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Abstract

In recent years we witnessed an enormous progress in the chemical synthesis, growth and
the development of technology allowing the fabrication of a rich variety of one-dimensional
(1D) structures. They include single walled (SWNT) and multi-walled (MWNT) one-
dimensional tubular structures, made of carbon, GaN, BN, TiO, VO and other com-
pounds, thin metallic quantum wires, quasi-1D molecular magnets etc. They involve
elements from the entire periodic table and show new physical phenomena such as quan-
tized conductance, charge and spin separation, intriguing structural and magnetic prop-
erties such as high spin-polarization and large spin-scattering lengths. In many cases the
transport properties of these systems can be easily tuned by choosing suitable structural
parameters such as the diameter or chirality. Moreover, the diameters of many experimen-
tally observed 1D structures are much smaller than most semiconductor devices obtained
so far, and thus one can imagine that the smallest possible transistors are likely to be
based on them. In order to understand the structure-property relation in these new ma-
terials on the basis of the electronic structure, ab initio calculations based on the density
functional theory play an important role.

In this work we have presented an extension of the full-potential linearized augmented
plane-wave (FLAPW) method to truly one-dimensional systems. The space is partitioned
into three regions, the muffin-tin sphere around the atom, a vacuum region surrounding
a cylinder and the interstitial region between the atoms and the vacuum region. In each
region optimal basis functions for the wavefunctions, charge density and potential are used.
The spin-orbit interaction is included to investigate the orbital moments and the magnetic
anisotropy. Despite the plane-wave representation in the interstitial region we were able
to include a wide class of chiral symmetries, characteristic for one-dimensional systems.
The one-dimensional FLAPW method was implemented as extension of the FLAPW code
FLEUR and parallelized for supercomputing applications. Due to the efficiently adjusted
basis functions and partitioning of space, 1D code allows to achieve a significant speed-
up, for instance, approximately by a factor of 150 for monowires, as compared to the
super-cell approach in the bulk code.

The accuracy, precision and correctness of the code was validated on a set of 1D struc-
tures, already calculated previously with other methods. We focused on the systems of
a large current interest in the field of nanophysics. We reported on the calculations of
3d- and 4d- monowires (Ti; Y, Zr, Nb, Mo, Tc, Ru, Rh and Pd). For these monowires
we investigated the ferro- and antiferromagnetic instability, calculated equilibrium inter-
atomic distances, magnetic and orbital moments, magnetocrystalline anisotropy energies.
We found that across the 4d-transition-metal series, Y and Nb exhibit a nonmagnetic
ground-state, Mo and Tc are antiferromagnetic and Zr, Ru, Rh and Pd are ferromagnetic
at equilibrium lattice constants. For the Ru, Rh and Pd system is was found that the
easy axis is perpendicular to the wire for Ru and Pd and along-the-wire for Rh.

Further we considered a (6,0) nanowire of gold atoms, and a hybrid structure of an iron
monowire inside a gold (6,0) tube, showing that the Fe monowire is prone to the Peierls
dimerization. For the hybrid system Fe@Au(6,0) we found a high spin-polarization at the



Fermi level, proposing, therefore, this system as a possible candidate for spin-dependent
transport applications.

Using a super-cell approach within the one-dimensional FLAPW method we inves-
tigated a set of one-dimensional multiple-decker sandwiches of benzene and vanadium,
which are for the past 20 years of great interest in the field of organometallics. The calcu-
lated structural results obtained are in good agreement with experimental and theoretical
results. After the calculation of total energies, magnetic moments, orbital interaction
schemes, one can finally conclude, that with the increasing number of the vanadium atoms
in the molecule, the magnetic moments of vanadii prefer to order ferromagnetically, which
was recently observed experimentally.



”Using an equality due to Bogolyubov, Mermin and Wagner

have proved rigorously the absence of both ferromagnetism

and antiferromagnetism in one-dimensional spin systems.”

M.B. Walker and T.W. Ruijgrak, Physical Review, 171, 513 (1968)

”still... still... still... still...”

Miles Davis to his musicians in

Gingerbread Boy, album ”Miles Smiles”, Columbia CL 2601 (1966)
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Chapter 1

Introduction

During the last decade research on the nanoscale developed to one of the most innova-
tive and fastest growing fields of modern physics. One reason is certainly the enormous
progress witnessed in the chemical synthesis, growth and the development of technology
allowing the fabrication of a rich variety of nanomaterials with unprecedented new prop-
erties. As the scale of nanomaterials continue to decrease from the mesoscopic regime
to the atomic scale, one-dimensional (1D) nanometer scale systems such as carbon nan-
otubes [38], radially and axially modulated semiconductor nanowires [71], and thin metal-
lic quantum wires [49, 29, 113] moved into the focus of attention. The excitement in these
one-dimensional structures is fueled by their wealth of new physical phenomena such as
quantized conductance, charge and spin separation, intriguing structural and magnetic
properties such as high spin-polarization and large spin-scattering lengths [115]. Today,
there is a general consensus on the expectation that the quantum nature in materials is
much richer in one-dimensional systems than in bulk materials.

One-dimensional systems are also important from a technological point of view. For
example, the ability to fabricate thin metallic interconnects with favorable properties is an
important factor determining the progress of ultra-large scale integrated circuits. In many
cases the transport properties of these systems can be easily tuned by choosing suitable
structural parameters such as the diameter or chirality. Moreover, the diameters of many
experimentally observed 1D structures are much smaller than most semiconductor devices
obtained so far, and thus one can imagine that the smallest possible transistors are likely
to be based on them [110, 63, 33].

Today a large variety of one-dimensional structures are known and continue to be
synthesized. First and foremost are the single walled (SWNT) and multi-walled (MWNT)
one-dimensional tubular structures, which exist not only for carbon [38], but also for GaN
[27], BN [34], TiO [42], VO [53] and other compounds. A further large class are quasi-
1D crystals, a family of structures with different diameters and chiralities, chemical and
physical properties [17]. They involve elements from the entire periodic table.

In the context of magneto-electronics and spintronics we witness two important trends
in the synthesis of one-dimensional magnetic hybrid structures. One is based on the
development of new nanotube production technologies which for example allow to fill
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10 CHAPTER 1. INTRODUCTION

carbon nanotubes [28, 70] and other nanotubes with metals [26] with magnetic atoms.
The other one rests in the field of organometallics. Molecular magnets with a tendency
towards one-dimensionalization are synthesized and experimentally observed as quasi-1D
structures showing intriguing magnetic and structural properties [69, 68].

Understanding the structure-property relation in these new materials on the basis of
the electronic structure becomes possible due to the established success of the the den-
sity functional theory. Powerful and at the same time numerically simple approximations
to the density functional theory such as the local density approximation (LDA) and the
generalized gradient approximation (GGA) open the gate to the investigations of these
low-dimensional with predictive power. The low-dimensionality, the chemical complex-
ity, the open structure, and the large variety of chemical elements in these systems ask
for flexible first-principles methods able to solve the density functional equations with
required precision and efficiency. Methods employed for density-functional calculations
of one-dimensional systems include the tight-binding [116], pseudopotential [126], lin-
earized muffin-tin orbital LMTO [107], and the PAW [104] and full-potential linearized
augmented plane-wave (FLAPW) [14, 15] super-cell formalism. Although applicable to a
range of materials, the first two methods are usually not optimal for a highly precise de-
scription of the electronic properties of low-dimensional systems containing, for instance,
(magnetic) transition elements. From this point of view FLAPW would be an optimal cal-
culating scheme, although, as for the pseudopotential and PAW method, one-dimensional
structures are treated in a the super-cell geometry, i.e. in a two-dimensional lattice of
one-dimensional structures. Obviously, either one has to deal with very large super-cells
or one has to accept a degree of interactions coming from the neighboring unit cells at
finite distance. Further, in the super-cell geometry the symmetries characteristic for the
1D systems are not naturally included.

In this thesis we present a new efficient and very precise all-electron method for carry-
ing out ab initio calculations based on density functional theory of electronic ground state
properties for systems having a one-dimensional periodicity, in particular, metallic wires
and nanotubes. The method is truly one-dimensional, i.e. it is applied for calculations of
single wires or tubes surrounded by infinite vacuum, avoiding any interaction due to the
presence of the neighboring unit-cells. The truly one-dimensional structure model can
lead to a large computational speed-up over the conventional super-cell approach opening
opportunities to study more complex systems. Including the symmetries allows to achieve
a further significant speed-up, increased accuracy as well as a simplified analysis of the
results. This new approach, which makes use of the chiral symmetries for a considered
system, allows to carry out calculations of the total energies, forces and atomic relax-
ations, band structures, and densities of states including spin-orbit coupling effects. A
particular emphasis was put on the investigation of magnetic properties such as the spin
and orbital moment, magnetization direction and the magnetic structure.

In the thesis we applied the new method basically to three classes of materials: 4d
transition-metal monowires, a Au covered Fe wire, and metallorganic V-benzene multi-
decker sandwiches of finite size. The emphasis of the work is on the geometrical structure,
electronic structure and magnetism of these systems.
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At first, the accuracy, correctness and precision of the code was validated on a set
of 1D structures, already calculated previously with other methods. We focus on the
systems of large current interest in the field of nanophysics. We report on the calcula-
tions of 3d- and 4d-transition-metal monowires (Ti; Y, Zr, Nb, Mo, Tc, Ru, Rh and Pd).
For these monowires we investigated the chemical and physical trend of the ferro- and
antiferromagnetic instability, calculated equilibrium interatomic distances, magnetic and
orbital moments, and magnetocrystalline anisotropy energies. We found that across the
4d-transition-metal series, Y exhibits a nonmagnetic ground-state, Zr is ferromagnetic, Nb
is nonmagnetic again, Mo and Tc are antiferromagnetic and Ru, Rh and Pd are ferromag-
netic at equilibrium lattice constants. For the Ru, Rh, and Pd monowire, we investigated
the easy axis of the magnetization. We found that the easy axis is perpendicular to the
wire for Ru and Pd but along-the-wire for Rh.

We also investigate the electronic properties, geometrical and magnetic structure of
an Au(6,0) and an Fe@Au(6,0) nanowire. The results show, that the bare Fe monowire
and the Fe monowire inside the Au(6,0) are ferromagnetic. The Au coverage of the Fe
monowire causes a change of the easy magnetization axis, which is along the wire for
the single Fe monowire and perpendicular to the wire for the Au covered Fe wire. This
is explained by the magnetic proximity effect of Fe on the Au and the large spin-orbit
interaction of Au. The Fe@Au(6,0) hybrid structure exhibits a large negative polarization
at the Fermi energy, which makes this system interesting as a potential candidate for spin-
dependent transport applications. The structural investigation shows that this system is
prone to a Peierls dimerization.

Using a super-cell approach within the one-dimensional FLAPW method we inves-
tigated a set of one-dimensional but finite multiple-decker sandwiches of benzene and
vanadium. These organometallic compounds raise much interest due to the unusual mag-
netism of V. The magnetism of V is reproduced in the thesis. It is concluded, that V atoms
couple ferromagnetically within the multi-decker and the coupling strength increases with
increasing number of V atoms.

The thesis is organized as following: in chapter 3 an overview of the one-dimensional
FLAPW method is presented. This includes the definition of the one-dimensional sym-
metry, the LAPW basis function, charge density and potential representation in different
regions of space. In sections 4−6 the implementational details of the method are given,
including the eigenvalue problem, construction of the charge density and Coulomb and
exchange-correlation parts of the potential. Chapter 7 includes the results on the 3d- and
4d-monowires, gold tube Au(6,0) and hybrid structure Fe@Au(6,0), and one-dimensional
multiple-decker vanadium-benzene sandwiches. The thesis is concluded in chapter 8.
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Chapter 2

Density Functional Theory

2.1 Density Functional Theory

As far as our main aim is to understand and investigate the properties of real materials, we
come to the problem of an appropriate quantum-mechanical description of these systems.
From the basic quantum mechanical point of view we should necessarily consider the
many-body problem: the problem of describing a system containing an enormously large
number of interacting electrons and ions. Due to the complexity of this problem it cannot
be solved even nowadays nor analytically neither numerically. First attempts to find
some simplifications took place a long time ago. The most essential among them is the
Born-Oppenheimer approximation, which is employed by the majority of first-principle
calculations. It states that as the electrons are very light compared with the nuclei, they
move much more rapidly and one can neglect all the quantum effects due to the motion
of the nuclei. In other words, in this approximation the positions of ions are fixed, and
the Hamiltonian of the system becomes:

H =
N
∑

i=1

− h̄2

2m
∇2
i +

1

2

∑

i,j

e2

|ri − rj|
−
∑

i,I

ZIe
2

|ri −RI|
+

1

2

∑

I,J

ZIZJ
|RI −RJ |

, (2.1)

where ZI denotes the charge of the nucleus I and RI is the position of the nucleus I.
But even with this simplification there is not an analytical or numerical solution, i.e.
many-body eigen wavefunction for this Hamiltonian, if more then a few electrons are
considered.

A reduction of the complicated many-body problem to an effective single-particle the-
ory which can be applied for the numerical prediction of the different properties for differ-
ent types of materials and also supplies deeper physical insight is the density functional
theory by Hohenberg, Kohn and Sham [35, 47].

We start with writing the Hamiltonian of N interacting electrons as:

H = T + V + U,

13



14 CHAPTER 2. DENSITY FUNCTIONAL THEORY

where T is kinetic energy operator:

T = − h̄2

2m

∑

i

∇2
i ,

the quantity V denotes the external potential, which in the Born-Oppenheimer approxi-
mation consists of the potential due to the fixed ions, and possibly other external fields:

V =
∑

i



Vfield(ri) +
∑

j

Vion(ri −Rj)



 . (2.2)

The last term is the Coulomb electron-electron interaction:

U =
∑

ij,i6=j

e2

|ri − rj|
. (2.3)

This Hamiltonian has generated the truly immense literature and numerous techniques
to extract physically interesting approximate solutions. Now we focus our attention on
the electron density. The electron density operator is defined as:

n̂(r) =
N
∑

i=1

δ(r− ri), (2.4)

from which the electron density is given by:

n(r) = 〈Φ|n̂(r)|Φ〉,

where Φ is a many-body state. Hohenberg and Kohn discovered that this quantity is
actually a crucial variable. This is reflected in two famous theorems.

1. The total ground-state energy, E, of any many-electron system is a functional of
the density n(r):

E[n] = F [n] +
∫

n(r)Vext(r) dr, (2.5)

where F [n] is a functional of the density, but independent of the external potential.

2. For any many-electron system the functional E[n] for the total energy has a mini-
mum equal to the total ground-state energy at the ground-state density.

The second theorem is of great importance because it leads to a variational principle.
This was given by Kohn and Sham who used the variational principle implied by the min-
imal properties of the energy functional to derive a single-particle Schrödinger equation.
For this they split the functional F [n] into three parts:

F [n] = T [n] +
∫ ∫

n(r)n(r′)

|r− r′| dr dr
′ + Exc[n], (2.6)
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which describe the kinetic, Hartree and exchange-correlation energy. In contrast to the
Hartree integral, an explicit form of the other functionals, T and Exc is not known in
general. Ignoring this problem at the moment, we use the variational principle and write:

δE[n]

δn(r)
+ µ

δ(N − ∫ n(r) dr)

δn(r)
= 0, (2.7)

where µ is a Lagrange multiplier taking care of particle conservation. We now split up
the kinetic energy into a term T0 reflecting the kinetic energy of noninteracting particles
and Tex which stands for the rest, i.e. we write:

T = T0 + Tex.

Here we are making an important step, we represent the density in the following form:

n(r) =
N
∑

i=1

|ψi(r)|2, (2.8)

where we assume that we can determine the ’single-particle’ wave-functions ψi so that the
density can be represented in this form. One might indeed question whether the desired
densities can be written in this form, but we simply accept this form. Then we are writing
the kinetic energy of noninteracting particles as:

T0[n] = − h̄2

2m

N
∑

i=1

∫

∇ψ∗
i (r)∇ψi(r) dr. (2.9)

Since the Schödinger equation is just an Euler-Lagrange equation obtained by varying
T0[n] plus a potential energy term we come to:

(

− h̄2

2m
∇2 + Veff (r)

)

ψi(r) = εiψi(r). (2.10)

Now we will try to determine the effective potential which the ith ’single particle’ feels,
such that the density n(r) minimizes the energy functional. Thus, requiring the functions
ψi to be normalized, multiplying the last equation with ψ∗

i , integrating and adding we
obtain:

T0[n] =
N
∑

i=1

εi −
∫

Veff(r)n(r) dr. (2.11)

The variation of the energy functional is now easily carried out, and noting that terms
containing δεi cancel δVeff we get:

Veff(r) = Vext(r) + 2
∫ n(r′)

|r− r′| dr
′ + Vxc(r) (2.12)

with

Vxc(r) =
δ(Exc + Txc)

δn(r)
. (2.13)
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The effective single-particle equation,

(

− h̄

2m
∇2 + Veff (r)

)

ψi(r) = εiψi(r) (2.14)

is called the Kohn-Sham equation. It is a Schröedinger equation with the external poten-
tial replaced by the effective potential which depends on the density. The density itself
depends on the single-particle states ψi. The Kohn-Sham equation thus constitutes a
self-consistent field problem. By choosing some reasonable starting density, which is usu-
ally constructed from the densities of isolated atoms, the starting potentials are defined.
Then by solving the Kohn-Sham equations the output density is constructed. The output
density is mixed with the input density afterward thus becoming a starting density for the
next iteration. This iterative process is repeated until the distance between the output
and starting density becomes small. In this case the calculation is converged and the
ground-state density is found.

The Kohn-Sham equation furthermore allows us to derive an alternative expression
for the total energy:

E[n] =
N
∑

i=1,εi≤EF

εi −
∫ ∫

n(r)n(r′)

|r− r′| dr dr
′ −

∫

Vxc(r)n(r) dr + Exc[n]. (2.15)

The total energy thus consists of the sum over the eigenvalues, εi, minus the so-called
’double-counting’ terms. Note that in the term Exc we also included the exchange-
correlation kinetic energy Txc.

Although density-functional theory provides the scheme to reduce the entire many-
body problem to a Schrödinger-like effective single-particle equation, the physical meaning
of the eigenvalues εi is not clear. These eigenvalues have been used very often and with
success to interpret excitation spectra. But there also some problematic cases.

2.2 Spin Density Functional Theory

In order to describe magnetic effects the density functional theory has to be extended to
the case of spin polarized electrons. This is important for systems that posses non-zero
ground state magnetization, which is the case for most atoms, magnetic solids and surfaces
and electronic systems exposed to an external magnetic field. The necessary extension
to the Hohenberg-Kohn theory can be formulated replacing the electron density by the
electron density plus the magnetization density as fundamental variables. In this case,
the variational principle becomes

E[n(r),m(r)] ≥ E[n0(r),m0(r)]. (2.16)

An alternative, but completely equivalent, formulation can be obtained using a four com-
ponent density matrix ραβ instead of n(r) and m(r) [117]. In order to gain a generalized
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form of the Kohn-Sham equations, it is necessary at least to introduce two component
Pauli wavefunctions, that reproduce the electron and magnetization density.

ψi(r) =

(

ψ1,i(r)

ψ2,i(r)

)

(2.17)

n(r) =
N
∑

i=1

|ψi(r)|2

m(r) =
N
∑

i=1

ψ∗
i (r)~σψi(r) (2.18)

Applying the variational principle again yields the Kohn-Sham equations, which now have
the form of Schrödinger-Pauli equations.

{

− h̄2

2m
∇2 + Veff(r) + ~σ ·Beff(r)

}

ψi(r) = εiψi(r) (2.19)

The additional effective magnetic field consists of two terms. One of them is due to the
variation of the exchange correlation energy with respect to the magnetization density.
The second term is the external B-field, if present.

Beff(r) = Bxc(r) + Bext(r)

Bxc(r) =
δExc[n(r),m(r)]

δm(r)
(2.20)

In many applications, like for example ferromagnetic and antiferromagnetic solids, the
magnetization is orientated along one particular direction. For these collinear cases the
problem can be simplified further. The z-axis can be chosen along the direction of the
magnetic field. Therefore, the Hamiltonian of equation (2.19) becomes diagonal in the
two spin components of the wavefunction, i.e. the spin-up and -down problems become
completely decoupled and can be solved independently. The energy and all other physical
observables become functionals of the electron density and the magnitude of the mag-
netization density m(r) = |m(r)| rather than m(r), or, equivalently, of the spin-up and
spin-down electron densities n↑(r) and n↓r) which are given by

nσ(r) =
N
∑

i=1

|ψiσ(r)| (2.21)

The vast majority of the spin-polarized density functional calculations have been per-
formed using this formalism.

2.3 The Local Spin Density Approximation

So far, no approximations have been made. The density functional formalism, outlined
in the previous sections, could in principle reproduce all ground state properties of any
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complex many-electron system exactly, if the exchange correlation energy Exc was known.
Unfortunately, no explicit representation of this functional, that contains all many-body
effects, has been found yet. Thus, approximations to Exc have to be used. The most
widely used and very successful approximation is the local spin density approximation
(LSDA). The underlying idea is very simple. At each point of space Exc is approximated
locally by the exchange correlation energy of a homogeneous electron gas with the same
electron and magnetization density. Hence, the approximate functional Exc is of the form

Exc[n(r), |m(r)|] =
∫

n(r)εxc(n(r), |m(r)|) d3r (2.22)

It is important to note, that εxc is not a functional, but a function of n(r) and |m(r)|
at a particular point of space. As a consequence of its local definition εxc and thus Exc
depend only of the magnitude of the magnetization. This, in terms, leads to the fact that
Bxc(r) and m(r) do always have the same direction. Therefore, the exchange correlation
potential and magnetic field derived from (2.22) become

Vxc(r) = εxc(n(r), |m(r)|) + n(r)
δεxc(n(r), |m(r)|)

δn(r)

Bxc(r) = n(r)
δεxc(n(r), |m(r)|)

δ|m(r)| m̂(r). (2.23)

Using the LSDA the Kohn-Sham equations take exactly the same form as the Hartree
equations, and they are no more difficult to solve. In particular, they are far easier to deal
with than the Hartree-Fock equations because of the local effective potential. Intuitively
one should expect, that the LSDA is valid only for slowly varying densities. Nevertheless,
it has been applied successfully to inhomogeneous systems.

Explicit parameterizations of εxc can be obtained for example from Hartree-Fock cal-
culations for the homogeneous electron gas. Of course, such calculations do only take
into account the exchange effects, but neglect correlation. Modern parameterizations of
εxc are based on quantum-mechanical many-body calculations. Most commonly used are
the parameterizations of v. Barth and Hedin [117] and Moruzzi, Janak and Williams
[72], which have been obtained applying the random phase approximation (RPA), the pa-
rameterization of Vosko, Wilk and Nusair [118], that is based on Quantum-Monte-Carlo
simulations by Ceperley and Alder [9], and goes beyond the RPA, and the parameteri-
zation of Perdew and Zunger [88], which is, in a certain sense, a mixture of the previous
two.

2.4 The Generalized Gradient Approximation (GGA)

In the LSDA approximation the exchange-correlation energy functional is written in terms
of εxc(n↑, n↓), the exchange-correlation energy per particle of an electron gas with uniform
spin densities n↑, n↓ and n = n↑ + n↓. This approximation is clearly valid when the spin
densities vary slowly over space. However, this condition does not really seem appropriate
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for real atoms, molecules and solids, temporarily setting aside the surprisingly successful
applications of the LSDA.

The next step would be the generalized gradient approximation (GGA) and is written
as:

EGGA
xc [n↑, n↓] =

∫

f(n↑, n↓,∇n↑,∇n↓) dr. (2.24)

While the input quantity εxc(n↑, n↓) in LSDA is in principal unique - there is the electron
gas in which n↑ and n↓ are constant and for which LSDA is exact - there is no unique
input quantity f(n↑, n↓,∇n↑,∇n↓) to construct the GGA. However, due to the work of
Perdew and his collaborators (1986-1998) [87], Burke [7], etc., it is possible to construct
a nearly unique GGA possessings all the known correct formal features of LSDA.

Since the construction of GGA is not unique, one must in the end compare results of
calculations for realistic systems with experimental data, such as atomization energies for
molecules. This was done with great success by Perdew et al [85, 86] for a large selection
of different molecules.

One should remember, however, that GGA is not a remedy for all ills. Different cases
require different corrections, a list of those being SIC, orbital-polarization corrections,
LDA+U, and exact exchange. SIC, the self-energy correction, is important for localized
electron states [88, 111]. Orbital-polarization correction becomes a necessity mainly in
relativistic systems [94]. LDA+U is of importance whenever correlation effects play a
dominant role [3], and an exact treatment of exchange is asked for in insulators when the
band gap is to be treated correctly [108].
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Chapter 3

FLAPW Approach to
One–Dimensional Systems

In this section we are going to present a small introduction into a newly developed scheme
for treating systems of one-dimensional nature within the FLAPW formalism. We in-
troduce the geometrical setup, briefly describe the construction of the basis set, repre-
sentation of the charge density and potential, solution of the Poisson equation, general
description of the eigenvalue problem we solve, and the way of implementing the symme-
tries, characteristic for one-dimensional systems. More detailed description of the listed
implementational aspects of the method is presented in the first part of the thesis.

3.1 FLAPW Method

The Kohn-Sham equations can be solved in many different ways. One of the most common
strategies is to expand the single-particle wavefunctions in terms of suitable, problem-
adopted basis functions. Then the Kohn-Sham equations are written and solved in terms
of these basis functions. One of the best choices for a set of basis functions in solid state
physics is a set of plane-waves. Plane-waves are diagonal for the Laplace operator, which
appears in the kinetic energy of the Hamiltonian as well as the Poisson equation. They
are analytically simple, orthogonal to each other, as well as their derivatives of any order.
Moreover, plane-waves are suggested by the Bloch theorem. However, around the atoms
oscillations of the charge density and wave-functions become too rapid, and in order to
achieve a precise description a large number of plane-waves is required. One way to
cope with problem is to use modified potential around the atoms in order to avoid the
fast oscillations of the charge density, which recalls a group of pseudopotential methods.
Another way is based on the space separation and use of suitably modified basis functions
for different regions of space. This has already been suggested by Slater [100]. The
corresponding technique is called the augmented plane-wave method (APW).

21
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3.1.1 The APW Method

Within the APW approach, space is divided into spheres centered at each atom site, the
so-called muffin-tins, and the remaining interstitial region (cf. Fig. 3.1).

Figure 3.1: The division of space in the APW method. The muffin-tin
spheres are surrounded by the interstitial region.

Inside the muffin-tins the potential is approximated by a spherically symmetric shape, and
in many implementations the interstitial potential is set to a constant. The restrictions to
the potential are commonly called shape-approximations. Noting that plane-waves solve
the Schrödinger equation in a constant potential, while spherical harmonics times radial
functions are the solutions in a spherical potential, suggests to expand the single particle
wavefunctions 1 φν(k, r) in terms of the following basis functions:

ϕG(k, r) =



















1√
Ω
ei(G+k)r interstitial region

∑

lm

AµGL (k)ul(r)YL(r̂) muffin-tin µ
(3.1)

1In the section 3.1 we deal only with the systems, having 3-dimensional translational symmetry, i.e.
bulk
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Where k is the Bloch vector, Ω is the cell volume, G is a reciprocal lattice vector, L
abbreviates the quantum numbers l and m and ul is the regular solution of the radial
Schrödinger equation

{

− h̄2

2m

∂2

∂r2
+
h̄2

2m

l(l + 1)

r2
+ V (r)− El

}

rul(r) = 0, (3.2)

for a given energy parameter El. V (r) is the spherical component of the potential. The
coefficients AµG

L (k) are determined from the requirement, that the wavefunctions have to
be continuous at the boundary of the muffin-tin spheres.

Hence, the APW’s form a set of continuous basis functions that cover all space. Each
basis function consists of a plane-wave in the interstitial region plus a sum of functions,
which are solutions of the Schrödinger equation for a given set of angular momentum
quantum numbers (lm) and a given parameter El inside the muffin-tin spheres.

If the El’s were fixed, used only as a parameter during the construction of the basis, the
Hamiltonian could be set up in terms of this basis. This would lead to a standard secular
equation for the band energies. Unfortunately, it turns out, that the APW basis does not
offer enough variational freedom if the El’s are kept fixed. An accurate description can
only be achieved if they are set to the corresponding band energies. However, requiring the
El’s to be equal to the band energies, the latter can no longer be determined by a simple
diagonalization of the Hamiltonian matrix. Since the ul’s depend on the band energies, the
solution of the secular equation becomes a nonlinear problem, which is computationally
much more demanding than a secular problem.

Another disadvantage of the APW method is, that it is difficult to extend beyond the
spherically averaged muffin-tin potential approximation, because in the case of a general
potential the optimal choice of El is no longer the band energy. And finally, but less
serious, if, for a given choice of El’s, the radial functions ul vanish at the muffin tin
radius, the boundary conditions on the spheres cannot be satisfied, i.e. the plane-waves
and the radial functions become decoupled. This is called the asymptote problem. It
can already cause numerical difficulties if ul becomes very small at the sphere boundary.
Further information about the APW method can be found in the book by Loucks [60],
which also reprints several early papers including Slater’s original publication [100].

3.1.2 The Concept of LAPW

The basic idea of the linearized augmented plane-wave method (LAPW) is to add extra
variational freedom to the basis inside the muffin-tins, so that it is not necessary to set
the El’s equal to the band energies. This is done by using not only the radial solution
of the Schrödinger equation, but also its derivative with respect to the energy. This
construction, which was first suggested by Andersen [1], and independently by Koelling
and Arbman [45], can be regarded as a linearization of the APW. To understand this we
remind that in the APW method the ul’s depend on the band energies and can thus be
understood as functions of r and ε. Hence, ul can be expanded into a Taylor-series around
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El.

ul(ε, r) = ul(El, r) + u̇l(El, r)(ε− El) +O[(ε− El)2] (3.3)

Here u̇l denotes the energy derivative of ul, ∂ul(ε, r)/∂ε, and O[(ε− El)2] denotes errors
that are quadratic in the energy difference. Ergo, the LAPW method introduces an error
of order (ε − El)2 in the wavefunction. Therefore, according to the variational principle
the error in the calculated band energies is of the order (ε − El)

4. Because of this high
order, the linearization works very well even over rather broad energy regions. In most
cases a single set of energy parameters is sufficient for the whole valence band. However,
sometimes the energy region has to be split up in two or more windows with separate sets
of energy parameters.

But let us turn to some important properties of the LAPW basis first, before discussing
its quality and accuracy. The LAPW basis functions are of the form

ϕG(k, r) =



















1√
Ω
ei(G+k)r interstitial region

∑

L

AµGL (k) ul(r)YL(r̂) +BµG
L (k) u̇l(r)YL(r̂) muffin-tin µ

(3.4)

with the extra term BµG
L u̇l(r)YL(r̂) compared to the APW method. The additional coef-

ficient is determined by requiring that not only the basis functions, but also their deriva-
tives with respect to r are continuous at the sphere boundaries. It is useful to require the
following normalization:

〈u|u〉 =
∫ RMT

0
u2
l (r)r

2dr = 1, (3.5)

where RMT is the muffin-tin radius. Taking the derivative of (3.5) with respect to the
energy it can easily be shown, that ul and u̇l are orthogonal. u̇l is calculated from a
Schrödinger-like equation, derived by taking the energy derivative of (3.2) with respect
to El:

{

− h̄2

2m

∂2

∂r2
+

h̄2

2m

l(l + 1)

r2
+ V (r)− El

}

ru̇l(r) = rul(r). (3.6)

The solution of this equation still has to be made orthogonal to ul, since any linear
combination of u̇l and ul also solves the equation. Once the ul and u̇l are made orthogonal
the basis functions inside the spheres form a completely orthogonal basis set, since the
angular functions Ylm(r̂) are also orthogonal. However, the LAPW functions are in general
not orthogonal to the core states, which are treated separately in the LAPW method. This
fact can cause problems in the presence of high lying core states. A detailed discussion of
these problems and strategies to cure them can be found in the book by Singh [98], which
includes a very comprehensive review of many aspects of the LAPW method. With the
construction of the LAPW basis the main problems of the APW method are solved:

• Since it is no longer necessary to set the energy parameters equal the band energies,
the later can be determined by a single diagonalization of the Hamiltonian matrix.
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• The LAPW method can be extended to non-spherical muffin-tin potentials with
little difficulty, because the basis offers enough variational freedom. This leads then
to the full-potential linearized augmented plane-wave method (FLAPW).

• If ul is zero at the sphere boundary, its radial derivative and u̇l are in general
nonzero. Hence, the boundary conditions can always be satisfied and there is no
asymptote problem.

As a final remark it is worth mentioning, that the nonlinearity inherent to the APW
method can only be circumvented at the expense of a larger eigenvalue problem. To see
this, recall that within LAPW (and also within APW) the basis functions are represented
by plane-waves. The functions inside the muffin-tins are coupled to the plane-waves via
the boundary conditions, and can only be varied indirectly by a variation of the plane-
wave coefficients. Clearly, with a finite number of plane-waves, at maximum the same
number of functions inside the spheres can be varied independently. Hence, to make use
of the extra variational freedom, that the LAPW basis set allows compared to the APW
basis, i.e. to vary the ul’s and the u̇l’s independently, more plane-waves have to be used.

For completeness it is worth mentioning that recently independently by two authors
[51, 99] local orbitals (lo) had been suggested to amend the LAPW and APW basis set,
to improve the speed of convergence with respect to the number of basis functions, and
to increase the energy width of appropriate energy minimization.

3.1.3 The Concept of FLAPW

In the past the majority of applications of APW and LAPW2 method employed shape-
approximations on the potential used in the Hamiltonian. Typically, the potential in the
unit cell V (r) is approximated by V0(r),

V (r) =







V 0
I = const. interstitial region

V 0
MT (r) muffin-tin

(3.7)

using a constant potential in the interstitial region and a spherically symmetric potential
inside each sphere.

While the LAPW method yields accurate results for close-packed metal systems the
shape-approximation becomes difficult to justify for crystals with open structures such as
silizides, perovskides, surfaces or clusters.

In the full-potential LAPW method (FLAPW), developed by Hamann and Wimmer
in [32, 125], any shape-approximations in the interstitial region and inside the muffin-tins
are dropped. This generalization is achieved by relaxing the constant interstitial potential
V 0
I and the spherical muffin-tin approximation V 0

MT (r) due to the inclusion of a warped

2There are APW and LAPW methods available which include the warped interstitial potential [44].
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interstitial
∑

V G
I e

iGr and the non-spherical terms inside the muffin-tin spheres:

V (r) =















∑

G

V G
I e

iGr interstitial region

∑

L

V L
MT (r)YL(r̂) muffin-tin

(3.8)

This method became possible with the development of a technique for obtaining the
Coulomb potential for a general periodic charge density without shape-approximations
and with the inclusion of the Hamiltonian matrix elements due to the warped interstitial
and non-spherical terms of the potential. The charge density is represented in the same
way as the potential:

ρ(r) =















∑

G

ρG
I e

iGr interstitial region

∑

L

ρLMT (r)YL(r̂) muffin-tin
(3.9)

Detail of the solution of the Poisson equation for an arbitrarily shaped periodic potential
are described in section 6.1.

3.2 Chiral Symmetries

Since our main purpose is to derive an FLAPW method for one-dimensional systems, we
face the problem of dealing with the world of symmetries, 1D systems possess. Within
the applications of the FLAPW method to the bulk and film structures, the symme-
tries of the considered systems were naturally included, allowing to achieve a significant
speed-up and increasing the efficiency of analysis of the obtained results [125]. However,
symmetries of 1D systems are very much different from those characteristic for 2D and 3D
geometries. The complexity of the problem is emphasized by the fact that the plane-wave
basis set, used both for 1D and 2D-3D versions, allows symmetrization according to the
film and bulk symmetrical operations more naturally, than to 1D chiral symmetries (see
section 3.3.3). To look deeper into the problem, we will have to analyze chiral symme-
tries in more detail in order to work out a suitable concept for treating these symmetries
efficiently.

Since the discovery of Ijima [38], carbon nanotubes are one of the most prominent
quasi-one dimensional crystals, which have been extensively investigated both experimen-
tally and theoretically. A carbon nanotube is a honeycomb lattice (graphene sheet) rolled
into a cylinder. The nanotube diameter is much smaller in size than the most advanced
semiconductor devices obtained so far. Thus the availability of the carbon nanotubes
may have a large impact on semiconductor physics because of their small size and special
electronic properties, which are unique. Because of the large variety of possible helical
geometries known as chirality, carbon nanotubes provide a family of structures with dif-
ferent diameters and chiralities. One of the most significant physical properties of carbon
nanotubes is their electronic structure which depends basically on their geometry. In
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particular, the electronic structure of a single-walled carbon nanotube is either metallic
or semiconducting, depending on its chirality and diameter.

But the world of 1D structures with the chiral geometries and specific electronic, semi-
conducting or metallic, properties is not restricted to a set of carbon nanotubes based
materials. First of all, there is currently a strong interest in the 1D complex materials
containing not only carbon atoms, but also other elements such as B, N, Si, Ga etc. Pos-
sessing peculiar, theoretically predicted, physical properties, these materials have been
successfully produced experimentally, existing in the form of quasi-one dimensional nan-
otubes and nanowires, with the symmetries, mostly related to the symmetries of carbon
nanotubes. On the other hand, recent discoveries in the field of metallic wires and tubes,
make it possible to apply the symmetry technique usually used for carbon nanotubes for
a huge general class of materials of one-dimensional nature via some generalizations.

In the code the symmetry properties are formulated and included in terms of the chiral
symmetry group of the considered system. This means that the symmetry group T is
cyclic of order N with a generator R so that for every operation n = 1, ..., N : Rn = Rn,
T = {R,R2, ...,RN−1}. In a three-dimensional space the operation R is nothing else but
a simultaneous rotation around the z-axis (the axis of one-dimensional periodicity) Rψ

and a translation along the z-axis τ , R = (Rψ, τ). Obviously,

ψ =
2π

N
, and τ =

M · T
N

, (3.10)

where M is some integer number and T is a period of the system along the z-direction.
Formulated in such a manner, the approach for describing the chiralities of the consid-

ered 1D systems seems to be the most optimal from the implementational point of view
within the FLAPW approach.

This symmetrical approach, being rather abstract and general, can be easily mapped,
for instance, on hexagonal and triangular classes of symmetries, which many of the 1D
systems possess. We briefly show this mapping in two following sections.

3.2.1 Hexagonal In-Plane Lattice

The structure of a single-walled nanotube, obtained by rolling up a hexagonal sheet of
atoms [17], can be specified by two vectors: ~OA and ~OB (see 3.2 (left)). Vector ~OB

corresponds to the direction of the nanotube and vector ~OA corresponds to the circum-
ference of a nanotube, perpendicular to the nanotube axis. A 1D nanotube is obtained by
connecting the points O, A and B, B ′. The vectors ~OA and ~OB define the chiral vector
of the nanotube Ch and translational vector T. The chiral vector can be expressed in
terms of the real space unit vectors a1 and a2 of the hexagonal lattice:

Ch = ma1 + na2, (m,n are integers, 0 ≤ |m| ≤ n). (3.11)

It is very important to remember that a nanotube can be uniquely determined by its
chiral vector, and, therefore, talking about nanotubes, one always calls them by their
chiral vector (m,n).
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Figure 3.2: Left: the unrolled honeycomb lattice of a nanotube. When we connect sites
O and A, and B and B′, a nanotube can be constructed. ~OA and ~OB define the chiral
vector Ch and the translational vector T of the nanotube, respectively. The rectangle
OAB′B defines the unit cell for the nanotube. The vector R denotes a symmetry vector.
Right: space group symmetry operation R = (Rψ, τ) in which ψ denotes the angle of
rotation around the nanotube axis and τ is a translation in the direction of T as specified
by the symmetry vector R.

The diameter of the nanotube, dt, is given by L/π, in which L is the circumferential
length of the carbon nanotube:

dt = L/π, L = |Ch| = a
√
n2 +m2 + nm, a1 · a1 = a. (3.12)

The chiral angle θ is defined as the angle between the Ch and a1.
The translational vector T is defined to be the unit vector of a 1D nanotube. It is

parallel to the nanotube axis and normal to the Ch in the unrolled honeycomb lattice.
The translational vector can be expressed in terms of the planar basis vectors as:

T = t1a1 + t2a2, (t1, t2 are integers). (3.13)

The translational vector T corresponds to the first lattice point of the 2D hexagonal sheet
through which the vector ~OB passes. From this fact and the fact of orthogonality of T
and Ch the numbers t1 and t2 can be defined:

t1 =
2n+m

dR
, t2 = −2m + n

dR
, (3.14)

where dR is the greatest common divisor (gcd) of (2n+m) and (2m+ n).
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We denote the atom site vectors within the 1D nanotube unit cell by i times the vector
R, that is, iR, where i is an integer: i = 1, ..., N , and 2N is the number of atoms in the
1D unit cell of the carbon nanotube. When iR goes out of the unit cell, we shift it to lie
within the unit cell through translation by a integer number of Ch or T vectors, using
periodic boundary conditions. The vector R connects symmetry equivalent atoms in the
nanotube. It is convenient to express the R vector in terms of its projections on the
orthogonal vectors Ch and T of the nanotube unit cell, as it shown in the Fig. 3.2 (right).

The symmetry vector R is then defined as the site vector (shown by ~OR in Fig. 3.2 (left)),
having the smallest component in the direction of Ch, and expressed as:

R = pa1 + qa2, (p, q are integers). (3.15)

From a physical standpoint, the vector R consists of a rotation around the nanotube axis
by an angle ψ combined with a translation τ in the direction of T, and, therefore, R can
be treated as a generator of a symmetry group for a given nanotube R = (Rψ, τ), allowing
a complete description of the system in terms of a symmetry approach, which we have
formulated above.

Summarizing, having a nanotube with a unique chiral vector Ch = (m,n) and sym-
metry vector R = (p, q), the order of the symmetry group

N =
2(m2 + n2 + nm)

dR
(3.16)

is equal to the number of hexagons in the unit cell, dR = gcd(2m + n,m + 2n). The
corresponding relations are:

τ =
(mp− nq)T

N
, M = mp− nq. (3.17)

As an example, for the (9,0) nanotube (Fig. 3.3) we have: R = (1,−1), dR = 9, N =
18, M = 9, ψ = π

9
, τ = 1

2
in units of T .

3.2.2 Triangular In-Plane Lattice

Instead of rolling up a hexagonal sheet of atoms one could use a triangular lattice. Struc-
tures obtained in this way are very common for existing and experimentally observed
metallic nanowires and nanotubes.

Introducing a triangular lattice instead of a hexagonal one does not cause any signif-
icant changes in the formalism (for details see [113, 82]). In the same manner the chiral
vector Ch = (m,n), the translational vector T = (t1, t2) and symmetry vector R = (p, q)
can be defined in terms of the two-dimensional basis vectors a1, a2 of a triangular lattice.

The changes in the derived expressions for the chiral, translational and symmetry
vectors are mainly caused by the different orientation of a1 and a2 to each other. However,
the number of symmetry operations

N =
2(m2 + n2 − nm)

dR
(3.18)
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Figure 3.3: A large set of the future nanodevices are based on use of the carbon nanotubes,
which can be created by rolling up of a graphene sheet. Depending on the way this
sheet is rolled (or, equivalently, on the symmetry of the nanotube) physical properties
show essential differences, in particular, a transition from a conducting to semiconducting
behavior. As an example, in-plane representation of a (9,0) nanotube is shown, including
the derived symmetry parameters. The elementary unit cell is marked with a thick red
line.

is equal to the number of atoms in the unit cell, where dR is the greatest common divisor
(gcd) of (2m− n) and (m− 2n). The translational part of R is given by

τ =
(mp− nq)T

N
, with M = mp− nq. (3.19)

For example for the Ch = (6, 0) wire (see also Fig. 3.4) R would be (1, 1), dR = 6, N =
12, M = 6, ψ = π

6
, τ = 1

2
in units of T .

On the Fig. 3.5 we have also shown a (6,3) nanowire obtained by rolling a triangular
sheet of atoms with Ch = (6, 3). In this case R = (1, 1), and dR = 9, N = 6, M = 3, ψ =
π
3
, τ = 1

2
in units of T .

3.3 Implementation

In this section we give a brief outlook of the current implementation of the 1D philosophy
within the FLAPW formalism. One-dimensional FLAPW model is a natural continuation
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Figure 3.4: Many of the metallic nanowires (single-walled or multi-walled) are obtained by
rolling up a triangular sheet of metal atoms. Figure presents a symmetrical characteriza-
tion of a (6,0) nanowire in terms of a chiral vector with corresponding derived symmetry
parameters. The elementary unit cell of the considered structure is marked with a thick
red line.

of a film FLAPW method, where an additional region of space, besides the interstitial and
muffin-tin regions, appears. This third, additional, as compared to bulk, region, which is
called vacuum region, is situated outside the muffin-tins in order to describe the decay
of the charge density, potential and basis functions into the vacuum at a large distance
from the film surfaces. Implemented by E. Wimmer, H. Krakauer, M. Weinert, A.J.
Freeman and M. Posternak 25 years ago ([50, 125, 122]), the FLAPW film model proved
to be powerful, very precise and fast compared to the FLAPW super-cell approach for the
calculations of the electronic properties of thin slabs. However, recent scientific interest
in the structures of one-dimensional nature was our main motivation in extending the
FLAPW method to 1D systems.

3.3.1 Geometry

In the FLAPW method for one-dimensional systems, presented in this thesis, the infinite
three-dimensional space is partitioned into three regions: the muffin-tin spheres (MT)
with the radius RMT around the atoms, the interstitial region (IR) between the atoms and
within a cylinder along the z-direction of the radius Rvac (for this parameter we will also
often use R). Outside this cylinder there is an infinitely extended vacuum region (VR) (see
Fig. 3.5). From here on we define the z-axis as the axis of one-dimensional translational
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Figure 3.5: Spatial partitioning of space into muffin-tin spheres (MT), interstitial region
(IR) and vacuum region (VR) (shown in blue color) is shown from aside (left) and from the
top (right). The vacuum region is the infinite region outside the cylinder with the diameter
Dvac. In-plane reciprocal vectors G|| are generated in an in-plane square lattice with the

lattice constant D̃ > Dvac. T is a period of the wire along the z-axis. R = (Rψ, τ) is a
generator of the symmetry group. Here: the order of the group is N = 6, ψ = π

3
, M = 3,

τ = 1
2
.

symmetry. As our method is based on the use of LAPW basis functions [1, 50, 125], the
set of reciprocal vectors G = (G||, Gz) is generated in a rectangular box, which reflects the
translational periodicity of the system in z-direction. The corresponding Bloch number kz
(which is also often written as k in the text) lies within the first one-dimensional Brillouin
zone. The in-plane reciprocal lattice vectors G|| are generated in an in-plane square lattice

with the lattice constant D̃. The vacuum region is an infinite region outside the cylinder
with the diameter Dvac < D̃ (Dvac = 2Rvac), with the axis along z-direction. Parameter
D̃ is chosen larger than D to gain greater variational freedom.

3.3.2 Symmetries

Introducing the symmetry for the system (see section 3.2) automatically means, that some
of the atoms in the unit cell are symmetry equivalent, i.e. these atoms can be mapped
onto each other by a space group operation R = {Rψ|τ}. Such a group of atoms is called
an atom type, represented by one of the atoms. Let Rµ = {Rψµ

|τµ} = {Rµ|τµ} be the
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Figure 3.6: Local coordinate frames inside each muffin-tin.

operation that maps the atom µ onto its representative. This atom can now be assigned
a local coordinate frame Sµ (cf. Fig. 3.6), where the origin of Sµ is at the atom’s position
pµ. 3

The local frame is chosen such that the unit vectors of the local frame Sµ are mapped
onto those of the global frame by Rg (RµSµ = Sg). The local frame of the representa-
tive atom Sα is only translated with respect to the global frame, i.e. the same rotation
Rµ maps Sµ onto Sα. The potential (and other quantities) inside the muffin-tins can
now be written in terms of the local coordinate system. Due to the symmetry we find
VMTα(rα) = VMTµ(rµ) , where rα and rµ are expanded in terms of the local frames Sα

and Sµ respectively. As a consequence the radial functions ul(r) and the t-matrices (see
section 4.2.1) are the same for all atoms of the same type. This way symmetry is exploited
to save memory and computing time during the calculation of the t-matrices.

3The atom position is very frequently denoted by τ
µ, which would clearly cause some confusion in

this context.
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3.3.3 Charge Density and Potential

The charge density is represented according to the symmetries of the system in the fol-
lowing way:

ρ(r) =































∑

G

ρG e
iGr ∼

∑

G

ρG ΦG(r) in IR
∑

ν

ρν(rα)Kν(r̂α)− Zα δ(rα) in MTα

∑

µ

ρµ(r)Φµ(ϕ, z) in VR

(3.20)

where
Kν(r̂) =

∑

m

cm(ν)Ylνm(r̂) (3.21)

are the lattice harmonics, obtained by exploiting the point symmetry of the atom α,
rα = r− τα, τα is the position of the atomic sphere α with the nuclear number Zα. The
quantities in the spheres, like radial components of the charge density, potential, and
basis functions are calculated and stored only for the representative atom of type α. All
necessary information on the charge density of an atom β, which is related by symmetry
to the atom α can then be obtained exploiting the fact that the local coordinate frame of
the atom Sβ = Rβ(α)Sα is related to the coordinate frame Sα by the symmetry operation
Rβ(α) which moves the representative atom α to the βth atom of the same type.

In the vacuum, symmetry can be used to reduce the number of expansion coefficients,
necessary to represent the charge density by introducing star functions. For a certain
µ = (m,Gz) a vacuum symmetrized two-dimensional star Φµ(ϕ, z) looks like:

Φµ(ϕ, z) =
1

N

N
∑

n=1

Rn e
imϕ eiGzz (3.22)

for those µ for which Φµ(ϕ, z) 6= 0, r ≥ Rvac. For instance having a rotational symmetry
of order p reduces the number of µ’s considered by factor p. The summation in (3.20)
includes µ’s withm’s up to a parameter mmax, defined for the charge density in the vacuum
as mmax ≈ Gmax ·Rvac, in analogy to the corresponding angular expansion parameter for
the basis functions in the vacuum.

In the interstitial region a double representation of the charge density is used:

ρ(r) =
∑

G

ρG e
iGr ←→

∑

G

ρG ΦG(r), (3.23)

where ΦG(r) is a symmetrized three-dimensional star:

ΦG(r) =
1

N

N
∑

n=1

Rn e
iGr =

1

N

N
∑

n=1

eiRnG(r−τn) (3.24)

The necessity of the double representation is caused by the nonorthogonality of the sym-
metrized stars ΦG. This means that in contrast to the situation using usual plane-waves,
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the integral of a symmetrized star ΦG(r) over the tetragonal unit cell with the in-plane
lattice constant D̃ is not necessarily zero in the case of G 6= 0. Also, the product of two
symmetrized stars is not a symmetrized star, which means, that it cannot be presented in
the form of (3.24) anymore (although, being a symmetrical function, can be expanded in
terms of symmetrized stars). The combination of the latter two facts makes it difficult to
apply a technique of fast Fourier transformations, widely used in plane-wave based codes.
The same representation in different regions of space, as for the charge density in (3.20),
is used for the potential.

After finding the wavefunctions expansion coefficients cGν (kz), the eigenvalues εν(kz),
and the Fermi energy EF (see section 3.3.6), the charge density is determined as:

ρ(r) =
∑

kz

∑

ν

w(kz) f(ν, kz) |Ψν
kz

(r)|2, (3.25)

where the summation goes over the one-dimensional Brillouin zone with the weighting
factors w(kz) and the Fermi function f(ν, kz).

3.3.4 Coulomb Potential

The potential used for solving the one-particle Kohn-Sham equation is divided into the
Coulomb and the exchange-correlation parts. While the latter is obtained on a real-space
grid in a quite straightforward manner, the Coulomb potential requires more attention.

Conceptually, the approach for solving the Poisson equation goes back to Weinert’s
pseudo-charge scheme for the Dirichlet problem [120] for the spheres and vacuum bound-
aries. The basic idea of the pseudo-charge scheme is that the charge distributions inside
the spheres contribute to the potential outside the spheres only via their multipole mo-
ments. As multipole moments do not uniquely define a charge density, we replace the real
charge density in the spheres by a so-called pseudo-charge density with the same multi-
pole moments fulfilling the additional requirement of having rapidly converging Fourier
components. These Fourier components together with the vacuum charge density take
part in solving the Poisson equation in the vacuum. After that the Dirichlet problem for
the interstitial-vacuum boundary is solved in order to find the Fourier components of the
interstitial potential. Subsequently, the Coulomb potential in the spheres is found via the
interstitial-spherical Dirichlet boundary problem:

Vα(rα) =
∫

Sα

ρα(r)G(r, rα) d
3r − R2

α

4π

∮

Sα

VI(Rα)
∂G

∂n
dΩ, (3.26)

where Sα denotes a sphere around atom α with the radius Rα, Rα is a point on ∂Sα, VI
is the interstitial potential, and the Green function G(r, rα) and its normal derivative are
given in [120].

The Poisson equation in the vacuum is solved in cylindrical coordinates using the
boundary condition at infinity:

lim
r→∞

V (r) = 0, lim
r→∞

∂V (r)

∂r
= 0. (3.27)
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Thus, we introduce the zero energy as an absolute reference from which all energies are
measured. For example, the work function is just given by the negative of the Fermi
energy EF . The radial Poisson equation which describes the (m,Gz)-component of the
vacuum potential in cylindrical coordinates is given by:

(

d2

dr2
+

1

r

d

dr
−G2

z −
m2

r2

)

VGz ,m(r) = −4πρGz ,m(r). (3.28)

The equation is solved using the Green function Gm,Gz
, which satisfies above defined

boundary conditions:

Gm,Gz
(r, r′) =



















−4π ln r< m = Gz = 0

2π
m

(r</r>)m Gz = 0, m 6= 0

4πIGz
m (r<)KGz

m (r>) m ·Gz 6= 0

(3.29)

where r> = max(r, r′), r< = min(r, r′), IGz
m and KGz

m are the modified cylindrical Bessel
and MacDonald functions Im and Km of order m: IGz

m (r) = Im(Gzr), K
Gz
m (r) = Km(Gzr).

The radial component of the Coulomb potential in the vacuum V V
µ (r) is obtained in terms

of the radial charge density as:

V V
Gz ,m(r) =

∫ ∞

0
r′Gm,Gz

(r, r′) ρGz ,m(r′) dr′, r > Rvac. (3.30)

Note, that the integration range is between 0 ≤ r′ ≤ Rvac. Thus it includes the interstitial
region, where the charge density has a three-dimensional Fourier representation. The
corresponding radial components of the interstitial charge density read:

ρGz ,m(r) =
∑

G‖

imρGz ,G‖
e
−imϕG‖Jm(G‖r), (3.31)

with Jm denoting the cylindrical Bessel functions of order m and ϕG‖
is the polar coor-

dinate of the in-plane component G‖ of a reciprocal vector. Therefore, the integration
over the interstitial region is reduced to a G‖-summation on the vacuum boundary for
each (m,Gz)-component. On the interstitial-vacuum boundary a value of the vacuum
potential V V

b is obtained.
In the next step we construct the potential Ṽ in the interstitial region, having the

following Fourier components:

ṼG =
4π

G2
ρG, and Ṽ0 = 0, (3.32)

with the interstitial-vacuum boundary value Ṽb. Applying the Fast Fourier Transform
(FFT) to Ṽ we get it on a real grid in the interstitial. The second auxiliary interstitial
potential V we use solves the boundary problem:

∆V(r) = 0, r ∈ IR, Vb = VV
b − Ṽb, (3.33)

where Vb is a boundary value of V. This potential is easily found analytically on the real
grid. After the real grid summation and applying backward FFT to Ṽ + V we get the
Fourier components of the real interstitial potential VI(G).
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3.3.5 Basis Functions

As characteristic for the FLAPW method, optimally adjusted basis functions are used it
three different regions of space:

ϕG(kz, r) =


































ei(G+kz)r in IR
∑

L

(

AαGL (kz) u
α
l (r) +BαG

L (kz) u̇
α
l (r)

)

YL(r̂) in MTα

∑

m

(

AG
m(kz) u

Gz

m (kz, r) +BG
m(kz)u̇

Gz

m (kz, r)
)

×eimϕei(Gz+kz)z in VR

(3.34)

In the interstitial region the basis functions ϕG(kz, r) are usual plane-waves with k =
(0, 0, kz).

In the sphere MTα the basis functions for each atom α have the well-known form of
products of spherical harmonics YL(r̂), L = (l, m), and of the radial wavefunctions uαl (r)
and their energy derivatives u̇αl (r) ,which solve for each angular momentum l ≤ lmax

certain types of radial Schrödinger like scalar-relativistic equations, with the spherical
part of the potential V MTα

0 (r) and suitably chosen energy parameters El [98].

In the vacuum region the space coordinate r is written in terms of cylindrical coor-
dinates (r, ϕ, z) and the summation over m goes up to the angular expansion parameter
mmax, which ensures that the oscillations of the plane-waves on the cylindrical vacuum
boundary continue smoothly to the vacuum side. Since the vacuum potential is rather
flat, relativistic effects on the basis functions can safely be ignored, and the cylindrically
symmetrical part of the vacuum potential V0(r) and the vacuum energy parameter Ev,
determined in every iteration, enter in solving the radial Schrödinger equation for every
pair (m,Gz) giving rise to the vacuum radial basis wavefunctions uGz

m (kz, r) and their
energy derivatives u̇Gz

m (kz, r).

The sets of augmentation coefficients A and B both for the MT spheres and the
vacuum region are determined such that the basis functions and their spatial derivatives
are continuous across the MT spheres, interstitial and vacuum region boundaries. The
equations and normalization conditions for the radial functions uGz

m (kz, r) and u̇Gz
m (kz, r),

and expressions for A- and B coefficients are given in section 4.2.4.

All the basis functions with reciprocal lattice vector G that fulfill the condition |kz +
G| < Kmax are included. The corresponding representation of the charge density and
potential involves all vectors G with |G| < Gmax. Typically, Gmax ≈ 3 ·Kmax in order to
describe multiplication of the interstitial potential with the step function. The vacuum
parameter mmax is defined in the same manner as lmax in the spheres [98]: mmax '
Kmax ·Rvac.

In the case of carrying out spin-polarized calculations for magnetic systems, the basis
functions and all the matrix elements discussed below, carry an additional index σ =↑, ↓,
which is dropped here for simplicity.
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3.3.6 Eigenvalue Problem

The wavefunction Ψν
kz

(r) for a certain kz-point and an energy band ν is expanded in terms
of basis functions as:

Ψν
kz

(r) =
∑

G

cGν (kz)ϕG(kz, r), (3.35)

where the expansion coefficients cGν (kz) and corresponding eigenvalues εν(kz) are found
by minimizing the Rayleigh-Ritz functional:

εν(kz) =
〈Ψν

kz
|H|Ψν

kz
〉

〈Ψν
kz
|Ψν

kz
〉 (3.36)

with respect to the expansion coefficients. H is the Hamiltonian of the system. Mini-
mization of (3.36) leads to the generalized eigenvalue problem:

{H(kz)− εν(kz)S(kz)} cGν (kz) = 0, (3.37)

where the appearance of the overlap matrix S(kz) is due to the nonorthogonality of basis
functions. The components of the Hamiltonian and overlap matrices are given by following
expressions:

HG′G(kz) =
∫

ϕ∗
G′(kz, r)HϕG(kz, r) d

3r, (3.38)

SG′G(kz) =
∫

ϕ∗
G′(kz, r)ϕG(kz, r) d

3r. (3.39)

The integration goes over the entire unit cell. Exact expressions for the Hamiltonian and
overlap matrix elements are given in the next Chapter.

3.3.7 Timing

In order to give the reader an impression about the computational cost for computing
the vacuum region we have analyzed the timing of the Hamiltonian and overlap matrix
setup, the charge density and potential generation. The timing was measured for a bare
Au(6,0) tube with 12 atoms per unit cell with the computational parameters as described
in section 7.2. The set-up of the Hamiltonian and overlap matrices in the vacuum region
takes about 10% of the overall time spend to set up these matrices, which amounts to
2.5% of the entire eigenvalue problem including the diagonalization. The construction of
the vacuum charge density takes 0.9% of the total time per iteration and a fraction of
2% of the total time per iteration is needed for the vacuum potential within the LDA
(including Coulomb and exchange-correlation potential). In total, for a 12 atom Au(6,0)
tube the total time spend for calculating the vacuum region amounts to 5% of the entire
CPU time for one iteration with 11 k-points in one half of the Brillouin zone.

We have also performed comparative calculations of a gold monowire, once calculated
with the 1D code presented in this thesis as well as with a bulk code, where a wide variety
of methods are readily available applying a frequently practiced super-cell approach to
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Figure 3.7: Time, consumed by different parts of the program while calculating an iron
monowire, compared to the super-cell film program. The comparison is made for one-
dimensional and film model realizations of the FLEUR code. 64 k-points in one half of
the Brillouin zone were used. Separation between the neighboring monowires for film
calculations was set to 19 a.u. The rest of the parameters and hardware used were the
same.

simulate the 1D geometry. In order to provide an interpretable comparison, we have
used on the same computer hardware also for the super-cell calculations the FLAPW
bulk code as implemented in the FLEUR code. In both approaches we have exploited the
following symmetry elements: inversion, z-reflection and p4m symmetry group. For the
truly one-dimensional calculations we have chosen for the computational parameters Dvac

and D̃ the values of 4.8 a.u. and 5.9 a.u., respectively. The angular expansion parameter
mmax of 50 for the charge density and potential, and 20 for the basis functions proved to
provide the required accuracy. In the super-cell approach, we followed the work of Delin
and Tosatti [14] in choosing the geometrical set-up to simulate the 1D wires. Thus, we
used a tetragonal super-cell and the distance between the neighboring monowires was set
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to 19 a.u.. For the calculations we used 64 k-points in one half of the Brillouin zone.
The rest of the parameters were the same for both calculations. We found that per self-
consistency iteration the 1D-method is 150 times faster than the super-cell approach, and
the Hamiltonian construction and the diagonalization part of the 1D code is 270 times
faster than that of the bulk super-cell code.

For completeness we compare the timing also with the super-cell approach using the
film geometry [50] (a truly two-dimensional method with semi-infinite vacuum on both
side of a slab of a finite thickness) of the FLEUR code. In this super-cell geometry the
one-dimensional wires are simulated by two-dimensional rectangular unit cell where the
wires are again separated by 19 a.u.. The parameters Dvac and D̃ were set to 4.8 a.u.
and 5.9 a.u., respectively. All other computational parameters where chosen as in the
bulk and 1D-geometry. We found that per self-consistency iteration the 1D-method is
15 times faster than the super-cell approach with 64 k-points in one half of the Brillouin
zone, and the Hamiltonian construction and the diagonalization part of the 1D code is 25
times faster than that of the film super-cell code.

Finally, we would like to mention, that the code was parallelized for CRAY T3E and
IBM SP4 supercomputers.



Chapter 4

Eigenvalue Problem

The solution of the eigenvalue problem has to be carried out separately for every Bloch
vector. And, of course, the basis set and the Hamiltonian matrix have to be set up for
each Bloch vector. However, we will not always add the k-index to the basis functions
and the Hamiltonian matrix.

There is one important fact that we have not mentioned so far. Even though plane-
waves form an orthogonal basis set, the FLAPW functions do not. The plane-waves
in the interstitial-region are non-orthogonal, because the muffin-tin are cut out, i.e. the
integration, in terms of which orthogonality is defined, does not stretch over the whole
unit cell, but only over interstitial region. An additional contribution comes from the
muffin-tin. Even though the ul(r)YL and u̇l(r)YL are mutually orthogonal, in general
each plane-wave couples to all functions in the spheres.

Due to the non-orthogonality of the basis functions the overlap matrix S, defined by
(4.1), is not a diagonal, but a hermitian matrix.

SGG′

=
∫

ϕ∗
G′(r)ϕG(r)d3r (4.1)

In (the more convenient) Dirac notation the eigenvalue problem has the following form.

H|φi〉 = εi|φi〉 (4.2)

Where |φi〉 denotes the eigenfunction corresponding to the ith eigenvalue εi. Substituting
the expansion of the eigenfunctions

|φi〉 =
∑

G

ciG|ϕG〉 (4.3)

we obtain
∑

G

ciGH|ϕG〉 = εi
∑

G

ciG|ϕG〉 (4.4)

Multiplying this from the left with 〈ϕG
′ | we find

∑

G

ciG〈ϕG
′ |H|ϕG〉 = εi

∑

G

ciG〈ϕG
′ |ϕG〉 (4.5)

41
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which can be written in matrix form

{H− εiS} ci = 0 (4.6)

where the eigenvector ci is the coefficient vector corresponding to the ith eigenvalue. (4.6)
is called a generalized eigenvalue problem.

However, this problem can be reduced to a standard eigenvalue problem using the
Cholesky decomposition. It can be shown (e.g. Stoer [109]), that any hermitian and
positive definite matrix can be decomposed into a matrix product of a lower triangular
with only positive diagonal elements matrix and its transposed. Clearly, the overlap
matrix satisfies these conditions and can be written

S = LLT (4.7)

Therefore (4.6) becomes

Hci = εiLLTci (4.8)

multiplying from the left with L−1 and introducing a unit matrix we get

L−1H(L−1)TLT ci = εiL
Tci (4.9)

defining

P = L−1H(L−1)T , xi = LTci (4.10)

we finally have

Pxi = εixi (4.11)

Thus the generalized eigenvalue problem has been reduced to a simple eigenvalue problem.
The eigenvectors ci can be obtained by the back-transformation

ci = (LT )−1xi (4.12)

4.1 Relativity in Valence Electron Calculations

Relativistic effects are important for the correct numerical description of core or valence
electrons. Both core and valence electrons have finite wavefunctions near the nucleus,
where the kinetic energy is large. This kinetic energy enhancement becomes more signif-
icant for heavier elements. Additionally, only relativistic effects, in particular the spin-
orbit-coupling, introduce a link between spatial and spin coordinates. Thus, information
about the orientation of spins relative to the lattice can only be gained if relativity is taken
into account. For fully relativistic description of the electronic structure all relativistic
effects (mass-velocity, Darwin-term, spin-orbit coupling) have to be taken into account.
However, in many applications an approximation is used, where the spin-orbit interaction
is neglected. This approximation is called the scalar relativistic approximation.
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4.1.1 The Kohn-Sham-Dirac Equation

In the relativistic density functional theory the Kohn-Sham equation has the form of a
single-particle Dirac equation:

{

cα · p + (β − 1)mc2 + V eff(r)
}

Ψ = EΨ (4.13)

α =

((

0 σx
σx 0

)

,

(

0 σy
σy 0

)

,

(

0 σz
σz 0

))tr

=

(

0 σ
σ 0

)

(4.14)

β =

(

I2 0
0 −I2

)

(4.15)

Here, σx σy σz are the Pauli matrices and σ is the vector of Pauli matrices, p is the momen-
tum operator, and In denotes an (n×n) unit matrix. V eff is the effective potential, that
contains electron-nucleon Coulomb potential, Hartree potential and exchange-correlation
potential. In the case of non-zero spin-polarization, V eff becomes spin-dependent. Fi-
nally, Ψ is a relativistic four-component wavefunction.

The straightforward way to solve this problem would be to expand each of the four
components of Ψ in terms of the FLAPW basis. However, if all four components were
treated with the same accuracy, this would result in a basis set which contains four times
as many functions as in the non-relativistic (non-magnetic) case. Since the numerical
effort of the Hamiltonian diagonalization scales with the dimension of the matrix to the
power of three, this would increase the computing time needed for the diagonalization by
a factor of 64.

The FLAPW implementation we use introduces some approximations to make rela-
tivistic calculations more efficient. One of these approximations is the scalar relativistic
approximation, which has been suggested by D.D. Koelling and B.N. Harmon [46], where
the spin-orbit term is neglected, and spin and spatial coordinates become decoupled.
Hence, the Hamiltonian matrix reduces to two matrices of half the size, which can be di-
agonalized separately. This saves a factor of four in computing time. The scalar relativistic
approximation will be briefly discussed in the next section. It should be noted, that rela-
tivistic effects are only significant close to the nucleus, where the kinetic energy is large. It
is therefore reasonable to treat the interstitial region and the vacuum non-relativistically.
Thus, merely within the muffin-tins the electrons are treated relativistically. And only
the large component of Ψ is matched to the non-relativistic wavefunctions at the bound-
ary between the muffin-tins and the interstitial region, because the small component is
already negligible at this distance from the nucleus. The small component is attached
to the large component, and cannot be varied independently. However, this is a sensible
approximation for two reasons: firstly, even inside the muffin-tin sphere the large compo-
nent is still much bigger than the small component, and plays a more important role, and,
secondly, the two components are determined by solving the scalar relativistic equations
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for the spherically averaged potential. Therefore, they are very well suited to describe the
wavefunctions.

4.1.2 The Scalar Relativistic Approximation

As it was already pointed out in the previous section, the electrons are only treated rela-
tivistically inside the muffin-tin spheres. Thus, the first problem that has to be addressed
is the construction of the relativistic radial function. This is done by solving the scalar
relativistic equation, including only the spherically averaged part of the potential. The
starting point is the following Dirac equation:

{

cα · p + (β − 1)mc2 + V (r)
}

Ψ = EΨ (4.16)

The solution of (4.16) is discussed in many textbooks, e.g. E.M. Rose [92]. Due to
spin-orbit coupling m and ms are not good quantum numbers any more, and they have
to be replaced by the quantum numbers κ and µ (or j and µ), which are eigenvalues of
the operators K and the z-component of the total angular momentum jz (or the total
angular momentum j and jz) respectively. K is defined by

K = β(σ · l + 1) (4.17)

The solutions of (4.16) have the form

Ψ = Ψκµ =

(

gκ(r)χκµ
ifκ(r)χ−κµ

)

(4.18)

Where gκ(r) is the large component, fκ(r) is the small component, χκµ and χ−κµ are spin
angular functions, which are eigenfunctions of j, jz, K and s2 with eigenvalues j, µ, κ
(-κ) and s = 1/2 respectively. The spin angular functions can be expanded into a sum of
products of spherical harmonics and Pauli spinors. Where the expansion coefficients are
the Clebsch-Gordon coefficients. The radial functions have to satisfy the following set of
coupled equations:

∂

∂r
gκ(r) = −κ + 1

r
gκ(r) + 2Mcfκ(r) (4.19)

∂

∂r
fκ(r) =

1

c
(V (r)− E)gκ(r) +

κ− 1

r
fκ(r) (4.20)

with

M = m +
1

2c2
(E − V (r)) (4.21)

This can be written in matrix form.










−κ + 1

r
− ∂

∂r
2Mc

1

c
(V (r)− E)

κ− 1

r
− ∂

∂r











(

gκ(r)
fκ(r)

)

= 0 (4.22)
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To derive the scalar relativistic approximation D.D. Koelling and B.N. Harmon [46] in-
troduce the following transformation.

(

gκ(r)
φκ(r)

)

=









1 0

1

2Mc

κ + 1

r
1









(

gκ(r)
fκ(r)

)

(4.23)

Using this transformation (4.22) becomes













− ∂

∂r
2Mc

1

2Mc

κ(κ+ 1)

r2
+

1

c
(V (r)− E)− 1

2Mc

κ+ 1

r

(

∂

∂r
− M

′

M

)

κ− 1

r
− ∂

∂r













(

gκ(r)
φκ(r)

)

= 0 (4.24)

Where M
′
denotes the derivative of M with respect to r (∂M/∂r). Recalling that κ is the

eigenvalue of K = β(σ ·l+1) the term (κ+1)M
′
/2M2cr can be identified as the spin-orbit

term. This term is dropped in the scalar relativistic approximation, because it is the only
one, that causes coupling of spin up and spin down contributions. For numerical reasons
the functions gl(r) and φl(r) are replaced by p(r) = rgl(r) and q(r) = crφl(r). Thus,
equations (4.24) become:

∂

∂r
p(r) = 2

(

1 +
1

2c2
(E − V (r))

)

q(r) +
p(r)

r
(4.25)

∂

∂r
q(r) =





l(l + 1)

2
(

1 + 1
2c2

(E − V (r))
)

r2
+ V (r)− E



 p(r)− q(r)

r
(4.26)

∂

∂r
ṗ(r) = 2

((

1 +
1

2c2
(E − V (r))

)

q̇(r) +
1

2c2
q(r)

)

+
ṗ(r)

r
(4.27)

∂

∂r
q̇(r) =





l(l + 1)

2
(

1 + 1
2c2

(E − V (r))
)

r2
+ V (r)− E



 ṗ(r)

−




l(l + 1)

4c2
(

1 + 1
2c2

(E − V (r))
)

r2
+ 1



 p(r)− q̇(r)

r
(4.28)

These formulas have been obtained using the definition of M (4.21), Ṁ = 1/2c2 and
the fact that m = 1 in Hartree units. In our implementation of FLAPW the radial
wavefunctions are normalized according to

〈(

gl
φl

)∣

∣

∣

∣

∣

(

gl
φl

)〉

=
∫ RMT

0
(g2
l (r) + φ2

l (r))r
2dr = 1 (4.29)
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However, g2
l (r) + φ2

l (r) is not the charge density. The radial charge density is defined by

ρl(r) =

〈(

gl
fl

)∣

∣

∣

∣

∣

(

gl
fl

)〉

=
∫ RMT

0
(g2
l (r) + f 2

l (r))r
2dr (4.30)

The energy derivatives of the radial functions have to be made orthogonal to the radial
functions (comp. section 3.1.2).

〈(

gl
φl

)∣

∣

∣

∣

∣

(

ġl
φ̇l

)〉

= 0 (4.31)

Thus, the scalar relativistic FLAPW basis set is

ϕG‖G⊥
(r) =











































eiG‖r‖ ei(Gz+k)z Int.

∑

m

(

AG
m(k) uGz

m (k, r) +BG
m (k)u̇Gz

m (k, r)
)

V ac.

∑

α
lm

AαGklm

(

gl(r)
φl(r)

)

Ylm(r̂) +BαGk
lm

(

ġl(r)

φ̇l(r)

)

Ylm(r̂) MT

(4.32)

Note, that the Pauli-spinors have been omitted, since the spin up and down problems are
solved independently within the scalar relativistic approximation. Rewriting (4.24)

HSP

(

gl(r)
φl(r)

)

= E

(

gl(r)
φl(r)

)

(4.33)

with

HSP =











1

2M

l(l + 1)

r2
+ V (r) −2c

r
− c ∂

∂r

c
∂

∂r
−2mc2 + V (r)











, (4.34)

a matrix expression for the scalar relativistic Hamiltonian including only the spherically
averaged part of the potential can be obtained.

4.2 Construction of the Hamiltonian Matrix

The FLAPW Hamiltonian and overlap matrices consist of three contributions from the
three regions of space.

H = HI + HMT + HV (4.35)

S = SI + SMT + SV (4.36)

All three contributions have to be computed separately.
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4.2.1 Hamiltonian and Overlap Matrices in the Spheres

The contribution from the muffin-tins to the Hamiltonian matrix and the overlap matrix
is given by the following expressions:

HG′G
MT (k) =

∑

µ

∫

MTµ

(

∑

L′

AµG
′

L′ (k)ϕαL′(r) +BµG′

L′ (k)ϕ̇αL′(r)

)∗

HMTα

(

∑

L

AµGL (k)ϕαL(r) +BµG
L (k)ϕ̇αL(r)

)

d3r (4.37)

SG′G
MT (k) =

∑

µ

∫

MTµ

(

∑

L′

AµG
′

L′ (k)ϕαL′(r) +BµG′

L′ (k)ϕ̇αL′(r)

)∗

(

∑

L

AµGL (k)ϕαL(r) +BµG
L (k)ϕ̇αL(r)

)

d3r (4.38)

with

ϕαL(r) =

(

gl(r)
φl(r)

)

YL(r̂), YL(r̂), ϕ̇αL(r) =

(

ġl(r)

φ̇l(r)

)

YL(r̂), (4.39)

where we distinguish between the atom index µ and the atom type index α(µ). If the
symmetries for the system are included, then some atoms can be mapped onto each other
by space-group operations. Clearly, the potential in theses atoms has to be the same. As
a consequence, the Hamiltonian and the basis functions ϕαL(r) do not differ among the
atoms of the same type. Due to this fact the muffin-tin potential of an atom type is only
stored once for the representative atom, and the matrices (4.41)–(4.44) are also calculated
for the representative only. HMTα is the scalar relativistic Hamiltonian operator. It can
be split up into two parts: the spherical Hamiltonian Hsp (4.34) and the non-spherical
parts of the potential Vns:

HMTα = Hα
sp + V α

ns (4.40)

The integrations above can be reduced to the summations, involving the following matrix
coefficients:

tαϕϕL′L =
∫

MTα
ϕαL′(r)HMTαϕ

α
L(r)d

3r (4.41)

tαϕϕ̇L′L =
∫

MTα
ϕαL′(r)HMTαϕ̇

α
L(r)d

3r (4.42)

tαϕ̇ϕL′L =
∫

MTα
ϕ̇αL′(r)HMTαϕ

α
L(r)d

3r (4.43)

tαϕ̇ϕ̇L′L =
∫

MTα
ϕ̇αL′(r)HMTαϕ̇

α
L(r)d

3r (4.44)

These matrix elements do not depend on the AµG
L (k) and BµG

L (k) coefficients, therefore,
they are independent of the Bloch vector and need to be calculated only once per iteration
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in the beginning of the k-points cycle. The functions ϕαL and ϕ̇αL have been constructed
to diagonalize the spherical part Hα

sp of the muffin-tin Hamiltonian HMTα:

Hα
spϕ

α
L = Elϕ

α
L (4.45)

Hα
spϕ̇

α
L + Ḣα

spϕ
α
L = Elϕ̇

α
L + ϕαL (4.46)

However, Ḣα
sp is smaller than Hα

sp, by a factor of 1/c2 and can be neglected:

Hα
spϕ̇

α
L = Elϕ̇

α
L + ϕαL (4.47)

Multiplying these equations with ϕαL′(r) and ϕ̇αL′(r), respectively, and integrating over the
muffin-tins gives

〈ϕαL′|Hα
sp|ϕαL〉MTα = δll′δmm′El (4.48)

〈ϕαL′|Hα
sp|ϕ̇αL〉MTα = δll′δmm′ (4.49)

〈ϕ̇αL′|Hα
sp|ϕαL〉MTα = 0 (4.50)

〈ϕ̇αL′|Hα
sp|ϕ̇αL〉MTα = δll′δmm′El〈ϕ̇αL|ϕ̇αL〉MTα, (4.51)

where the normalization condition for ϕαL has been used. So, only the contributions from
the the non-spherical part of the potential are left to be determined. Since the potential
is also expanded into a product of radial functions and spherical harmonics

V α(r) =
∑

L′′

V α
L′′(r)YL′′(r̂), (4.52)

the corresponding t-integrals consist of product of a radial integrals and an angular inte-
grals over three spherical harmonics, the so-called gaunt coefficients Gm′mm′′

l′ll′′ :

tαϕϕL′L =
∑

l′′
Iαϕϕl′ll′′ G

m′mm′′

l′ll′′ + δll′δmm′El (4.53)

tαϕϕ̇L′L =
∑

l′′
Iαϕϕ̇l′ll′′ G

m′mm′′

l′ll′′ + δll′δmm′ (4.54)

tαϕ̇ϕL′L =
∑

l′′
Iαϕ̇ϕl′ll′′ G

m′mm′′

l′ll′′ (4.55)

tαϕ̇ϕ̇L′L =
∑

l′′
Iαϕ̇ϕ̇l′ll′′ G

m′mm′′

l′ll′′ + δll′δmm′El〈ϕ̇αlm|ϕ̇αlm〉MTα (4.56)

with

Iαϕϕl′ll′′ =
∫

(gαl′ (r)g
α
l (r) + φαl′(r)φ

α
l (r))V

α
l′′ (r)r

2dr (4.57)

Iαϕϕ̇l′ll′′ =
∫

(gαl′ (r)ġ
α
l (r) + φαl′(r)φ̇

α
l (r))V

α
l′′ (r)r

2dr (4.58)

Iαϕ̇ϕl′ll′′ =
∫

(ġαl′ (r)g
α
l (r) + φ̇αl′(r)φ

α
l (r))V

α
l′′ (r)r

2dr (4.59)

Iαϕ̇ϕ̇l′ll′′ =
∫

(ġαl′ (r)ġ
α
l (r) + φ̇αl′(r)φ̇

α
l (r))V

α
l′′ (r)r

2dr. (4.60)
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The gaunt coefficients are given by

Gmm′m′′

ll′l′′ =
∫

Y ∗
lmYl′m′Yl′′m′′dΩ. (4.61)

Finally, the Hamiltonian and overlap matrix elements become:

HG′G
MT (k) =

∑

µ

∑

L′L

(AµG
′

L′ (k))∗tαϕϕL′L A
µG
L (k) + (BµG′

L′ (k))∗tαϕ̇ϕ̇L′L B
µG
L (k)

+(AµG
′

L′ (k))∗tαϕϕ̇L′L B
µG
L (k) + (BµG′

L′ (k))∗tαϕ̇ϕL′L A
µG
l (k) (4.62)

SG′G
MT (k) =

∑

µ

∑

L

(AµG
′

L (k))∗AµGL (k) + (BµG′

L (k))∗BµG
L (k)〈ϕ̇αL|ϕ̇αL〉MTµ . (4.63)

The Muffin-Tin A- and B-Coefficients

Any plane-wave can be expanded into spherical harmonics via the Rayleigh expansion:

eiKr = 4π
∑

L

il jl(rK) Y ∗
L (K̂) YL(r̂), (4.64)

where r = |r|, K = |K| and K abbreviates (G+k). Looking from the local frame, K and
the position of the sphere pµ appear to be rotated, furthermore, the origin of the local
frame is shifted. Therefore, the plane-wave has the following form in the local frame:

eiKr = ei(R
µK)(r+Rµpµ) (4.65)

Thus, the Rayleigh expansion of the plane-wave in the local frame is given by

eiKr = eiKpµ

4π
∑

L

il jl(rK) Y ∗
L (RµK̂) YL(r̂) (4.66)

The requirement of continuity of the wavefunctions at the sphere boundary leads to the
equation:

∑

L

AµGL (k) ul(RMTα)YL(r̂) + BµG
L (k) u̇l(RMTα)YL(r̂)

= eiKpµ

4π
∑

L

il jl(rK) Y ∗
L (RµK̂) YL(r̂), (4.67)

where RMTα is the muffin-tin radius of for the atom type α. The second requirement is
that the derivative with respect to r, denoted by ∂/∂r = ′, is also continuous:

∑

L

AµGL (k) u′l(RMTα)YL(r̂) + BµG
L (k) u̇′l(RMTα)YL(r̂)

= eiKpµ

4π
∑

L

il Kj ′l(rK) Y ∗
L (RµK̂) YL(r̂). (4.68)
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These conditions can only be satisfied if the coefficients of each spherical harmonic YL(r̂)
are equal. Solving the resulting equations for AµG

L (k) and BµG
L (k) yields:

AµGL (k) = eiKpµ

4π
1

W
il Y ∗

L (RµK̂) · [u̇l(RMTα)Kj ′l(RMTαK)− u̇′l(RMTα)jl(RMTαK)]

BµG
L (k) = eiKpµ

4π
1

W
il Y ∗

L (RµK̂) · [u′l(RMTα)jl(RMTαK)− ul(RMTα)Kj ′l(RMTαK)] ,

(4.69)

where the Wronskian W is given by:

W = [u̇l(RMTα)u′l(RMTα)− ul(RMTα)u̇′l(RMTα)] . (4.70)

Note, that for calculating the diagonal part of the Hamiltonian and overlap matrix, the
following representation of the coefficients can be used:

AµGL (k) = CµG
lm (k) aµGl (k), BµG

L (k) = CµG
lm (k) bµGl (k),

where a- and b-coefficients depend only on the l−index, but not on m. In the case of
l = l′ (diagonal case) the sum over m in (4.63) can be rewritten in terms of Legendre
polynomials:

∑

m,m′

CµG
lm (k)CµG′

lm′ (k) ∼ ei(G−G′)τµ
∑

m,m′

Ylm(RµK̂)Y ∗
lm′(RµK̂′) =

= (2l + 1)ei(G−G′)ταPl(
GG′

GG′
).

Using the last derived equation in calculating the diagonal elements of the Hamiltonian
and overlap matrices allows to achieve a significant speed-up.

4.2.2 Inversion Symmetry

Transformation of the FLAPW Basis Functions in Systems That Possess In-
version Symmetry

Plane-waves transform in a very simple way under the operation r → −r. Let I be the
inversion operator:

IeiKr = e−iKr =
(

eiKr
)∗
. (4.71)

Then if the system possesses an inversion symmetry, the FLAPW basis functions preserve
it, i.e. ϕG(k,−r) = ϕ∗

G(k, r). This is due to the fact, that if there is an atom at the position
−pµ, it follows, that there must be an equivalent atom at the position pµ. The value of
the basis function ϕG(k, r) inside the muffin-tin µ is given by:

ϕG(k, r) =
∑

L

AµGL (k) ul(r)YL(r̂) +BµG
L (k) u̇l(r)YL(r̂). (4.72)
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The vector −r lies in the opposite muffin-tin at the position −pµ. Let’s denote this atom
by −µ. Thus, we find:

ϕG(k,−r) =
∑

L

A−µG
L (k) ul(r)YL(r̂) +B−µG

L (k) u̇l(r)YL(r̂). (4.73)

The argument of the spherical harmonic is r̂ rather than −r̂, because the vector is ex-
panded in the local frame of the atom −µ. Substituting the explicit form of A−µG

L (k) and
B−µG
L (k) from (4.69) yields:

ϕG(k,−r) =
∑

L

eiK(−pµ) il Y ∗
L (−RµK̂) YL(r̂){Aul(r) +Bu̇l(r), } (4.74)

where it was used, that p−µ = −pµ and R−µ = −Rµ. A and B abbreviate all terms in
(4.69) that are real and do not depend on r or r̂. Using the fact that YL(r̂) = (−1)l YL(r̂)
(4.74) becomes:

ϕG(k,−r) =
∑

L

e−iK(pµ) (−i)l Y ∗
L (RµK̂) YL(r̂){Aul(r) +Bu̇l(r).} (4.75)

In the last step it can be exploited that Yl−m(r̂) = (−1)m Y ∗
lm(r̂). Substituting m′ = −m,

(4.75) becomes:

ϕG(k,−r) =
∑

lm′

e−iK(pµ) (−i)l Ylm′(RµK̂) Y ∗
lm′(r̂){Aul(r) +Bu̇l(r).} (4.76)

Hence, we have shown that the FLAPW basis functions transform according to

ϕG(k,−r) = ϕ∗
G(k, r) (4.77)

in the interstitial region and the muffin-tins, if the system possesses inversion symmetry

The Hamiltonian Matrix of Systems with Inversion Symmetry

The property of the FLAPW basis functions derived in the previous section causes sim-
plifications of the Hamiltonian and overlap matrices. In systems that possess inversion
symmetry these two matrices are real symmetric rather than complex hermitian. The
Hamiltonian depends explicitly on r via the potential. The matrix elements are given by:

HG′G(k) =
∫

ϕ∗
G′(k, r)H(r)ϕG(k, rd3r (4.78)

Substituting r′ = −r yields:

HG′G(k) =
∫

ϕG′(k, r′)H(r′)ϕ∗
G(k, r′d3r, (4.79)

where (4.77) and H(r) = H(−r) have been used. In addition the Hamiltonian operator
is real, i.e. H(r) = H∗(r). Thus, we finally obtain:

HG′G(k) =
∫

ϕG′(k, r′)H∗(r′)ϕ∗
G(k, r′d3r =

(

HG′G(k)
)∗

(4.80)
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Apparently, the same relation holds for the overlap matrix. The fact, that the two matrices
are real means a great simplification in actual calculation. In principle, the diagonalization
of a hermitian matrix is no more difficult than in the real case. However, one complex
multiplication contains four real multiplication, and therefore the complex problem is far
more “expensive” than the real one, and the diagonalization needs the biggest part of the
computer-time in each iteration.

4.2.3 Hamiltonian and Overlap Matrices in the Interstitial

The interstitial contributions to the Hamiltonian and overlap matrix have the following
form:

HGG
′

I (k) =
1

Ω

∫

I
e−i(G+k)r

(

− h̄2

2m
4+V (r)

)

ei(G
′
+k)rd3r, (4.81)

SGG
′

I =
1

Ω

∫

I
e−i(G+k)rei(G

′
+k)rd3r. (4.82)

The potential is also expanded into plane-waves in the interstitial region:

V (r) =
∑

G

VG e
iGr (4.83)

Without the existence of the muffin-tin spheres and the vacuum region, the integration of
the plane-waves would stretch over the entire unit cell, resulting in a simple summation.
The kinetic energy part is diagonal in momentum space and the potential part of the
Hamiltomian is local and diagonal in real space and of convolution form in momentum
space:

HGG
′

I (k) =
h̄2

2m
|G + k|2δGG

′ + V(G−G
′)

SGG
′

I = δGG
′

However, these matrix elements are not as straightforward to calculate as they appear at
first glance, due to the complicated structure of the interstitial region. The integrations
have to be performed only in between the muffin-tins. Therefore, a step function Θ(r)
has to be introduced, which cuts out the muffin-tins.

Θ(r) =











1 interstitial region
0 muffin-tins
0 vacuum region

(4.84)

Using this step function, the matrix elements can be rewritten:

HGG
′

I (k) =
1

Ω

∫

cell
e−i(G−G

′
)r V (r) Θ(r) d3r
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+
1

2
(G

′

+ k)2 1

Ω

∫

cell
e−i(G−G

′
)r Θ(r) d3r, (4.85)

SGG
′

I =
1

Ω

∫

cell
e−i(G−G

′
)r Θ(r) d3r

In momentum space (4.85) becomes:

HGG
′

I (k) = (VΘ)(G−G
′ ) +

h̄2

2m
(G

′

+ k)2Θ(G−G
′) (4.86)

SGG
′

I = Θ(G−G
′) (4.87)

where ΘG and (VΘ)G are the Fourier coefficients of Θ(r) and V (r)Θ(r), respectively.
Apparently, these coefficients are needed up to a cut-off of 2Gmax. The step function can
be Fourier transformed analytically. In order to find the Fourier coefficients of the step
function we will represent it in the following way:

Θ(r) = Θcyl(r) + Θbulk(r)− 1,

Θ(G) = Θcyl(G) + Θbulk(G)− δG,0

where Θcyl is a function which is equal to zero outside the cylinder and equal to one
inside the cylinder, accommodating the muffin-tins and interstitial, Θbulk(r) is a step
function which is zero in the MT region, and one everywhere else, with the known Fourier
components ([56]):

Θbulk(G) = δG,0 −
∑

α

e−iGτα
4πR3

MT,α

Ω

j1(GRMT,α)

GRMT,α

(4.88)

The Fourier coefficients of the cylindrical step function can be found as follows:

Θcyl(G) =
1

Ω

∫

Ω
eiGrΘcyl(r) d

3r =
1

Ω

∫

circle
eiG‖r d2r

∫

z
eiGzz dz

=
TδGz,0

Ω

∫ 2π

0

∫ R

0
reiG‖r cos(ϕ−ϕG) dr dϕ

=
TδGz,0

Ω

∑

m

im
∫ 2π

0

∫ R

0
eim(ϕ−ϕG)Jm(G‖r) dr dϕ =

2πTδGz ,0

Ω

∫ R

0
rJ0(G‖r) dr

Using the relation
∫ a
0 xJ0(x) dx = aJ1(a), we finally have:

Θcyl(G) =
2πTR2δGz ,0

Ω

J1(G‖r)

G‖R
=

2Ω

Ω̃

J1(G||R)

G||R
δGz ,0. (4.89)
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The Fourier transform of the product of V (r) and Θ(r) is given by a convolution in
momentum space:

(VΘ)G =
∑

G
′

VG
′Θ(G−G

′)

This convolution depends on both G and G
′
, therefore the numerical effort increases

like (Gmax)
6. However, (VΘ)G can be determined more efficiently, using Fast Fourier

Transform (FFT). Using this scheme the numerical effort scales like (Gmax)
3ln((Gmax)

3)
with Gmax

4.2.4 Hamiltonian and Overlap Matrices in the Vacuum

In this section we will consider the contributions to the Hamiltonian and overlap matrices
coming from the vacuum region. First, we will remind the expressions for the basis
function, corresponding to a certain reciprocal vector G, in the vacuum and interstitial
regions. In the interstitial region the basis function is a usual plane-wave:

ϕG(k, r) = ei(G+k)r, (4.90)

while in the vacuum the basis function reflects the cylindrical geometry, and, written in
cylindrical coordinates, looks like:

ϕG(k; r, ϕ, z) = ei(k+Gz)z
∑

m

eimϕ
(

AG
m(k)uGz ,m(k, r) +BG

m(k)u̇Gz ,m(k, r)
)

, (4.91)

where the summation over m goes up to a parameter mmax. The coefficients A and B are
defined form the condition of continuity of the basis function and its first radial derivative
at the interstitial-vacuum boundary. To find these coefficients we exploit the expression
for the plane-wave in cylindrical coordinates:

ϕG(k, r) = ei(k+Gz)z
∑

m

ime
im(ϕ−ϕG‖

)
Jm(Grr), (4.92)

where Jm is a cylindrical Bessel function of the order m and the in-plane part of the
reciprocal vector is written in polar coordinates G = (Gr, ϕG‖

). After using the continuity
conditions, discussed above, we come to the following equations for the coefficients A and
B:

im · e−imϕG‖ Jm(GrRvac) = AG
m(k) · uGz,m(k, Rvac) +BG

m (k) · u̇Gz,m(k, Rvac),

im · e−imϕG‖ Gr J
′
m(Gr Rvac) = AG

m(k) · u′Gz ,m(k, Rvac) +BG
m(k) · u̇′Gz,m(k, Rvac).

(4.93)

Directly from this system we write down the coefficients:

AG
m(k) = ime

−imϕG‖
u̇′Gz ,m(k, Rvac)Jm(GrRvac)− u̇Gz ,m(k, Rvac)GrJ

′
m(GrRvac)

uGz ,m(k, R)u̇′Gz,m(k, Rvac)− u̇Gz,m(k, Rvac)u′Gz,m(k, Rvac)
(4.94)
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BG
m(k) = ime

−imϕG‖
uGz,m(k, Rvac)GrJ

′
m(GrRvac)− u′Gz,m(k, Rvac)Jm(GrRvac)

uGz,m(k, Rvac)u̇′Gz,m(k, Rvac)− u̇Gz ,m(k, Rvac)u′Gz,m(k, Rvac)
(4.95)

The vacuum radial basis functions uGz,m(k, r) and their energy derivatives u̇Gz,m(k, r),
solve certain type of Schrödinger-like equation in the vacuum:

(

−1

2

d2

dr2
− 1

2r

d

dr
+

(k +Gz)
2

2
+
m2

2r2
+ V0(r)− Ev

)

uGz,m(k, r) = 0, (4.96)

(

−1

2

d2

dr2
− 1

2r

d

dr
+

(k +Gz)
2

2
+
m2

2r2
+ V0(r)− Ev

)

u̇Gz,m(k, r) = uGz ,m(k, r), (4.97)

where only the cylindrically symmetrical part V0(r) of the potential enters, and Ev is the
vacuum energy parameter, optimally defined for every iteration. The relativistic effects
on the basis functions can be safely ignored, since the vacuum potential is rather flat. The
solutions of the equations (4.96)–(4.97) are found with the assumptions that the radial
functions decay to zero on infinity, and the following orthogonality conditions are fulfilled:

∫ ∞

Rvac

r u2
Gz ,m (k, r) dr = 1, (4.98)

∫ ∞

Rvac

r uGz,m(k, r) u̇Gz,m (k, r) dr = 0. (4.99)

Technically, the equations for the vacuum radial basis functions are more easy to find
numerically using the radial solutions of the following equations:

(

−1

2

d2

dr2
+

(Gz + k)2

2
+ Ṽm(r)− Ev

)

vGz ,m(k, r) = 0,

(

−1

2

d2

dr2
+

(Gz + k)2

2
+ Ṽm(r)− Ev

)

v̇Gz ,m(k, r) = vGz ,m(k, r),

(4.100)

with the boundary conditions

∫ ∞

Rvac

v2
Gz,m(k, r) dr = 1,

∫ ∞

Rvac

vGz ,m(k, r)v̇Gz,m(k, r) dr = 0. (4.101)

In equation (4.100) the potential Ṽm(r) is an m-dependent reconstructed potential V0(r):

Ṽm(r) =
m2

2r2
+ V0(r)−

1

8r2
. (4.102)

The equations (4.100) are more easy to solve, moreover, the needed radial basis functions
u and u̇ can be directly written as:

uGz,m(k, r) =
vGz ,m(k, r)√

r
, u̇Gz ,m(k, r) =

v̇Gz ,m(k, r)√
r

. (4.103)
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After generating the radial basis functions and A and B coefficients, the overlap and
Hamiltonian matrices are constructed by the following expressions:

SG′G
V (k) =

∑

m′,m

∫

V
e−i(k+G

′
z)z e−im

′ϕ
(

AG′

m′(k) uG′
z,m

′(k, r) +BG′

m′ (k) u̇G′
z,m

′(k, r)
)∗ ·

ei(k+Gz)z eimϕ
(

AG
m(k) um,Gz

(k, r) +BG
m(k) u̇m,Gz

(k, r)
)

d3r (4.104)

HG′G
V (k) =

∑

m′,m

∫

V
e−i(k+G

′
z)z e−im

′ϕ
(

AG′

m′(k) uG′
z,m

′(k, r) +BG′

m′ (k) u̇G′
z,m

′(k, r)
)∗ ·

HV · ei(k+Gz)z eimϕ
(

AG
m(k) um,Gz

(k, r) +BG
m(k) u̇m,Gz

(k, r)
)

d3r (4.105)

The overlap matrix can be further rewritten in an easier way:

SG′G
V (k) =

∑

m

((

AG′

m (k)
)∗
AG
m(k) δG′

z,Gz
+
(

BG′

m (k)
)∗
BG
m (k) δG′

z,Gz
〈u̇G′

z,m
′(k)|u̇Gz,m(k)〉

)

,

(4.106)
while the Hamiltonian matrix, in analogy to the spheres, can be rewritten in terms of the
t-matrix:

HG′,G
V (k) =

∑

m′,m

(

AG′

m′(k)
)∗
AG
m(k) tuu,mm

′

Gz ,G′
z

(k) +
(

AG′

m′(k)
)∗
BG
m (k) tuu̇,mm

′

Gz,G′
z

(k) +

(

BG′

m′ (k)
)∗
AG
m(k) tu̇u,mm

′

Gz ,G′
z

(k) +
(

BG′

m′ (k)
)∗
BG
m (k) tu̇u̇,mm

′

Gz,G′
z

(k),

(4.107)

where elements of the t-matrix are:

tuu,mm
′

Gz ,G′
z

(k) = 〈φG′
z,m

′(k)|HV |φGz ,m(k)〉,

tu̇u,mm
′

Gz ,G′
z

(k) = 〈φ̇G′
z,m

′(k)|HV |φGz ,m(k)〉,

tuu̇,mm
′

Gz ,G′
z

(k) = 〈φG′
z,m

′(k)|HV |φ̇Gz ,m(k)〉,

tu̇u̇,mm
′

Gz ,G′
z

(k) = 〈φ̇G′
z,m

′(k)|HV |φ̇Gz ,m(k)〉, (4.108)

and

φGz,m(k, r) = eiGzz eimϕ um,Gz
(k, r), φ̇Gz ,m(k, r) = eiGzz eimϕ u̇m,Gz

(k, r). (4.109)

We split the Hamiltonian into corrugated and non-corrugated parts:

HV (r) = Hnc(r) + Vco(r), (4.110)
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where Vco(r) is a corrugated part of the potential:

Vco(r) =
∑

m′′,G′′
z

eim
′′ϕ eiG

′′
z z Vm′′,G′′

z
(r), (m′′)2 + (G′′

z)
2 6= 0. (4.111)

Using the following relations

HncφGz ,m = EmφGz,m,

Hncφ̇Gz ,m = Emφ̇Gz,m + φGz,m,

〈φG′
z,m

′ |Hnc|φGz,m〉 = δm,m′δGz ,G′
z
Em,

〈φG′
z,m

′ |Hnc|φ̇Gz,m〉 = 2πδm,m′δGz ,G′
z
,

〈φ̇G′
z,m

′ |Hnc|φGz,m〉 = 0,

〈φ̇G′
z,m

′ |Hnc|φ̇Gz,m〉 = δm,m′δGz ,G′
z
Em〈φ̇G′

z ,m
′|φ̇Gz,m〉V , (4.112)

we can obtain for the elements of the t−matrix:

tuu,mm
′

Gz ,G′
z

(k) = I
uu,mm′(m′−m)
Gz ,G′

z,G
′
z−Gz

(k) + δm,m′δGz ,G′
z
Em

tuu̇,mm
′

Gz ,G′
z

(k) = I
uu̇,mm′(m′−m)
Gz ,G′

z,G
′
z−Gz

(k) + δm,m′δGz ,G′
z

tu̇u,mm
′

Gz ,G′
z

(k) = I
u̇u,mm′(m′−m)
Gz ,G′

z,G
′
z−Gz

(k)

tu̇u̇,mm
′

Gz ,G′
z

(k) = I
u̇u̇,mm′(m′−m)
Gz ,G′

z,G
′
z−Gz

(k) + δm,m′δGz ,G′
z
Em〈u̇G′

z,m
′ |u̇Gz,m〉V (4.113)

where

Iuu,mm
′m′′

Gz ,G′
z,G

′′
z

(k) =
∫ ∞

RV

r uGz,m(k, r) uG′
z,m

′(k, r)Vm′′,G′′
z
(r) dr,

I u̇u,mm
′m′′

Gz ,G′
z,G

′′
z

(k) =
∫ ∞

RV

r u̇Gz,m(k, r) uG′
z,m

′(k, r)Vm′′,G′′
z
(r) dr,

Iuu̇,mm
′m′′

Gz ,G′
z,G

′′
z

(k) =
∫ ∞

RV

r uGz,m(k, r) u̇G′
z,m

′(k, r)Vm′′,G′′
z
(r) dr,

I u̇u̇,mm
′m′′

Gz ,G′
z,G

′′
z

(k) =
∫ ∞

RV

r u̇Gz,m(k, r) u̇G′
z,m

′(k, r)Vm′′,G′′
z
(r) dr. (4.114)

Among all vacuum contributions to the various parts of the method this is certainly the
most time consuming contribution. A significant speed-up is achieved using the following
two facts. Firstly, the elements of the t-matrix depend only on m,m′, Gz and G′

z, but not
on G‖ and G′

‖. Using this fact allows us to realize the following, rather fast, reconstruction
of the A- and B-coefficients:

ÃG′

m,Gz
(k) =

∑

m′

(

AG′

m′(k)
)∗ (

tuu,mm
′

Gz ,G′
z

(kz) + tuu̇,mm
′

Gz ,G′
z

(kz)
)

,

B̃G′

m,Gz
(k) =

∑

m′

(

BG′

m′ (k)
)∗ (

tu̇u,mm
′

Gz ,G′
z

(k) + tu̇u̇,mm
′

Gz ,G′
z

(k)
)

,
(4.115)
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to reduce the double summation in the expression for the Hamiltonian matrix elements
to a single summation by m:

HG′G
vac (k) =

∑

m

(

ÃG′

m,Gz
· AG

m + B̃G′

m,Gz
·BG

m

)

(k). (4.116)

Secondly, another achievement can be made based on the symmetry considerations.
Knowing which particular (m′′, G′′

z) = (m′−m,G′
z −Gz) components of the potential are

not allowed by the symmetry of the system, we skip the summation over the correspond-
ing (m,m′, Gz, G

′
z)-elements of the t-matrix in the A- and B-coefficients reconstruction

part, which makes this part negligible in the computational time. The achieved speed-up
due to the latter two considerations is approximately of the rate mmax/2, which for the
calculations, presented in section 7.2 for the gold tube, for example, gives a factor of 25.

Another consideration can be made based on the fact, that for the large m the A-
and B-coefficients decay very rapidly together with the t-matrix elements. This allows
us to put the non-diagonal (m,m′)-part of the t-matrix to zero for {|m|, |m′|} ≤ mcutoff ,
reducing therefore the m and m′-summations in the construction of the Hamiltonian
matrix. The actual value of the parameter mcutoff should be determined in such a way,
so that it does not change calculated properties in the range of the required numerical
accuracy. For instance, for the gold monowire calculations, presented in section 7.2,
carried out with the angular basis functions expansion parameter mmax of 20, the choice
mcutoff = 10 proved to give a negligible difference (0.01%) in total energies, eigenvalues
and Fermi energies compared to the case of mcutoff = mmax.

4.3 Fermi Energy and Brillouin Zone Integration

When DFT is applied to infinite periodic solids, quantities that are given by integrals of
functions, which depend on the band and the Bloch vector, over the Brillouin zone have
to be determined. These integrations stretch only over the occupied part of the band, i.e.
over the region of the Brillouin zone where the band energy εν(k) (ν is the band index)
is smaller than the Fermi energy. Hence, the integrals are of the form

1

VBZ

∫

BZ

∑

ν,εν(k)<EF

fν(k) dk, (4.117)

where f is the function to be integrated. Example of such quantities are the number of
electrons per unit cell

N =
1

VBZ

∫

BZ

∑

ν,εν(k)<EF

1 dk, (4.118)

the electron (charge) density (cf. section 5.2) and the eigenvalue sum

1

VBZ

∫

BZ

∑

ν,εν(k)<EF

εν(k) dk. (4.119)
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Numerically, these integrations are performed on a discrete mesh in the Brillouin zone.
The function to be integrated has to be calculated at a set of k-points in the Brillouin zone,
each of which is assigned a weight. Thus, the Brillouin zone integration is transformed
into a sum over a set of k-points, where only those bands are included, which have an
energy below the Fermi energy at the k-point under summation. Thus, the integrals
become:

1

VBZ

∫

BZ

∑

ν,εν(k)<EF

fν(k) dk −→
∑

k

∑

ν,εν(k)<EF

fν(k)w(k) (4.120)

Alternatively, this integration can be viewed as an integration over the whole Brillouin
zone, where the function to be integrated is given by a product of the function f with
a step function that cuts out the region of the Brillouin zone, where the band energy is
above the Fermi energy. Clearly, the resulting function does not satisfy the condition of
being smoothly varying. Therefore, the special k-points method does not converge very
quickly, and rather many k-points are needed to obtain accurate results. On the other
hand this method is simple to implement, because the weights depend only on k and
the band energy (via the step function) at each k-point. Another problem arises from
this “sharp” differentiation between occupied and empty bands (parts of bands). Let’s
consider a band that is very close to the Fermi energy at a certain k-point. During the
iterations the DFT self-consistency cycle energy of this band might rise above or drop
below the Fermi energy. This leads to sudden changes in the charge density, which can
slow down or even prevent the convergence of the density. These sudden changes are
clearly a result of the discretization in momentum space. To avoid this problem, the
sharp edges of the step function have to be removed. This can be done, e.g. by using
the Fermi function (e(ε−EF )/kBT + 1)−1 rather than the step function. In other words,
the function to be integrated is artificially made smoothly varying. The temperature T
can then be adjusted to obtain the best convergence. This method is called temperature
broadening.

In the current implementation of the FLAPW method the Fermi energy is determined
in two steps. First the bands are occupied (at all k-points simultaneously), starting from
the lowest energy, until the sum of their weights equals the total number of electrons
per unit cell, i.e. the discretized equivalent of (4.118) is solved at T = 0. Then the step
function is replaced by the Fermi and the Fermi energy is determined from the requirement
that:

N =
∑

k

∑

ν

w(k, εν(k)− EF ) (4.121)

where the weights are given by:

w(k, εν(k)− EF ) = w(k)
1

e(εν(k)−EF )/kBT + 1
(4.122)
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Chapter 5

Charge Density

5.1 Generation of the Starting Density

The starting density for every calculation is approximated as the superposition of spherical
charge densities generated for each atom separately from the atomic problem. The starting
charge density then is the superposition of the charge densities located at atom cites α:
ρα(rα + τα), rα = r− τα.

ρ(r) =
∑

α

ρα(rα + τα), (5.1)

and has to be expanded as:

ρ(r) =































∑

ν

ρν(rα)Kν(rα) in MTα

∑

µ

ρµ(r)Φµ(r) in VR
∑

G

ρG e
iGr ∼

∑

G

ρG ΦG(r) in IR

(5.2)

To find the coefficients in the latter expansion we construct an auxiliary charge density
around each atom:

ρ̃α(rα) =

{

Aαe
−Bαr2α in MTα

ρα(rα) outside MTα
(5.3)

where coefficients Aα and Bα are found from the condition of continuity of the charge
density on the muffin-tin boundaries in value and radial derivative. Then the total charge
density can be written as:

ρ(r) = (ρ(r)− ρ̃(r)) + ρ̃(r), ρ̃(r) =
∑

α

ρ̃α(rα), (5.4)

where density ρ(r)− ρ̃(r) is concentrated only inside the muffin-tins, and, therefore, can
be directly calculated on the real grid. However, charge density ρ̃ needs certain attention.
This density is smoothly varying through the whole unit cell, therefore, it can be easily
expanded in terms of plane-waves:

ρ̃(r) =
∑

G

ρ̃G e
iGr, (5.5)
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where

ρ̃G =
1

Ω̃

∫

Ω̃
ρ̃(r) e−iGr d3r =

1

Ω̃

∑

α

∫

Ω̃
ρ̃α(rα) e

iGτα e−iGr d3r. (5.6)

Finally, its Fourier coefficients can be presented in the following form:

ρ̃G =
∑

α

FG
α · SG

α =
∑

µ

FG
µ ·

∑

α(µ)

SG
α , (5.7)

where SG
α is a structure factor of atom α and FG

µ is a form factor for an atom type µ:

SG
α = eiGτα , FG

µ =
1

Ω̃

∫

Ω̃
ρ̃µ(rµ) e

−iGr d3r. (5.8)

Note, that due to the special form of the auxiliary potential inside the muffin-tin sphere,
the form-factor there is calculated analytically. Anyhow, after finding the Fourier compo-
nents of the charge ρ̃, it is expanded out of the plane-wave representation back in terms
of lattice harmonics inside each muffin-tin site, and added to the original charge ρα.

Latter calculations were done assuming that the system has an in-plane periodicity
with the lattice constant D̃, therefore, at the next step we have to include into consider-
ation the vacuum region. The idea behind this procedure is the following: we leave the
charge density in the muffin-tins and in the interstitial region unchanged up to the vacuum
boundary, while the vacuum charge is constructed in such a way, that it is continuous
at the interstitial-vacuum boundary in its value and radial derivative, and decays fast to
zero on infinity.

We start with the cylindrically symmetric component of the vacuum charge density.
We force it to have the following form:

ρ0(r) = A · e−B·(r−Rv), r > Rv, (5.9)

where the parameters A and B are defined form the conditions of continuity of the charge
density and conservation of the charge. So, the value of the cylindrically symmetric
component of the interstitial charge on the boundary is given by the following expression:

ρ0(Rv) =
∑

G||

ρ0,G||
J0(Rv ·G||) = A, (5.10)

where J0 is a cylindrical Bessel function of the zero order, {ρ0,G} are the Fourier compo-
nents of the interstitial charge density. Another condition we have is a condition of the
charge conservation, which means that the charge which is carried by the vacuum density
should be equal to ρout:

ρout =
∫

Ω̃
ρ̃(r) d3r−

∫

Ω
ρ̃(r) d3r. (5.11)

where Ω̃ is the volume of the rectangular D̃-unit cell, and Ω is the volume of the cylindrical
unit cell. The first integral leaves only the term Ω̃ρ̃0. The second term is easily calculated:

Ωρ̃0 + 2Ω
∑

G|| 6=0

ρ̃G||,0

J1(G||R)

RG||
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Finally,

ρout = (Ω̃− Ω)ρ̃0 − 2Ω
∑

G|| 6=0

ρ̃G||,0
J1(G||R)

RG||

. (5.12)

Vacuum density gives us a charge of:

qvac = 2πT · A ·
∫ ∞

0
(r +R)e−B·r dr = ρout,

which reads a simple expression for B:

B =
Rv · q +

√

R2
vq

2 + 4q

2
, (5.13)

with q = A
ρout

. Other components of the vacuum charge do not contribute to the total
charge in the vacuum, and, therefore, their A and B coefficients can be defined by simple
matching on the vacuum boundary in the value and derivative, using expressions of the
type (5.10) for higher cylindrical harmonics of the interstitial charge.

5.2 Generation of the Charge Density

In this section we will discuss the determination of the charge density from the eigenfunc-
tions. In density functional calculations of an infinite periodic solid the electron density
is given by an integral over the Brillouin zone (cf. (2.21)).

n(r) =
1

VBZ

∫

BZ

∑

ν,εν(k)<EF

|ψν(k, r)|2 dk (5.14)

where VBZ is the volume of the Brillouin zone, ν is the band index and EF is the Fermi
energy. In spin-polarized calculations the summation includes also the spin-index σ, while
in a non-magnetic calculation a factor of two has to be added to account for the spin-
degeneracy. In the case of one-dimensional calculations the three-dimensional Brillouin
zone is replaced by a one-dimensional Brillouin zone. In both cases integration methods
that sample eigenfunctions and the eigenvalues on discrete k-point are used to compute
the integrals. These methods transform the integration into a weighted sum over the k-
points, where the choice of k-points and their weights depends on the integration method
used. These weights depend not only on the k-point, but also on the energy of a band,
i.e. on the band (index), because each band contributes to the electron density only if its
energy is below the Fermi energy.

n(r) =
∑

k

∑

ν

|ψν(k, r)|2w(ν, k) (5.15)

Within the FLAPW method the eigenfunctions are represented in terms of the coefficients
of the augmented plane-waves.

ψν(k, r) =
∑

G

cGν (k)ϕG(k, r) (5.16)
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Inside the muffin-tin spheres each plane-wave is coupled to a sum of spherical harmonics
and radial functions. Hence, in a sphere µ an eigenfunction is given by:

ψµν (k, r) =
∑

G

cGν (k)
∑

L

AµGL (k)uαl (r)YL(r̂) +BµG
L (k)u̇αl (r)YL(r̂) (5.17)

The AµGL (k) and BµG
L (k) coefficients can be replaced by band dependent A- and B-

coefficients, obtained by performing the contraction over the plane-waves:

ψµν (k, r) =
∑

L

AµL,ν(k)u
α
l (r)YL(r̂) +Bµ

L,ν(k)u̇
α
l (r)YL(r̂), (5.18)

where
AµL,ν(k) =

∑

G

cGν (k)AµGL (k), Bµ
L,ν(k) =

∑

G

cGν (k)BµG
L (k). (5.19)

5.2.1 “l-like” Charge

Since the wavefunctions are expanded in terms of the spherical harmonics inside the
muffin-tin spheres, they can be split up into contributions with a certain l-character:

ψµν (k, r) =
∑

l

ψµν,l(k, r) (5.20)

The particle density of a certain state depends on the square of the wavefunction. There-
fore, it contains cross-terms with a mixture of different l’s:

nµν (r) =
1

VBZ

∫

BZ

∑

l

|ψµν,l(k, r)|2 +
∑

l′l

2
(

ψµν,l′(k, r)
)∗
ψµν,l(k, r) dk (5.21)

If, however, the density is integrated over the muffin-tin, the cross-terms vanish because
of the orthogonality of the spherical harmonics. Thus, the total electron density inside a
sphere can be written as a sum over contributions with definite l-character:

nµν =
∑

l

nµν,l, nµν,l =
1

VBZ

∫

BZ

∫

MTµ
|ψµν,l(k, r)|2d3rdk, (5.22)

where nµν,l is called a “l-like” charge. We can also define a k-dependent l-like charge by:

nµν,l(k) =
∫

MTµ
|ψµν,l(k, r)|2d3r (5.23)

Substituting (5.18) yields:

nµν,l(k) =
l
∑

m=−l

|AµL,ν(k)|2 + |Bµ
L,ν(k)|2Ṅα

l (5.24)

Where

Ṅα
l =

∫ RMTα

0
(u̇αl (r))

2r2dr (5.25)

and the orthogonality of the spherical harmonics, the normalization conditions for uαl and
the orthogonality conditions for uαl and u̇αl have been used.
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5.2.2 Determination of the Optimal Energy Parameters

In order to minimize the linearization error, the energy parameters should be chosen
as close to the band energies as possible. However, the band energies εν(k) depend on
k whereas the energy parameters Eα

l are constants. In addition, the radial functions
contribute to the eigenfunctions of different bands with different energies. Therefore,
deviations between εν(k) and Eα

l have to be accepted. An optimal choice can be obtained
from the requirement, that the energy parameters minimize

∫

BZ

∑

ν,εν(k)<EF

(εν(k)− Eα
l )2 nµν,l(k)dk, (5.26)

which is the quadratic error weighted with the amount of charge that each band con-
tributes to the l-like charge with the l-character of the energy parameter. Setting the
derivative (∂/∂Eα

l ) equal to zero yields the optimal energy parameter:

Eα
l =





∫

BZ

∑

ν,εν(k)<EF

εν(k)n
µ
ν,l(k)dk





/





∫

BZ

∑

ν,εν(k)<EF

nµν,l(k)dk



 (5.27)

The Brillouin zone integration methods transform this into a sum over a discrete k-point
set:

Eα
l =

(

∑

k

∑

ν

εν(k)n
µ
ν,l(k)w(ν, k)

)/(

∑

k

∑

ν

nµν,l(k)w(ν, k)

)

(5.28)

5.2.3 Generation of the Charge Density in the Spheres

Substituting (5.18) into (5.14) yields the electron density in the muffin-tin spheres:

nµ(r) =
1

VBZ

∫

BZ

∑

ν,εν(k)<EF

∑

L′

(

AµL′,ν(k)u
α
l′(r) +Bµ

L′,ν(k)u̇
α
l′(r)

)∗
Y ∗
L′(r̂)

∑

L

(

AµL,ν(k)u
α
l (r) +Bµ

L,ν(k)u̇
α
l (r)

)

YL(r̂)dk (5.29)

The particle density inside the muffin-tins is also expanded into spherical harmonics:

nµ(r) =
∑

L

Cµ
L(r)YL(r̂) (5.30)

The coefficients Cµ
L′′(r) can be determined by multiplying (5.29) with

∫

dΩYL′′(r̂):

Cµ
L′′(r) =

1

VBZ

∫

BZ

∑

ν,εν(k)<EF

∑

L′

(

AµL′,ν(k)u
α
l′(r) +Bµ

L′,ν(k)u̇
α
l′(r)

)∗

∑

L

(

AµL,ν(k)u
α
l (r) +Bµ

L,ν(k)u̇
α
l (r)

)

Gmm′m′′

ll′l′′ dk (5.31)
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with
Gmm′m′′

ll′l′′ =
∫

Y ∗
lmYl′m′Yl′′m′′dΩ (5.32)

where it was used, that the gaunt coefficients are real, i.e.
∫

YlmY
∗
l′m′Y ∗

l′′m′′dΩ =
∫

Y ∗
lmYl′m′Yl′′m′′dΩ (5.33)

Finally, applying a Brillouin zone integration method yields:

Cµ
L′′(r) =

∑

l′l

(

∑

k

∑

ν

∑

m′m

(

AµL′,ν(k)
)∗
AµL,ν(k)G

mm′m′′

ll′l′′ w(ν, k)

)

uαl′(r)u
α
l (r)

+
∑

l′l

(

∑

k

∑

ν

∑

m′m

(

AµL′,ν(k)
)∗
Bµ
L,ν(k)G

mm′m′′

ll′l′′ w(ν, k)

)

uαl′(r)u̇
α
l (r)

+
∑

l′l

(

∑

k

∑

ν

∑

m′m

(

Bµ
L′,ν(k)

)∗
AµL,ν(k)G

mm′m′′

ll′l′′ w(ν, k)

)

u̇αl′(r)u
α
l (r)

+
∑

l′l

(

∑

k

∑

ν

∑

m′m

(

Bµ
L′,ν(k)

)∗
Bµ
L,ν(k)G

mm′m′′

ll′l′′ w(ν, k)

)

u̇αl′(r)u̇
α
l (r)

(5.34)

5.2.4 Generation of the Charge Density in the Interstitial

In the interstitial region the wavefunctions are represented in the following form:

ψν(k, r) =
∑

G

cGν (k) ei(G+k)r (5.35)

Starting from (2.8) the electron density is given by:

n(r) =
1

VBZ

∫

BZ

∑

ν,εν(k)<EF

∑

G′G′′

(

cG
′

ν (k)
)∗
cG

′′

ν (k) dk ei(G
′′−G′)r (5.36)

The electron density in the interstitial region is also expanded into plane-waves:

n(r) =
∑

G

nG eiGr (5.37)

Hence, the plane-wave coefficients of the electron density are:

nG =
1

VBZ

∫

BZ

∑

ν,εν(k)<EF

∑

G′G′′

G′′−G′=G

(

cG
′

ν (k)
)∗
cG

′′

ν (k)dk (5.38)

Apparently, the plane-wave cut-off of the particle density has to be twice the cut-off of
the wavefunction expansion (Gmax) to allow an accurate description. The k- and state-
dependent density

nG
ν (k) =

∑

G′G′′

G′′−G′=G

(

cG
′

ν (k)
)∗
cG

′′

ν (k) =
∑

G′

(

cG
′

ν (k)
)∗
c(G+G′)
ν (k) (5.39)
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is given by a convolution in momentum space. For each coefficient a sum over G has to be
performed. Consequently, the numerical effort put into the determination of nG

ν (k) scales
proportional to the number of G-vectors squared, i.e. proportional to (Gmax)

6. However,
nG
ν (k) can be calculated more efficiently using the fast Fourier transform (FFT). First,
cGν (k) is Fourier transformed to real space, where it is squared on a real space mesh
yielding nν(k, r), then all states are summed up and finally the resulting particle density
is back-transformed to momentum space:

cGν (k)
FFT−→ ψν(k, r)

square−→ nν(k, r)

∑

ν−→ n(k, r)
FFT−1

−→ nG(k)

With this scheme the numerical effort increases proportional to (Gmax)
3 ln((Gmax)

3),
which is a major improvement for large systems. In a last step the plane-waves have
to be combined to form the three-dimensional stars.

5.2.5 Generation of the Charge Density in the Vacuum

The density in the vacuum is represented in the following form:

n(r) =
∑

Gz

eiGzz
∑

mGz

im eimϕ nGz ,m(r) (5.40)

while the wavefunctions in the vacuum region are of the following shape:

ψν(k, r) =
∑

Gz ,G‖

cGν (k)ei(k+Gz)
∑

m

imeimϕ
(

AG
m(k)uGz ,m(k, r) +BG

m (k)u̇Gz,m(k, r)
)

. (5.41)

Therefore, the electron density is given by:

n(r) =
1

VBZ

∫

BZ

∑

ν,ε(k)<EF

∑

G′

∑

G′′

ei(G
′′
z−G

′
z)
∑

m′

∑

m′′

im
′′−m′

ei(m
′′−m′)ϕ ×

×
(

cG
′

ν (k)
(

AG′

m (k) uG′
z,m(k, r) +BG′

m (k) u̇G′
z,m(k, r)

))∗ ×

×
(

cG
′′

ν (k)
(

AG′′

m (k) uG′′
z ,m(k, r) +BG′′

m (k) u̇G′′
z ,m(k, r)

))

dk (5.42)

Taking into account that the radial basis functions do not depend on the G‖-component of
the reciprocal lattice vector G, we can contract the A- and B-coefficients in the following
way:

AGz

m (k) =
∑

ν

∑

G‖

w(ν, k) c
Gz,G‖
ν (k)A

Gz ,G‖
m (k),

BGz

m (k) =
∑

ν

∑

G||

w(ν, k) c
Gz,G‖
ν (k)B

Gz ,G‖
m (k).

(5.43)
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Extracting the µ = (m,Gz)-components of the vacuum charge density, we arrive at the
final expression:

nm,Gz
(r) =

∑

k

∑

G′
z

∑

m′

×

[ (AG′
z

m′

)∗
A
Gz+G′

z

m+m′ uG′
z,m

′(r) uGz+G′
z ,m+m′(r) +

(

A
G′

z

m′

)∗
B
Gz+G′

z

m+m′ uG′
z,m

′(r) u̇Gz+G′
z ,m+m′(r)+

(

B
G′

z

m′

)∗
A
Gz+G′

z

m+m′ u̇G′
z,m

′(r) uGz+G′
z ,m+m′(r) +

(

B
G′

z

m′

)∗
B
Gz+G′

z

m+m′ u̇G′
z,m

′(r) u̇Gz+G′
z ,m+m′(r)],

(5.44)
where we remember that A,B-coefficients and u, u̇-functions depend also on k.

In principal, the terms of the form

∑

G′
z

∑

m′

(

A
G′

z

m′,ν(k)
)∗
A
Gz+G′

z

m+m′ ,ν(k) uG′
z,m

′(k, r) uGz+G′
z ,m+m′(k, r)

represent convolution in the momentum space by m and Gz, and, therefore, could be
efficiently computed on the base of two-dimensional FFTs in cylindrical coordinates (z, ϕ)
for every radial vacuum grid point r.



Chapter 6

Potential

6.1 Coulomb Potential

The Coulomb potential consists of two parts, the Hartree term VH(r) and the external
potential of the nuclei Vi(r):

Vc(r) = VH(r) + Vi(r) (6.1)

The Hartree potential has to be determined from the charge density via the Poisson
equation

∆VH(r) = 4πρ(r) (6.2)

In real space the solution of (6.2) is given by

VH(r) =
∫ 4πρ(r′)

|r− r′| dr
′. (6.3)

In reciprocal space, however, the Poisson equation is diagonal, and as a result the solution
is very simple:

VH(G) =
4πρ(G)

G2
(6.4)

Therefore, and because of the particular representation of the charge density and the
potential in the interstitial and vacuum regions, the solution of the Poisson equation in
reciprocal space appears to be convenient. However, due to the localized core and valence
states the charge density varies rapidly on a very small length scale near the nuclei. Thus,
the plane-wave expansion of ρ converges slowly, and a direct use of (6.4) is impractical if
not impossible. This difficulty can be overcome via the pseudo-charge method.

6.1.1 The Pseudo-Charge Scheme

The pseudo-charge method, developed by Weinert [120] is a very elegant technique to
calculate the interstitial and vacuum Hartree potential. The underlying idea is to divide
the solution of the Poisson equation into two steps. In the first step the true muffin-
tin charge is replaced by a convergent pseudo-charge density ρ̃, that leads to the same
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potential outside the muffin-tins. Then the interstitial (and vacuum) potential is cal-
culated in reciprocal space. In the second step the muffin-tin potential is determined
from the Dirichlet boundary value problem, defined by the exact muffin-tin charge and
the interstitial potential on the muffin-tin spheres’ boundaries. The potential outside the
muffin-tin spheres due to a charge distribution inside the spheres is determined uniquely
by its multipole moments qL:

V (r) =
∞
∑

l=0

l
∑

m=−l

4π

2l + 1

qL
rl+1

YL(r̂). (6.5)

However, the multipole moments do not define the charge density uniquely. The charge
density is given by:

ρ(r) = ρI(r)Θ(r ∈ I) +
∑

α

ρα(r)Θ(r ∈MT α) (6.6)

Equation (6.6) can be rewritten

ρ(r) = ρI(r) +
∑

α

[ρα(r)− ρI(r)]Θ(r ∈MT α) (6.7)

Thus, the interstitial charge has been extended into the muffin-tins and subtracted there
again. The second term in (6.7) can be replaced by a pseudo-charge ρ̃α, which has the
same multipole moments (see [120] for details). The resulting pseudo-charge ρ̃ is given by

ρ̃(r) = ρI(r) +
∑

α

q̃α(r) (6.8)

Density ρ̃(r) is constructed in such a way, that it has rapidly converging Fourier expansion,
compared to the original charge density ρ(r). Therefore, the Poisson equation can now
be solved using (6.4).

Still, the muffin-tin potential V α
MT remains to be determined. For this step the exact

muffin-tin charge ρα has to be used. Since the interstitial potential is already known at
this point, the calculation of V α

MT constitutes a classical spherically symmetric Dirichlet
boundary value problem, which can be solved by the Green function method [39]:

V α
MT (r) =

∫

MTα
ρα(r

′)G(r, r′)d3r′ − R2
α

4π

∮

Sα
VI(r

′)
∂G

∂n′
dΩ′ (6.9)

The second integral runs over the muffin-tin sphere boundary Sα, and the resulting po-
tential necessarily satisfies the boundary conditions. The Green function is given by:

Gα(r, r′) = 4π
∑

l,m

YL(r̂′)YL(r̂)

2l + 1

rl<
rl+1
>

(

1−
(

r>
RMTα

)2l+1
)

(6.10)

where r> = max{|r|, |r′|}, r< = min{|r|, |r′|}. Finally, the muffin-tin potential has to be
expanded into lattice harmonics Kν(r̂):

V α
MT (r) =

∑

ν

V α
MT,ν(r)Kν(r̂). (6.11)
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The potential of the nuclei V α
i (r) = eZα

|r|
is added to the spherical (l = 0) component of

the potential V α
MT,0(r).

The muffin-tin potential is computed in the same way for bulk, film and one-dimensional
geometries. Apparently, the interstitial and vacuum regions have to be treated differently
in the film and 1D model, due to the different boundary conditions and different repre-
sentations of the vacuum potential. Therefore, in the next two sections the solution of
the Poisson equation will be outlined separately.

In the case of bulk calculations we have periodic boundary conditions in three dimen-
sions. Therefore, the solution of the Poisson equation,

G2V (G) = 4πρ̃(G) (6.12)

is very simple. Obviously, this equation can only be solved if ρ̃(0) = 0. Since ρ̃(0) is the
average charge density, this means that charge neutrality is essential. Still, V (0) remains
undetermined by (6.12), i.e. one has the freedom to shift the potential by a constant. This
is a consequence of the periodic boundary conditions, since they do not fix the reference
of the potential. Usually V (0) is chosen to be zero, hence the Coulomb potential in the
interstitial-region is given by:

VI(r) =
∑

G6=0

4πρ̃(G)

G2
eiGr =

∑

s6=0

4πρ̃s
G2
s

Φ3D
s (r) (6.13)

where the first summation is expressed in terms of G-vectors and the second one in terms
of stars.

6.1.2 Solution of the Poisson Equation in the Vacuum and In-
terstitial

The particular spatial partitioning of the unit cell results in different representations for
the charge and potential in the interstitial and vacuum regions. Therefore, a certain
transformation from one representation to another should be developed in order to make
the junction of the charge and the potential on the interstitial-vacuum boundary.

In the vacuum the following representations are the most suitable for solving the
Poisson equation:

V (r) = V0(r) + ˜∑

m,Gz

VGz,m(r) eimϕ eiGzz (6.14)

ρ(r) = ρ0(r) + ˜∑

m,Gz

ρGz ,m(r) eimϕ eiGzz (6.15)

where we separate {m = 0, Gz = 0} components of the density and potential from the
rest of the sum over m and Gz, which we indicate with tilde. In (6.15) the cylindrical
system of coordinates is used: r = (r, ϕ, z).
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At the next step we make use of the following relation, which allows us to rewrite
interstitial density and potential in cylindrical coordinates:

eiGr = eiGzz
+∞
∑

m=−∞

ime
im(ϕ−ϕG||

)
Jm(G||r), (6.16)

where ϕG||
is an in-plane angle of the reciprocal vector G, G‖ = |G‖| and Jm is a cylin-

drical Bessel function of integer order m. Use of (6.16) reads the following cylindrical
representation of the density and potential in the interstitial region:

ρGz ,m(r) =
∑

G‖

im ρGz ,G‖
e
−imϕG‖ Jm(G‖r), (6.17)

VGz ,m(r) =
∑

G‖

im VGz,G‖
e
−imϕG‖ Jm(G‖r). (6.18)

A way of solving the Poisson equation, based on the latter cylindrical representations
on the real radial grid in the vacuum and interstitial region as well, could be proposed.
In this case every (m,Gz)-component of the density and potential could be analytically
calculated for every cylindrical radial grid point in the interstitial and vacuum regions,
and corresponding radial equations for the Coulomb potential, derived later, could be
numerically solved. However, this scheme requires much more time, than the method,
based on the use of FFTs in the interstitial, which we develop further.

Substituting the cylindrical expansions of the density and potential in the Poisson
equation ∆V (r) = −4πρ(r) yields:

(

d2

dr2
+

1

r

d

dr
−G2

z −
m2

r2

)

VGz ,m(r) = −4πρGz ,m(r), when G2
z +m2 6= 0, (6.19)

(

d2

dr2
+

1

r

d

dr

)

V0(r) =

(

1

r

d

dr
r
d

dr

)

V0(r) = −4πρ0(r), when Gz = m = 0. (6.20)

The Poisson equation is solved using the following boundary conditions at infinity:

lim
r→∞

V (r) = 0, lim
r→∞

∂V (r)

∂r
= 0. (6.21)

Thus, we introduce the zero energy as an absolute reference from which all energies are
measured. For example, the work function is just given by the negative of the Fermi
energy EF . The interstitial part of ρ0(r) reads:

ρ0(r) =
∑

G‖

ρ0,G‖
J0(G‖r), (6.22)

while the vacuum part of ρ0(r) is given on a uniform radial mesh (for r > Rvac).
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Cylindrically Symmetric Component of the Coulomb Potential V0(r)

There are two equal numerically efficient ways of solving (6.20). The first one is based
on the Green function method, where the Green function for (6.20) with the boundary
conditions (6.21) is given by:

G0(r, r
′) = −4π ln r>, r> = max(r, r′), (6.23)

so that the resulting potential can be computed as:

V0(r) =
∫ ∞

0
r′G0(r, r

′) ρ0(r
′) dr′. (6.24)

Another equivalent way solves the interstitial-vacuum boundary problem. Due to the
analytical expression for ρ0(r) in the interstitial region in terms of Bessel functions (6.22),
we use the latter method for the interstitial part of V0(r). On the other hand, the repre-
sentation of the vacuum charge density on the radial grid makes it reasonable to apply the
Green function method for the vacuum part of V0(r). In the following we use V i

0 (r), ρi0(r)
for the interstitial part, and V v

0 (r), ρv0(r) for the vacuum part of the V0(r) and ρ0(r).

First, we divide our charge density ρ0(r) into two parts ρ′0(r) and ρ
′′

0(r). Both charge
densities are neutral, and they vary in the vacuum and interstitial regions, respectively.
The sum of these two charge densities gives ρ0(r), therefore, we can solve the Poisson
equation (6.20) independently for ρ′0(r) and ρ′′0(r), with the boundary conditions (6.21)
for the solutions V ′

0(r) and V
′′

0 (r). The sum of the latter two gives us V0(r).
1. The part of ρ0(r), charge density ρ′0(r) is constructed as:

ρ′0(r) = ρ0(r) + ρ̄, r < R; ρ′0(r) = 0, r > R, (6.25)

and the charge neutrality condition implies:

∫ R

0
rρ′0(r) dr = 0. (6.26)

Equation (6.26) allows us to compute ρ̄:

∫ R

0
r





∑

G‖

ρ0,G‖
J0(G‖r)



 dr = −ρ̄
∫ R

0
r dr = −R2

2
ρ̄, (6.27)

R2

2
ρ0,0 +

∑

G‖ 6=0

ρ0,G‖

∫ R

0
rJ0(G‖r) dr = −R2

2
ρ̄, (6.28)

but
∫ R

0
rJ0(G‖r) dr =

1

G2
‖

∫ G‖R

0
rJ0(r) dr =

RJ1(G‖R)

G‖
. (6.29)
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This leads to:

ρ̄ = −ρ0,0 −
∑

G‖ 6=0

2ρ0,G‖
J1(G‖R)

G‖R
,

ρ′0(r) = ρ0,0 + ρ̄ +
∑

G‖ 6=0

ρ0,G‖
J0(G‖r) =

∑

G‖ 6=0

ρ0,G‖

(

J0(G‖r)−
2J1(G‖R)

G‖R

)

, (6.30)

when r < R. After substituting (6.30) into the Poisson equation, it reads:

(

1

r

d

dr
r
d

dr

)

V ′
0 = −4π



ρ0,0 + ρ̄ +
∑

G‖ 6=0

ρ0,G‖
J0(G‖r)



 . (6.31)

By checking we conclude that the solution is given by:

V ′
0(r) = 4π

∑

G‖ 6=0

ρ0,G‖

J0(G‖r)

G2
‖

− πr2 (ρ0,0 + ρ̄) + A ln r +B. (6.32)

It is clear, as far as:

(

1

r

d

dr
r
d

dr
+G2

‖

)

J0(G‖r) = 0 ⇒
(

1

r

d

dr
r
d

dr

)

J0(G‖r) = −G2
‖J0(G‖r),

and
(

1

r

d

dr
r
d

dr

)

r2

4
= 1.

On the other hand, the second term in (6.32) is a general solution of the equation:

(

1

r

d

dr
r
d

dr

)

(A ln r +B) = 0.

At this point we can use the charge neutrality of the slab: the constants A and B are
determined from the condition that the value and derivative of the potential on the vac-
uum boundary are equal to zero. Note, that the charge density ρ′0(r) does not give any
contribution to the vacuum potential.

V ′
0(r) =

d

dr
V ′

0(r) = 0, r = R. (6.33)

The derivative of V ′
0(r) on the vacuum boundary is given by:

d

dr
V ′

0(R) = 4π
∑

G‖ 6=0

ρ0,G‖

J ′
0(G‖R)

G‖
− 2πR (ρ0,0 + ρ̄) +

A

R
,
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but since J ′
0(r) = −J1(r),

4π
∑

G‖ 6=0

ρ0,G‖

J ′
0(G‖R)

G‖

= 2πR(ρ̄+ ρ0,0),

and A = 0. The second boundary condition gives us

B = πR2(ρ̄+ ρ0,0)− 4π
∑

G‖ 6=0

ρ0,G‖

J0(G‖R)

G2
‖

.

The potential V ′
0 finally reads:

V ′
0(r) = 4π

∑

G‖ 6=0

ρ0,G‖





J0(G‖r)

G2
‖

− J0(G‖R)

G2
‖



+ π(ρ̄+ ρ0,0)
(

R2 − r2
)

. (6.34)

2. The second part of the density ρ′′0(r) is varying in the vacuum, i.e. it is equal to −ρ̄
for r ≤ R and equal to vacuum density ρv0(r) for r ≥ R. This density also satisfies the
neutrality condition:

∫ ∞

0
rρ′′0(r) dr = 0,

or, equally,
∫ R

0
rρ′′0(r) dr =

∫ R

∞
rρ′′0(r) dr.

By integrating ρ′′0(r) we obtain V ′′
0 (r) (given by the interstitial and vacuum parts, V ′′

i (r)
and V ′′

v (r), respectively) with the boundary conditions:

lim
r→∞

d

dr
V ′′

0 (r) = 0, and lim
r→∞

V ′′
0 (r) = 0.

Substituting the Green function (6.23) into (6.24) reads:

V ′′
v (r) = 2πR2ρ̄ ln r − 4π ln r

∫ r

R
tρv0(t) dt− 4π

∫ ∞

r
t ln tρv0(t) dt. (6.35)

In its turn, the interstitial part of V ′′(r) is given by

V ′′
i (r) = 4π ln r

∫ r

0
tρ̄ dt+ 4π

∫ R

r
t ln tρ̄ dt− 4π

∫ ∞

R
t ln tρv0(t) dt, (6.36)

or, as far as

∫ R

r
t ln t dt =

(

R2

2
lnR− r2

2
ln r

)

−
(

R2

4
− r2

4

)

⇒,

V ′′
i (r) = 2πr2ρ̄ ln r + 4π

∫ R

r
t ln tρ̄ dt− 4π

∫ ∞

R
t ln tρv0(t) dt

= 2πR2ρ̄ lnR− πρ̄
(

R2 − r2
)

− 4π
∫ ∞

R
t ln tρv0(t) dt,

⇒ V ′′
i (r) = V ′′

v (R)− πρ̄
(

R2 − r2
)

.
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Finally, after adding V ′
0(r) and V ′′

0 (r) components of the potential, we obtain:

V i
0 (r) = V ′

i (r) + V ′′
i (r) (6.37)

= 4π
∑

G‖ 6=0

ρ0,G‖





J0(G‖r)

G2
‖

− J0(G‖R)

G2
‖



+ V v
0 (R) + πρ0,0

(

R2 − r2
)

(6.38)

V v
0 (r) = 2πR2ρ̄ ln r − 4π ln r

∫ r

R
tρv0(t) dt− 4π

∫ ∞

r
t ln tρv0(t) dt. (6.39)

G2
z +m2 6= 0-Components of the Coulomb Potential in the Vacuum

For the warped components of the Coulomb potential in the vacuum substituting the
expansions of the density and the potential (6.14)-(6.15) in the Poisson equation yields
(6.19):

(

d2

dr2
+

1

r

d

dr
−G2

z −
m2

r2

)

VGz ,m(r) = −4πρGz ,m(r), (6.40)

with the boundary conditions of decaying of the potential in its value and derivative on
infinity.

The set of equations (6.40) for every G2
z +m2 6= 0-component of the vacuum Coulomb

potential can be solved by using the Green function method. The corresponding equations
for the Green functions look like:

(

d2

dr2
+

1

r

d

dr
−G2

z −
m2

r2

)

GGz,m(r, r′) = −4πδ(r − r′)
r

. (6.41)

Two separate cases should be considered:

1. Gz 6= 0:

GGz,m(r, r′) = 4πIm(Gzr<)Km(Gzr>), (6.42)

where Im(r) and Km(r) are modified Bessel functions of the second kind.

2. Gz = 0, m 6= 0:

G0,m(r, r′) =
2π

m

(

r<
r>

)m

. (6.43)

The resulting expression for a corresponding cylindrical harmonic of the vacuum Coulomb
potential is given by:

VGz ,m(r) =
∫ ∞

0
r′GGz ,m(r, r′)ρGz ,m(r′) dr′, (6.44)

where r > Rvac.
Since the cylindrical harmonic of the charge density, to be integrated, is represented

differently in the vacuum and interstitial regions, we divide the cylindrical harmonic of the
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vacuum potential into two parts, each part reflecting the influence of the corresponding
part of the charge density harmonic: VGz ,m = V v

Gz ,m + V i
Gz ,m, so that

V i
Gz,m(r) =

∫ Rvac

0
r′GGz ,m(r, r′)ρGz ,m(r′) dr′, V v

Gz ,m(r) =
∫ ∞

Rvac

r′GGz.m(r, r′)ρGz ,m(r′) dr′.

(6.45)
Now substituting the corresponding Green functions we come to the following expressions:

1. Gz 6= 0:

V i
Gz ,m(r) = 4πKm(Gzr)

∫ R

0
r′Im(Gzr

′)ρGz ,m(r′) dr′, (6.46)

V v
Gz ,m(r) = 4πIm(Gzr)

∫ ∞

r
r′Km(Gzr

′)ρGz ,m(r′) dr′

+ 4πKm(Gzr)
∫ r

R
r′Im(Gzr

′)ρGz ,m(r′) dr′.

2. Gz = 0, m 6= 0:

V i
Gz ,m(r) =

2π

mrm

∫ R

0
(r′)m+1ρGz ,m(r′) dr′, (6.47)

V v
Gz ,m(r) =

2πrm

m

∫ ∞

r

ρGz ,m(r′)

(r′)m−1
dr′ +

2π

mrm

∫ r

R
(r′)m+1ρGz ,m(r′) dr′.

Due to the analytical representation of the charge density in the interstitial region, as
given by (6.17), we rewrite equations (6.46)–(6.47) in the following way:

1. Gz 6= 0:

V i
Gz ,m(r) = 4πKm(Gzr)i

m
∑

G‖

ρGz ,G‖
e
−imϕG‖

∫ R

0
r′Im(Gzr

′)Jm(G‖r
′) dr′, (6.48)

which can be calculated analytically in terms of the vacuum boundary values of the
special functions:

∫ R

0
rIm(Gzr)Jm(G‖r) dr =

R

G2

(

GzIm+1(GzR)Jm(G‖R) +G‖Im(GzR)Jm+1(G‖R)
)

,

(6.49)
allowing us to reduce the integration problem to a G‖-summation, reading:

V i
Gz ,m(r) = 4πRKm(Gzr)i

m
∑

G‖

ρGz ,G‖

G2
e
−imϕG‖ ×

×
(

GzIm+1(GzR)Jm(G‖R) +G‖Im(GzR)Jm+1(G‖R)
)

. (6.50)
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2. Gz = 0, m 6= 0:

V i
Gz,m(r) =

2πim

mrm
∑

G‖

ρ0,G‖
e
−imϕG‖

∫ R

0
(r′)m+1Jm(G‖r

′) dr′. (6.51)

In this case a following integration formula can be used:

∫ R

0
rm+1Jm(G‖r) dr =

∫G‖R
0 (G‖r)

m+1Jm(G‖r) d(G‖r)

G‖
m+2 =

Rm+1Jm+1(G‖R)

G‖

. (6.52)

The final expression reads:

V i
Gz ,m(r) =

2πimR

m
(

r
R

)m

∑

G‖ 6=0

ρ0,G‖

G‖

e
−imϕG‖Jm+1(G‖R). (6.53)

Integrals of the part of the vacuum potential, coming from the vacuum charge density are
directly calculated on the real grid in the vacuum region.

Fourier Components of the Interstitial Coulomb Potential

Up to now we found a way to calculate the vacuum part of the total Coulomb potential.
This gives us an opportunity to use its boundary values on the interstitial-vacuum bound-
ary in order to solve the boundary problem and find the interstitial part of the Coulomb
potential.

Logically, the largest contribution to the Coulomb potential in the interstitial comes
from the interstitial charge. One of the possible solutions for the Poisson equation in the
interstitial we even know (having already the Fourier representation):

ṼG =
4πρG

G2
, Ṽ0 = 0. (6.54)

However, the potential Ṽ gives wrong values on the interstitial-vacuum boundary, reflect-
ing also the contributions of the charge from the neighboring repeating unit cells to the
Poisson equation. But taking into account considerations above, this potential can be
treated as a core for the correct Coulomb interstitial potential,to which small corrections
can be added in order to ensure the continuity of the total Coulomb potential on the
vacuum-interstitial boundary. This idea is realized by introducing an auxiliary potential
V, which, when added to Ṽ gives the correct interstitial potential:

Ṽ (r) + V(r) = V I(r). (6.55)

Obviously, V has to satisfy Laplace equation:

∆V(r) = 0, (6.56)
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which should be solved with the following boundary condition:

V(Rvac) = V V (Rvac)− Ṽ (Rvac), (6.57)

where V V (Rvsc) and Ṽ (Rvac) denote the values of the vacuum Coulomb potential V V and
potential Ṽ on the cylinder with the radius Rvac, being the interstitial-vacuum boundary.

Starting with the representation of V in terms of cylindrical harmonics, it can be easily
checked, that analytical expressions are the following:

Vm,Gz
(r) =



































Ṽ0,0(r)− Ṽ0,0(R) + V V
0,0(Rvac) + πρ0,0(R

2
vac − r2) m = Gz = 0

(

V vac
0,m (Rvac)− Ṽ0,m(Rvac)

) Rm
vac

rm
Gz = 0, m 6= 0

(

V V
Gz ,m(Rvac)− ṼGz ,m(Rvac)

) Im(Gzr)

Im(GzRvac)
m ·Gz 6= 0

(6.58)
Therefore, every (m,Gz)-component of V can be analytically calculated on a uniform
2D net of grid points in the rectangle with the side D̃, including the interstitial region,
and then Fourier back-transformed, obtaining Fourier representation of V in terms of
coefficients VG. Finally, by a simple addition of VG and ṼG for every reciprocal vector G
we obtain the Fourier coefficients of the interstitial Coulomb potential V I

G.

6.2 Exchange–Correlation Potential

The problem of the determination of the exchange correlation potential is quite different
from the Coulomb potential. On one hand, V σ

xc is a local quantity, i.e. V σ
xc(r) depends

only on n↑(r) and n↓(r) at the same position r. Thus, the muffin-tins, the interstitial-
and vacuum-region can be treated independently. On the other hand, V σ

xc and εσxc are
non-linear functions of n↑ and n↓. Therefore, V σ

xc and εσxc have to be calculated in real
space in the same way. First, n↑ and n↓ are transformed to real space, where V σ

xc and εσxc
are calculated. Then V σ

xc and εσxc are Fourier back-transformed. Then, V σ
xc is added to the

Coulomb potential, yielding the spin-dependent potential V↑ and V↓. ε
σ
xc is needed for the

determination of the total energy.

6.2.1 Calculation of εσ
xc

and V σ

xc
in the Interstitial

In the interstitial-region the charge density is expanded into three-dimensional stars with
coefficients nσs . Multiplying these by eiRG~τ yields the plane-wave coefficients nσG. If the
space group is symmorphic the star and plane-wave coefficients are identical. However,
due to numerical inaccuracy, the calculated coefficients of symmetry-equivalent plane-
waves are not exactly equal, and the corresponding star coefficient is obtained from the
average of the plane-wave coefficients. In the next step a three-dimensional Fast-Fourier
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transform is carried out. Then the exchange-correlation potential is calculated on a real
space mesh {ri}. Finally, V σ

xc is back-transformed, and the star coefficients are computed.

nσs −→ nσG
FFT−→ nσ(ri) −→ V σ

xc(ri)
FFT−1

−→ V σ,G
xc −→ V σ,s

xc .

6.2.2 Calculation of εσ
xc

and V σ

xc
in the Spheres

The muffin-tin charge is expanded into lattice harmonics and radial functions. The radial
functions are stored on a discrete real-space mesh. Thus, the transform to real space
affects only the angular part. The charge density is calculated on a set of special angular
points r̂i = (θi, φi). Again, the exchange correlation potential is calculated in real space.
Thereafter, the resulting V σ

xc(r) is expanded into spherical harmonics YL. The YL are
orthonormal, therefore the coefficients can be obtained from

vσxc,L(r) =
∫

YL(r̂)V
σ
xc(r, r̂) dΩ. (6.59)

The choice of the points {r̂i = (θi, φi)}, on which nσ(r) and V σ
xc(r) are calculated, depends

on the integration method, that is used to perform the angular integration. In the current
implementation (6.59) is computed by a Gauß-Legendre integration and the angular points
are chosen such, that the orthonormality condition of the YL holds also for the angular
mesh {r̂i}.

6.2.3 Calculation of εσ
xc

and V σ

xc
in the Vacuum

As we have already mentioned, the exchange-correlation potential Vxc(r) in the vacuum,
as well as in the interstitial and MT regions, is found on the real grid in cylindrical
coordinates (r, ϕ, z). For a given radial point ri in the vacuum the two-dimensional charge
density ρ(ri;ϕ, z) is found with the help of FFT. This means, that ρ(ri;ϕ, z) and the two-
dimensional exchange-correlation potential Vxc(ri;ϕ, z) (as a function of the charge density
ρ(ri;ϕ, z)) are found on a linear grid in the (ϕ, z) plane {ϕ, z : 0 ≤ ϕ < 2π, 0 ≤ z < T}.
Further back Fourier transformation in this plane gives us a set of Fourier coefficients
{V µ

xc(ri)} – the coefficients of the two-dimensional stars Φµ(ϕ, z) in the expansion of the
exchange-correlation potential (see (3.20)). The described algorithm is repeated for every
point ri from the radial grid of points. At the end of the procedure, the exchange-
correlation potential is added to the Coulomb potential on the radial grid.

Having a linear angular grid on the segment (0, 2π) with the number of points de-
pending only on mmax for the charge density and potential, obviously causes an increase
in the distance between the grid points in 3D proportionally to ri. Therefore it might
seem that the accuracy in the description of the exchange-correlation potential (and the
charge density) decreases as ri increases. But actually the accuracy of the representation
is only determined by mmax, assuming to be the same for every ri. Furthermore, the
exchange-correlation potential, being especially important in the vacuum, decays very
fast into the vacuum. Therefore, beyond some certain radial point r0, which is much less
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then the ending point of the vacuum, only the cylindrically symmetric component of the
potential becomes really important. In a similar spirit, in the film-FLAPW method [50]
for the last 150 grid points of the vacuum, only the z-dependent part of the potential can
be kept.

In the case of GGA, the exchange-correlation energy is written like:

Exc[ρ] =
∫

εxc (ρ(r), |∇ρ(r)|) dr, (6.60)

which defines the exchange-correlation potential as the functional derivative of Exc with
respect to the density ρ, i.e.,

Vxc(r) =
δExc[ρ]

δρ(r)
=

∂εxc
∂ρ(r)

−∇ · ∂εxc
∂∇ρ(r) . (6.61)

Since the energy depends on |∇ρ(r)|, one finds from (6.61) that in order to obtain Vxc one
requires not only |∇ρ(r)|, but also ∆ρ(r) and ∇ρ(r) · ∇|∇ρ(r)| [124]. These quantities,
as well as the exchange-correlation energy and potential, are found in the vacuum region
on the real space grid in cylindrical coordinates (r, ϕ, z). If we denote by êr, êz and êϕ the
orthogonal basis vectors at a given point in the vacuum, then the gradient of the charge
density will be written as:

∇ρ(r) =
∂ρ(r)

∂r
êr +

1

r

∂ρ(r)

∂ϕ
êϕ +

∂ρ(r)

∂z
êz (6.62)

The following two expressions stand for the absolute value of the gradient and the Lapla-
cian:

|∇ρ(r)| =

√

√

√

√

(

∂ρ(r)

∂r

)2

+
1

r2

(

∂ρ(r)

∂ϕ

)2

+

(

∂ρ(r)

∂z

)2

,

∆ρ(r) =
1

r

∂

∂r

(

r
∂ρ(r)

∂r

)

+
1

r2

∂2ρ(r)

∂ϕ2
+
∂2ρ(r)

∂z2
.

(6.63)

These quantities and a subsequent expression ∇ρ(r) ·∇|∇ρ(r)|, involve the partial deriva-
tives of the first and second order of the charge density with respect to the spatial co-
ordinates. The radial derivatives of the vacuum charge density components ∂

∂r
ρm,Gz

(r)

and ∂2

∂r2
ρm,Gz

(r) are found numerically on the linear radial grid. After that, knowing the
analytical exponential dependence of the charge density in the vacuum on cylindrical ϕ
and z coordinates, the rest of the mixed derivatives of the first and second order can be
found, for instance,

∂2ρ(r)

∂ϕ ∂r
= −i

∑

Gz,m

m
∂ρGz ,m(r)

∂r
eimϕ eiGzz. (6.64)

The values of the derivatives are calculated on a uniform real space (ϕ, z) grid for every
radial point ri with the use of two-dimensional Fourier transformations. Finally, the GGA
exchange-correlation potential and energy density εxc are determined on the real space
grid making an explicit use of analytical expansions for vxc and εxc.
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Chapter 7

Results

7.1 Monowires of Ti and 4d transition elements

There is presently a strong interest in the physics of metal nanowires in low dimensions.
A freely standing metallic nanowire is formed when two pieces of material, initially at
contact, are pulled away from each other. In this process, a connective bridge elongates
and narrows. Experimentally, segments of such nanowires have been formed between tips
in particular of Au [49, 91], but very often also in break junctions of Pt and Ir [101].
The one-dimensional character of nanowires causes several new physical phenomena to
appear, such as quantized conductance and helical geometries.

In addition to these, another type of stable nanowires also exists. Structurally stable
monowires can be grown on stepped surfaces, such as, for example, the recently observed
Co monowire on Pt substrate [23], or inside tubular structures. E.g. Ag nanowires of
micrometer lengths grown inside self-assembled calix[4]hydroquinine nanotubes [36].

An interesting question is when and how magnetism may appear in nanowires and how
this effects the other properties. Those metals, which are magnetic already in bulk, can
be expected to be magnetic also as nanowires. But may a normally nonmagnetic in the
bulk material become magnetic? It has been suggested that even a jellium confined in a
thin cylinder may in principle magnetize for certain radii of the cylinder [129]. However,
the moment formation is confined to very special radius of electron densities, and the
associated energy gain is very small. That is of course so because exchange interactions
are not particularly strong in sp band metal (Na or Al), a typical system which might be
described by the jellium model. The situation is radically different for transition metals
of the 3d, 4d and 5d series. Because of the partly occupied d orbitals, their ability to
magnetize is much stronger and of a fundamentally different nature compared to jellium.
In bulk, the resulting large exchange interactions are overwhelmed by large kinetic energy
of the electrons, resulting in very large bandwidths and a nonmagnetic ground state. It is
well established that the origin of magnetic ordering in low-dimensional d or f materials
is a direct or indirect exchange interaction between electrons in the partially filled d or f
electronic shells.

83
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In this chapter we concentrate on monoatomic wires of the 3d element Ti, and the
transition 4d-elements, in particular, monowires of Ru, Rh and Pd. For these atoms mag-
netism in low dimensions was reported. For Pd, monowires consisting of a single strand
of atoms, have been recently observed by Rodrigues et al. [90]. Rather high magnetic
moments for this element for an infinite monowire of atoms as well as 3 atoms long wires,
contacted to the Pd leads were also observed. Nevertheless, the magnetic moment of Pd
atoms disappears already in a Pd(6,0) nanowire, showing a strong dependence of exchange
interaction on the coordination number. For Rh it has been suggested experimentally,
that small clusters of this metal may possess permanent magnetic moments [12, 11], while
bulk Rh is nonmagnetic. Also tendency towards strong magnetism of the monowires of
Rh and Ru was theoretically predicted, both for a freestanding configuration and on the
surfaces of Ag and Cu [105].

The well known theorems on the absence of magnetic ordering in one and two dimen-
sions [59, 119] are inapplicable to real systems, hence, do not preclude magnetic effects
for the real linear chains and nanowires. This is due to the fact that nonzero temperature
ruins ideal 1D or 2D ordering and anisotropy term additionally contributes to the Heisen-
berg Hamiltonian. However, thermal fluctuations in nanowires are expected to be very
large, which would destroy long range magnetic order in the absence of an external mag-
netic field [66]. Depending on temperature and on external field, there will nevertheless
be two different fluctuation regimes: a slow one and a fast one.

Slow fluctuations such as those attainable at low temperatures and/or in presence of a
sufficiently large external field take a nanomagnet to superparamagnetic state, where mag-
netization fluctuates between equivalent magnetic valleys, separated, e.g., by anisotropy
induced energy barriers. If the barriers are sufficiently large, the nanosystem spends
most of the time within a single magnetic valley, and will for many practical purposes
behave magnetic. We may under these circumstances be allowed to neglect fluctuations
altogether, and to approximate some properties of the superparamagnetic nanosystem
with those of a statically magnetized one. Experimentally, evidence of one-dimensional
superparamagnetism with fluctuations sufficiently slow on the time scale of the probe was
recently reported for Co atomic chain deposited at Pt surface steps [23].

At the opposite extreme – a situation reached for example at high temperatures and in
zero external field – the energy barriers are so readily overcome, that the magnetism will
be totally destroyed by fast fluctuations, leading to a conventional paramagnetic state. A
complete description of this high entropy state is beyond the scope here.

In this chapter we will only deal with straight undimerized wires. This might appear
oversimplifying, since, for instance, it has been calculated that infinite gold wires have a
local energy minimum for a zigzag structure [62]. We will investigate this structure for
a monowire of iron, presented later in the thesis. Our rationale for this simplification of
the wire geometry is that wires – extended between two tips – are inevitably subject to
stretching. Simple thermodynamics governing the flow of atoms at the wire-tip drives
the thinning and implies a finite string tension. Thus, even if a free-ended wire favored
a zigzag structure, this effect will be counteracted in the ultimate wire hanging between
tips just before breaking of the contact.
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7.1.1 Ti Monowire

For the Ti monowire we used 16 k-points in one half of the Brillouin zone for calculations
without spin-orbit coupling and 32 k-points for calculations with spin-orbit coupling. The
monowire was calculated with two Ti atoms in the unit cell, allowing an antiferromagnetic
solution. The parameters D and D̃ were chosen to be 4.8 and 6.8 a.u. respectively.
The muffin-tin radius was varying from 2.01 to 2.4 a.u. depending on the interatomic
distance. The wavefunctions cut-off parameter Kmax was chosen to satisfy the relation
Kmax · RMT = lmax, with the lmax = 8. The charge density cut-off parameter Gmax

was set to the value of 3 · Kmax. The values of 36 and 18 were used for the vacuum
angular expansion parameters for the charge density and basis functions, respectively. No
symmetry restrictions were used. For calculating the optimal ferromagnetic distance we
used the muffin-tin radius of 2.01 a.u. and Kmax of 4.0 a.u.−1, together with inversion
symmetry.

We have calculated the differences in total energies between the nonmagnetic, fer-
romagnetic and antiferromagnetic solutions in a large range of interatomic distances of
4 − 7 a.u., which are presented in the Fig. 7.2 (right,b). From this graph we conclude,
that in a wide range of interatomic distances the atoms of Ti monowire prefer to order
themselves ferromagnetically. However, the energy difference between the two magnetic
configurations starts to decrease if the interatomic distance becomes larger than 6 a.u.,
which indicates the possibility that the magnetic ground state of a supported Ti monowire
depends on the lattice parameter of the substrate.

The corresponding values of magnetic moments for the ferromagnetic solution are
presented in the Fig. 7.2 (right,a). As we will see also for the monowires of other elements,
the variation of the magnetic moment with the bond length reveals that the increase is
rather steep, almost discontinuous at certain interatomic distances – this happens when
one of the narrowed subbands passes through the Fermi level. The stepwise increase of the
magnetic moment, which occurs at different bond lengths for the FM and AFM phases, is
also the reason for the non-monotonous variation of the magnetic energy difference with
the bond length.

Only for the ferromagnetic configuration we have calculated an optimal interatomic
distance d0 of 4.40 a.u., where the minimum of the total energy is reached (see Fig. 7.2
(left)). At this distance the magnetic moment in FM case is 1.05µB per Ti atom. This
configuration is by 74.3 meV lower in energy then the paramagnetic solution, while no
AFM solution was found.

It is interesting to note, that our calculated d0 is somewhat smaller then d0 for the
monowires of corresponding 4d- and 5d-elements with the same valent configuration: Zr
(4d25s2) and Hf (5d26s2). We found that for the monowire of Zr the optimal distance
(ferromagnetic) d0 is 4.76 a.u. with the magnetic moment of 0.8µB and ENM − EFM =
42.2 meV. The monowire of Hf, calculated by Spǐsák and Hafner in [106], was found to
be nonmagnetic with d0 of 4.91 a.u. This difference can be understood from the analysis
of the paramagnetic bandstructure of the Ti MW at the optimal interatomic distance in
comparison to corresponding data from [106]. The main difference comes from the fact
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Figure 7.1: Five 3d-orbitals.

that 4d and 5d orbitals are more extended compared to 3d, which, therefore, results in
larger equilibrium lattice constants and higher bandwidths with the consequently smaller
magnetic moments. On the base of this consideration the difference in the bulk lattice
constants for Ti and Zr can be explained, which is around 10% for both the bulk and the
monowire.

The first analysis of the 3d monowire bandstructure was given by Weinert and Free-
man [121]. The symmetry of an isolated monowire is D∞h, as is the symmetry of the
special k−points Γ(k = 0) and X(k = π

T
). The symmetry of all other k-points is C∞v.

Since D∞h is the direct product of C∞v and the inversion, there are no added degeneracies
at Γ or X, hence, we will label each band by its representation along ∆. As we see from
the from the Ti bandstructure 7.3, the s and d atomic functions split into three sets of
bands: the doubly degenerate ∆3(dxz, dyz) and ∆4(dx2−y2 , dxy) bands and the two singly
degenerate bands ∆1(s, dz2). The ∆4 bands are quite narrow since these functions are
perpendicular to the chain, while ∆3 bands are wider due to interactions along the chain.
The ∆1 band is composed of s and dz2 orbitals extending along the chain which defines
the z direction. For the early transition metals, the s and dz2 bands are quite distinctly
separated. With increasing band filling, the dz2 states are lowered in energy with respect
to the s states and the two bands merge into a single (s− dz2) hybridized band.

Charge density plots of different d-orbitals and corresponding bands are presented in
Fig. 7.1 for the pure states and in Fig. 7.4 for the corresponding bands, associated with
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Figure 7.2: Left: ferromagnetic total energy versus interatomic distance Etot(d)–
Etot(4.4 a.u.). From this plot the optimal distance can be found to be 4.40 a.u. Right
(a): magnetic moment per Ti atom for the ferromagnetic and antiferromagnetic case,
depending on d. For the antiferromagnetic case magnetic moments inside the muffin-tin
spheres are given; (b) differences in energies between the paramagnetic and ferromagnetic
solutions ENM − EFM (black) and between the paramagnetic and antiferromagnetic so-
lutions ENM − EAFM (red) are presented depending on the interatomic distance d (b).
With increasing interatomic distance the difference in energies EFM − EAFM vanishes.

the chain, together with the spin-density plot at the Fermi energy.

By symmetry, all the bands have zero slope at the zone boundary, causing van Hove
singularities (infinities) in the densities of states (DOS), whereas in 3D cases, these van
Hove singularities yield a finite DOS (see Fig. 7.5,(b),(c)). Although these infinities will
in reality be broadened by thermal and phonon effects, they should still give large contri-
butions to the optical absorption. For Zr, the paramagnetic DOS at the Fermi energy for
all the 4d elements was found to be the highest. Anyway, as our calculations show, the
DOS at the Fermi energy for Ti MW is also rather high (Fig.7.5,(a)), and, therefore, if the
Stoner picture for magnetic ordering is applicable, Ti monowire should be ferromagnetic
with a high magnetic moment. The paramagnetic bandstructure, Fig. 7.3,(a), also allows
us to suggest the following: the symmetric shape of the ∆4−band in the one-dimensional
chains, which contrasts the asymmetric DOS of the hexagonal close packed and face cen-
tered cubic transition metals could lead to a variation of the magnetic ground state from
ferromagnetism (FM) to antiferromagnetism (AFM) and back to ferromagnetism with
increasing band filling. This differs from the behavior of the bulk 3d metals, where fer-
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Figure 7.3: Bandstructures of the Ti monowire at the optimal (ferromagnetic) interatomic
distance of 4.40 a.u. (a) paramagnetic bandstructure, (b) ferromagnetic bandstructure
(c) ferromagnetic bandstructure with SOC, magnetization along the axis of the wire, (d)
ferromagnetic bandstructure with SOC, magnetization perpendicular to the wire axis.
By ∆1, the s− and dz2−bands are denoted, by ∆3 the dxz, dyz−bands, and by ∆4 the
dx2−y2 , dxy−bands.

romagnetism exists for metals with a more than half-filled band and antiferromagnetic
order is stabilized for metals with a less than half-filled band, but the early 3d metals are
nonmagnetic.

7.1.2 Monowires of 4d transition elements

In Fig. 7.6 we present the results of our calculations on the monowires of the 4d-transition
metals from Y to Pd. We show the equilibrium interatomic distances d0, magnetic mo-
ments and the magnetization energy ∆EM , defined as a total energy difference between
the nonmagnetic and ground state magnetic solutions: ∆EM = EFM(AFM) − ENM (com-
puted at d0). Calculations were carried out with the computational parameters, close to
those, described in section 7.1.1 for a monowire of titanium atoms.

In general, the chemical bonding in a monowire is, of course, quite different from the



7.1. MONOWIRES OF TI AND 4D TRANSITION ELEMENTS 89

Figure 7.4: Charge density plots for the states (1) ∆1 around −2.7 eV from the paramag-
netic calculation in Fig. 7.3, (a); (2) for the state ∆3 around 1.25 eV; (3) for the state ∆4

around the Fermi energy, and (4) the spin density plot from the ferromagnetic calculation
Fig. 7.3, (b), around EF .

Figure 7.5: Densities of states plots. (a) DOS plot for a Ti MW at the equilibrium lat-
tice constant of 4.4 a.u. (b) model DOS plot for a metal monowire, showing van Hove
singularities coming from the flat band edges. When one of the van Hove singularities
crosses the Fermi energy, monowire prefers to order ferromagnetically, rather than anti-
ferromagnetically, due to Stoner criterion. Antiferromagnetic ordering is preferable for
the metals with a half-filled band (see section 7.1.2) (c) model DOS plot for a 3D system.
Ferromagnetism exists for metals with a more than half-filled band and antiferromagnetic
order is stabilized for metals with a less than half-filled band.
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Figure 7.6: Left: equilibrium interatomic distance d0 for the monowires of the 4d-
transition metals from Y to Pd. Right (top): magnetization energy ∆EM . Right (bot-
tom): spin moment for the ground state magnetic solution (total for the FM and inside
the metal muffin-tin sphere for the AFM chains)

bulk material. In a monowire, there are only two nearest neighbors, and, therefore, a
smaller equilibrium lattice constant than in the bulk can be expected. This is exactly the
case for the monowires of the 3d, 4d and 5d elements, as can be seen from the calculations
in [14, 15, 76], where the trend towards decreasing of the equilibrium lattice constant in
the case of lowering the dimensionality of the system is clearly shown.

We would like to point out, however, that, strictly speaking, a monowire suspended
on a tip or deposited on a surface will not have a quasi-stable configuration at the bond
length which minimizes the total energy. In the case of a tip-suspended monowire, the
interatomic distance, which minimizes a string tension rather then the total energy will
be observed [14]. For a monowire, deposited on the surface, the interatomic distance
will be determined by the surface used [106]. Therefore, it is preferable to consider the
development of the magnetic properties of a monowire in a certain range of interatomic
distances. Nevertheless, for simplicity, the bond length, which minimizes the total energy
will be called in this section the equilibrium bond length d0.

The distances d0 were calculated for the magnetic configuration, favorable in total
energy around the equilibrium lattice constant. Clear parabolic dependency of the d0 on
the band filling is in a good agreement with Spǐsák and Hafner [106]. The trend of the
bond weakening in going from the middle of the series with atoms with highly open shells
to atoms with nearly closed d-shells at the end of the series was explained by Friedel [89]
assuming a constant density of states of d-electrons. The shortest bond is formed between
the Tc atoms, which have an almost half-filled d-shell. Deviations from the ideal parabolic
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behavior reflect the one-dimensional nature of the monowires.

An important side-question is whether there exists a substantial magnetorestrictive
effect in the wires, i.e. if the appearance of a magnetic moment causes an equilibrium
interatomic distance to change. Although the calculated magnetic moments in the wires
can become quite large sometimes, magnetism almost does not influence the equilibrium
distance. The calculated equilibrium bond lengths of the magnetic wires are indeed larger,
but not very much, typically, hundredths of an Å.

Comparing the DOS of each individual chemical element in 3D, 2D, and 1D, it can
be found that the main difference that comes into picture on lowering the dimensionality
is the reduction in the bandwidth. The bands become sharper, a manifestation of the
reduced coordination, as we descend in dimensionality. For the cases with magnetic
ground state, the exchange splitting increases en route. In metallic monowires, due to
the one dimensionality of the system, the Stoner stability criterion against magnetism is
violated leading to a magnetized monowire when a flat band edge approaches the Fermi
energy. In case of transition metals, a strong Hund’s rule magnetic moment may appear,
creating a robust superparamagnetic state for temperatures not too high, transformable
to a genuine magnetic state under an external field.

In the 4d series, Y is nonmagnetic, Zr, Ru, Rh and Pd wires are predicted to order
ferromagnetically, Mo and Tc have an antiferromagnetic ground state. Niobium, being
a border-line case, has a FM gound state with a magnetic moment of 0.05 µB, and
orders antiferromagnetically under a very modest tensile strain. All the elements order
ferromagnetically under a sufficiently large tensile strain, and for those with a nearly full
d-band a stable or metastable FM state coexists with metastable AFM configuration at
a higher energy. The magnetic moments of the FM wires are quite modest, the largest
moment is found for Ru with about 1.1 µB, while the moments are substantially larger
in the wires with an AFM ground state. In general, the transition from FM to AFM and
back to the FM state with increasing the band filling can be perfectly explained on the
basis of a scheme presented in Fig. 7.5. For Zr, which has the same valence configuration
as Ti, the DOS for the monowire look similar to those of the Ti MW, with a peak at the
Fermi energy coming from the ∆4-band at the Γ-point, causing, by the Stoner criterion,
the FM ground state. When moving further along the 4d series, the DOS at the Fermi
level is rather low, resulting in the AFM ground state for Mo and Tc. For the elements
with an almost filled d-shell (Ru and Rh), a ∆4-based van Hove singularity at the Fermi
energy appears again, this time due to the flat band edge at the X-point. The case of Pd
will be considered further, as an appearance of magnetism in this monowire seems to be
in a contradiction to the full d-shell. The paramagnetic DOS for the 4d monowires at the
nonmagnetic equilibrium interatomic distances can be seen in [106].

In the following we concentrate on the monoatomic wires of the 4d-transition elements
Ru, Rh and Pd, investigating ferromagnetism in these chains.
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Monowires of Ru, Rh and Pd

Experimentally, it has been suggested that small Rh clusters may possess a permanent
magnetic moment [12, 11], although bulk Rh is nonmagnetic. Also monoatomic overlayers
of Rh and Ru on Ag(001) were predicted to be magnetic [95]. Very recently, experiments
have shown the magnetic nature of linear chains of Pd obtained in a break junction [90].

The equilibrium bond lengths for monowires of Ru and Rh were calculated by Spǐsák
and Hafner [106] using a projector augmented-wave method (PAW), for Ru, Rh and Pd
by Nautiyal et al. [76] with the FLAPW WIEN97 package and by Delin and Tosatti [15]
with the FP-LMTO method and WIEN97 package. Our calculated equilibrium ferromag-
netic lattice constants of 2.24 Å (Ru), 2.31 Å (Rh) and 2.48 Å (Pd) agree very nicely
with the data from these references: 2.23 Å (Ru), 2.27 Å (Rh) in Ref. [106]; 2.24 Å (Ru),
2.27 Å (Rh), 2.44 Å (Pd) in Ref. [76]. Moreover, in Ref. [15] the ferromagnetic d0 is
reported to be 2.27 Å for Ru, 2.31 Å for Rh and 2.56 Å for Pd, using FP-LMTO method.
The difference in the magnetic moments calculated in these references of 0.98µB, 0.92µB
and 1.1µB for Ru, 0.26µB, 0.16µB and 0.3µB for Rh ([106], [76], [15], respectively); 0.60µB
and 0.66µB for Pd ([76] and [16], respectively), probably reflects the difference in compu-
tational methods and parameters used. Our values for the equilibrium magnetic moments
are in a very good agreement with these references. We predict the following magnetic mo-
ments for these MWs at the equilibrium interatomic distances of 2.24 Å (Ru), 2.31 Å (Rh)
and 2.48 Å (Pd): 1.13µB for Ru, 0.2µB for Rh, and 0.72µB for Pd.

The MWs of the considered elements are predicted to be magnetic in a wide range of
bond lengths. Spǐsák and Hafner [106] predict an energy difference of 39 meV between
the total energies of the nonmagnetic and ferromagnetic solutions (ENM − EFM) for the
Ru MW at the equilibrium bond length of 2.23 Å, and the difference of 6 meV for the
Rh monowire at the d0 of 2.27 Å. The same energy differences constitute 77 meV and
10 meV in [15]. For the Pd MW Ref. [15] gives 12 meV for the ENM − EFM energy
difference. This agrees very nicely with our results: 50.5 meV for Ru, 9.9 meV for Rh and
13.4 meV for Pd MWs (at 2.24 Å, 2.31 Å and 4.68 Å, respectively). For these distances
no antiferromagnetic solution was found. However, Spǐsák and Hafner predicted that, for
larger interatomic distances a metastable antiferromagnetic solution appears for the MWs
of Rh and Ru, and a stabilization of the ferromagnetic configuration at further increase
of the interatomic distance. In Ref. [16] antiferromagnetic Pd MW configurations were
also tested, but were found to be energetically unstable compared to the ferromagnetic
configuration.

It is well-known, that the inclusion of spin-orbit interaction for the MWs of 5d elements
is crucial for their magnetic properties, and in some cases the SO interaction makes the
magnetic ordering vanish, and, in principal, can destroy the stability of the magnetic
ground state ([76, 14]). However, SO interaction is also important for the MWs of 4d
elements. From the general point of view, appearance or disappearance of magnetism in
the MWs of 4d and 5d elements can be attributed to the situation, where the flat band
edges are getting close to the Fermi energy, and, in some sensitive cases, the SO coupling
causes a splitting of the bands resulting in removing or appearance of the bands at the
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Fermi energy. The SO interaction might also cause slight changes in the equilibrium lattice
constants and energy differences between magnetic and nonmagnetic states. Therefore,
inclusion of the spin-orbit coupling is very important for a correct description of the
magnetic properties of the considered MWs.

Figure 7.7: Bandstructures of Ru and Rh chains at an interatomic distance of d=2.54 Å,
calculated without SOC (left panel) and with SOC for two different magnetization di-
rections (middle and right panels). Spin-up and spin-down in the SR case are indicated
with blue and red line, respectively. Blue circles mark areas with bands which give rise
to orbital moments, as described in the text.

Monowires of Ru and Rh. The spin-polarized bandstructures of the Ru and Rh
chains at the interatomic distance of 2.54 Å calculated without SO interaction (SR) are
presented in Fig. 7.7 (left panel). In analogy to the Ti monowire, all the bands can be di-
vided into three groups: ∆3(dxz, dyz), ∆4(dx2−y2 , dxy) bands and the two bands ∆1(s, dz2),
where, compared to the Ti MW, dz2 band is lowered in energy with respect to the s states
and the two bands merge into a single s-dz2 hybridized band with an anticrossing around
the Fermi level. Figure 7.7 shows that the major contribution to the central peak at the
Fermi energy in the densities of states comes from the d-states, while the DOS around
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the peak are due to s-d hybridized bands.
At the Γ and X points, both crucial points by symmetry, all band dispersions are

horizontal, giving rise to very sharp band edge van Hove singularities. Since the bands
have mostly d character at the edges, the exchange energy gain will be rather large, as
compared to the nonmagnetic situation, if a d-band splits so that one of the spin-channel
band edges ends up above the Fermi level, and the other one below. Strictly speaking,
SO coupling will mix the two spin-channels so that, in general, an eigenvalue will have
both majority and minority spin character. However, in the present calculations (Fig. 7.7,
middle and right panels) this mixing is very small. Thus, if a band edge ends up sufficiently
near the Fermi level, we may expect a magnetic moment to develop, which is the case
for both elements. The bands, responsible for magnetism, are ∆4 bands, close to the
Fermi energy at X point. The bands of Rh are in general deeper than those of Ru due
to one additional electron in the d shell, and, therefore, according to the Hund’s rule, the
magnetism of Rh MW is suppressed compared to Ru monowire, which can be seen also
from the spin splitting of the bands in Fig. 7.7.

The magnetic moment per metal atom in the monowire, as a function of the inter-
atomic distance is shown in Fig. 7.9 (top of the left panel). The black line refers to the
scalar-relativistic (SR) calculations; blue and red lines refer to the calculations with the
SO coupling included, with the magnetization along the wire direction (z-case) and per-
pendicular to the wire direction (r-case), respectively. The first thing to note is that Ru
and Rh exhibit a magnetic moment for values of the bond length at or close to equilib-
rium. Another thing to notice is that the magnetic profiles change when SO is included,
especially for Rh. This leads, in particular, to disappearance of magnetism in the case of
the radial magnetization for this chain. For both elements the magnetic moments reach a
plateau value for the values of interatomic distance larger than 2.75 Å. The value of this
plateau magnetic moment is close to that of the isolated atom.

Monowire of Pd. The development of the magnetic moment (without and with SO
interaction included) with the interatomic distance can be seen in Fig. 7.9. The magnetic
moment rapidly reaches the maximum value of around 0.7µB at 2.4 Å and preserves this
value over a large region of distances, when, after 2.8 Å it monotonically decreases to
a zero value at around 3.4 Å, where monowire undergoes a metal-insulator transition,
opening a s-d gap, becoming a chain of isolated atoms. However, experimental data ([90])
suggest that well before these bond lengths the monowire is already broken.

In the bulk and also at surfaces (for instance, Ag(111), Ag(001), Au(001)), the 4d
bands of Pd are rather wide, and, therefore, spin polarization does not occur. On the
other hand, as an atom, Pd has a completely filled 4d shell. Therefore, two limiting cases
are nonmagnetic and appearance of magnetism for the Pd monowire needs investigation.
Certain insights can be made based on the fact, that large Pd clusters are expected to
be magnetic [73], whereas small Pd clusters are not [93]. We should suppose, that with
increasing of the interatomic distance the interatomic hybridization causes a certain s-d
transfer, and, hence, the 4d shell becomes partly unfilled and symmetry breaking through
spin polarization becomes possible. Hund’s rule makes it reasonable to assume that spin
polarization will also be energetically favorable. In other words, reducing of the number
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Figure 7.8: Bandstructures for a Pd monowire for increasing interatomic distance. Top:
ferromagnetic bandstructures, middle: including spin-orbit coupling with magnetisation
along the wire direction, bottom: including spin-orbit coupling with magnetization per-
pendicular to the wire axis. The values of interatomic distance are given in angstroms.

of the nearest neighbors causes narrowing of the 4d bands, so that the bandwidth becomes
efficiently small and gain in exchange energy due to spin polarization is larger than the



96 CHAPTER 7. RESULTS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
µ S

 (
µ B

)

SR
z
r

2.4 2.7 3.0 3.3 3.62.1
d (A)

-4

-2

0

2

4

6

8
0.0

0.5

1.0

1.5

µ L (
µ B

)

0.0

0.2

0.4

0.6

0.8

SR
z
r

Ru
Rh

0.0

0.1

0.2

z
r

2.4 2.7 3.0 3.3 3.6
d (A)

-60

-40

-20

0

20

M
A

E
 (

m
eV

)

Ru
Rh

r

Ru and Rh chains Pd chain

z r

z

Rh

Ru

r

z

Figure 7.9: Ferromagnetism in monoatomic chains of Ru, Rh and Pd: MAE, spin (µS)
and orbital (µL) magnetic moments as a function of interatomic distance d. Notice, that
the scale along the y-axis is different for the left and right panels.

increase in kinetic energy.

However, we want to investigate the development of the bandstructure for the Pd
MW depending on the interatomic distance in order to ensure the consideration, that
one-dimensionality of the system is crucial for the emerging of the magnetism in this
chain. Fig. 7.8 shows the bandstructure of a Pd MW for several bond lengths, illustrating
the transition from paramagnetic to ferromagnetic and then to insulating state with the
increasing interatomic distance. The ∆1 bands are of the highest dispersion. Of these two,



7.1. MONOWIRES OF TI AND 4D TRANSITION ELEMENTS 97

s character dominates around the Γ point, while d character is more pronounced at the
Brillouin zone boundary X. The ∆4 bands lie far below the Fermi energy with both spins
completely occupied and give no contribution to magnetism. The last group of bands,
∆3, has a band edge close to the Fermi level around Γ-point. In the magnetic regime the
bands ∆1 and ∆3 are very close to the Fermi energy, which drastically increases density
of states at the Fermi level, thus, resulting in divergent van Hove singularities after a
certain point. A spin splitting of these bands can, therefore, reduce the total electron
band energy, somewhat analogous to a band Jahn-Teller, or a Peierls instability effect.
Interestingly, after 2.5 Å even the s−dominated band is prone to the spin splitting.

Orbital Moments and Magneto-Crystalline Anisotropy Energies. Reducing
the dimensionality of a system causes an increase of the orbital moments and magneto-
crystalline anisotropy energies (MAE). From the experimental point of view, a separate
determination of the magnetic (µS) and orbital (µL) moments is rather complicated,
thus, correct estimation of the orbital moments by ab initio calculations is important for
comparison with the experimental values in the case of low-dimensional materials. On
the other hand, the MAE acts as an energy barrier, responsible for the stabilization of
a certain direction of the magnetisation of the system. Changes in the magnetisation
direction can cause significant changes in the electronic and transport properties of the
material, especially in the case of heavy elements.

The tendency towards increasing of the orbital moments and MAE was, in principal,
confirmed by ab initio calculations [48], although the obtained values for a given system
differ significantly depending on the computational method. Also, DFT alone is not
sufficient to describe the magnetic anisotropies and orbital moments correctly. In order
to improve small values of obtained DFT-orbital moments, different ways were proposed.

First of all, introduced by Brooks in [5], orbital polarization terms (OP) were added
by Komelj [48] to improve DFT for monowires. OP approach was, however, criticized by
Solovyev et. al. [103], who applied an LDA+U method [3] to improve the DFT values
for orbital moments. However, these proposed methods, describing the tendency towards
increasing of the orbital moments and MAEs and their magnitudes correctly, disagree
among each other and with the values, obtained experimentally [23].

In Fig. 7.9 (middle and down rows) we present the values of the orbital moments and
MAEs for MWs of Ru, Rh and Pd, depending on the interatomic distance, calculated
with our DFT method. The values of the µL for the monowires of these metals are indeed
higher than in the bulk or film, however, they are still quite small compared to expected,
close to atomic, values (Pd as alone has µL = 0). Without SOC there are no contributions
in the GGA functional that lead to an orbital polarization. Inclusion of SOC results in a
splitting of the bands and orbital moments arise. In order to investigate the origin of the
orbital magnetism, we analyze the bandstructures of Ru and Rh chains at the interatomic
distance of 2.54 Å (Fig. 7.7), offering large exchange and spin-orbit splittings for both
magnetization directions.

The directional dependence of the magnetization can be specified including the SOC.
In case of the axial magnetization (middle panel of Fig. 7.7), two bands ∆±

4 with angular
momenta ml = ±2 are formed from the doubly degenerate spin-down ∆4 band. The
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electron occupation of these bands is responsible for the actual value of the orbital moment
µL(z). If the ∆+

4 -band is fully occupied, and the ∆−
4 -band is unoccupied, an orbital

moment of +2 can be obtained. Since only partial occupation is achieved, the orbital
moments are 0.28 µB and 0.54 µB for Ru and Rh, respectively. In the latter case, the
higher value of µL(z) is due to the full electron occupation of ∆+

4 -band, in contrast to
the Ru chain (marked areas in the middle panel of Fig. 7.7). For radial magnetization
(right panel), the generally smaller values of the in-plane orbital moments, µL(r), are
due to the partial occupation of SO-split ∆4-∆3 mixed bands (inside marked areas). As
a consequence of the larger band filling the value of µL(r) is smaller for Rh than for
Ru (0.07 µB compared to 0.17 µB). In a Pd chain the fully occupied ∆4 bands lie well
below the Fermi energy, giving a small contribution to µL(z), while the larger values of
µL(r) are due to the SO-split ∆3-bands at the Fermi energy [16]. In general, the peculiar
behavior of the orbital moments in 4d transition-metal MWs is due to an interplay of
partial occupation of spin-orbit split ∆3 and ∆4 bands and their relative position with
respect to the Fermi energy, attributed to the band filling. The larger slope of the ∆3

bands in comparison to the ∆4 bands results in larger values of the z-orbital moment.
For Ru and Rh chains with increasing bond distance d the orbital moments gradually

rise. For d > 3.3 Å giant values of 1.5 µB for µL(z) and 0.7 µB for µL(r) for both MWs
are reached. The origin for enhanced values of µL lies in the splitting of the ∆4, ∆3-bands
at EF into bands with different angular momenta ml due to the inclusion of SOC. An
increase of d leads to a narrowing of the bands, and, eventually, bands with different
angular momentum, ml, become almost fully occupied or fully unoccupied, giving rise to
a large value of the orbital moment.

Combination of high values of the spin and orbital moments with the large difference
between µL(r) and µL(z) results in giant values of the MAE. Already at 2.9 Å it reaches
40 meV per atom and gets as large as 60 meV for a Rh chain with d = 3.3 Å. When
the value of µL(z) is close to the value of µL(r), a switch in the magnetization direction
occurs as can be observed at d = 2.6 Å for Ru and d = 2.85 Å for Pd.

In this situation, when the orbital moments are rather high and the electronic structure
strongly depends on the direction of the magnetic moment, magneto-crystalline anisotropy
energy becomes a parameter, which defines the electronic and transport properties of
the system. MAE profiles of Ru, Rh and Pd show, that, depending on the interatomic
distance, the magnetisation of the system can easily change its direction from along the
wire direction to the perpendicular one. As far as the bandstructures and the orbital
moments of the MWs of these elements differ significantly depending on the magnetisation
direction, we claim, that in order to analyze the experimentally observed values of the
magnetic moments and conductances, one should necessarily take into account MAE
profiles for these systems. In principle, the changes in the conductance of the system
can be empirically estimated based on the changes in the number of band-crossings at
the Fermi energy [14], while this number, for a given distance, differs depending on the
magnetisation direction (Figs. 7.8-7.7). Finally, based on these profiles, desired magnetic
and transport properties of the system can be achieved by a precise interatomic distance
control, for instance, in a controllable break junction. This provides us with a unique
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advantage in the search for new generation of magnetic storage devices.

7.2 Gold (6,0) Nanowire

Frequently metallic wires are produced by forming a break junction, i. e. by pulling off
two pieces of material. During this process a one-dimensional bridge appears, which then
elongates, narrows and breaks. Experimentally such bridges were formed for Au [91],
Pt [81] and Ir [101]. With respect to the bulk materials these free-standing nanowires are
of course unstable, but when some ”magic geometries” are reached, wires with lengths of
about 15 nm and long lifetimes were reported. Structurally more stable metallic nanowires
can form on stepped surfaces or inside tubular structures.

Figure 7.10: Geometrical structure of a Au(6,0) nanowire. Left: side view. Right: top
view. The unit cell contains 12 atoms in the outer shell and 2 atoms in the central strand.

Recently, several experimental [78, 49, 82] and theoretical [14, 16, 113] studies have
been published on structural and physical properties of different gold nanowires. Here,
we want to report on calculations of an Au(6,0) nanowire with our new code. For the
educational purposes we also perform calculations of an Au(6,0) nanotube and an Au
monowire, and compare the obtained results with those available in the literature.

7.2.1 Computational Details

GGA and LDA calculations are carried out using the values of 3.6 a.u.−1 and 10.8 a.u.−1

for the cut-off parameters Kmax and Gmax, respectively. For the GGA calculations we
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Figure 7.11: Bandstructures of a Au(6,0) nanowire (left), a free Au MW (middle) and an
Au(6,0) tube (right) for the atomic positions as calculated for the Au(6,0), Rwire = 5.21
a.u., T=8.84 a.u. within the GGA, with (bottom panels) and without (top panels) spin-
orbit coupling effects included. The band marked ’ss’ is discussed in the text.

Figure 7.12: Densities of states (DOS) of Au wires, calculated without (left panels) and
with spin-orbit interaction (right panels). ’ss’ denotes the peak in the DOS coming from
the energy band ’ss’ in Fig. 7.11 at the Γ-point. Top: DOS of the Au(6,0) nanowire.
Middle: DOS of the free Au MW. Bottom: DOS of the Au(6,0) tube. DOS are calculated
for the geometries discussed in the text.

used the revPBE functional [130] and the Vosko, Wilk and Nusair functional [118] was
applied for the LDA calculations. The muffin-tin radii for the gold atoms were fixed at
2.0 a.u. during the calculations. For the basis functions as well as the charge density and
potential in the vacuum region we used the angular expansion parameters mmax = 24 and
mmax = 50, respectively. The vacuum parameters Dvac = 15.0 a.u. and D̃ = 16.6 a.u.,
and a grid spacing dr = 0.08 a.u. and 250 grid points for the representation of all real
space quantities in the vacuum region were sufficient to reach the numerical accuracy.
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Structural optimization was done using 11 k-points in one half of the Brillouin zone, the
bandstructures and densities of states were calculated using 41 k-points in one half of
the Brillouin zone. The Au(6,0) nanotube and the free-standing Au MW were calculated
with the same computational parameters.

7.2.2 Geometrical Structure

The structure of the wire, having 14 gold atoms in the unit cell, is shown in the Fig. 7.10.
It consists of a central strand of Au atoms and an outer shell Au(6,0) tube. Every atom of
the central MW was placed in between the planes of outer hexagons along the symmetry
axis of the nanowire. We did not consider the possibility of dimerization or creation of
zig-zag structures for the inner Au MW inside the Au(6,0) tube.

Within GGA we found an optimized period T in z-direction of 8.84 a.u. and a wire
radius Rwire of 5.21 a.u. (the wire radius, Rwire, is defined in Fig. 7.10), while the LDA
calculations led to the optimized T value and wire radius of 8.86 a.u. and 5.16 a.u., re-
spectively. This is in a good agreement with [113], where Rwire ≈ 5.3 a.u. and T = 8.82
a.u. Optimized geometrical parameters (T=8.84 a.u. and Rwire =5.21 a.u.) were used for
the GGA electronic structure calculations of the Au MW and Au(6,0) nanotube.

Structural relaxation of the Au(6,0) nanowire with spin-orbit coupling (SOC) effect
included led to changes in the optimized geometrical parameters of less then 1%.

7.2.3 Electronic Structure

The GGA-bandstructures for the Au(6,0) nanowire (left), an Au MW (middle) and an
Au(6,0) tube (right) at the positions as in the Au(6,0) nanowire, are shown in Fig. 7.11.
Top panel presents the bandstructures without SOC interaction included, the bandstruc-
tures with SOC effects included are shown in the bottom panel of Fig. 7.11. All the
calculated structures show strong metallicity due to the s-bands of gold.

With ’ss’ in the bandstructures of the Au(6,0) nanowire we marked a surface state at
the Γ-point below the Fermi energy. As one can conclude from the comparison between
the band structures of the Au tube, Au MW and Au nanowire, the appearance of this
surface state is due to the hybridization of the states coming from the outer Au(6,0)
nanotube and the inner Au MW. The charge density plots for this state are presented in
Sec. 7.2.4.

The bandstructures for the Au(6,0) wire and Au(6,0) tube with SOC effects included
(Fig. 7.11, bottom panel (left)) shows multiple band splitting as compared to the band-
structure without SOC, giving rise to the pronounced band splitting at the Fermi level.
For the bandstructure of the Au(6,0) nanowire calculated with and without spin-orbit
interaction, the total number of conducting channels for ballistic transport is equal to six,
which coincides with the number given in [113].

The bandstructure of the Au(6,0) nanowire (top left) coincides rather nicely with the
bandstructure for this structure given in [113]. The bandstructures of the Au MW are in
good comparison to those in [14] and [62].
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In top of Fig. 7.12 the densities of states (DOS) of the Au(6,0) nanowire are shown,
obtained with and without spin-orbit coupling. Including SOC, the figure shows an in-
crease of the pseudo-gap between the two subgroups of d-bands, the first of them lies
between −4 eV and −2 eV, while the other one is located in the energy interval between
−7 eV to −5 eV. By ’ss’ we denote the peak in the DOS, which comes from the surface
state ’ss’ in Fig. 7.11 at the Γ-point. The spin-orbit interaction changes also the DOS
around the Fermi level, emphasizing this peak.

The total density of states for the gold monowire and the Au(6,0) tube, calculated with
GGA at the positions as in the Au(6,0) nanowire with and without spin-orbit interaction,
are shown at the bottom of Fig. 7.12. From the DOS we can observe, that due to the
hybridization of the states, coming form the outer Au tube and inner Au MW, the pseudo-
gap between the two subgroups of d-bands is larger for the Au(6,0) nanowire, than for
the Au(6,0) tube or Au MW. The same reason stands for the appearance of the surface
state ’ss’ in the case of the Au(6,0) nanowire.

7.2.4 Charge Density

Figure 7.13: Charge density plots for the Au(6,0) wire for the energy band denoted by
’ss’ at the Γ-point in Fig. 7.11. Left: Charge density plot in xy-plane (perpendicular to
the z-axis), cutting through the centers of the atoms in the outer hexagon ring. Right:
Charge density plot in xz-plane, cutting through the centers of the inner strand atoms
and 2 atoms in the outer shell hexagon ring.

In Fig. 7.13 we present the charge density plots at the Γ-point for the energy band
which is denoted by ’ss’ in Fig. 7.11. The charge density plot in the xy-plane (perpen-
dicular to the z-axis), cutting through the centers of the gold atoms in one of the outer
shell hexagons, is presented in the top panel of the Fig. 7.13. The plot in the bottom
panel shows the charge density in the xz-plane, cutting through the centers of the inner
strand of gold atoms and two atoms in the outer hexagon of the gold wire. In Fig. 7.13
the surface state (’ss’) character of the state at the outer atoms is clearly visible. For
this state a dz2 type orbital at the outer Au atoms is found with a slow decay into the
vacuum. For inner strand atoms this state has pz character.
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The calculated work functions for the Au tube is 4.9 eV and 4.8 eV for the Au(6,0)
nanowire, compared to the work function of the Au(111) surface of 5.31 eV [102]. The
decrease of the work function can be addressed to the curvature effects.

7.3 Hybrid Structure Fe@Au(6,0)

Among all 1D structures, metallic nanowires and carbon nanotubes filled with various
materials are of great interest in nanoscience and nanotechnology because of their inter-
esting properties. The importance of carbon nanotubes for the research and applications
is due to their particular physical properties, mechanical stability and chemical tunability.
Single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes show conduc-
tive or semiconductive behavior with low defect scattering depending on their chiral-
ity [17], having a wide range of applications such as p-n junctions [58] or field-effect
transistors [110, 63, 33]. Recent theoretical and experimental investigations open a new
field for carbon nanotubes in the area of spintronics [115, 20]. It was proposed to com-
bine carbon nanotubes with transition-metals which are coated on the surface of the tube
or put inside the tube hollow [70, 126]. It was shown that carbon nanotubes in prin-
ciple can offer highest possible magnetoresistance ratios and the spin-scattering length
for certain types of nanotubes reaches 130 nm [115, 65]. The combination of this fact
with the pronounced magnetism of the transition metals in low dimensions makes such
hybrid structures perfect candidates for the future generation spin-dependent transport
devices [126].

On the other hand, metallic nanowires, due to their one-dimensional nature, are the
origin of several new phenomena to appear, such as quantized conductance, charge and
spin separation, helical geometries and magic structures [49, 29, 113]. Starting from the
monowires (MWs) [78, 14, 62, 96], in particular, monowires made out of transition-
metals [80, 23], or complicated helical metallic wires became a target of concentrated
attention in one-dimensional research, especially with respect to structural stability and
transport properties [114, 29, 127, 79]. Recently a significant experimental progress has
been made moving metallic helical tubes to the frontier [82, 81]. This stimulated the
interest in the magnetic behavior of these structures and recently several theoretical and
experimental studies were reported on this topic. [14, 80, 129, 16] Therefore, another
alternative for spintronics on the nanoscale in one dimension, based on the combination
of a metallic (nonmagnetic) carrying tube and transition-metal atoms could be proposed.

In this section we want to report on our calculations of the atomic and electronic
structure, magnetic properties and the charge density, of the Fe@Au(6,0) hybrid structure,
showing, that such hybrid structure, if used for electron transport, will show a significant
spin-polarization leading to strongly spin-polarized transport properties.

The calculations were carried out within the local density approximation using the
functional of Vosko, Wilk and Nusair [118] and within the generalized gradient approxi-
mation using the revPBE functional [130]. For self-consistency calculations of the hybrid
structure we used 80 k-points in one half of the first Brillouin zone. For the gold and
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Table 7.1: (Equilibrium) Fe-Fe distance, total spin magnetic moment in the unit cell µtot
m

(divided by the number of Fe atoms), spin magnetic moment µMT
m in the MT sphere of

Fe and magnetocrystalline anisotropy energy per Fe atom in three different types of Fe
monowires and their dimers calculated with LDA and GGA. Fe-1: bare Fe monowire,
Fe-2: bare monowire of Fe at the positions as in the Fe@Au(6,0), Fe-3: monowire of Fe
inside the Au(6,0) tube. Monomer is denoted by ’m’, dimer is denoted by ’d’. The Fe-Fe
distance for the dimers is found by relaxation of the two Fe atoms in the double unit
cell of the monomer. The magnetocrystalline anisotropy energy (MAE) is defined as the
energy difference ∆E = E(êz)−E(êr) between the magnetization aligned along the wire
axis and the radial direction of the wire. In the case of the hybrid structure Fe@Au(6,0)
two possible in-plane alignments of the magnetization are possible: along the x and y
axis. Corresponding MAEs are denoted by X and Y , respectively.

Fe-Fe distance (a.u.) µtot
m (µB) µMT

m (µB) MAE (meV/ Fe atom)
LDA GGA LDA GGA LDA GGA LDA GGA

Fe-1 m 4.14 4.28 3.25 3.32 2.92 3.01 1.4 5.5
d 3.90 4.02 3.26 3.31 2.90 3.00 2.7 4.1

Fe-2 m 4.43 4.42 3.34 3.35 3.01 3.05 5.1 7.6
d 3.92 4.10 3.31 3.30 2.97 3.03 8.9 7.3

Fe-3 m 4.43 4.42 3.32 3.39 2.88 2.97 X -32. -31.
Y -32. -31.

d 4.14 4.20 3.28 3.37 2.86 2.96 X -24. -26.
Y -37. -34.

iron atoms the radii of MT spheres were chosen to be 2.0 a.u. Basis functions of all
G-vectors were included up to a length determined by the condition |G + kz| < Kmax

with Kmax = 3.6 a.u.−1. This corresponds to a vacuum angular expansion parameter for
the basis functions of mmax = 20. For the plane-wave expansion of the charge density
and potential a parameter Gmax = 3 ·Kmax = 10.8 a.u.−1 proved to give reliable results.
The angular expansion of the vacuum charge density and potential was terminated at
mmax = 50.

In order to investigate the magnetic structure of the hybrid system and the case of
dimerization, we also performed a set of calculations on free-standing MWs of iron atoms,
both within LDA [118] and GGA [130]. For these calculations we used 64 k-points in one
half of the first Brillouin zone. The parameters Gmax and Kmax were set to 11.4 a.u.−1

and 3.8 a.u.−1, respectively.
The results of the calculations on the hybrid structure Fe@Au(6,0) and the Fe MWs

are summarized in Table 7.1.

7.3.1 Geometrical Structure

The geometrical structure of the system is shown in Fig. 7.10, having 12 gold atoms and
2 iron atoms per unit cell. It consists of the Au(6,0) outer tube and an inner strand of
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iron atoms, which replaces the inner monowire of gold atoms in the Au(6,0) nanowire.
For the GGA calculations the period of the structure and the radius of the outer shell of
gold atoms were chosen to be the ones of the (6,0) gold nanowire optimized with GGA:
8.84 a.u. and 5.21 a.u., respectively. For the LDA calculations we use the optimal LDA
values of 8.86 a.u. and 5.16 a.u. From total energy and force calculations we concluded
that the inner Fe strand changes the geometrical parameters by less than 1%. As for
the plain Au system, including the effects of the spin-orbit interaction did not cause any
significant structural changes: the geometrical parameters changed by less then 1%, and
the magnetic spin moment per iron atom changed by 0.5%.

We also considered three different types of iron MWs: the bare MW, a MW with
the interatomic Fe-Fe distance equal to that of the central strand of Au atoms in the
Au(6,0) nanowire (denoted by Fe@Au-MW) and an iron monowire inside the Au(6,0)
tube (Fe@Au(6,0)-MW). For the free-standing MW the optimized Fe-Fe distance is 4.14
a.u. (LDA) and 4.28 a.u. (GGA), respectively, compared to 4.31 a.u. in [76] (GGA) and
4.26 a.u. in [104] (GGA).

Although we focus primarily on straight and linear monowires, we have observed that
for the iron atoms inside the gold tube the zig-zag configuration appears to be energetically
more favorable as compared to the unperturbed hybrid structure (as it was predicted
for the free-standing iron MWs [104]). We concentrated our effort on considering the
possibility of a Peierls dimerization of the Fe atoms along the chain. Thus, we double the
unit cell with lattice constant a. Keeping the lattice constant fixed at 2a, we investigate
the total energy E(δ) as a function of the iron atom relaxation δ off the ideal high
symmetry position along the chain axis. In most cases the dimerization was found to
be preferable with a gain in total energy of around 30 meV resulting in changes in the
Fe-Fe distance due to dimerization in the range of δ=5–12% depending on the system
(compared to 20meV and 16% in [104]). For more details see Table 7.1.

The calculated work function for the Fe@Au(6,0) structure is 4.5 eV, which is 0.3 eV
smaller than the work function of the Au(6,0) tube, filled with the Au monowire.

7.3.2 Magnetic Properties

In one-dimensional systems, the calculated magnetic moments of the iron atoms are much
larger than the corresponding bulk value of 2.2µB and the spin-polarization for the elec-
trons at the Fermi level is quite large. The calculated hybrid structure has an average
magnetic moment of around 2.92µB per MT sphere of iron atom and 3.34µB per Fe atom
in the entire unit cell (cf. Table 7.1). The magnetic moment of the gold atoms in all the
calculations is around 0.02µB. For the iron MWs we found a magnetic moment of around
2.97µB per MT sphere of iron atom and 3.30µB per Fe atom in the entire unit cell (which
is in a good comparison to the values in [104, 76]).

The decrease of the magnetic moment in the MT spheres of iron atoms in the hy-
brid structure comparing to the free-standing MWs gives the measure for the interaction
between the iron atoms of the central strand and the atoms of the outer gold tube.

We checked the possibility of the structures to become antiferromagnetic (AFM). For
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the bare MW the ferromagnetic state (FM) is more favorable by 0.37 eV (LDA) and
0.33 eV (GGA) per Fe atom (similar values were obtained in [104]). For the Fe@Au(6,0)
structure this difference is 0.38 eV (LDA) per atom of iron and dimerization does not
appear. We conclude that AFM solution is energetically very unfavorable and it is not
considered any further.

The calculated orbital magnetic moments µL for the iron monowires lie in the range
of 0.2–0.3µB (similar values were obtained for the iron MWs in [18]).

Magnetocrystalline anisotropy energies (MAE), being defined as energy differences
∆E = E(êz) − E(êr) between the magnetization aligned along the wire axis and the
radial direction of the wire, were also calculated. For the hybrid structure Fe@Au(6,0)
two possible in-plane alignments of the magnetization can lead to the stationary solutions:
along the x and y axis. Corresponding MAEs, ∆EX = E(êz) − E(êx) and ∆EY =
E(êz)−E(êy), are denoted by X and Y in the Table 7.1. The coordinate system is chosen
such, that the x-axis points to the center of the gold atom in the outer hexagon ring and
the y-axis points in between the two gold atoms in the hexagon ring. While in the case
of free-standing MWs the magnetization is aligned along the wire axis with the MAEs
between 1 meV to 7 meV, surprisingly in the case of the hybrid structure the situation
changes drastically. The influence of the outer heavy gold atoms with the magnetic
moment of just 0.02µB per atom causes the changes in the magnetization direction to
in-plane along the x-axis. The further creation of the dimer changes the easy axis again
to the y-axis. The average energy differences for the hybrid structure are around 30 meV
per iron atom. In order to confirm the role of the encasing Au atoms with a magnetic
moment of just 0.02 µB on the magnetization direction, we carried out calculation where
we switched off the spin-orbit interaction of the Au atoms by hand and we ended up at
the results obtained for the single Fe wire: the easy axis of the magnetization is again
along the wire, the hard axis is along the x direction, and the energy difference is 3.0 meV
per iron atom (LDA) close to the value of 5.1 meV obtained for the single Fe wire (LDA).
The shape anisotropy caused by the classical dipole interaction between the magnetic
moments of the atoms prefers the in-chain direction as easy axis. The hard axis pointing
radially from the wire is 0.1 meV higher in energy.

The magnetocrystalline anisotropy energy was calculated applying the force theorem.

7.3.3 Electronic Structure

The bandstructure of the free-standing (6,0) gold tube calculated with GGA is shown in
the right panel of the Fig. 7.11. In Fig. 7.14 the back-folded GGA bandstructure of the
free-standing iron monowire used to fill the gold tube is shown for spin up and spin down
states (indicated by arrows). For this calculation the Fe-Fe distance in the monowire
was kept to that of the gold monowire. It is clearly visible, that the minority d-stated
determine the electronic structure at the Fermi level. A profound symmetry analysis of
the bandstructure and the charge density distribution for the Fe MW one can find in [121].

Fig. 7.15 exhibits the atom-resolved band structure of the hybrid system, as calculated
in GGA, reflecting the basic features of the iron monowire: the majority of flat spin-down
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Figure 7.14: Bandstructure of a Fe monowire with a lattice constant consistent with
the gold tube for spin down and up channels (GGA). For minority spin, d-bands are
concentrated around the Fermi level.

Figure 7.15: Band structure of the Fe@Au(6,0) system. Spin down and spin up are
indicated by arrows. Open (blue) circles denote states located predominantly on iron
atoms. It can be seen that narrow d-bands of Fe are responsible for large spin polarization
at the Fermi level

Fe d-bands, concentrated around the Fermi energy. From the plot of the total density
of states (Fig. 7.16) we have obtained that the spin polarization at the Fermi level PEF

reaches 74.3% (GGA), and 77.5% in the case of LDA. The spin-polarization PEF
is defined

as (n↓(EF ) − n↑(EF ))/(n↓(EF ) + n↑(EF )), where n↓(EF ) and n↑(EF ) are total DOS for
spin-down and spin-up channels at the Fermi level.

Respectively, open (blue) circles in Fig. 7.15 indicate those states, which are predomi-
nantly localized on the iron sites. According to our definition this means, that the weight
of a wavefunction in the Fe muffin-tins is three times larger than in the muffin-tins of Au
atoms. The interstitial region is ignored. The atom-resolved band structure (Fig. 7.15)
and atom-resolved local DOS (Fig. 7.16) clearly show that a large DOS at the Fermi level
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for the spin-down states comes from the d-states of iron. From the bandstructure and
wavefunction analysis one can easily notice a large interaction of the iron states with the
outer shell of gold for the spin-up channel: the hybridization of s- and d-states of iron
and gold, located at the same energy interval, is significant.

In Fig. 7.17 the densities of states (GGA) for three different types of iron MWs (black
solid lines) and their dimers (green dashed lines), are shown. For the case c) of the hybrid
structure Fe@Au(6,0) we show the atom-resolved LDOS of the iron atoms. Fig. 7.16
represents the GGA densities of states for the hybrid structure (black solid lines) and
its dimer (dashed green lines). Panels for spin down and up are marked with arrows.
We conclude from Fig. 7.17(a) that the prominent peak of minority DOS at EF is the
dominant driving force for dimerization. Also in the Fe@Au(6,0) structure, a lowering of
the DOS due to dimerization can be found (Fig. 7.16(c)).

7.3.4 Charge Density

In the Fig. 7.18 we present the plots of the magnetization density at the Fermi energy
mEF
m (r) = ρEF

↓ (r) − ρEF

↑ (r), where ρEF

↓ (r) and ρEF

↑ (r) are the charge densities for the
minority and majority spins around the Fermi level, respectively. Fig. 7.18 (top) presents
the magnetization density in the xy-plane, cutting through the centers of the gold atoms
in an outer hexagon ring. Half of the hexagon is shown with the white lines connecting
the gold atoms, as guide to the eyes. Fig. 7.18 (bottom) shows the magnetization density
in xz-plane, cutting through the centers of the iron atoms and one of the gold atoms
in the outer shell hexagon. From these plots we see the domination of the d-bands of
iron in the minority spin around the Fermi level. The magnetization density has a non-
uniform distribution spilling out of the wire into the vacuum and should be, therefore,
experimentally accessible, e.g. by the spin-polarized scanning tunneling microscopy (SP-
STM). The magnetization density carries the signature of Au p-orbitals for the outer shell
atoms and Fe d-orbitals for the inner atoms, signifying the hybridization of the minority
Fe d-states with the Au p-states. Thus, the magnetization density at the Fermi energy is
dominated by minority states.

The obtained results show that such hybrid structure as Fe@Au(6,0), if used for elec-
tron transport, will show a significant spin-polarization leading to strongly spin-polarized
transport properties.

7.4 One-Dimensional Multiple Benzene-Vanadium Sand-

wiches

In the last two decades some physical chemists have applied molecular beam technique to
organometallic compounds and have opened up ”gas-phase” organometallic chemistry [22].
This movement has proven to be very important to reduce empirical aspects in the con-
ventional organometallic chemistry. In fact, many novel compounds have been synthe-
sized by applying the cluster formation methods such as a modified laser vaporization
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Figure 7.16: Densities of states (solid black lines) for Fe-filled (6,0) gold nanotube (spin up
and down are indicated by arrows) and its dimer, calculated with GGA (corresponding
DOS for the dimers are shown with dashed green lines). Top: total density of states.
Middle: atom-resolved LDOS for the gold atoms. The Au LDOS is almost unaffected by
the dimerization of the Fe strand. Bottom: atom-resolved DOS for the iron atoms. The
large negative spin polarization is seen at the Fermi level.

Figure 7.17: Densities of states for three different types of iron monowires and their dimers
(spin up and down are indicated by arrows). DOS for the non-dimerized MWs are shown
with the solid (black) lines, DOS for the dimers are shown with the dashed (green) lines.
a) total DOS for the bare MW and its dimer at the GGA interatomic distances of 4.28
a.u. and 4.02 a.u., respectively. b) total DOS of the bare Fe MW at the positions as in
the Fe@Au(6,0) system and its dimer (GGA, 4.42 a.u. and 4.10 a.u., respectively). c)
atom-resolved LDOS for the iron atoms inside the Fe@Au(6,0) hybrid structure and its
dimer (GGA, 4.42 a.u. and 4.20 a.u., respectively).

method [37, 75, 6, 30]. These include atomic clusters, nanostructured materials, atomic
chains, mono- and multi-layer films. The unique properties of these materials are a direct
consequence of their topology and reduced dimensionality. Atomic clusters of specific size
and composition can be produced in a supersonic beam expansion while nanoparticles
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Figure 7.18: Spin-density plots for the Fe@Au(6,0) wire for the states around the Fermi
energy. Left: Spin density plot in xy-plane (perpendicular to the tube axis), cutting
through the centers of the atoms in the outer hexagon ring of gold. Right: Spin-density
plot in xz-plane, cutting through the centers of the inner strand atoms of iron and one of
the atoms of gold in the outer shell hexagon ring.

with a narrow size distribution are being synthesized using gas condensation techniques.
Atomic chains, monolayers and multilayers, on the other hand, are produced using molec-
ular beam epitaxy on specially prepared surfaces. All these materials have one common
characteristic - their length scales are small enough to exhibit quantum phenomena.

Interchain or multilayered organometallic polymers have been inspiring chemistry and
physics for a long time [61, 77]. Synthesis of organometallic compounds in gas phase
presents a novel guideline to chemists because they can be prepared without solvent
and oxidation in air. Especially, the application of the laser vaporization to the gas-
phase synthesis of organo-metallic compounds enables us to prepare the constituents in
considerable density in a short time because there are no interfering effects of solvents,
aggregation phenomena, and counterions. This new approach should open up an entirely
different aspect of organometallic chemistry and physics, which can be studied quite nicely
in the gas phase, and indeed several groups independently have succeeded in the synthesis
of novel organometallic complexes. The technique used to produce and detect the gas-
phase organometallic clusters involves a beam source with laser vaporization of metal rods
and time-of-flight mass spectrometry whose distinct ability was well-demonstrated in the
discovery of C60 and metallo-carbohedrene [52].

Furthermore, recently, formation of fullerene-based organometallic compounds sug-
gests that new forms of materials can be synthesized because the fullerenes may prove to
be highly versatile ligands due to their intriguing topography and aromaticity [19]. A great
deal of effort has been spent in the past decade on modifying fullerenes by coordinating
atoms both inside and outside the cage structures [8]. In particular, the finding of su-
perconducting alkali metal fullerides [31] stimulated considerable interest, suggesting that
new forms of materials and superstructures can be synthesized with important chemical
and physical properties. Gas-phase studies of transition metals and C60 (MT −C60) have
been initiated by Freiser and co-workers [21], concerning the possibility of a transition-
endohedral complex. As well as organometallic compounds of transition metal elements,
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the f -block elements of lantanide (Ln) and actinide (Ac) metals have been of consider-
able importance in many areas of modern technology [97]. Although these organometallic
clusters have been studied extensively as mentioned above, the size range has been rather
limited to the small complexes.

By applying the advantages of the laser vaporization method for the metal-molecule
complexes, several groups have reported gas-phase studies on metal-benzene complexes.
Armentrout and co-workers [67] and Freiser and co-workers [40] have extensively revealed
thermochemistry on ML+

n complexes, where M and L are a metal atom and a ligand
molecule, respectively. Theoretical calculations have also been carried out. In particular,
Langhoff [13] and co-workers have calculated binding energies for all 3d transition metal
ions (M+) and benzene complexes and have accounted for the effect of the electron corre-
lation between the metal atoms and benzene molecules. However, almost all the subjects
were restricted to small cationic complexes denotes as M1(Bz)

+
x , x = (1, 2) due to the

necessity of mass selection and simplification of the calculations.
For 3d metal-benzene, Mn(Bz)m, the new organometallic compounds unknown in

the bulk, have been newly discovered by Kaya and his co-workers [37]. Two kinds of
structures of multiple sandwich and rice-ball were formed, depending on the metal el-
ements [37, 54, 55]. Early transition metals of Sc, Ti and V form the multiple-decker
structure of (n,m) = (n, n + 1) [37, 55], while late transition metals of Fe, Co and Ni
form the rice-ball structure [54]. With the measurement of the ionization energy Ei of
M−Bz, it was found that the Ei drops significantly with the number of layers, which can
be explained by delocalization of d electrons through the interaction with the LUMO of
benzene [128]. Investigating of these sandwich clusters is of great interest, because they
have an ideal one-dimensional structure to have a charge-density-wave (CDW) or spin-
density-wave (SDW) states. Particular attention is paid to the CDW conductors because
of the strikingly nonlinear and anisotropic electrical properties, gigantic dielectric con-
stants, unusual elastic properties and rich dynamical behavior [112]. A related compound
[Ni(C3B2(CH3)4H)]∞ has been actually characterized as a microcrystalline material with
a remarkably high electrical conductivity of 0.2 (Ω cm)−1 [57]. This value exceeds even
that for undoped polyacetylene considerably, and such organometallic sandwich polymers
are considered to form a new class of 1D conductors.

On the other hand, it was recently shown by Kaya and co-workers [69] that one-
dimensional vanadium-benzene sandwiches are a novel class of high-spin molecular mag-
nets, which display novel properties that make them promising candidates for future
applications in high-density information storage and quantum computing [24]. Because
of their finite size, these systems display behavior not observed in macroscopic magnetic
systems, for example resonant magnetization tunneling phenomena. In recent years, low-
dimensional magnetic materials have attracted much attention from both fundamental
and applied points of view. Motivated by theoretical predictions [25], much interest has
been focused on the area of 1D magnetic nanomaterials, for example, single-chain magnets
synthesized using intricately tailored organometallic materials [10]. Paramagnetic com-
plexes are particularly attractive candidates for use as building blocks in low-dimensional
magnetic materials because the coordinatively unsaturated metal atom(s) that carry spin
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can also serve as junction points in fabrication of 1D, 2D and 3D networks. One of
the strategies in producing ”designer” molecular magnets and clusters, having particular
magnetic properties involves tuning the spin alignment of the constituent paramagnetic
metal atoms via choice of the counterions and ligands.

In order to get a good quantitative picture of the equilibrium geometries, electronic
structures and magnetic properties of gas phase Vn(BZ)m complexes, theoretical cal-
culations are necessary, as the above mentioned experimental studies cannot measure
equilibrium geometries accurately. In this aspect, there has been a considerable efford
towards understanding the geometries of transition-metal–benzene complexes. Mattar
and Hamilton [64] have reported DFT-based results on the ground state geometries and
spin states of neutral and cationic V Bz complexes. Bauschlicher et al. [13] reported the
equilibrium geometries and dissociation energies of cationic complexes using the modi-
fied coupled-pair functional method (MCPF). Ionization energies and optimal geometries
were reported by Yasuike and Yabushita [128] for small metal–benzene clusters of early
transition metals, calculated with RHF/RHOF and DFT methods.

Geometries and spin multiplicities calculations of Vn(Bz)
+
m complexes were reported

by Weis et al. [123]. Recently, Pandey et al. have reported DFT-GGA calculations on
the global geometries, ground state spin multiplicities, relative stabilities and energetics
of neutral, cationic and anionic benzene complexes of vanadium [41, 83, 84].

In this section we present our DFT calculations on the set of 1D vanadium-benzene
sandwiches Vn(Bz)n+1, n = 0, 1, 2, 3. We compare obtained results on the optimized struc-
tural parameters with those calculated with other methods, present densities of states,
charge density plots of the orbitals in this complexes, and investigate the nature of the
magnetism in the sandwiches in order to explain experimentally observed behavior of the
magnetic moment with increasing n as it was reported by the group of Kaya [69].

7.4.1 Computational Details

We calculate Vn(Bz)n+1, n = 0, 1, 2, 3 clusters within the 1D super-cell approach, which
means that the unit-cell of the system is stretched along z axis, cutting through the
centers of vanadium atoms, in order to avoid an interaction, coming from the neighboring
molecules. Separation between the centers of the molecules was chosen as following:
8.0 Å (n = 0), 10.6 Å (n = 1), 13.8 Å (n = 2), 17.0 Å (n = 3), 20.1 Å (n = 4),
ensuring negligible interaction between neighboring molecules. We used the GGA with
the revPBE functional [130] for the exchange-correlation potential and energy. Parameters
D and D̃ were set to 12 a.u. and 13 a.u., respectively. We used Kmax = 3.4 a.u.−1 and
Gmax = 10.2 a.u.−1. The following muffin-tin radii were chosen: 2.4 a.u. (V), 0.65 a.u.
(H) and 1.25 a.u. (C). For the expansion of potential and charge density in the vacuum
we used mmax of 48, and mmax=24 for the expansion of the basis functions. For separate
calculations of benzene we used the basis functions cut-off parameter Kmax of 4.00 a.u.−1.
These computational parameters proved to give reliable total energies, magnetic moments
and equilibrium structural parameters. For calculations of all the complexes we used a
D6h symmetry, except for the V (Bz) complex, where we used a C6v symmetry.
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7.4.2 V (Bz) Complex

An insight into a mechanism, responsible for the bonding in the molecule V (Bz) can
be given on the base of a schematic analysis of the orbitals of benzene and vanadium.
The valence electronic configuration of vanadium is 3d34s2. The plots of five atomic 3d
orbitals dz2 , dx2−y2 , dxy, dxz and dyz are presented in Fig. 7.19 (left), where by blue we
denote a positive sign of a wavefunction and by yellow – negative. The π-orbitals of
benzene are plotted in Fig. 7.19 (right). The lowest in the group of π-orbitals are three
occupied orbitals of benzene (π1, π2, π3), and they are its highest occupied molecular
orbitals (HOMO). HOMO orbitals carry six π-electrons of benzene. The upper group of
π-orbitals is a group of lowest unoccupied molecular orbitals (LUMO) of benzene. With
’+’ and ’-’ positive and negative sign of the wavefunctions is denoted. Of the HOMO,
π1-orbital has no nodes, and π2 and π3 are degenerate in energy and have one node plane.
The degenerate LUMO π∗

4 and π∗
5 have two node planes and π∗

6 has three node planes.
The reason for the bonding in the molecule is due to the fact that d-orbitals of free atom
of V and π-orbitals of benzene are rather close to each other in energy, causing, therefore,
a significant interaction. For further use, we will, however, rename the orbitals of V
and benzene, taking into account their symmetries, hence, their ability to interact with
each other. So, the five 3d-orbitals of the metal atom can be divided into one dσ (dz2),
two dπ (dxz, dyz), and two dδ (dx2−y2 , dxy), and, of course, the 4s orbital is classified as
sσ orbital. Similarly, the six π-orbitals of benzene are one Lσ (π1), two Lπ (π2, π3), two
Lδ (π∗

4, π
∗
5) and one Lφ (π∗

6). And, finally, the σ-orbitals of benzene we will denote as Ls.
The valence electronic configuration of the free benzene is, therefore, (Lσ)2 (Lπ)4.

When benzene and vanadium are brought together, overlap and hybridization of the
orbitals occurs. The degree of interaction between the dσ orbital of V and benzene is
negligible, since its direction is to the hole in the middle of the benzene ring. The dσ orbital
thus remains as the nonbonding atomic orbital in V (Bz), which we also expect to be the
highest occupied orbital of the molecule. By the symmetry (Fig. 7.19), the dδ orbitals of
V do not interact with the HOMO of benzene, but with the LUMO Lδ. As a result of
this interaction we expect two degenerate bonding orbitals, which we will call δ-orbitals
of the complex, to appear below the dσ orbital. These three highest molecular orbitals
of V (Bz) will carry five electrons of V: four electrons at the δ-orbitals, and one electron
at the dσ orbital. Further, as allowed by the symmetry, the dπ states of V will interact
with the HOMO Lπ states of benzene, creating, as a result, two bonding π-orbitals (and,
of course, two antibonding above the Fermi level), which accommodate four electrons of
benzene. The dπ-orbitals of vanadium are more extended in the direction to the benzene
ring, and, hence, we expect them to lie rather low in energy, compared to the δ-states.
The last two orbitals, Lσ of benzene and sσ of V, which is extended much further than
any other atomic orbital of V, interact, causing a bonding Ls-state to appear, where the
last two valent electrons of benzene are accommodated. Schematic plot 7.20 represents
the latter considerations on the interaction of V and Bz. This scheme, also known as
a Hückel scheme, is a result of several previous molecular orbital calculations [128, 2].
However, in order to approve this scheme, we performed a set of ab initio calculations.
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Figure 7.19: Right: schematic orbital configuration for the π-states of benzene. With
’+’ and ’-’ positive and negative sign of a corresponding wavefunction is marked. The
states π1, π2 and π3 are forming a HOMO group of orbitals. Of these states the latter two
have one node plane. A wavefunction of the lowest π-state π1 does not have any nodes.
The orbitals π∗

4, π
∗
5 and π∗

6 are the LUMOs of benzene and have a higher number of node
planes. Left: 3d-orbitals of vanadium, blue color denotes positive sign of a wavefunction,
yellow - negative sign.

Geometrical structure of the complex is drawn in Fig. 7.20. In our calculations we
supposed that V atom is situated above the centers of the carbon and hydrogen hexagons,
and, therefore, the axis (which is defined as the z-axis of the system) which goes through
the centers of the V atom and the hexagons, is perpendicular to the planes of hexagons.
The planes of the hydrogen and carbon hexagons can be shifted, but they are parallel to
each other. It was checked by other authors that this geometrical configuration is optimal
for this simple complex, but, for a charged complex V +(Bz) or more complex sandwiches,
which we consider later, other geometrical structures are also possible. For instance, with
increasing number of benzenes in the molecule, situation, when they are rotated by π

6

to each other, can be also stabilized. On the other hand, the vanadium atom could
prefer not to lie on the symmetry axis of the system (z) anymore. Finally, in reality, the
atoms of carbon and hydrogen are slightly shifted from their symmetrical positions so that
they do not lie in the same planes anymore. However, listed above possible topological
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Figure 7.20: Left: Geometrical structure of the V (Bz) complex. The axis z, which goes
through the centers of vanadium atom and carbon and hydrogen hexagons, is perpendic-
ular to the planes of the hexagons. Atoms in every hexagon (C,H) are lying in the same
plane. Right: schematic orbital interaction scheme for the V (Bz) complex (see text for
details).

distortions from symmetrical positions, we consider, are mostly higher in energy than
the symmetric configuration, or, the differences in total energies between distorted and
symmetrical geometries are negligible [123, 84, 41].

We have performed separately nonmagnetic and spin-polarized optimizations for this
complex, restricted by the C6v symmetry. The optimized geometrical parameters for the
V (Bz) complex are presented in the Table 7.2, in comparison to the previous calculations.
In this table we present the following geometrical parameters: distance between the centers
of the V atom and the carbon ring (V-C), distance between the centers of the V atom and
the hydrogen ring (V-H), the length of the carbon-carbon bond (C-C) and the length of
the carbon-hydrogen bond (C-H). In order to estimate the effect of the V atom on benzene
ring we have also performed a separate optimization of benzene, which gave the values
of 1.389 Å for the C-C bond and 1.089 Å for the C-H bond. This is in good comparison
to the values of 1.386–1.407 Å (C-C) and 1.073–1.087 Å (C-H), given by Bauschlicher
in [13], obtained with various methods. A slight overestimation of the C-H bond can
be attributed to the use of GGA. However, the changes in the latter bond length due
to the V atom are around 0.5% in the case of our calculations and the values, given by
other authors, are in the range of 1.073–1.087 Å for the bare benzene. For the C-C bond,
nevertheless, the situation is different. We predict that the C-C bond length will increase
approximately by 4% when doped with vanadium, which agrees well with data, given by
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Table 7.2: Optimized geometry parameters for a V (Bz) complex: distance between the V
atom and the center of the carbon ring (V-C), distance between the V atom and the center
of the H-ring (V-H), carbon-carbon distance (C-C) and carbon-hydrogen distance (C-H)
(Fig. 7.20). NM and FM corresponds to our nonmagnetic and magnetic calculations. (a):
data from [84]; (b) data from [64]; (c): data from [13]; (d),(e): data from [123] for triplet
and quintet states of V (Bz+), respectively; (f),(g): data from [41], obtained with different
methods.

NM FM (a) (b) (c) (d) (e) (f) (g)
V-C 1.651 1.656 1.97 1.62 1.964 1.67 1.92 1.58 1.45
V-H 1.564 1.571 - - - - - - -
C-C 1.422 1.423 1.42 - 1.42 - - 1.45 1.48
C-H 1.082 1.081 1.09 - 1.074 - - 1.09 1.09

other authors (7.2). This increase of the bond length is due to the interaction with the
V atom, which leads to the occupation of the LUMO orbitals of benzene with the higher
number of nodes. This interaction is also responsible for the shift between the planes
of C and H hexagons: the H ring prefers to lie closer to the V atom than the C ring
by 0.087 Å (NM) and by 0.085 Å (FM). For the V-C distance we predict the values of
1.651 Å and 1.656 Å for the paramagnetic and magnetic cases, respectively. Presented in
the table 7.2 values for this distance, calculated by different authors, however, strongly
disagree with our results and among each other. This can be attributed to the differences
in electronic configurations for the complex (triplet and singlet states of V (Bz+) in [123],
V +(Bz) complex in [13]) and different calculational methods used (for instance, GGA-
pbw with all-electron 6-311G** basis set, and GGA-pbw with frozen-core LanL2DZ basis
set in [41] and [84]). Using the LDA LCAO method, Mattar and Hamilton [64] obtained
the value of 1.62 Å for the V-C bond in the neutral complex, which is the closest to our
result. However, we believe the most our all-electron FLAPW calculations.

Difference in total energies ENM − EFM of 0.491 eV between the paramagnetic and
magnetic solutions at the optimized positions shows, that the magnetic state is much
more stable than the nonmagnetic one. The value of the magnetic moment of 1.00µB
for the complex is consistent with the orbital scheme, we have described previously, and
can be understood from the DOS for the molecule, presented in Fig. 7.21. In this plot by
black solid line the total DOS are plotted, by solid blue and orange lines the LDOS for the
vanadium and carbon atoms, respectively, are plotted for the paramagnetic and magnetic
cases (spin-up and spin-down channels are indicated by arrows). Paramagnetic DOS can
be understood on the base of the Hückel orbital scheme, explained in the beginning of the
section. The nonbonding dσ orbital of V is situated at the Fermi level and accommodates
one electron. The two degenerate bonding δ-states, created as a result of interaction
between the LUMO of benzene and dδ-orbitals of V are lying slightly lower in energy,
accommodating four electrons of V. Large overlap of the dπ-orbitals of V and Lπ HOMO
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Figure 7.21: Densities of states for the V (Bz) cluster: total DOS (black solid line), DOS
at the carbon cites (orange solid line) and DOS at the vanadium cite (blue solid line). Top:
nonmagnetic densities of states. Bottom: spin-polarized DOS for spin-up and spin-down
channels (indicated by arrows).

orbitals of benzene is responsible for the low-lying π-states of the molecule, carrying four
π-electrons of benzene. The last two valent π-electrons of benzene are situated well below
the highest occupied σ-orbitals Ls due to the significant overlap with the 4s-orbital of
vanadium. The charge density plots of the highest valent states of the cluster V (Bz) can
be seen in Fig. 7.22. In the spin-polarized case a large exchange splitting of the states
can be seen. This splitting is the largest for the dσ state of vanadium, which is located
at the Fermi level in the nonmagnetic case, and a smaller splitting can be seen for the
δ states. Of five vanadium electrons three have spin up (one at the dσ level and two at
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Figure 7.22: Charge density plots for the electronic states of the molecule V (Bz), labelled
by the names of the states in Fig. 7.21

the δ level) and two have spin down at the δ level, which results in the total magnetic
moment of 1.00µB for the system. Our calculations show, that this magnetic moment is
entirely located inside the muffin-tin sphere of V (1.09µB). The low-lying states of the
complex are almost not prone to the exchange splitting, and the magnetic moments of the
H atoms (0.001µB) and the C atoms (0.01µB) are very small, however, magnetic moments
of C atoms prefer to couple antiferromagnetically to the magnetic moment of the V atom.
Interestingly, the spin-dependent properties of the molecule will be determined by the δ
orbitals, which are lying at the Fermi energy.

Our value for the total magnetic moment agrees very well with the experimental
average value of 0.8µB, measured by Kaya and co-workers in [69] for the V (Bz)2 complex
at room temperature in the gas phase. However, in the literature the calculated magnetic
moment of the V (Bz) complex ranges from 0µB to 5µB. This inconsistency can be
attributed to the reasons, discussed previously. First, the magnetic moment depends
strongly on the electronic configuration of the complex; secondly, the results strongly
depend on the computational method used, and different magnetic states can be favored,
depending on the method, even with the same geometrical parameters [123, 84, 83, 41, 13].

7.4.3 V1(Bz)2 Complex

When two benzene molecules are located at the same distance from V, as in the V (Bz)2

complex, the symmetry-adapted molecular orbitals are produced from the orbitals of a
single benzene. These orbitals are classified into the L(σ, π, δ, φ)g,u orbitals. The atomic
orbitals of vanadium have g symmetry, and only L(σ, π, δ)g orbitals of benzene can interact
with them. An interaction scheme for this complex, in principal, remains the same, as for
the V (Bz) complex. Nonbonding dσ orbital occupies the Fermi energy with one electron.
Lower in energy two degenerate δ-states are situated, created as a result of hybridization
of the vanadium dδ orbitals and (Lδ)g orbitals of benzene, which carry four vanadium
electrons (see Fig. 7.23).

The π group of states consists of two degenerate πg and πu orbitals. The hybridization
of dπ states of V and Lπg orbitals of benzene is responsible for the appearance of πg, while
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Figure 7.23: Left: Geometrical structure of the V (Bz)2 complex. The axis z, which goes
through the centers of vanadium atom and carbon and hydrogen hexagons, is perpendic-
ular to the planes of the hexagons. Atoms in every hexagon (C,H) are lying in the same
plane. Right: schematic orbital interaction scheme for the V (Bz)2 complex (see text for
details).

the πu remains nonbonding Lπu of benzene. The last two states sσ should in principal
also split into sσg and sσu levels, as the latter one is the Lσu of benzene, non-interacting
with the V atom.

Geometrical structure of the system is drawn in Fig. 7.23 (right). We calculate this
structure in the frame of D6h symmetry, although for this structure other geometrical
configurations are possible [41], as was described earlier. However, it was shown that
other possible configurations give negligible total energy differences and do not effect the
magnetic properties of the molecules.

Calculated optimal geometrical parameters of this system for nonmagnetic and mag-
netic cases are listed in table 7.3 in comparison to previously published data. The first
thing to notice is that magnetism does not change the equilibrium parameters significantly,
compared to the nonmagnetic ones, which is also the case for the V (Bz) semi-sandwich.
The difference between the V-C and V-H nonmagnetic and magnetic distances consti-
tutes 1% and 2%, respectively. Another issue to notice is that the C-H distance for this
complex, compared to the V (Bz) complex, almost does not change. The C-C distance for
the V (Bz)2 system is slightly smaller compared to the V (Bz), which is due to the larger
V-C distance in V (Bz)2. In general, all the methods, including ours, give approximately
the same C-C and C-H distances, which is not, however, the case for the V-C distance.
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Table 7.3: Optimized geometry parameters for a V (Bz)2 complex: distance between the V
atom and the center of the carbon ring (V-C), distance between the V atom and the center
of the H-ring (V-H), carbon-carbon distance (C-C) and carbon-hydrogen distance (C-H)
(Fig. 7.23). NM and FM correspond to our nonmagnetic and magnetic calculations. (a):
data from [123]; (b)-(d): RHF/ROHF, R/UMP2 and DFT R/UB3LYP data from [128];
(e),(f): data form [41].

NM FM (a) (b) (c) (d) (e) (f)
V-C 1.799 1.815 1.81 1.708 1.565 1.675 1.69 1.67
V-H 1.786 1.808 - 1.717 1.539 1.667 - -
C-C 1.415 1.415 - 1.411 1.438 1.426 1.44 1.43
C-H 1.083 1.082 - 1.072 1.088 1.084 1.09 1.09

Our calculated optimal value for this V-C distance of 1.799 Å (nonmagnetic) and
1.815 Å (magnetic), is significantly larger than the corresponding value for the V (Bz)
complex. We attribute this fact to the different bonding mechanism, responsible for
the geometry of the complex. The second benzene ring of the system causes a certain
symmetrical rearrangement of the single benzene orbitals, causing an appearance of the
nonbonding orbitals, increasing, therefore, the distance between the benzene rings and the
V atom. The same tendency with the same equilibrium distances can be seen in [123]. The
only experimental results for the V-C distance of 1.66 Å in the V (Bz)2 complex are given
in [74], although the authors report, that their structure determination did not possess a
high degree of accuracy. Also, much smaller value for this distance in [74], compared to
our calculated one, can be attributed to the fact of presence of the Ag matrix, used for
these experiments. In general, it is known that different additional reactants can effect
the properties of the complex considerably. For instance [4] the V-C distance drastically
decreases when the V (Bz)2 complex is put on the Cu(111) surface. However, obtained by
other authors [128, 41] values for the V-C distance reflect the differences in computational
methods and electronic configurations used. Finally, as it was also calculated for the
V (Bz) complex, the plane of the H-hexagon is shifted towards the V atom by 0.01 Å,
compared to the carbon ring.

As for the V (Bz) complex, magnetic solution is much lower in energy than nonmag-
netic one, with the difference in total energies ENM − EFM of 0.459 eV. The magnetic
moment of the whole system remains the same, with the value of 1.00µB. Almost the
same values, as in the case of V (Bz), stand for the magnetic moments inside the muffin-
tin spheres of V,C and H; the antiferromagnetic coupling of the magnetic moments of V
and C sites is also preserved.

Basic features of the paramagnetic DOS, Fig. 7.24 (top), precisely reflect the Hückel
interaction scheme for this complex, discussed in the beginning of the section. In this plot
by black solid line the total DOS are plotted, by solid blue and orange lines the LDOS
for the vanadium and carbon atoms, respectively, are plotted for the paramagnetic and
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Figure 7.24: Densities of states for the V (Bz)2 cluster: total DOS (black solid line), DOS
at the carbon cites (orange solid line) and DOS at the vanadium cite (blue solid line). Top:
nonmagnetic densities of states. Bottom: spin-polarized DOS for spin-up and spin-down
channels (indicated by arrows).

magnetic cases (spin-up and spin-down channels are indicated by arrows). As in the case
of the half-sandwich V (Bz), dσ orbital with one electron is located at the Fermi level.
However, much lower in the energy, compared to V (Bz) DOS, doubly degenerate hybrid δ
is located. This happens due to the larger overlap and stronger bonding of the dδ orbitals
of V with the LUMO of two benzenes Lδg. According to the symmetry reasons, discussed
above, the doubly degenerate π state of V (Bz) slightly splits in V (Bz)2 into two single
levels πg and πu, of which πu is nonbonding. The same symmetry splitting, which can
be seen in the figure, happens to the 4sσ-Lσ hybridized orbital. We, however, did not



122 CHAPTER 7. RESULTS

distinguish these two sσg and sσu levels in the charge density plots for the V (Bz)2 orbitals,
presented in Fig. 7.25. Magnetic DOS, Fig. 7.24 (bottom), repeat the main features of
the V (Bz) cluster magnetic DOS.

Figure 7.25: Charge density plots for the electronic states of V (Bz)2-cluster. The plots
are labelled by the names of the states in Figs. 7.24, 7.23.

Low lying π, sσ, Ls states of the molecule are almost not prone to the exchange split-
ting, while the spin-dependent behavior of the complex is determined by the δ-state at
the Fermi energy for spin down channel.

7.4.4 V2(Bz)3 Complex

A V2(Bz)3 complex is obtained by putting the V (Bz) half-sandwich on top of the V (Bz)2

molecule (see Fig. 7.26). The orbital interaction scheme, due to the presence of an ad-
ditional benzene and vanadium becomes rather complicated, although, as the resulting
molecule has a symmetric configuration, some suggestions on the resulting orbital ar-
rangement can be made. Resulting orbitals should distinctly split into two groups: one,
connected to the outer benzene rings, and the second one, concentrated on the inner
benzene ring, equidistant from the two other benzenes. Speaking from the point of view
of the system’s symmetry, the molecule itself can be imagined as two half-sandwiches,
connected by an additional benzene. Taking into account these considerations, we would
expect that, due to the bonding and charge transfer between the atoms of V through the
central benzene, bonding of the V atoms to the outer benzenes will become weaker and
the V-C2 distance will increase (see Fig. 7.26), compared to the distance in free V (Bz).
Expected increase in the V-C2 distance can be clearly observed from the values, given in
table 7.4. We have performed nonmagnetic, ferromagnetic and antiferromagnetic struc-
tural optimizations for the complex, however, calculated values did not differ significantly,
therefore, only the ferromagnetic distances are presented in the table. In comparison to
the V-C distance for the V (Bz) complex (table 7.2), distance from the V atom to the
outer C ring V-C2 increased by 4.6%. This tendency towards increasing can be also seen
in almost all the calculations by other authors. Due to the strong interaction of two
vanadium atoms via inner benzene, also the carbon-carbon distance C1-C1 is consider-
ably larger, than in the V (Bz) or V (Bz)2 complexes and in the outer carbon ring of
V2(Bz)3 (C2-C2), which can be attributed to the population of the LUMO orbitals of
benzene. The effect of this interaction cannot be, however, noticed for any of the strong
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Figure 7.26: Geometrical structure of the V2(Bz)3 complex. The axis z, which goes
through the centers of vanadium atoms and carbon and hydrogen hexagons, is perpendic-
ular to the planes of the hexagons. Atoms in every hexagon (C,H) are lying in the same
plane.

carbon-hydrogen bond lengths (C1-H1,C2-H2). The results of other authors also prove the
correctness of the proposed interaction scheme for the complex, presenting it as a sum of
V (Bz) and Bz compounds, which is reflected in the ratio of V-C1 and V-C2 distances:
the V-C1 distance is larger by approximately 3–5% , than the V-C2 distance, depending
on the method.

We have performed nonmagnetic, ferromagnetic and antiferromagnetic calculations
at the optimal positions for the V2(Bz)3 complex. These calculations confirm that the
molecule is magnetic, with the difference in total energies between the ferromagnetic and
nonmagnetic solutions ENM − EFM of 0.415 eV per atom of vanadium. A small energy
difference between the FM and AFM states of 6.1 meV for the whole complex (FM state
is lower in energy) shows, that the magnetic ordering of the molecule can be prone to the
thermal fluctuations already at T0=100K. The total magnetic moments of 0.00µB (AFM)
and 2.00µB (FM) for these magnetic states should, in principal, result in an average value
of 1.00µB for the temperatures larger than T0. This fact, together with the spin-rotation
effect, can explain an average value of 1.3µB for the complex, measured at 154K by Kaya
and co-workers [69]. Also, we want to stress, that the energy barrier of 6.1 meV can be
easily overcome due to experimental conditions, phonon excitations, etc. [41].

The local magnetic moment of V atom in FM and AFM cases constitutes the same
value of 1.02µB. When vanadium atoms are coupled ferromagnetically, small magnetic
moments of carbon atoms of 0.008µB are coupled ferromagnetically to each other and
antiferromagnetically to the moments of vanadii. In AFM case C magnetic moment of
0.005µB in the outer benzene is coupled antiferromagnetically to the closest V atom, while
the C moment in the inner benzene vanishes completely. As it was already noticed by
Yasuike and Yabushita in [128], the orientation of the magnetic moments in the carbon
atoms relatively to the moments of vanadii could considerably effect the difference in total
energies between FM and AFM states.
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Table 7.4: Optimized geometry parameters for a V2(Bz)3 complex: distance between the
V atom and the center of the inner carbon ring (V-C1), distance between the V atom and
the outer carbon ring (V-C2), distance between the V atom and the outer H ring (V-H2),
carbon-carbon distance in the outer and inner C rings (C2-C2 and C1-C1, respectively) and
carbon-hydrogen distance in the outer and inner benzenes (C2-H2 and C1-H1, respectively)
(Fig. 7.26). FM corresponds to our ferromagnetic calculations. (a),(b): RHF/ROHF and
R/UMP2 data from [128], respectively; (c)-(f): data from [41], calculated with different
methods; (g): data from [123].

FM (a) (b) (c) (d) (e) (f) (g)
V-C1 1.793 1.791 1.722 1.75 1.73 1.71 1.70 1.76
V-C2 1.727 1.660 1.648 1.67 1.65 1.68 1.64 1.76
V-H2 1.676 - - - - - - -
C1-C1 1.439 1.428 1.448 1.46 1.45 1.47 1.45 -
C1-H1 1.081 - - 1.09 1.09 1.09 1.09 -
C2-C2 1.415 1.414 1.429 1.45 1.43 1.45 1.43 -
C2-H2 1.082 - - - - - - -

The densities of states and the charge density plots for the corresponding orbitals of the
V2(Bz)3 complex are presented in Figs. 7.27 and 7.28 (paramagnetic, antiferromagnetic
and ferromagnetic DOS are given in Fig. 7.27). Due to the inversion symmetry of the
system AFM DOS are given only for spin-up channel. In these plots, black solid line is
used for the total DOS, orange solid line for the LDOS of C atoms in the inner benzene,
green - for the carbons in the outer benzenes and blue - for the LDOS in the muffin-tins of
vanadii. We keep the notations for the states of the same origin as in the cases of V (Bz)
and V (Bz)2. Not involved in any interactions nonbonding orbitals dσ1 and dσ2, located
on two V atoms, occupy the Fermi level, carrying two dz2-electrons. Two degenerate δ2
orbitals, created as a result of the hybridization between the dδ’s of vanadii and LUMO of
the outer benzenes are located slightly lower in energy. In Fig. 7.28 we presented the total
charge density plots for these three HOMO of V2(Bz)3, which carry six electrons. The rest
of the valent V electrons is accommodated by a much lower in energy, doubly degenerate
δ1 orbitals, which is a hybrid between dδ of vanadii and a LUMO of the inner benzene.
Two hybrids Lπ2-dπ and Lπ1-dπ are situated very deep in energy, and a mixed set of Ls
and sσ orbitals comes after. Among the orbitals, which are concentrated on the inner and
outer benzenes, the first ones are located characteristically much lower in energy, which
shows, that these orbitals, in particular, δ1 and π1, are responsible for the bonding in
the molecule. The AFM DOS, symmetric for the both spin channels, shows the exchange
splitting between the dσ1 and dσ2 orbitals. In the FM case, strong exchange splitting can
be seen for all the HOMO orbitals of V2(Bz)3, with the δ2 orbital for spin-down occupying
the Fermi level.



7.4. ONE-DIMENSIONAL MULTIPLE BENZENE-VANADIUM SANDWICHES 125

Figure 7.27: Densities of states for the V2(Bz)3 cluster: total DOS (black solid line),
DOS at the outer and inner carbon cites (green and orange solid lines, respectively)
and DOS at the vanadium cite (blue solid line). Top: nonmagnetic densities of states.
Middle: antiferromagnetic DOS for spin-up channel. Bottom: ferromagnetic DOS for
spin-up and spin-down channels (spin-up and spin-down are denoted by arrows). The
LDOS at two different vanadium atoms are marked by blue and green solid lines for the
antiferromagnetic case.
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Figure 7.28: Charge density plots for the electronic states of V2(Bz)3-cluster. The plots
are labelled by the names of the states in Fig. 7.27.

7.4.5 V3(Bz)4 Complex

In analogy to the previous complex V2(Bz)3, a V3(Bz)4 molecule can be considered as a
composition of two outer half-sandwiches, connected by an inner complex V (Bz)2 (geo-
metrical structure of the complex is given in Fig. 7.29). Taking into account previously
described interaction scheme for the V (Bz)2 complex, we would expect a less degree of
bonding in the V3(Bz)4 complex, compared to V2(Bz)3, where all the orbitals of the in-
ner benzene were of a bonding character, while V (Bz)2 possesses a set of nonbonding
u-orbitals. From these a priori considerations, we expect larger equilibrium geometrical
parameters for the complex.

Equilibrium geometrical parameters for the system are given in the table 7.5 in com-
parison to previously published data in [128, 41, 123]. We perform ferromagnetic (FM)
and antiferromagnetic (FMB, see Fig. 7.29) optimizations, where in the latter case the
magnetic moment of the inner V atom was coupled antiferromagnetically to the moments
of the outer vanadii. In both cases we predict a significant increase in the distance V2-

Figure 7.29: Left: geometrical structure of the V3(Bz)4 complex. The axis z, which goes
through the centers of vanadium atoms and carbon and hydrogen hexagons, is perpendic-
ular to the planes of the hexagons. Atoms in every hexagon (C,H) are lying in the same
plane. Right: possible magnetic configurations in the complex.

C1, compared to the V-C1 distance in the V2(Bz)3 complex. This tendency can be also
observed in the data of other authors for these distances. Due to the changes in the
bonding mechanism of the molecule also an increase in the V2-C2 distance can be seen,
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FM FMB (a) (b) (c) (d)
V1-C1 1.878 1.885 1.724 1.72 1.68 1.77
V2-C1 1.917 1.925 1.841 1.76 1.78 1.75
V2-C2 1.831 1.820 1.639 1.66 1.65 1.74
V2-H1 1.885 1.910 - - - -
V2-H2 1.808 1.794 - - - -
C1-C1 1.429 1.431 1.430 1.47 1.47 -
C2-C2 1.412 1.412 1.416 1.45 1.45 -

Table 7.5: Optimized geometry parameters for a V2(Bz)3 complex: distance between the
inner V1 atom and the center of the inner hexagon ring (V1-C1); distance between the
outer V2 atom and the centers of the carbon rings (V2-C1 and V2-C2), distance between
the outer V2 atom and the H rings (V2-H2 and V2-H1), carbon-carbon distance in the
outer and inner C rings (C2-C2 and C1-C1, respectively). FM and FMB correspond to
our ferromagnetic and antiferromagnetic calculations, respectively (see text). (a): data
from [128]; (b),(c): data from [41]; (g): data from [123].

which results in a smaller C2-C2 distance, already quite close to the unperturbed ben-
zene carbon-carbon distance, while the C1-C1 remains quite large. The parameters of
the inner V (Bz)2 complex did not change significantly in the V3(Bz)4 complex, while a
magnetostrictive effect is probably responsible for a larger V1-C1 and respectively smaller
V2-C2 and V2-C1 distances in the FMB case. In general, similarly to the previous com-
plexes, the difference between FM and FMB geometrical parameters is almost negligible
and it constitutes at most 1%.

Calculated difference in total energies between the ferromagnetic and nonmagnetic
solutions is ENM − EFM = 0.30 eV per V atom. We considered three possible magnetic
configurations at the FM-optimized atomic positions: ferromagnetic FM, FMB (the inner
magnetic moment is opposite to the rest of the vanadium magnetic moments) and FMF
(one of the outer magnetic moments is opposite to the rest) (see Fig. 7.29). The difference
in total energy constitutes 4.1 meV per V atom in favor of the FMB state with respect
to the FM solution, with FMF state being 1 meV per V atom higher in energy than
the FM state. This is consistent with the experimental data at 56K [43]. However,
for the V3(Bz)4 complex the energy difference of 15 meV (160K) for the whole complex
can be easily overcome due to thermal fluctuations at room temperate and the presence
of a magnetic field. This leads to a consequent increase in the average value of the
magnetic moment with increasing temperature, and was experimentally observed [69]. In
the FM case the magnetic moments of the inner and outer vanadii are 0.76 and 1.17µB,
respectively, with the resulting total magnetic moment of 3µB. The transfer of the spin
density from the inner V to the outer ones clearly indicates a delocalization of the dz2-
electrons along the z-axis of the molecule. The magnetic moments of the carbon atoms
align antiferromagnetically to the magnetic moments of vanadii, with the values of 0.011
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πg πu π2 δg δu δ0 dσ1 dσ2

Figure 7.30: Charge density plots for the electronic states of V3(Bz)4-cluster. The states
are presented from the right to the left in order of their appearance in the nonmagnetic
densities of states. The dσ1-state clearly shows a delocalization of the dz2-electrons of
vanadii along the z-axis of the system.

and 0.009µB for C1 and C2, respectively. For the FMB configuration, the total magnetic
moment of the system constitutes 1µB, with the absolute value of 1.07µB for the magnetic
moment inside every muffin-tin sphere of vanadium. In this case the magnetic moment
of the outer carbon is 0.008µB, coupled antiferromagnetically to the magnetic moment of
V2, and the magnetic moment of C1 is zero, in analogy to the V2(Bz)3 complex.

In Fig. 7.30 we show the charge density plots of the orbitals in order of their ap-
pearance in the nonmagnetic densities of states. We observe, that the orbitals δ and π,
responsible for the bonding in the molecule can be distinctly separated into three groups.
The first group includes δ0 and π2 orbitals, which represent separate nonbonding δ orbitals
of V (Bz) and V (Bz)2 complexes and nonbonding π orbitals of the V (Bz) complex, re-
spectively. The second group is a nonbonding u-group of orbitals, δu and πu, of the outer
and inner V (Bz)1 complexes. Finally, the third group is a g-group, associated with the
middle V (Bz) molecule. The δ orbitals are in general higher in energy than the π group.
Among these, the g-orbitals, responsible for the bonding, are the lowest ones, higher in
energy the u-states are situated, and, finally, δ0 and π2 – are the highest ones. As we see,
the bonding in the molecule is due to the g-group of orbitals, among the π and δ orbitals
of the molecule, on the contrary to the V2(Bz)3 complex, where almost all the δ and π
orbitals were of the bonding character. On the base of this fact the elongation of the V-C
bonds in the V3(Bz)4 could be explained. A group of states at the Fermi level includes δ0,
dσ1 and dσ2 orbitals, among which the dσ1 is a dz2-orbital of the inner V atom, while dσ2

is associated with the outer vanadii. From the charge density plots one can see, that the
orbital dσ1, concentrated mostly on the inner V atom, is, nevertheless, significantly delo-
calized along the z-axis of the system. This symbolizes a transition from zero-dimensional
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clusters to truly one-dimensional infinite vanadium-benzene nanowires. A large difference
in the local magnetic moments of the inner and outer vanadii for the FM case can be
attributed to this fact. For the FMB configuration, however, this delocalization does not
occur, which results in the equal local vanadium magnetic moments.

We have also considered a V4(Bz)5 complex, obtained by a binding of the V3(Bz)4

cluster and the V (Bz) half-sandwich into a single molecule. This compound is magnetic,
and is by 0.23 eV lower in energy than the nonmagnetic cluster. We used optimized
ferromagnetic (with all the vanadium magnetic moments aligned) atomic positions to
calculate the total energy differences between all the possible magnetic configurations
in this molecule. Our calculations show, that the high-spin FM solution with the total
magnetic moment of 4µB is by 31 meV per V atom lower in energy, than any of the low-
spin magnetic solutions. In addition, we considered a case of an infinite wire (V Bz)∞,
obtained by an infinite repitition of V (Bz) half-sandwiches. The infinite wire represents
the limit of the Vn(Bz)n+1 complexes with large n. The energy difference of 57 meV per
V atom with respect to the AFM solution is in favor of the FM case, which is 0.11 eV
per V atom lower in energy than the NM configuration. This proves, that with increasing
number of vanadii in the molecular Vn(Bz)n+1 complexes, the ferromagnetic ordering
becomes energetically preferred, leading to the increase in the value of the total magnetic
moment of the molecules. This was indeed recently observed experimentally [69].

7.4.6 Conclusions

In this section we considered a set of quasi-one-dimensional multiple vanadium-benzene
sandwiches Vn(Bz)n+1, systems of a significant interest in the field of organometallics. We
calculated optimal geometries, total energies and magnetic structures, and on the base
of calculated densities of states we have given the orbital interaction schemes for these
complexes. We found out, that the molecules are magnetic, with a large gain in total
energy, as compared to the nonmagnetic solution. With increasing number n of vanadii
atoms in the complex, the total magnetic moment of the molecule increases, and the
ferromagnetic ordering becomes preferred with respect to the low-spin antiferromagnetic
solutions. Also we predict that for n ≥ 3 a delocalisation of the dz2-electrons of vanadii
along the axis of the molecules will occur. Our calculations qualitatively explain the results
of recent molecular beam magnetic deflection experiments, predicting the molecules to
order ferromagnetically [69].
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Chapter 8

Conclusions

The full-potential linearized augmented plane-wave (FLAPW) method is a density func-
tional theory based ab initio method, which treats all electrons of a system. It is applicable
to all elements of the periodic table and to materials relevant for solid state physics with
open geometries, low symmetry, structural and chemical complexity. The method proved
to be the most precise computational scheme regularly applied in solid state physics ca-
pable of calculating ground-state properties such as the total energy, the force exerted on
the atoms and the magnetic properties such as spin and orbital moments as well as the
magnetic order. So far the method is predominantly used to calculate bulk properties, or
surfaces exploiting a film geometry.

In this work we have presented an extension of the FLAPW method to truly one-
dimensional systems. The space is partitioned into three regions, the muffin-tin sphere
around the atom, a vacuum region surrounding a cylinder and the interstitial region
between the atoms and the vacuum region. In each region optimal basis functions for
the wavefunctions, charge density and potential are used. The spin-orbit interaction is
included to investigate the orbital moments and the magnetic anisotropy. Despite the
plane-wave representation in the interstitial region we were able to include a wide class
of chiral symmetries, characteristic for one-dimensional systems. The one-dimensional
FLAPW method was implemented as extension of the FLAPW code FLEUR and paral-
lelized for supercomputing applications. Due to the efficiently adjusted basis functions
and partitioning of space, 1D code allows to achieve a significant speed-up, for instance,
approximately by a factor of 150 for monowires, as compared to the super-cell approach
in the bulk code.

The accuracy, precision and correctness of the code was validated on a set of 1D struc-
tures, already calculated previously with other methods. We focused on the systems of
a large current interest in the field of nanophysics. We reported on the calculations of
3d- and 4d- monowires (Ti; Y, Zr, Nb, Mo, Tc, Ru, Rh and Pd). For these monowires
we investigated the ferro- and antiferromagnetic instability, calculated equilibrium inter-
atomic distances, magnetic and orbital moments, magnetocrystalline anisotropy energies.
We found that across the 4d-transition-metal series, Y and Nb exhibit a nonmagnetic
ground-state, Mo and Tc are antiferromagnetic and Zr, Ru, Rh and Pd are ferromagnetic
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at equilibrium lattice constants. For the Ru, Rh and Pd monowire, we investigated the
easy axis of the magnetization. We found that the easy axis is perpendicular to the wire
for Ru and Pd but along-the-wire for Rh.

Further we considered a (6,0) nanowire of gold atoms, and a hybrid structure of an iron
monowire inside a gold (6,0) tube, showing that the Fe monowire is prone to the Peierls
dimerization. For the hybrid system Fe@Au(6,0) we found a high spin-polarization at the
Fermi level, proposing, therefore, this system as a possible candidate for spin-dependent
transport applications.

Using a super-cell approach within the one-dimensional FLAPW method we inves-
tigated a set of one-dimensional multiple-decker sandwiches of benzene and vanadium,
which are for the past 20 years of great interest in the field of organometallics. The calcu-
lated structural results obtained are in good agreement with experimental and theoretical
results. After the calculation of total energies, magnetic moments, orbital interaction
schemes, one can finally conclude, that with the increasing number of the vanadium atoms
in the molecule, the magnetic moments of vanadii prefer to order ferromagnetically, which
was recently observed experimentally.

In conclusion we developed a versatile electronic structure method for truly one-
dimensional systems which can deal with magnetic properties and all elements of the
periodic table.
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[106] D. Spǐsák and J. Hafner. Magnetism of ultrathin wires suspended in free space and
adsorbed on vicinal surfaces. Phys. Rev. B, 67:214416, 2003.

[107] M. Springborg. Method for calculating the electronic structures of large molecules;
helical polymers. J. Chem. Phys., 87:7125, 1987.



140 BIBLIOGRAPHY
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tion from Aachen to Jülich for two years - danke sehr.

Of course many hugs to my dear fellows and office-mates Marjana Lezaic and Manni
Niesert, who have spent at least two years with me in the same office. Their help, support
and understanding is very hard to overestimate. We had a lot of fun together, didn’t we?

To my parents – which are α and Ω of everything for me – I dedicate this work.

143





Curriculum Vitae

Personal data

Name: Yuriy Mokrousov

Date of birth: Apr. 7, 1978

Place of birth: Kiev, Ukraine

Nationality: Ukrainian

Address: Institute of Applied Physics and Microstructure Research Center,
University of Hamburg, Jungiusstrasse 9a, 20355 Hamburg, Germany

E-mail: ymokrous@physnet.uni-hamburg.de

Education

1985–1995 Elementary and high school, Kiev, Ukraine

1995–1999 Studies of physics, National Technical University of Ukraine, Kiev, Ukraine
Diploma thesis: ”On the denseness of certain subspaces of a closed
linear operator in a Banach space”

1999–2001 Postgraduate studies in applied physics,
National Technical University of Ukraine, Kiev, Ukraine
Master thesis: ”Density of the subspaces of analytical vectors and solvability
of the abstract Cauchy problem for a linear operator in a Banach space”

since 2002 Ph.D studies in solid state physics, IFF, Forschungszentrum Jülich
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