. A very good discussion of this problem can
be found in [Sin94]. In multiple window calculations the dispersion of the semicore
states is treated correctly, but the ghost-band problem may still be present. The
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implementation of multiple windows in the current version of our FLAPW code will
be discussed in the next section.

The local orbitals are an extension to the FLAPW basis set, that has been in-
troduced by Singh [Sin91b]. The original motivation was the treatment of semicore
states, though the local orbitals can be applied in any situation that demands for a
greater variational freedom of the basis set. With this extension semicore and va-
lence states can be treated in a single window, and the difficulties described above
are removed. During the implementation of the local orbitals, their application to
the semicore states of titanium and tungsten served as a test.

5.1 Multiple Window FLAPW

In a multiple window FLAPW calculation a second set of basis functions, that have
exactly the same form as in (3.4), but with different energy parameters, is used.
In order to distinguish these basis functions an additional index “w”, counting the
windows, is introduced.

el (GFIr interstitial region

owak,t) = 3 AES () w0 (r)Yi(F) + BhS (k) @ (r) Yz () muffin-tin g
L

(5.1)
If the planewave cut-off in the semicore window was chosen to equal the cut-off in the
valence window, G4z, this would result in a twice bigger basis set as compared to
the single window calculation. That means, however, that the solution of the secular
problem would take about eight times as long. Therefore, the overlap between the two
windows is usually neglected. This leads to the solution of two independent eigenvalue
problems per selfconsistent iteration, within which the size of the eigenvalue problem
is the same as it is in the case of a single window calculation. Since, the semicore
states have little dispersion, less k-points are needed in the semicore window, which
makes this a rather efficient scheme. However, neglecting the overlap can lead to
ghost-bands in the valence window. And, in some applications, the overlap has to be
included to obtain accurate results [YFP*91].
An improvement to this scheme can be achieved, if the overlap between the win-
dows is included in a second-variation step. The Hamiltonian and overlap matrix can
be split into two parts:

H=H"+H, S=8"+¢ (5.2)

Where H? and S° contain all matrix elements except those, that couple the two
windows, i.e. H® and S° consist of two completely independent matrices, one for each
window. H' and S’ contain the overlap of the two windows. In the first variation step
the two windows are treated separately, as described above, i.e. the two independent
secular equations

{H?v - e(l],wsg;} c(l],w =0 (53)
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are solved, yielding the eigenfunctions
1/)?,11) = Z Ciw,GPw,G (54)
G

in each window. These eigenfunctions serve as a basis in the second-variation step.
The secular problem of the second-variation step is much smaller, using twice the
number of occupied states in each window usually gives a sufficient basis set. In the
second variation step the overlap between the windows is taken into account. Thus,
the semicore states can be treated very accurately within this scheme. However,
the same k-point set has to be used in both windows. Therefore, this scheme is
less efficient, than calculations neglecting the overlap. In the current version of our
FLAPW code the latter scheme is implemented, i.e. multiple window calculation are
performed neglecting the overlap between the windows.

5.2 Implementation of the Local Orbital Exten-
sion

The local orbitals are an extension to the FLAPW basis, that can be used to improve
the variational freedom for a specific purpose, e.g. to improve the representation of the
semicore states. The extra basis functions are completely localized inside the muffin-
tin spheres, i.e. their value and derivative falls to zero at the muffin-tin radius. Thus,
no additional boundary conditions have to be satisfied. This can be achieved via a
linear combination including three radial function!, the standard FLAPW functions
uf and #f* plus a further radial function uf). This new radial function is constructed
in the same way as uf*, but with a different energy parameter Ej:. If the local orbitals
are used to treat semicore states, this energy parameter is set to the energy of these
states. The local orbitals can be used very specifically, e.g. if they are applied to the
bp semicore states of tungsten only local orbitals with p-character are added to the
basis. Hence, very few extra functions are needed, which makes local local calculations
very efficient. In the case of the tungsten bp states only three local orbitals per atom
(=1, m=—1,0,1) are needed instead of to 60-100 augmented planewaves.

At this point a few remarks about the notation that will be used throughout
this chapter should be made. The combination of the three radial function and a
spherical harmonic, (afuf(r) + bras(r) + cpus(r))Yr, will be called local orbital. [
is the angular momentum quantum number of the local orbital, [ = [;,. The index
lo counts the different local orbital radial functions. Let’s consider an example, the
treatment of the 2p, 3s and 3p semicore states of Ti. Three additional radial functions
are needed, e.g. 2p: lo =1, 3s: lo = 2 and 3p: lo = 3, thus ljp—; = 1, ljp—» = 0 and
lip—3 = 1. The local orbitals with [o = 1 and lo = 3 have the same angular momentum
quantum number, they differ only by their energy parameters, Ej,—; # Ej,—3 and, as

!Within this section the radial functions are denoted wu;(r) for simplicity, though in scalar-
relativistic calculating the functions g;(r) and ¢;(r) are used instead of wu;(r).
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a consequence, by their radial functions, uj,—1(r) # uj,—3(r). Latter in this chapter
linear combinations of the local orbitals will be constructed, by formally coupling the
local orbitals to planewaves, as if boundary conditions had to be satisfied. These
linear combinations will also be called local orbitals.

5.3 Construction of the Local Orbitals

The three functions uf*, 45 and uf have to be combined, so that the value and the
derivative of the local orbital fall to zero at the muffin-tin radius. Additionally, the
resulting radial functions can be required to be normalized. Hence, to determine the
coefficients of the radial functions af, b and cj}, we make use of the following three
conditions:

CL%U?(RMTOL) + b%’l.j,?(RMTa) + C;’;U;’;(RMTQ) =0 (55)

(6] y a (6]

uf ou
ay o —(Rara) + b, o —(Ryrra) + alo(RMTa) =0 (5.6)

RMTO‘
/0 (ai’;uf"(RMTa) + bf;’d?(RMTa) + C%U%(RMTQ))2T2dT =1 (57)

Where, lo is the index of the local orbital, which is necessary because more than one
local orbital can be added for each atom. Solving these equations for the coefficients
yields:

aﬁ; = Kgloclo 58)
bﬁ) = Kl())floclo (59)
1
¢ = . . (5.10)
\/(ngo) + (K3, N + 14+ 2K2 N + 2K, Nj;
with
N 1 N ou® oug, o
Koo = gy (bR 5 (Rure) = S Rupe)it () (510
N 1 (., ouf* oug, o
Ky, = W (Uzo(RMTa) (97“l (Rarre) — 6; (Rarra )y (RMTQ)) (5.12)
with the Wronskian
ouf o N oud
W = L(Rprre )t (Ragre) — u® (Raygre )~ (Ryrre) | (5.13)
or or
where
. RMTa 2 9
Ne = / (4%)2r2dr (5.14)
0
RMTa 2
0
. Ryrre
0
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and is has been used, that
RMTa
/ (uf)r?dr = 1 (5.17)
0

Ryrpa
/ (ud)?ridr = 1. (5.18)
0

The index [ in N2 and N2 has been omitted, N2 and N always refer to the overlap
integral of uff and the radial functions that corresponding to the same angular mo-
mentum quantum number [. Clearly, if E}} is set equal to the energy parameter E}*
with the same [, the overlap integrals (5.15) and (5.16) become N2 = 1 and N2 = 0.
This has been exploited to test the implementation of these integrals.

In actual calculations linear combinations of local orbitals that satisfy Bloch’s
theorem have to be constructed. Therefore A-, B- and C-coefficients are employed,
which are constructed in the same way as the FLAPW A- and B-coefficients (3.115).
Hence the additional basis functions are given by:

Pl (k,r) = 3 (AYSe (k)uf + BiS™ (k)i + Clhste (k)uf, ) Vi (F) (5.19)

m

with

. u 1. 5
Ao k) = T afar it Vi (R Ko)

lo
N 1 ~
Bige(k) = ™eT b an i Vi (R'Kio)

ChC () — eiK’OT“c%4w%il ¥ (R'Ko) (5.20)
Where K;, abbreviates Gy, + k and Lo abbreviates (lo,m). The local orbitals are
coupled to “fictitious” planewaves, even though no boundary conditions have to be
satisfied. The vectors G;, can be chosen arbitrarily, subject to the constrain that
they yield linearly independent functions @’éii(k, r). Finding such vectors is straight-
forward, e.g. by selecting planewaves one at a time and testing whether the corre-
sponding go‘(‘;’f:(k,r) is linearly independent of the previous local orbitals. If this is
the case, the planewave is accepted, otherwise it is rejected. This procedure is carried
out separately for each atom, i.e. the radial functions and spherical harmonics at a
single atom form a local orbital, which is added to the FLAPW basis set. Appar-
ently, this form of the coefficients is more complicated than necessary. The structure
factor e¥T" alone would be enough to satisfy Bloch’s theorem. However, a further
modification is needed when using the local orbitals in the presents of inversion sym-
metry. In this case the origin is usually chosen at an inversion center so that the
secular equation becomes real (see section 3.3.4). In order to exploit this with local
orbitals, linear combinations that transform like planewaves (¢(—r) = ¢*(r)) must
be used. In this case the local orbitals at atoms that can be mapped onto each other

via inversion have to be coupled to a common set of planewaves. If there are for
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example two tungsten atoms in the unit cell, that are related by inversion, and the
local orbitals are used to treat the bp states, a common set of six vectors G;, must be
found, that generates six linearly independent go’c‘;’i:(k, r). The resulting local orbitals
have nonzero values inside the muffin-tin spheres of both atoms, and transform like
planewaves (cf. section 3.3.4). Clearly, in a system that possesses inversion symme-
try there has to have an “inversion partner” for every atom. However, this “partner”
might ly in another unit cell. In this case the property ¢(—r) = ¢*(r) is already
guaranteed by the structure constant e®w7" and the factor i'. The factors 47 and
1/W do not have any effect on the properties of the local orbitals. They are merely

scaling factors, and could as well be omitted.

5.4 Construction of the Additional Hamiltonian
and Overlap Matrix Elements

Including the local orbitals to the FLAPW basis set leads to extra Hamiltonian and
overlap matrix elements. When we write the new basis vector as a super vector con-
taining the original FLAPW basis set g and the local orbitals golc‘;lo the Hamiltonian
and overlap matrix can be written in the form:

( HG’G HGGlo )

HGZO’G HGlo’Glo (521)

and equivalently for S. The matrix elements of the local orbitals with the augmented
planewaves are given by:

HEGo (k) = [ (pall,r)) Hel, (kr)d'r (5.22)

s9%() = [ (pallon) ¢k, (r)dr (5.23)

The matrix elements of the local orbitals with other local orbitals (or with themselves)
are given by:

HGlo’Glo (k) — / ((pl(g’lo, (k, r)) %(pl(;o.;lo (k, I')d3r (5.24)

sGwle() = [ (o, (k1)) ¢, (k1) (5.25)

In general each extra radial function corresponding to the index lo is assigned a
different set of G-vectors {Gy,}. However, (5.24) and (5.25) also cover the case where
lo' = lo. In this case Giy and G,, are different G-vectors that correspond to the same
radial function. Due to the confinement of the local orbitals to particular muffin-tin
spheres, only on-site contributions? add to the Hamiltonian and overlap matrix.

2The contributions from different atoms, say a and o', are zero
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5.4.1 The Overlap Matrix Elements

The overlap matrix elements of the local orbitals situated at atom g or a pair of
atoms related by inversion y, —p with the augmented planewaves is given by:

SSCu (k) = Z /Mw(, (447 (K)up(r) + B (K)ig(r)) YL,(f)>*

(Z (AL (K)uf (r) + BLg™ (k)uf (r) + CLS “’(k)Uﬁ,(r))YL(f')> d’r

(5.26)
The sum over the atom pair (u, —p) appears only in the case of atoms that are
related by inversion, otherwise the whole contribution comes from a single muffin-tin

p. Using the orthogonality of the spherical harmonics, the orthogonality of uf* and
uf and the normalization of uf*, (5.26) becomes:

§GCu (k) = 2 z(A“G )" (Al (k) + ClSe (k) Ng)
+(B§G(k)) (B (k)N + Chse (k)N (5.27)

Where [ is the angular momentum quantum number of the local orbital [ = [;,. In the
case of two atoms that can be mapped onto each other by inversion the SG%u (k) is
given by a sum of the contributions of the two atoms SG%e (k) = S (k)+SE8" (k).
However, it can be shown, that the two contributions are related by:
§HGG (k) = (§#GG (k)" (5.28)
Thus
§GGu (k) = 2 Re {$"4%n (k) } (5.29)

This relation has been used for the implementation of the local orbitals. Substituting
the A-, B- and C-coefficients the overlap can be written:

SHGGio (k) =

. 4 -
¢i(Gio—G)T* <W7T> Z F(K)Y;, R“K) (a2 + S N2) Y7 (R*K)o)

+G7(K)Y,(R*K) (ba N + cloNlo) Y7 (R¥Kio)

(5.30)
Where
F} (K) = ul (RMTaK)a (RMTQK) ar (RMTQ)]l(RMTO‘K)
a 8]l 8“1 .
Gl (K) = Uy (RMT"‘K) 8 (RMTQK) — 61" (RMTQ)]l(RMTO‘K)

: (5.31)
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K abbreviates G + k and K = |K|. This can be simplified further using the addition
theorem for the spherical harmonics:

47 ! N s
ST Z Y1 (k1) Y7 (ko) (5.32)

m=—1

P(cosw) =

Where w is the angle between the two vectors. Applying this theorem (5.30) becomes:

4m\? 21 + 1
_71') i Py(cosw)

gGGL (1) — i(G,oG)T“<
w (k) ¢ %4 4

(F2(K) (af, + e Ng) + Go(K) (b Ng + e Ng)) - (5.33)

lo o

with o
cosw =K K, (5.34)
The overlap between different local orbitals can be derived in exactly the same way.

Clearly, it can only be non-zero, if the angular momentum quantum number [ of the
local orbitals are equal [;, = [;,.

. 4m\%2 2l +1
SI?IOIGZO (k) — el(Glo_Glo’)Tu (%) 4_7:—- H(COS CL)) (a;’;l (az;’; + C%Nlc;)

gy (B NG + e NE) + iy (af NGy + b NG + N 1) )
(5.35)

Where the normalization of uf} and
a Rarre a a2
Nig 1o = A up upredr (5.36)

has been used. A relation which is equivalent to (5.28) holds for the overlap between
different local orbitals. Hence, the elements of the overlap matrix between local
orbitals situated at two atoms, that are related by inversion, can be written:

§G1Gio (k) = 2 Re { §S1 G (k) } (5.37)

5.4.2 The Hamiltonian Matrix Elements

The Hamiltonian matrix elements of the local orbitals situated at atom p or a pair
of atoms related by inversion (u, —p) with the augmented planewaves is given by:

RO (k) — (z) o (3 (422000 + BES 01i5(0)) Y]
(3 (45500 1)+ BES™ R 1) + CES B ) Vo) )
(5.38)



5.4. HAMILTONIAN AND OVERLAP MATRIX ELEMENTS 71

As in the case of the overlap matrix it can be shown, that the contribution of an
atom (u) and the inverse atom (—p) are related by:

H"SG (k) = (H1S%0 (k)" (5.39)
Thus
HSGe (k) = 2 Re { H*S% (k) } (5.40)
(5.38) involves integrations of the form
1208 — / WSy (8)) Hagreul Y () dr (5.41)
MTo
1280 — / (435 (8))" Harreul Yy (F)dr (5.42)
MT>

in addition to ((3.61)—(3.64)). For Hamiltonian matrix elements including two differ-
ent local orbitals an additional integration is required.

5550 = [ (i) Yi () Hareuty (1) Y (F)d'r (5.43)

These t-matrices do not depend on G, Gy, or k. Therefore, they need to be calculated
only once per iteration. The calculation of these matrix elements is performed in the
same way as the calculation of the analogous ¢t-matrices for the FLAPW basis ((3.73)-
(3.76)). If the energy parameters of the local orbitals are set equal to the values of
the energy parameters of the FLAPW radial functions, the corresponding matrix
elements become equal. This relation has been used to test the implementation of
the t-matrices.

The Hamiltonian matrix elements (5.38) can now be written in terms of the t-
matrices.

HuGGzo(k) —

> (AL (1)) [£567 AL () + 1557 BES™ (k) + 155,075 (k)

LI

+ (BEE (W) [137 AL (k) + 1377 BYG (k) + (34,015 ()] (5.44)
In analogy the Hamiltonian matrix elements including two local orbitals are given
by:

H“Glo’Glo (k) —

S (A5 ()" [t AL (k) + 1577 BEg™ () + 1554,015™ ()|

G *TLa¢ Gy, apy Gy, ag G,

+ (Bgo’ (k)) [tL:pILf’Agol (k) + tL:pI?BZo : (k) + tLtpltfjoCZo : (k)]

+(Cro () [t8.A455 (k) + 1557 Big (k) + 457,015 (k)] (5.45)
Where the contribution of atom pair y, —u can be obtained from:

H G0 Gio (k) =92 Re {Hl?lo’Glo (k)} (5.46)
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Tests of the Hamiltonian and Overlap Matrix Elements

To test the set-up of the Hamiltonian and overlap matrix, we solved the secular
equation and compared the semicore eigenvalues to those obtained from a two-window
calculation. The 5s and 5p states of fcc La and the 5p states of bcc W severed as test
systems. In both cases we performed selfconsistent two-window calculations. Then
we determined the eigenvalues with local orbitals at selected points in the Brillouin
zone non-selfconsistently, using the charge density of the two window calculation.
For La we used a lattice constant a = 9.8 a.u., a sphere radius Ryr = 3.3 a.u.
and a planewave cut-off Ry;rGmee = 10.0. The Brillouin zone integrations were
performed using 60 special k-points in the irreducible part of the Brillouin zone. The
W calculations were carried out at a lattice constant of a = 5.91a.u. with a muffin-
tin radius of Ry = 2.456a.u. and a planewave cut-off Rpy;7G e, = 8.8, using 126
k-points in the irreducible wedge of the Brillouin zone. For technical reasons we used
a unit cell including two atoms in both cases. The results of these test are shown

‘ Lanthanum H 5s op

2-window -1.816558 | -0.659386 | -0.548262
local orbital || -1.816600 | -0.664944 | -0.549574

Table 5.1: Semicore eigenvalues of La at the I'-point, calculated with 2-
window FLAPW and local orbitals, using the same selfconsistent charge
density (potential). The first value is the lower 5s eigenvalue, followed by
the lowest and highest 5p eigenvalue. All eigenvalues are twofold spin-
degenerate. The energies (given in Ry units) are with respect to the
average interstitial potential, which is 0.5870 Ry below the Fermi energy.

‘ Tungsten H 5p ‘
2-window -1.679244 | -1.605268
local orbital || -1.608692 | -1.605970

Table 5.2: Semicore eigenvalues of W at the I'-point. The first value
is the lowest 5p eigenvalue, followed by the highest bp eigenvalue. Both
eigenvalues are twofold spin-degenerate. The energies (given in Ry units)
are with respect to the average interstitial potential, which is 1.1540 Ry
below the Fermi energy.

for selected semicore eigenvalues in Fig. 5.1 and 5.2. The two methods are in good
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agreement, the difference between the eigenvalues is of the order of 1 mRy. At other
k-points with lower symmetry these differences are slightly larger. During the two
window calculations the energy parameter in the semicore window for states with
[ = 2 and higher for La and states with [ = 0, [ = 2 and higher in the case of W
were set far above the semicore band energies (4 Ry) to avoid ghost-bands. However,
later test showed, that this is not necessary in the case of W, but that the artificial
choice of energy parameters does affect the result of the calculations (e.g. the lattice
constant). Therefore, we expect, that the agreement would be even better, if the
energy parameters were set to the semicore band energy. We also carried out tests
with W in four atom unit cell including an atom pair that can be mapped onto each
other by inversion. This was necessary because such atom pairs are a special case
in terms of the implementation of the local orbitals. These tests yielded an equally
good agreement between the local orbital and the two-window calculation.

5.5 Construction of the Electron Density of Local
Orbitals

The construction of the electron density in the FLAPW method has been discussed
in section 3.6. Clearly, the local orbitals lead to extra contributions to the electron
density inside the spheres. If local orbitals are used, the eigenfunctions of the Kohn-
Sham equations are represented in the following form in the muffin-tins.

Yh(k,r) = Zc ) S (A4C (k)ug(r) + BEC (k)ug (r)) Vi (F)

L

+30 Y (k) X (Afg (k)uf(r) + Big (k)if(r) + Cro™ (k)ufy(r)) Y (#)

lo G m

(5.47)

The G-dependent A-, B- and C-coefficients can be replaced by band-dependent co-
efficients, performing the summation over the planewaves (cf. (3.141)).

Yhk,r) = Z(Amk) #(r) + BY, (K)ug(r)) Yi(#)

- Z( o (R)uf(r) + BY, , (K)if (r) + C, , (K)ugs (1)) Yi(F)

(5.48)

Lo 1/ Z CG!O Azflo (k)’ Lo 1/ Z CG!O BZOGIO (k)’
Gy, G,
Clou(k) = 3 e (k) O (k) (5.49)
Glo
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5.5.1 “l-like” Charge

The 1-like charge can still be defined in the same way as in section 3.6.1 if local
orbitals are used. However, the extra terms have to be taken into account. In section
3.6.1 we defined the k-dependent Il-like charge by:

nla) = [l r) P’ (5.50)
’ MTH
Substituting (5.48) yields:
I
ma(k) = > AT (K) + B (k)] N
m=-—I
+ { Z Z (Aliu ) (Aliou( )+CL01/( )Nl[;)
lo m=—I

lo=

+(BE (1) (B ()N + CL, (k) N) }

+ Y Z (4 ()" (45, (k) + CF, , (K)NE)

lolod m=-I
Ly =l1o=l

+ (Bll:;',m,u(k))* (Bgo u(k))Na + CLOV( )Na)

+ (C{:J’,m,y(k)) (Alio u(k)Nlo’ + BLo I/(k))Nlo’ + CLo u(k)Nlc:)’,lo)
(5.51)

At this point, for the first time, a large number of cross-terms appear. This is a
consequence of the fact, that the extra radial functions uj) are not orthogonal to the
standard FLAPW radial functions.

5.5.2 The Optimal Local Orbital Energy Parameter

The optimal choice of the energy parameter for the local orbitals is defined by the
requirement, that it minimizes the linearization error weighted with the [-like charge
of the local orbitals, i.e. the charge that the local orbitals, which correspond to the
energy parameter, contribute to the total charge (cf. section 3.6.2).

-/B’Z Z ( (k) Elo) ulo(k)dsk’ (552)

V,ey (k) <Ep

with

llo

(k) = >0 1CL,, (k) (5.53)

m:—llo
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Setting the derivative (9/0Ef) equal to zero yields the optimal energy parameter:

Eﬁ‘,=(/BZ > el )/ (/BZ > ns,k,(k)d%) (5.54)

v,ev(k)<Ep vev(k)<Ep

The Brillouin zone integration methods transform this into a sum over a discrete
k-point set.

EiZ:(ZZeu 4 10(K ) / (ZZM vk)) (5.55)

There is one difficulty that arises within local orbital calculations. The FLAPW
basis functions do contribute to the semicore eigenfunctions. Recall that the local
orbitals are completely localized in the muffin-tin spheres. Therefore the components
of the eigenfunctions that stretch beyond the spheres can only be described by the
regular FLAPW functions. Hence, if the valence (FLAPW) energy parameters are
determined by (3.151) with the l-like charge defined by (3.147), the contribution of
the semicore states lowers the the energy parameters. This can lead to a ghost-band
problem. It is therefore necessary to skip the semicore states in the sum over the
band in (3.151). The local orbitals, however, contribute very little to the valence
states. Thus, a similar distinction is not necessary during the determination of the
local orbital energy parameters.

5.5.3 Construction of the Electron Density in the Muffin-
Tins in the Presents of Local Orbitals

Substituting (5.48) into (3.137) yields the electron density in the muffin-tins.

nk(r) = Vo /BZ Z (ZA k)uj (r) + B, (k)ag (r)

v (k)<Ep

Y AR, (k)G + B, (k)i + czo,,y(k)ufo,) Y (8)

Lo

(Z A (s (r) + B, (k)i (r)

L
+ Z ALo v ul + BLo z/(k)u? + Cgo,v(k)uﬁ)> YL (f.)dsk
(5.56)

The coefficients C7.(r) (cf. 3.153) can be determined by multiplying (5.56) with
[dQYg. (). If the Brillouin zone integration is performed on a discrete k-point set
the C%.(r) are given by:

Cp(r) = Z(ZZZ(A’,;, )" AL BOGEE™ 0040 ) )1 ()

1" vV m'm
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Lou me (V’k)

g (r)up(r)
Lou ﬁ;;ﬁ " (V k)

g (r) i’ (7)

CLO v Zl;m m” (V k)

g (r)ugy(r)

lo'lo
Lou 7;7;?7;m (V k) ulo’( )U?(T)
lo'lo k v m'm
*
+ Z ZZZ C o’,u Lou me (V k) ulo( )U?(T)
lo'lo k Vv m'm
+ ZZ Z Lo 1/ Lou Zl;?l;m (V’ k) Uﬁ;'(r)uz;(r)

(5.57)

Where the gaunt coefficients G7™ are defined by (3.155), and (3.156) has
been used. Apparently, there are only six combinations of radial functions
(ugr(r)uf(r), ug, (r)ag(r), ..., uf, (r)ul(r)). Thus, the corresponding coefficients can
be combined, but still all coefficients have to be calculated. (5.57) would simplify
a lot, if the band—dependent coeflicients of the local orbitals and the FLAPW basis
functions, A7, , and A7 ,, B}, , and Bj ,, were combined. However, this has not been

done in order to keep the old parts and the new parts of the program as separate as
possible, to avoid errors and simplify the maintenance.

5.6 Test Calculation on Tungsten and Titanium

‘ Titanium H ap-fcc ‘ ao-hep ‘ AFEfcc hep ‘
1-window 5.363 | 5.371 7.32
2-window 5.359 | 5.367 7.27
local orbital || 5.366 | 5.374 7.18
2-window* 5.462 — -
2-window™* 5.382 - -

Table 5.3: Calculated lattice constants for fcc and hcp Ti in atomic units
la.u.]. In the last column the fcc-hep energy (Eye. — Ehep) difference is
given in Ry units. (* the semicore s, d and higher energy parameters
have been set to 4.0 Ry, ** the semicore s, d and higher and the valence
p energy parameters have been set to 4.0 Ry)
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‘ Tungsten H ag-bce ‘
1-window 5.945
2-window 5.943
local orbital | 5.948
2-window* 6.050

Table 5.4: Calculated lattice constants for bcc W in atomic units [a.u.].
(* the semicore s, d and higher energy parameters have been set to 4.0
Ry and the valence p energy parameters have been set to 2.0 Ry)

In order to test the implementation of the local orbitals, and in particular the
construction of the charge density, we performed selfconsistent calculations of Ti and
W. In both cases two-window and even one-window calculations lead to accurate re-
sults, which compare very well with the results obtained from a treatment with local
orbitals. However, care must be taken choosing the energy parameters, only if all
energy parameters are chosen reasonably close to the band energies accurate results
are obtained. During the first two-window calculations we set the valence p-energy
parameter and all semicore energy parameters except the p-parameter to values far
above the band energies, to avoid ghost-bands (in both cases the highest lying semi-
core state is a p-state). Further calculations showed, that this is not necessary for
Ti and W, and leads to wrong results. The Ti 3p-states are about 2.2 Ry lower in
energy than the valence states, which make these states most likely to produce a
ghost-band in the valence-window. The 3s-states are another 1.7 Ry lower than the
3p-states and could therefore cause a ghost-band in the semicore-window. To avoid
the ghost-bands we first set the semicore s-, d- and higher energy parameters and
the valence p-parameter to 4.0 Ry (these energies are given relative to the average
interstitial potential, which is 0.62 Ry below the Fermi energy in the case of Ti, and
1.17 Ry for W. The values change slightly (=~ 0.1 Ry) with the lattice constant).
The results of these total energy calculation are plotted in the uppermost curve in
Fig. 5.1. The calculated lattice constant (cf. Table 5.3) is slightly larger than those
obtained from latter, more accurate, calculations. If the valence p-parameter is re-
laxed, i.e. set to the computed optimal value (cf. Sec. 3.6.2) after each iteration, the
results change substantially. The lattice constant became ever larger. Finally, we re-
laxed all semicore and valence energy parameters, which again lead to a considerable
change. The results of the last calculation agree very well with the local orbital and
even with a one-window calculations. The computed lattice constants differ by less
than 0.15 %. The curves, which correspond to the two-window and the local orbital
calculation are almost identical, whereas the one-window curve is shifted by about
10 mRy. We repeated the calculations with relaxed energy parameters for hcp Ti,
in order to obtain the fcc-hcp energy difference. Again the results obtain with the
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different schemes were very close to each other (cf. Table 5.3). The hcp structure
is correctly predicted to be lower in energy than the fcc structure, and the energy
difference agrees reasonably well with the results of other authors [AWJE93].

Clearly, setting the energy parameters to values far of the band energies has a
strong effect on the calculations. This result is surprising in the case of the semicore
states of Ti, since the s-, d- and f-like charge is the semicore window is extremely small
(0.001 — 0.002 electrons). Thus, one should expect the results to depend very little on
the corresponding parameters. However, if the energy parameters are raised above
a certain value the number of nodes of the corresponding radial function increases.
In the case of Ti this means, that , for example, the radial function u§ has 4s or bs
character rather than 3s. This leads to a higher probability of finding the electron
far from the nucleus, i.e. charge is pushed away from the nucleus. Apparently, this
causes the increase of the lattice constant.

The results of the test calculations on W support this picture. If all energy
parameters are relaxed, the results obtained from the three different schemes agree
very well (cf. Fig. 5.2). The calculated lattice constants differ by less than 0.1 %
(cf. Table 5.3) and lie within the range of the results of other authors [MH86, JF84,
Koh95]. If, however, the semicore s-, d-, f-, ...and the valence p-energy parameters
are raise above the band energies, the results change significantly, the lattice constant
becomes more than 1.5 % larger.

Hence, we found, that in the case of Ti and W, where no ghost-band problem
arises, local orbital, two-window and even one-window calculations agree very well.
In system that do show ghost-band, these can, in general, not be removed by raising
the corresponding energy parameter, because this can have a strong effect on the
calculated properties.
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Figure 5.1: Total energy calculation of fcc (solid line) and hcp (dashed
line) Ti. The data-points marked with a square have been obtained by
a 2 window calculation with the valence p energy-parameter set to 4.0
Ry. The data-points with a diamond have been obtained by a 2 window
calculation with free valence p energy-parameter. In both cases the semi-
core s, d and higher energy parameters were set to 4.0 Ry. The results
of the calculations with free semicore and valence energy parameters are
marked by plus signs (+). The data-points marked with crosses (x) and
triangles have been obtained by a local orbital and a 1 window calculation
with free energy-parameters, respectively.
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Figure 5.2: Total energy calculation of bcc W. The data-points marked
with a square have been obtained by a 2 window calculation with the
valence p energy-parameter set to 2.0 Ry and semicore s, d and higher
energy-parameter set to 4.0 Ry. The results of a two-window calculation
with free energy-parameters are marked with plus-signs (+). The data-
points marked with crosses (x) and triangles have been obtained by a
local orbital and a 1 window calculation with free energy-parameters

respectively.
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Chapter 6

Non-Collinear Magnetism of
Unsupported Monolayers with
fcc(111) Geometry

3d transition-metal monolayers on noble-metal substrates represent very interesting
physical systems, both experimentally and theoretically [FPB*90, Sie92, LMF85,
FFOWS5, Ter87, BDZD89, FW91, WB93, Blii95]. Due to filled d-bands of the noble-
metals the 3d-3d hybridization between the overlayer and the substrate is small,
which leads to a narrowing of the d-bands in the monolayer compared to the bulk
transition-metals. As a consequence, magnetism is enhanced and the magnetic mo-
ments become larger. Moreover, there is a possibility of new magnetic materials,
which are non-magnetic as bulk metals. So far most of the work has been done on
overlayers grown on the (100) orientated substrates, where the atoms of the mono-
layer are arranged on a square lattice. It turns out, that the early transition-metals,
V, Cr and Mn, order c(2 x 2) antiferromagnetically on these surfaces, while Fe, Co
and Ni prefer the p(1 x 1) ferromagnetic configuration. However, the c(2 x 8) re-
construction of Mn on Cu (100), which locally has a hexagonal structure, suggests
that some of the transition-metal monolayers prefer a hexagonal geometry. This
has been investigated by Pentcheva [Pen96| performing systematic calculations on
unsupported 3d transition-metal monolayers with square and hexagonal geometry.
The results prove, that in fact most 3d transition-metals except Cr prefer the hexag-
onal structure. However, this property is closely related to the magnetism of the
monolayers, e.g. theoretical calculations suppressing the magnetism show that the
non-magnetic quadratic UML of Mn is lower in energy than the hexagonal UML. In
addition, Pentcheva compared two different magnetic configurations on the hexagonal
lattice, the ferromagnetic structure and an antiferromagnetic configuration (Fig. 6.1
(a)), where four of the six nearest neighbor atoms have opposite magnetization, but
the moments of the remaining two neighbors are parallel. Their calculations showed,
that Cr and Mn prefer this antiferromagnetic structure. Assuming that this anti-
ferromagnetism is predominantly driven by the nearest neighbor exchange coupling
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leads to the conclusion that the hexagonal monolayers of these metals constitute a
frustrated spin-system.

In order to find a candidate for a possible non-collinear ground-state configura-
tion we follow the idea of Wannier [Wan50]. We assume a two-dimensional planar
Heisenberg model or x-y model and consider three atoms on a triangle. It can be
shown, that if the coupling is antiferromagnetically, i.e. the Heisenberg parameter J
is positive, the ground-state of this system is a configuration, where magnetic mo-
ments form 120° angles. At this point the idea of Wannier comes into play. Since
this structure is compatible with the hexagonal lattice, this is also the ground-state
of the hexagonal monolayer within the Heisenberg model. Therefore, we decided to
compare this structure to the antiferromagnetic structure introduced by Pentcheva
and a third collinear antiferromagnetic configuration.

The approximations we discussed in chapter 4 are only valid, if the magnetic
moments inside the muffin-tin spheres are large and do not change much with the
direction of the magnetization. Even more important for the accuracy of these ap-
proximations is a small interstitial magnetization. Therefore, we decided to apply
our method to an unsupported Cr monolayer with Ag (111) geometry. Cr possesses
a large magnetic moment, which is enhanced due to the big lattice constant of Ag.
The lattice constant also allows for a large muffin-tin radius, which leads to a better
confinement of the total magnetization inside the muffin-tin sphere. As a second
system we investigated a Mn UML with the geometry of the Cu(111) surface. The
Cu lattice constant is significantly smaller and the local magnetic moments of this
system are not as big as is the case of the Cr UML-Ag(111). It turns out, that the
Mn UML-(111) is less accurately described by the frozen potential approximation
than the Cr UML-Ag(111).

6.1 Model Structures

We have investigated unsupported monolayers with hexagonal geometry with differ-
ent collinear and non-collinear magnetic structures. The unit cell of the ferromagnetic
structure is p(1 x 1) and contains one atom. The antiferromagnetic configurations
as introduced by Pentcheva (a) and the non-collinear configuration with 120° angles
(b) are shown in Fig. 6.1, which also contains the unit cells, marked by dotted lines.
The antiferromagnetic unit cell contains two atoms, is rectangular and of twofold
symmetry, while the unit cell of the 120° configuration contains three atoms and is
of (v/3 x v/3)R30° structure. It has the same shape as the p(1 x 1) unit cell, but it
is rotated by 30° and /3 larger in linear dimension. We have also performed angle
dependent calculations. The energy difference has been calculated along two different
paths, which continuously transform the ferromagnetic structure into the antiferro-
magnetic configuration (Fig. 6.1 (c)) or the 120° configuration (Fig. 6.1 (d)). If the
second path is extended up to a = 180° we obtain an additional antiferromagnetic
configuration with 2/3 of the magnetic moments pointing along one direction and
1/3 pointing along the opposite direction. This structure will be referred to as the
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Figure 6.1: (a) The antiferromagnetic structure as introduce by
Pentcheva. (b) The non-collinear 120° configuration. The ferromagnetic
structure can be transformed by a continuous rotation into structure (a)
via path (c) and structure (b) via path (d). Since the calculations have
been performed within the scalar-relativistic approximation, which ne-
glects spin-orbit coupling, the direction of the magnetic moments with
respect to the lattice is undetermined. They are are drawn in plane only
for better illustration.

180° configuration.

6.2 Calculational Detalils

The actual calculations have been performed using a unit cell containing six atoms.
With this choice all configurations can be treated with the same unit cell, and thus
inaccuracy in the energy difference due to different k-point sets for the Brillouin zone
integration can be avoided. The Ag and the Cu lattice constants have been chosen
according to Moruzzi, Janak and Williams [MJW78] a4, = 7.79a.u., acy, = 6.65a.u.
We have used 15 k-points in the irreducible Brillouin zone (IBZ) for the k-integration.
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As planewave cut-off for the wavefunctions we used Gpqez; = 3.2a.u.”! in the case of
the Cr UML-Ag(111) and G0, = 3.6a.u.”! in the case of the Mn UML-Cu(111),
which amounts to about 110 basis functions per atom, while the potential and charge
density are expanded up to 9.0a.u.”!. The non-spherical parts of the charge density,
the potential and the wavefunctions have been expanded into spherical harmonics up
t0 lmae = 8. We chose the muffin-tin radius as large as possible Ryr = 2.75a.u..
All parameters have been chosen correspondingly to the parameters of Pentcheva,
except the wavefunction planewave cut-off. Convergence tests with respect to these
parameters can be found in [Pen96].

6.3 Accuracy of the Frozen Potential Approxima-
tion

The energy differences between the different collinear and non-collinear magnetic
configurations have been calculated via the frozen potential approximation (FPA)
(cf. chap. 4). Within the frozen potential approximation the energy difference of
two different magnetic configurations is estimated by the difference of the eigenvalue
sums of non-selfconsistent calculations. First a selfconsistent collinear (e.g. ferro-
magnetic) calculation is performed yielding a potential V(r) and a magnetic field
B(r). A trial Hamiltonian, from which the eigenvalue sums are computed, is con-
structed by a rotation of the direction of the magnetic field, while the magnitude
B(r) is kept fixed (frozen). Within the local spin-density approximation (LSDA)
B(r) depends only locally on the magnitude of the magnetization m(r). Therefore,
this approximation is valid, if the magnitude of the magnetization does not change
much with its direction. The hexagonal Cr UML-Ag(111) satisfies this condition
very nicely. The selfconsistent magnetic moments per atom, i.e. m(r) integrated over
the muffin-tin sphere, show small differences. The antiferromagnetic moment is only
about 1% smaller that the ferromagnetic moments, the 180° and the ferromagnetic
configuration differ by about 3% (cf. Table 6.1). However, in FLAPW it is unclear

| Atomic magnetic moments [in pg] |

FM 414
AFM 4.09
180° (111) || ms = 4.02, m; = 3.99

Table 6.1: Selfconsistent total magnetic moment per atom of the Cr
UML-Ag(111) for different collinear magnetic configurations.

what has to be done with the interstitial magnetic field. Leaving the interstitial
magnetic field unchanged, i.e. using the magnetic field obtained from a selfconsistent
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ferromagnetic calculation, lead to very unsatisfactory results. The energy difference
between the ferromagnetic and the antiferromagnetic structure is massively under-
estimated, and the 180° (1/1) configuration is incorrectly predicted to be lowest in
energy (cf. Table 6.2). How large the effect of the interstitial magnetization is, can
be appreciated from a comparison of the two 180° configurations, with 2/3 (11) and
1/3 ({1)) of the magnetic moments parallel to the interstitial magnetization. These
two configurations, that are physically equivalent, differ by 12 mRy/atom, which is
far larger than the energy differences we want to calculate. Clearly, the interstitial
magnetic field favors the parallel orientation of the atomic moments. These results

AE = E — Epp [mRy/atom]
Config. H Selfconsistent ‘ FPA no av. ‘ FPA av.

AFM | -20.0 3.6 234
180° (111) | -18.8 -9.0 -23.0
180° (111) | -18.8 +3.0 -23.0

Table 6.2: Energy differences between the ferromagnetic configuration
and different collinear antiferromagnetic configurations of the Cr UML-
Ag(111). The first column contains the results of selfconsistent calcula-
tions. The frozen potential approximation without setting to zero (aver-
aging) the interstitial and vacuum magnetic field (FPA no av.) yields the
results in the second column. The last column (FPA av.) lists the results
obtained with the frozen potential approximation, with zero interstitial
and vacuum magnetic field.

can be substantially improved, if the interstitial and vacuum magnetic field is set
to zero (averaged) (cf. section 4.1). The corresponding calculation (cf. Table 6.2)
reproduce the correct trends. The antiferromagnetic structure is correctly predicted
to be lowest in energy, and the two physically equivalent 180° configurations have
the same energy. However, the energy differences between the antiferromagnetic and
the ferromagnetic structures are overestimated by about 15%. The averaging of the
magnetic field favors the antiferromagnetic systems, because they have smaller inter-
stitial magnetizations and magnetic fields than the ferromagnetic structure. When
comparing two antiferromagnetic configuration the quantitative error is smaller, but
still present.

6.4 Results for the Cr UML

Our calculations for the Cr UML indeed show, that the 120° configuration is lowest
in energy. This configurations is almost 4 mRy lower than the antiferromagnetic
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structure, which is the collinear configuration with the lowest energy we found (cf.
Table 6.3). This energy difference is clearly larger than the the error we should

AE = E — Epy [mRy/atom]
Config. H FPA av.
AFM | -23.4

180° || -23.0

120° -27.2

Table 6.3: Energy differences between different collinear antiferromag-
netic structures including the 120° configuration and the ferromagnetic
structure of the Cr UML-Ag(111). All results have been obtained from
the frozen potential approximation where the interstitial and vacuum
magnetic field has been set to zero (averaged) (FPA av.).

expect, when comparing two antiferromagnetic structures. We also calculated the
energy dependence on the angle of the local magnetization along two different paths,
which transform the ferromagnetic structure into the antiferromagnetic (Fig. 6.1 (c))
and the 120° (Fig. 6.1 (d)) configuration respectively. The results are presented in
Fig. 6.2. The curve that corresponds to paths Fig. 6.1 (c) shows a cosine like shape,
while the curve corresponding to 6.1 (d) possesses a pronounced minimum at 120°.
Following the latter curve further leads to the 180° configuration, which is slightly
higher in energy than the antiferromagnetic configuration. In order to check our
initial assumption of a Heisenberg like behavior, we fitted the data in Fig. 6.2 to the
Heisenberg model including nearest neighbor interaction only. Within this model the
energy per unit cell is given by:

E = %Z > JiS; - S (6.1)
i g

The first sum is over the atoms in the unit cell and the second sum is over the nearest
neighbors of each atom. For the path Fig. 6.1 (c) this amounts to the following energy
per ¢(2 x 2) unit cell.

1
E = §J182[8 cos(a) + 4] (6.2)
For the path Fig. 6.1 (d) the energy per (v/3 x v/3)R30° unit cell is given by:
1
E = §J182[12 cos(a) + 6 cos(2a)] (6.3)

Since the ab-initio calculations contain more than just the spin interaction energy,
the energies are shifted by a constant. Therefore, the actual functions the results
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Figure 6.2: Energy dependence on the direction of the local magnetic
moments as function of the direction angle « relative to the direction of
the nearest neighbor atom for the Cr UML-Ag(111) along the two paths
according to Fig. 6.1. The data points of the path that transforms the
ferromagnetic structure into the antiferromagnetic structure (Fig. 6.1 (c))
are marked with diamonds, while path Fig. 6.1 (d), which transforms the
ferromagnetic structure into the 120° and then to the 180° configuration,
is marked with crosses. For better visibility the data points are connected
with splines (solid lines). In addition, the functions obtained form a least
square fit of the data to the Heisenberg model are shown (dashed lines).

have been fitted to are: .
E = §J182[8 cos(a)] + C (6.4)

and
1
E = §J182[12 cos(a) + 6cos(2a)] + C (6.5)

respectively. The fitted functions are also plotted in Fig. 6.2. The linear parameters
J1 and C have been obtained from a least square fit. The fitted Heisenberg curves
are in good agreement with the data points. From both fits the exchange integral J;
can be calculated, using the local magnetization from the selfconsistent ferromagnetic
calculation as S. The values that we obtained differ by only about 2%. We found
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J1 = 0.168mRy/u% for the paths according to Fig. 6.1 (¢) and J; = 0.172mRy/u%
for the paths according to Fig. 6.1 (d). These results justify the initial assumption
of a Heisenberg like behavior.

Bandstructure of the Cr UML for Different Spin Configurations

In this section we will explain how the bandstructure of the Cr UML changes with the
orientation of the local magnetic moments along path Fig. 6.1 (d). The corresponding
magnetic configurations, including the 120° configuration, require a (v/3 x v/3)R30°
unit cell, containing three atoms. Therefore, we will first discuss how the bands
in the Brillouin zone of the p(1 x 1) unit cell are “folded” into the Brillouin zone
corresponding to the larger unit cell. For simplicity this will be done for the band-
structure obtained from a non-magnetic calculation. The two Brillouin zones are
shown in Fig. 6.3. The Brillouin zone of the (v/3 x +/3)R30° unit cell is by a factor

Ky

A

A

/
AP.vik
\ s (M
\

Figure 6.3: The Brillouin zones corresponding to the one and three atom
unit cells. The smaller Brillouin zone, which corresponds to the three
atoms unit cell, is rotated by 30° with respect to the larger Brillouin
zone. The index of the symmetry points corresponds to the number of
atoms the unit cell contains.

three smaller, and it is rotated by 30° with respect to the Brillouin zone of the p(1x 1)
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unit cell. All bandstructures are plotted along the symmetry lines I-M and I' K.
The index of the symmetry points corresponds to the number of atoms the unit cell
contains. Due to the rotation of the Brillouin zone the symmetry line [~M; of the
(v/3 x v/3)R30° Brillouin zone lies on the line I'~K; of the p(1 x 1) Brillouin zone.
Thus, the bandstructure along I'-K; folds onto I'~M; and correspondingly I'-M;
folds onto ' K.

The bandstructures of a non-magnetic Cr UML with one and three atoms per
unit cell are shown in Fig. 6.4. The UML clearly possesses symmetry with respect
to a reflection at the x-y-plane (z — —z). Therefore, all eigenfunction have to be
either even or odd with respect to this operation. Although no selection rule for an
experiment can be derived from this symmetry, for better visibility the corresponding
bands are plotted separately. The left panels of Fig. 6.4 show the even bands of a non-
magnetic calculation, the right panels show the odd bands. The upper panels show the
bandstructure resulting from non-magnetic calculations containing one atom per unit
cell, the lower panels show the bandstructure resulting from calculations containing
three atoms. A first look reveals two types of bands. Around the Fermi energy we
find the d-bands showing little dispersion. Below the Fermi energy and above about 2
eV we find strongly dispersive bands. The latter are basically of s-symmetry for even
states and of p,-symmetry in the case of the odd states. Comparing the upper left
plot to the lower left graph it can be seen how the s-band (thick solid line) is folded
into the smaller Brillouin zone of the three atom calculation. The part of this band
between T and K; (marked (2) and(3)) becomes folded onto '~Mj. Part of the band
between M; and T' (1) can be identified on T-K;, while the bandstructure between
K3 and M, cannot be found in the plot of the three atom unit cell. The latter part
of the band could be found on the symmetry line K3 M; of the smaller Brillouin
zone, if it had been plotted. Instead another band (4) can be seen on I'-K3, which
originates from K3-K;. In the same way the lowest two odd bands (upper right plot
of Fig. 6.4 thick solid and dashed lines) are folded into the small Brillouin zone. As
a consequence of the folding, the folded bands become degenerate at high symmetry
points.

The non-collinear magnetic configurations break the symmetry and thus some of
the degeneracies are lifted. In Fig. 6.5 the ferromagnetic bandstructure is shown,
as obtained from a selfconsistent calculation (upper left and right plots) and from
a calculation within the frozen potential approximation with zero interstitial and
vacuum magnetic field (lower left and right plots). Since we used the ferromagnetic
potential and magnetic field for all non-selfconsistent calculations, the only difference
between the two calculations is the removal of the interstitial magnetic field. In the
upper graphs the bands are plotted differently according to their spin character (solid
lines indicate majority spin, dotted lines indicate minority spin). At first we see a
large exchange splitting between the majority and minority states, which amounts
to about 3.5 eV for bands with predominantly d-character. This reflects the large
magnetic moment of about 4 ug. A closer look reveals that the spin splitting of
the bands is not rigid as expected from the simple Stoner model. The minority
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bands show a larger dispersion, since they are considerably higher in energy and as
such much less localized than the majority states. The FPA calculation shows a
slightly smaller difference between the spin up and down bands due to the missing
interstitial and vacuum magnetic field. The most significant difference is a gap in the
p-band denoted (a) in Fig. 6.5 that results from the FPA, apart from this gap the
bandstructures are very similar.

In Fig. 6.6 we present the bandstructure after a rotation of the magnetic moments
of 30° and 60° according to Fig. 6.1 (d). Due to the rotation of the magnetic moment
spin up and spin down electrons hybridize (s). For small rotation angles (30°) we
observe an opening of band-gaps at the symmetry points (a-1), where the bands were
degenerate in the ferromagnetic configuration. The size of these gaps increases with
the rotation angle. In addition some bands, that were degenerate along the symmetry
line T-K split up (m-r). At a certain rotation angle the mixing of spin up and down
states is so strong, that the ferromagnetic configuration becomes meaningless as a
starting point to explain the band topology. Spin up and down states form new linear
combinations.

At 90° and 120° the bandstructure has change dramatically (Fig. 6.7). The 120°
configuration is highly symmetric. As a result, bands, that were split at intermediate
angles, become degenerate at symmetry points and between I' and K. A comparison
between the ferromagnetic structure and the 120° configuration shows, that the band
structure has drastically changed. For example two of the (odd) bands near K (a,b)
are completely different for the two configurations. Such differences can be used
to investigate experimentally the existence of the 120° structure with methods that
probe the bandstructure. However, two problems have to be taken into account. First,
the density functional theory does not always predict the position of bands accurately.
Therefore, it is necessary to use methods, that can probe also the dispersion of the
bands, like angle resolved ultraviolet photo emission (ARUPS). The second problem,
that has to be taken into account, is that the present calculations have been done with
unsupported monolayers, which leads to less dispersion, and increases the exchange
splitting.
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Figure 6.4: Bandstructures as obtained from a selfconsistent non-
magnetic calculation including one atom per unit cell (upper left and
right plot) and three atoms per unit cell (lower left and right plot). Bands
with even and odd symmetry with respect to z-reflection (2 — —z) are
plotted separately.
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Figure 6.5: Bandstructures of the ferromagnetic Cr UML as obtained
from a selfconsistent calculation (upper left and right plot) and within

the frozen potential approximation (lower left and right plot). Both
include three atoms per unit cell.
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Figure 6.6: Bandstructures of the 30° and 60° configuration according
to Fig. 6.1 (d). Both have been calculated within the frozen potential
approximation and include three atoms per unit cell.
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Figure 6.7: Bandstructures of the 90° and 120° configuration according

to Fig. 6.1 (d).

approximation and include three atoms per unit cell.

Both have been calculated within the frozen potential
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6.5 Results for the Mn UML

The second system that has been studied as part of this work is the Mn UML with
Cu(111) geometry. In order to check whether the assumption underlying the FPA,
that the magnetic moments change little with their direction is valid, we performed
selfconsistent calculations for different collinear configurations. As in the case of
the Cr monolayer the results show, that this assumption is justified (cf. Table 6.4).
However, the Mn moments are considerably smaller than the Cr moments, and at the

| Atomic magnetic moments [in pp] |
FM 3.05
AFM 3.08

180° (111) || ms = 3.23, m, = 2.93

Table 6.4: Selfconsistent local magnetic moment per atom of the Mn
UML-Cu(111) for different collinear magnetic configurations.

same time the sum of the interstitial and vacuum magnetization is larger due to the
smaller lattice constant of Cu. The ferromagnetic calculations yielded an interstitial
and vacuum magnetization of 0.26 ug/atom for the Cr UML and 0.39 upg/atom for
the Mn UML. Thus, the ratio of local and interstitial magnetization is significantly
smaller for the Mn monolayer, which makes the approximation in the interstitial
and vacuum region less accurate in the case of the Mn UML-Cu(111) system. As a
consequence, the energy differences between the ferromagnetic and the antiferromag-
netic configurations (AFM and 180°) are more strongly overestimated than in the
case of the Cr UML. The predicted energy differences are about 6 mRy/atom larger
than those obtained from selfconsistent calculations (cf. Table 6.5). However, the
calculated differences between the two antiferromagnetic structures agree very well.

The results of the angle dependent calculations are presented in Fig. 6.8. In
contrast to the Cr UML, we do not find the 120° configuration to be lowest in energy
for the Mn UML. Instead, the computed energy of the antiferromagnetic configuration
is more that 4 mRy/atom lower in energy. Even the 180° structure is predicted to
be more stable than the 120° configuration.

The figure also contains the functions obtained from a fit of the data to the
nearest neighbor Heisenberg model. Apparently the data is not well described by
the Heisenberg model. The graph that corresponds to the rotation according to
Fig. 6.1 does not possess a minimum at 120° in contradiction to the Heisenberg model.
Instead the energy changes very little with the rotation angle between 90° and 180°.
In addition, the values for the exchange integral J; differ significantly between the
two paths. From the calculation according to path Fig. 6.1 (c) we obtained J; =
0.431mRy/up, while path Fig. 6.1 (d) yielded J; = 0.340mRy/up. This difference
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AE = E — Epp [mRy/atom]
Config. H Selfconsistent ‘ FPA av.

AFM | -26.3 -32.2
180° -23.2 -29.2
120° —= -27.8

Table 6.5: Energy differences between the ferromagnetic configuration
different collinear antiferromagnetic configurations of the Mn UML-
Cu(111). The first row contains the results of selfconsistent calculations.
The second row contains the results obtained by the frozen potential ap-
proximation where the interstitial and vacuum magnetic field has been
set to zero (averaged) (FPA av.).

and the fact, that the antiferromagnetic configuration is lower in energy that the 120°
configuration can be explained by including next nearest neighbor interaction into
the Heisenberg model.

If the next nearest neighbor interaction is taken into account, the energy of a
Heisenberg spin system is given by:

1Mnn M nnn(i

ZZJls S; + - ZZst S; (6.6)

Where j in the second term sums over the nnn next nearest neighbors of each atom .
Assuming this model the energy per unit cell along the two rotation paths becomes

1
E = §(J1 + J5)S?[8 cos(ar) + 4] (6.7)
for path Fig. 6.1 (c) and
[y [
E = §J18 [12 cos(ar) + 6 cos(2ax)] + §JQS 36 (6.8)

for path Fig. 6.1 (d), where the next nearest neighbor interaction contributes only to
the constant term. In the case of the rotation according to Fig. 6.1 (c) the contribution
to the energy is of the same form as the contribution from the nearest neighbor
interaction. Thus, the value we have obtained from the Heisenberg fit is in fact the
sum of J; and Js, in terms of the model including next nearest neighbor interaction.

The very flat shape of the functional dependence of the energy on the rotation
angle along the path Fig. 6.1 (d) cannot be explained with the next nearest neighbor
interaction. We obtained a far better fit to the ab-initio data, when we included a
term cos(3a) into the function the data has been fitted to. In terms of the Heisenberg
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Figure 6.8: Energy dependence on the direction of the local magnetic
moments as function of the direction angle «a relative to the direction of
the nearest neighbor atom for the Mn UML-Cu(111) along the two paths
according to Fig. 6.1. The data points of the path that transforms the
ferromagnetic structure into the antiferromagnetic structure (Fig. 6.1 (c))
are marked with diamonds, while path Fig. 6.1 (d), which transforms the
ferromagnetic structure into the 120° and then to the 180° configuration,
is marked with crosses. For better visibility the data points are connected
with splines (solid lines). In addition, the functions obtained form a least
square fit of the data to the Heisenberg model are shown (dashed lines).

model this means, that the energy dependence on the angle is more complex than
the simple cos form, and a Fourier series (including only the even (cos) terms) has to
be used instead.

Since, the results of the calculations are not well described by the Heisenberg
model in the case of the Mn UML-Cu(111), our initial assumption (of a Heisenberg
like behavior) is not justified. Therefore, we cannot be sure, that the true ground-
state is a magnetic structure we have not investigated, which might have a larger
unit cell.

However, during the analysis of the results it must be kept in mind, that the
accuracy of the frozen force approximation is limited. This is particularly critical in
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the case of the Mn UML, where the ratio of the local and interstitial magnetization
is smaller. The question of how much of the predicted properties of the Mn UML is
actually physics, and how much is an artifact due to the FPA can only be resolved
by carrying out selfconsistent non-collinear calculations.



Chapter 7

Conclusion and Outlook

In the present work we investigated the possibility and energetics of the non-collinear
magnetic ground-state for particular ultrathin films. Ab-initio calculations based
on the density functional theory in the local spin-density approximation have been
performed. For this purpose, the FLAPW method has been extended to allow non-
selfconsistent calculations for systems with a non-collinear orientation of the magnetic
moments. These calculations have been performed within the frozen potential ap-
proximation, where the energy difference of the magnetic configurations is determined
by the difference of eigenvalue sums. A trial Hamiltonian has been constructed by
a rotation of the magnetic field obtained from a selfconsistent ferromagnetic calcula-
tion. This method has been applied to unsupported monolayers (UML) of Cr in the
geometry of Ag(111) and Mn in the geometry of Cu(111). The calculations predict
a non-collinear ground-state for the Cr UML, with 120° angles between the mag-
netic moments at nearest neighbor sites of the triangular lattice. The dependence
of the energy on the rotation angle of the local magnetic moments has been inves-
tigated. Fitting the results to a model Hamiltonian showed, that the magnetism of
the Cr UML is well described by the Heisenberg model including nearest neighbor
interaction only. The bandstructure of the Cr UML has been calculated for dif-
ferent angles of the magnetic moments. The results show, that the bandstructure
strongly depends on the magnetic configuration. Thus, experiments, which probe
the bandstructure like angle-resolved ultraviolet photo-emission (ARUPS) or inverse
photo-emission (BIS), should be able to identify the non-collinear ground-state. In
addition, the predicted non-collinear magnetic ground-state breaks the symmetry of
the atomic lattice. Therefore, feeble superstructure extra-spots in low energy elec-
tron diffraction (LEED) experiments should be expected [TBF88|, which disappear
or reappear, when the Neel temperature is crossed from below or above. Another
way to identify the non-collinear ground-state is given by magnetic circular x-ray
dichroism (MCXD) measurements [DvdL96], which allow the determination of the
actual local magnetization vector.

In the case of the Mn UML with Cu(111) geometry we got a different picture. The
frozen potential approximation proved to be less accurate when applied to this system,
due to the smaller local magnetic moments of Mn and the smaller lattice constant

101
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of Cu. Our calculations predicted a collinear antiferromagnetic configuration to be
lower in energy than the non-collinear configuration we have found for the Cr UML-
Ag(111). In addition, the results were not well described by the Heisenberg model.
Therefore, we cannot rule out, that the true ground-state is a magnetic configuration
we have not investigated, possibly including a larger unit cell. In order to obtain
more accurate results for the Mn monolayer selfconsistent calculations are necessary.

In view of the future development to extend the method to allow an efficient
selfconsistent treatment of non-collinear magnetism, the local orbital extension has
been implemented. The local orbitals are an extension to the FLAPW method inside
the muffin-tin spheres near the atomic nuclei. These extra basis functions improve
the variational freedom of the FLAPW basis and make it possible to employ a spin-
independent basis set. In order to test the implementation of the local orbitals, they
have been applied to the semicore states of bcc W, fcc and hcp Ti. The results
have been compared to the results obtained from two-window calculations, where
the semicore and valence states are treated within two independent energy windows
(panels). Both schemes correctly predicted hcp Ti to be lower in energy than the fec
phase. The calculated lattice constants where in good agreement. The ghost-band
problem could be avoided.

The results that have been obtained for the unsupported monolayers of Cr
(Ag(111) geometry) and Mn (Cu(111l) geometry) show, that the accuracy of the
frozen potential approximation in the current implementation is limited. In order to
improve the accuracy and to allow the application of the method to a larger class of
systems, which do not satisfy the requirement of large local magnetic moments which
are well-confined inside the muffin-tin spheres around the atoms or that the magnitude
of the local moments remains unchanged during rotation, it essential to extent the
method to selfconsistent non-collinear calculations. Several ways of performing such
selfconsistent calculations are possible. One option is to allow a general magnetiza-
tion density in the interstitial region, with both, magnitude and direction, depending
on the position vector r, while having the magnetization inside each muffin-tin point
along a single direction. Within this approximation the rotation of the atomic mag-
netic moments with respect to each other, the inter-atomic non-collinear magnetism,
can be described , while changes of the direction of the magnetization inside sin-
gle atoms, the intra-atomic non-collinear magnetism, is neglected. The most general
scheme is to allow the magnetization to have a different direction everywhere in space,
and thus to include also the intra-atomic non-collinear magnetism.

The combination of non-collinear magnetism with the possibility to calculate the
force acting on an atom to perform a structure optimization by molecular dynamics,
which is already implemented in our current FLAPW code, opens the gate to future
treatment of systems, where both the magnetic properties, including the magnetiza-
tion direction, and the structural properties are intimately interwoven, and the atomic
and the magnetic structure is a prior: unclear. This is of particular importance for
low dimensional systems, like reconstructed surfaces, ultrathin films with and without
defects, step edges, magnetic chains at step edges, small magnetic clusters or for the
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investigation of the growth (diffusion barrier and atom exchange mechanisms) and
reaction paths involving magnetic atoms.
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