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Chapter 1IntrodutionData storage plays a major role in information tehnology. The rapid advanes inthis area are driven by the need to read and write the information with ever fasterspeed and ever inreasing storage density. These demands are reating new frontiersin solid state physis whih fuel the development of new materials, the investigationof new physial phenomena and the development of new methods.Among ompeting modern mass storage onepts, rewritable optial storage de-vies based on phase-hange media provide one future option to store large amountof data at high data transfer-rates. The understanding, and onsequently the de-velopment of new, and the improvement of existing rewritable phase hange media,whih should allow sub-miron bit sizes to be written, read and erased within a fewnanoseonds determine the future and the spread of this storage onept. At presentsuh devies are build as exhangeable diss, the rewritable Digital Versatile Dis(DVD). The storage proess itself an ompete to those of magneti hard diss interms of storage/aess time.In devies based on the phase-hange e�et, information bits orrespond to smallspots being either in the rystalline or in an amorphous state. These two statesof matter exhibit two di�erent reetivities for inident light, whih is optiallydeteted and used to enode the bits 0 and 1. A hange between these two statesof matter is indued by loal heating; either above the melting temperature in thease of writing by transforming the rystalline struture into the amorphous one; orabove a lower rystallization temperature, supplying enough energy to rerystallizestarting from the amorphous state.The experimental ativities in this �eld motivated us to investigate the optialproperties of phase-hange materials based on modern mirosopi and materials-dependent theories of solid states physis. The theoretial groundwork for under-standing the interation of inident light with matter on a quantum-mehaniallevel has already been developed in the late �fties and early sixties of the last en-tury by Ehrenreih and Cohen [EC59℄ and Adler [Adl62℄. The intuitive desriptioninvolves transitions indued by photons between oupied and unoupied single-1



2 CHAPTER 1. INTRODUCTIONeletron states. However, the omputational tools and apaities to orroborate thisframework with alulations for real omplex materials has developed more reently.The density funtional theory (DFT), developed by Hohenberg and Kohn [HK64℄and Kohn and Sham [KS65℄, provide a powerful and aurate desription of theground-state eletroni properties of the many-eletron problem in real materials.The theoretial work disussed in this thesis is based on the loal density approxi-mation (LDA) and the generalized gradient approximation (GGA) of the exhangeorrelation energy. This approah developed to the standard model in solid physisfor the desription of real materials and has been applied to a large spetrum ofomplex materials inluding surfaes and low-dimensional systems. This approahdesribes the sensitivity of the eletroni exitations to their ground-state properties.The time-dependent extension of the density funtional theory represents a more re-�ned treatment of the linear and nonlinear response of many-eletron systems due totime-dependent external perturbations [ZS80, SZ80, Mah80℄ than the random-phaseapproximation desribed by Ehrenreih and Cohen [EC59℄. A key feature of thisextension is that it provides a onsistent treatment of eletron-eletron interationsin the absene and the presene of time-varying �elds, but it is beyond the sope ofthis thesis.At the enter of this thesis is the implementation of the mirosopi desriptionof the dieletri response funtion on the basis of the density funtional theory inthe LDA and GGA. The dieletri funtion desribes the response of matter in aneletri �eld. The implementation is restrited to the long-wavelength limit relevantfor light in the optial regime and to linear response theory suitable for low lightintensities. Non-linear response, the loal �eld e�ets, and intraband transitions arenegleted. This dieletri response funtion has been implemented within the on-text of the full-potential linearized augmented plane-wave (FLAPW) method. Thiseletroni struture method is an all-eletron method. It is known to give preiseresults for materials with transition-metal atoms in open strutures and low sym-metries as it is experiened in reently explored phase-hange materials suh as forexample the ternary alloys AgInTe2 or AgSbTe2. The implementation doumentedin this thesis inludes the momentum-matrix elements, whih is a very elaboratetask due to the omplexity of the LAPW basis-set. It inludes also the developmentof the tetrahedron-method for the Brillouin-zone integration of two-point funtionswhih inlude simultaneously oupied and unoupied states. This is neessaryfor the alulation of the imaginary part of the dieletri response funtion. TheKramers-Kronig integration has been implemented to obtain the real part of the di-eletri funtion from the imaginary one. Sine the FLAPW method Fleur, used inthis thesis, is not apable to treat all Bravais latties, some strutures are alulatedin Bravais latties, whih are superstrutures to the original lattie. This introduesa bakfolding in the eletroni struture, whih is analyzed with great are in thisthesis, not to introdue spurious optial transitions. The implementation is ar-ried out in an algorithm that allows an easy extension to parallel omputing overthe individual tetrahedra and to program for magneto-optis. The method devel-



3oped also works for eletroni struture methods with a pure plane-wave basis setsas it is ommon in pseudo-potential methods. All implementations and numerialapproximations have been tested thoroughly for Aluminum and Copper, for whihexperimental similar theoretial results are available. Similar implementations inall-eletron methods have been arried out by Delin [Del98℄ in a full-potential lin-ear muÆn-tin orbital method (FP-LMTO), by Abt [Abt97℄ in the FLAPW-odeWien, by Krasovskii in the FLAPW [KS99℄, by Alouani in an LMTO and projetoraugmented plane wave (PAW) method [AAW+97℄ and Oppeneer in a augmentedspherial wave (ASW) method [SBB+00℄.In this thesis the dieletri funtion is determined for phase-hange materialsalulated within density funtional theory. It is strutured as follows:The main aspets of the density funtional theory are reviewed in Chapter 2.We de�ne the quantities needed to evaluate the ground-state properties and disussimportant details of the omputational proedures. Chapter 3 gives the formulationof the dieletri response of matter. For this, general onsequenes of symmetry, ten-sor properties, optial onstants and spetral funtions are reapitulated, followedby a derivation of the dieletri funtion in the long-wavelength limit. The miro-sopial and the marosopial approah are addressed. Chapter 4 introdues basissets of di�erent plane-wave based eletroni struture methods. The LAPW methodthat forms the basis of the alulations in this thesis is presented in more detail.The implementation of the dieletri funtion { the momentum-matrix elements,the tetrahedron method and the implementation of the Kramers-Kronig implemen-tation { is layed out in the following hapter 5. A fous is put to the bakfoldinge�et, that ours for alulations of non-minimal unit ells, and onsequenes forthe omputation are explained. Test alulations are performed to ompare to ref-erene results. More details on the matrix elements of the momentum operator andon the tetrahedron method are presented in appendies A and B.A brief desription of the lass of phase-hange materials are given in hapter 6.The implemented method is applied to the GeTe ompound in roksalt and trigonalA7 struture. Although the density of states for both strutures are very similar,a signi�ant di�erene is found for the reetivity at the ultra-violet energy range,whih is also found in the experiment. In appendix C one �nds details of used unitsand in appendix D all omputational details are olleted. The thesis loses with aonlusion.



4 CHAPTER 1. INTRODUCTION



Chapter 2Density Funtional Theory
2.1 The Many-Partile ProblemThe omplete properties of solids an in priniple be alulated ab initio { i.e. freeof any parameters, only using the setup of the system and its interations { on aquantum mehanial level. The whole information of a system is ontained in thesystem's wave-funtion, whih has to be obtained as solution of the Shr�odingerequationHj	i = Ej	i; (2.1)with H the Hamiltonian of a system of interating nulei and eletrons (assuming4�"0 = 1)H = � NXi=1 ~22mr2i + 12Xi 6=j e2jri � rjj �Xi;J e2ZJjri � � J j + 12XI 6=J e2ZIZJj� I � � J j : (2.2)r denote the eletronial oordinates and � those of the nulei, ZI denotes the hargeof the nulei. Spin-dependene and external �elds are omitted. In the relativistiase, the Dira equation has to be solved. The energy of a state 	 is given byE = h	jHj	i: (2.3)The e�ort to solve this many-body problem sales exponentially with the numberof partiles desribed and is unaomplishable for everything exept very small sys-tems, and ertainly for a marosopi system with a number of partiles of an orderof magnitude of 1023.A �rst and very general approximation is the Born-Oppenheimer method (alsoalled adiabati approximation). Sine the mass of the eletrons is at least threeorders of magnitude smaller than those of the nulei, the eletrons are expeted tofollow the motions of the nulei instantaneously, while the nulei will reat slowly5



6 CHAPTER 2. DENSITY FUNCTIONAL THEORYto a hange in eletroni on�guration. Therefore, the ion's position an be set�xed, reduing the number of degrees of freedom. (From a strit point of view thisapproximation needs more preise justi�ation, see [Mad78℄.) This approximationis used in the majority of eletroni alulations.When alulating the ground state of a system, the energy has to take its mini-mum. Depending on your ansatz, the solution an usually be obtained by minimizingthe total energy.2.2 The Hartree-Fok AnsatzA variety of di�erent approahes have been developed to takle this many-partileproblem. One frequently used method (in many areas of physis) is to transfer themany-body problem to a one-partile-like problem, for instane by imposing someertain form on the wavefuntion.The most basi hoie is the Hartree Ansatz, whih replaes the wavefuntion	(r1; : : : ; rN) with a produt of N one-partile wavefuntions  (r):	(r1; : : : ; rN) =  1(r1) �  2(r2) � : : : �  N(rN); (2.4)depending only on the spatial oordinate of one partile. If one introdues thisansatz into the Shr�odinger equation, one obtains N Sh�odinger-like single-partileequations with a integral alled Coulomb term or Hartree term, ontaining theeletron-eletron interation. This simple ansatz treats the partiles independentin the sense that every partile moves in a stati potential reated by the othereletrons, whih is the only interation onsidered.It is possible to take are about the expelling properties of fermions resulting fromthe Fermi priniple { alled exhange interation { by using a slater determinant ofwavefuntions instead of a simple produt:	(r1; : : : ; rN) = 1pN ! �������  1(r1) : : :  N (r1)... . . . ... 1(rN) : : :  N(rN) ������� : (2.5)This Hartree-Fok Ansatz results in a signi�antly more omplex numerial treat-ment as well as in muh better results. Inluding a wavefuntion of this form intothe Shr�odinger equation gives N single partile equations now ontaining an ad-ditional term { the exhange or Fok term { ontaining ontributions from all theother single-partile wavefuntions.The desription is still inomplete due to the fat that the single partiles arenot independent as assumed in this approximation. These orrelation e�ets annot be expressed analytially in the general ase.



2.3. DENSITY FUNCTIONAL THEORY 72.3 Density Funtional TheoryA new idea how to desribe the ground state of a many-partile system has beenaquired by Hohenberg and Kohn in the 1960s. It turns the fous from the abstratmany-partile state as desriptive quantity of the system to the ostensive hargedensity in real spae. Not only that not the whole information ontent of the wave-funtion is needed, it is not desirable to obtain the omplete solution 	 for a largesystem sine storage of it is as hardly possible as alulation of it.One di�erent approah, the Thomas-Fermi theory, was known sine the latetwenties [Fer27, Tho27℄. It assumes the interating eletrons to be independent,moving in an external potential. (In this ontext the term external means everythingexept of this one partile itself, so it inludes also the e�ets of the nulei in thesystem, not only those of �elds external to the system.) Then the formulae for theuniform eletron gas are applied. The obtained results give only a few quantitativetrends, hemials bonds for instane an not be predited. However, the system isdesribed by the density only.The Lemma of Hohenberg and Kohn: The harge density relates to the many-partile wavefuntion liken(r) = �	j NPi=1 Æ(r � ri)j	�: (2.6)Hohenberg and Kohn [HK64℄ derived that for a given external potential the ex-petation value of any observable in the ground state is uniquely de�ned by andfuntionals of the harge density. Furthermore, the funtional of the total energyE = E[n(r)℄ (2.7)is minimized by the true ground state density n0(r). This implies that the groundstate density an be obtained from the minimization of this funtional,ÆE[n℄ = 0: (2.8)The amount of hargeN = Z d3r n(r) (2.9)takes the role of a subsidiary parameter. Furthermore the density determines thetotal potential and therewith the Hamiltonian, that means the omplete systemand all its derivable properties (inluding many-body wavefuntions, two-partileGreen's funtions). A more mathematial insight is that there are funtions n(r)not yielding a valid potential v(r), so-alled non V-representable funtions. Theseare non-physial densities.The Hohenberg-Kohn lemma does not imply any knowledge about the physialinterations and is universal thereby. On the other hand, nothing has been statedabout the form of the funtional E[n℄ up to now.



8 CHAPTER 2. DENSITY FUNCTIONAL THEORYKohn-Sham equations: Kohn and Sham [KS65℄ formulated a form for the energyfuntional that proved to be very suessful. They proposed to split it up into threeontributionsE[n℄ = Ts[n℄ + U [n℄ + Ex[n℄: (2.10)Ts is the kineti energy of non-interating partiles, U is the Coulomb energy, andEx ontains the remaining ontributions to the energy due to exhange and orrela-tion. The Coulomb energy of the eletrons is onstruted out of the eletron-eletronenergy together with the external energy, resulting additively from the Coulomb �eldof the nulei and from �elds external to the system:U [n℄ = Eext[n℄ + EH [n℄ (2.11)Eext[n℄ = Z d3r Vext(r)n(r) (2.12)EH [n℄ = 4�e22 Z d3rd3r0 n(r)n(r0)jr � r0j (2.13)An advantage of this representation is that for the kineti energy, whih is a signi�-ant proportion to the total energy, an analyti expression an be given (see Setion2.6). The density is related to the single partile wavefuntions vian(r) = 2 NXi=1 j i(r)j2; (2.14)with the fator 2 aounting the spin degeneray1. For this hoie the kineti energyreads Ts[n℄ = �2 NXi=1 Z d3r  �i (r) ~2mr2 i(r): (2.15)Equivalent to minimizing the energy with respet to the density, one an do so aswell with respet to the single wavefuntions or to their omplex onjugates. Thesubsidiary ondition of partile onservation (2.9) is replaed by the normalizationof the wavefuntionsZ d3r j i(r)j2 = 1: (2.16)Taking this requirement into aount by Lagrange parameters �i, the variation ofthe energy yields the Kohn-Sham equationsH1 i(r) = �� ~22mr2 + Veff (r)� i(r) = �i i(r); (2.17)1In this ase, you alulate with half the number of eletrons.



2.3. DENSITY FUNCTIONAL THEORY 9whih are Shr�odinger-like equations of a one-partile Hamiltonian H1 ontainingan e�etive potentialVeff(r) = Vext(r) + VH(r) + Vx(r) (2.18)onsisting of the external, the Hartree and the exhange-orrelation potentialVext(r) = ÆÆn(r)Eext(r) (2.19)VH(r) = 4�e2 Z d3r n(r0)jr � r0j (2.20)Vx(r) = ÆÆn(r)Ex(r): (2.21)These potentials are simple funtions, while the orresponding energies are onsid-ered as funtionals of the density.This hoie (2.10) of kineti energy and subsequent derivations onverts theproblem to a problem of �titious single partiles moving in an e�etive potentialall other partiles ontribute to.The parameters �i are introdued as Lagrangian parameters only. As a onse-quene of Janak's theorem, only the highest oupied value has a physial meaning,i.e. it is equal to the hemial potential, the ionization energy of the system. Beyondthis, there is no justi�ation to take these parameters as the one-partile energies.However, it is known from experiene that this assumption works surprisingly good,and is thus ommonly assumed in band struture alulations.Eigenvalue problem: Usually the Kohn-Sham equations (2.17) are not solveddiretly, but the solutions are represented in a basis. Then the operator H1 hasto be onstruted and diagonalized. Sine the basis funtions are not neessarilyorthogonal, one has to solve the generalized eigenvalue problem(H1 � �iS) = 0 (2.22)(also alled seular equation) with S the overlap matrix and  the expansion oeÆ-ients.Self-onsisteny: Sine the eletron density goes into the Hartree potential VHand the exhange-orrelation potential Vx, and the e�etive potential determinesthe solutions  i through (2.17), whih again make the harge density (2.14), thisformalism omprises a self-onsisteny, as shown in Fig. (2.1).To enter the loop one has to provide an appropriate starting density. With thisthe potentials are generated and the one-partile solutions are alulated. In matrix



10 CHAPTER 2. DENSITY FUNCTIONAL THEORYCreate starting densityConstrut potentialsSolve eigenvalue problemConstrut harge densityChek onvergeneTotal energy
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Figure 2.1: The self-onsisteny yle of a density-funtional alulation.piture this is the setup of the H and S matries and the solution of the general-ized eigenvalue problem (2.22). With the results the temporary density nnew(r) isalulated.One now heks if the di�erene between the previous density n(i)(r) and thenew one is suÆiently small. If not, the temporary density is inorporated into theprevious one. Sine taking the alulated density as next input density n(i+1)(r) forthe yle would introdue too big steps whih destroy onvergene, some mixing hasto be performed. The simplest way is a linear mixingn(i+1)(r) = (1� �)n(i)(r) + � nnew(r) (2.23)with mixing parameter �. More sophistiated methods like those of Broyden andAnderson have been developed, whih inorporate the knowledge of earlier iterationsand yield a faster onvergene. After �nishing the loop, one an proess the obtaineddensity, e.g. alulate the total energy.



2.4. EXCHANGE AND CORRELATION 112.4 Exhange and CorrelationSine no approximations have been made so far, density funtional theory is ex-at in priniple. However, alulations are only possible with the knowledge of theexhange-orrelation energy funtional Ex[n℄ de�ned by (2.10). The exat fun-tional is unknown and not soluble analytially. Solving it would be equivalent tosolving the many-body problem. Therefore, approximations have to be made.Basially, the Kohn-Sham equations are a Hartree-like ansatz. All exhangeand orrelation e�ets (i.e. all many-body e�ets) are inluded in the funtionalEx[n℄. It ontains the fermioni e�ets, modi�ations to the e�etive potentialand orretions to the kineti energy, all due to the eletron-eletron interation.This means that the exhange-orrelation potential desribes the e�ets of the Paulipriniple and the Coulomb potential beyond a pure eletrostati interation of theeletrons.The most widely used approah is the Loal Density Approximation (LDA). Theidea is to assume Ex to be that of a homogenous eletron gas with density n(r):Ex[n(r)℄ = Z d3r n(r)�x(n(r)): (2.24)The important simpli�ation is that �x is not a funtional of the density, but afuntion of the value of the density at some spatial oordinate. With this, alsothe exhange-orrelation potential Vx in (2.19) takes the form of a funtion. Onepossible approximation is to view exhange and orrelation to be independent:�x(n(r)) = �x(n(r)) + �(n(r)) (2.25)More omplex parametrisations inorporate the results of Hartree-Fok or many-body alulations. One would expet the LDA to fail systems with rapidly varyingdensities. But it shows to give good results in an unexpeted variety of systems.A lass of more sophistiated approximations is the Generalized Gradient Ap-proximation (GGA). It makes the same loalization ansatz as in (2.24), but onnets�x not only with the value of the density but also with the absolute value of its gra-dient:Ex[n(r)℄ = Z d3r n(r)�x(n(r); jrn(r)j): (2.26)2.5 Spin-Density Funtional TheoryThe spin property of eletrons, so far only aounted by a degeneray fator oftwo, an be easily inorporated into the theory. It has been shown that the basiHohenberg-Kohn theorem stands for spin-polarized densities as well. You rede�ne



12 CHAPTER 2. DENSITY FUNCTIONAL THEORY(in the non-relativisti ase) the wavefuntions as spinors i(r) =   i"(r) i#(r) ! : (2.27)With this slightly di�erent notation, apart from the harge density there arises aseond entral quantity out of these wavefuntions, the magnetization densitym(r):n(r) = NXi=1  �i (r) i(r) (2.28)m(r) = NXi=1  �i (r)� i(r): (2.29)� is the vetor (�x; �y; �z) of Pauli matries. The energy is now a funtional of thesetwo densities:E = E[n(r);m(r)℄ (2.30)The two spins ouple through an e�etive magneti �eld appearing in the modi�edKohn-Sham equations. To inorporate the interation of an external magneti �eldBext with this spin-polarized system, we inlude the energy ontribution m(r) �Bext(r) into the Kohn-Sham equations and yieldH1 i(r) = �� ~22mr2 + Veff(r) + �Beff (r)� i(r) = �i i(r); (2.31)Beff (r) = Bx(r) +Bext(r); (2.32)Bx(r) = ÆE[n(r);m(r)℄Æm(r) : (2.33)The approximations in Setion 2.4 an be easily extended for the ase of spin-polarized systems.2.6 Determination of the Total EnergyWhen the total energy needs to be alulated, the ion-ion interation Eii of thenuleiEii = e2XI 6=J ZIZJj� I � � J j (2.34)has to be inluded into the funtional (2.10),Etot[n℄ = Ts[n℄ + EH [n℄ + Ex[n℄ + Eext + Eii: (2.35)



2.7. IMPROVEMENTS TO DENSITY FUNCTIONAL THEORY 13Beause of numerial reasons, it is not desirable to alulate the kineti energy inthe form (2.15), applying the double spatial derivative. Instead, one utilizes theKohn-Sham equations (2.17). Rearranging, multiplying the Bra from the left andsumming over all oupied states gives� ~2mr2 i(r) = (�i � Veff(r)) i(r) (2.36)) Ts[n℄ = NXi=1 �i � Z d3r n(r)Veff(r): (2.37)EH and Eext are have the form (2.13) and (2.12), the exhange-orrelation energyis de�ned by (2.10) and implemented in an approximation like (2.24) or (2.26).2.7 Improvements to Density Funtional TheoryMany extensions has been made to the density funtional theory and its di�erentapproximations. It is a subjet of ative and ontinuous development. As we haveseen, the treatment of spin and the inlusion of external eletri and magneti �eldsare a natural extension of the theory. New exhange-orrelation funtionals suh asthe generalized gradient approximation (GGA) are being developed.The GW-approximation is being developed to desribe single partile exitationproperties based on the many-body perturbation theory in order to reover one ofthe major drawbaks of the density funtional theory in the LDA or GGA, whihis the onsiderable underestimation of the band-gaps in semiondutors. LDA+Utheory fouses on the desription where the onsite Coulomb interation is underes-timated in the LDA, suh as in oxide materials. It is used to improve orrelationdriven bandgaps. Advaned theories like time-dependent density funtional theory(TDDFT) treat eletroni exitations due to time-dependent external exitations.It inludes single-partile as well as olletive exitations and it is based on a fullyquantum mehanial formulation of the nonloal eletroni response.The density funtional theory has proven to be a very powerful tool to treat amany-body problem of real material eÆiently and preisely in the framework of aone-partile piture. It has been applied also in a variety of other disiplines, likesuper-ondutivity or astrophysis.



14 CHAPTER 2. DENSITY FUNCTIONAL THEORY



Chapter 3Dieletri Properties of SolidsBefore going into the details of the dieletri funtion, general onepts of symme-try and seond rank tensors are reapitulated. Important relations of marosopioptis are given in 3.3, introduing the omplex refrative index and the omplexdieletri funtion. The onnetion between the real and imaginary part is explainedin Setion 3.4. The onnetion of optis to a quantum mehanial representation issubsequently given in Setion 3.5, and the di�erenes to a mirosopi treatment ofthe eletromagneti wave are addressed in 3.6.3.1 Notes on SymmetrySymmetry operations transfer a system into itself, leaving it indistinguishable to theinitial state. In this ontext we are interested in symmetry operations in real spae.Symmetry operators ommute with the Hamiltonian,[(�; T );H℄ = 0: (3.1)(�; T ) denotes an operation onsisting of a rotation � and a subsequent translationT . Taking symmetries into aount an massively simplify the alulations, or makesit only possible.Classi�ations: Perfet rystals { systems possessing translational symmetry {are lassi�ed into lattie types. Considering translations only, this gives the minimalset of essentially di�erent lattie types, the Bravais latties. In three dimensionsthere are 14 Bravais latties: the seven latties ubi, trigonal, rhombi, hexagonal,monolini, trilini and tetragonal, de�ned by the length of and angles between thebasis vetors, and variations of these latties by oupying unit ell faes or the unitell enter with atoms. The aording translational operators of a lattie form theTranslation group. 15



16 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSThe rotations of a system (i.e. the aording operators) that map the rystal intoitself build the Rotation group. There are also non-symmorphi symmetries whihbring the rystal into itself only with an additional translation (whih is not partof the translational group). The aording symmetry operations are srew axes andglide planes. These rotations extend the rotation group to the Point group. Forsymmorphi latties both groups are idential. There are thirty-two di�erent pointgroups.The Spae group ontains of the totality of transformations that bring the rystalinto itself, ontaining the translational and the point group as subgroups. There are230 possible spae groups; 157 of them are non-symmorphi, 73 are simple.Translational symmetry: The translational operatorTR : r ! r +R (3.2)of a lattie vetor R ommutes with the Hamiltonian so that both operators sharea set of eigenvetors. The onsequene is the so-alled Bloh theorem, that statesthat the eigenfuntions an take the form n(k; r) = eikr'n(k; r); with 'n(k; r) = 'n(k; r +R) (3.3)de�ning k (often alled the rystal momentum) as a new good quantum number.'n(k; r) is a lattie periodi funtion. This vetor k is taken from the reiproalspae. The energy spetrum is periodi in reiproal spae,E(k) = E(k +G) (3.4)with G being a reiproal lattie vetor. Thus one an redue onsiderations to the�rst Brillouin zone.Rotational symmetry: To a rotation in real spae, the aording symmetryoperation in the reiproal spae is the inverse rotation. Analogously to the transla-tions, this redues the e�etive reiproal spae to onsider, leaving as unique partthe irreduible wedge of the �rst Brillouin zone (IBZ).3.2 Physial TensorsLet us onnet two physial vetor quantities linearly viaB = Ta: (3.5)If B is simply proportional to a (i.e. pointing in the same diretion) T is a salarfator, but in the general ase, T is a tensor of seond rank. By its de�nition, atensor transforms under a basis hange A toT 0 = ATAT ; or T 0ij = AikAjlT kl: (3.6)



3.2. PHYSICAL TENSORS 17Any seond-rank tensor an be split up into a symmetri and an antisymmetri part,T sij = T ij + T ji; T aij = T ij � T ji; T ij = 12(T sij + T aij) (3.7)but most physial seond-rank tensors are purely symmetrial (i.e. Tij = Tji), forexample the dieletri tensor being subjet of this thesis. (One of the few exeptionsis the thermoeletri tensor.) Nye [Nye57℄ remarks that this symmetry property oftensors is not an obvious one, and that the proof neessarily involves thermodynam-ial onsiderations.The behavior of a symmetri seond-rank tensor Tij under oordinate transfor-mation of the oordinates xi follows the equationTijxixj = 1; (3.8)whih de�nes a sphere that is either an ellipsoid, a hyperboloid of one or a hy-perboloid of two sheets. This equation is alled the representation quadri for thetensor Tij. An important property of a quadri is that it possesses prinipal axes.These are three diretions at right angles suh that the general quadri (3.8) takesthe formT11x21 + T22x22 + T33x23 = 1; (3.9)when referred to these axes.A symmetrial tensor referring to arbitrary axes has six independent ompo-nents. When referring to its prinipal axes it depends on the symmetry of therystal in onsideration how many independent oeÆients remain. The Neumannpriniple states that the symmetry elements of any physial property of a rystalmust inlude the symmetry elements of the point group of the rystal. Thus tensors(or the rystals, aordingly) are grouped in the following three so-alled optiallassi�ations:Isotropi (Anaxial) rystals: These are rystals in whih three arbitrary rys-tallographially equivalent orthogonal axes an be hosen. These three axes are theprinipal axes of the tensor. All diagonal elements are equal (see table below), andthe rystal ats like an amorphous medium, meaning equal in all diretions.Uniaxial tensors: These rystals do not possess three orthogonal equivalent axes,but two or more of these axes in one plane. This is the ase for latties of the triline,trigonal and hexagonal kind. The plane with the equivalent axes is perpendiular tothe three-fold, four-fold or six-fold symmetry axis, respetively. One of the optialaxes oinides with this symmetry axes, the others form a pair of orthogonal axesin the plane.



18 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSClassi�ation Crystal System1 Indep. Coe�. Tensor shapeAnaxial Cubi 1 0B� T 0 00 T 00 0 T 1CAUniaxial TetragonalHexagonalTrigonal 2 0B� T1 0 00 T1 00 0 T3 1CAOrthorhombi 3 0B� T1 0 00 T2 00 0 T3 1CABiaxial Monolini 4 0B� T11 0 T310 T2 0T31 0 T33 1CATrilini 6 0B� T11 T12 T31T12 T22 T23T31 T23 T33 1CATable 3.2: Shapes of seond-rank tensors for di�erent rystal strutures, taken froma table of ([Nye57℄).

Biaxial tensors: Crystals with lower symmetry. For orthorhombi rystals, thetensor possesses diagonal form with eah di�erent elements. The optial axes o-inide with the rystal axes. In monoline and triline systems, the optial axesare not alleged. (In this ase, it would be possible to rotate the axes of the tensorsuh that only the three prinipal oeÆients are neessary, but one would have noinformation regarding the orientation of the representation's sphere relative to therystallographi axes, please onfer [Lov89℄.)In most ases of alulations the used basis vetors oinide with the optial axesof the rystal in study.



3.3. MACROSCOPIC OPTICS 193.3 Marosopi OptisMaxwell equations: This set of equation desribes eletromagneti waves. Inthe presene of matter they readr�E(r; t) = � ��tB(r; t) (3.10)r �D(r; t) = �(r; t) (3.11)r�H(r; t) = j(r; t) + ��tD(r; t) (3.12)r �B(r; t) = 0; (3.13)with E, D the eletri �eld and the eletri displaement, B the magneti indutionand H the magneti �eld. � and j desribe the external harges and urrents.The indued harge and urrent vanish by the averaging done for this marosopiapproah. This desription is omplete only if the oupling between the D and Eand between B and H is given.Material oeÆients: To desribe the response linearly, one introdues twooupling funtions (also alled onstants frequently), the dieletri funtion " (alsoknown as permittivity) and the magneti permeability �, byD = ""0E; B = ��0H: (3.14)Alternatively the eletri polarization P and the magnetizationM are de�ned byD = "0E + P ; P = �pE = �"0E; (3.15)H = 1�0B �M ; M = �mH; (3.16)de�ning the eletri and magneti suseptibilities � and �m and the polarizability�p as " = 1 + �; �p = "0�; � = 1 + �m (3.17)When oupling the urrent j proportional to the eletri �eld aording to Ohm'slaw, the eletrial ondutivity � is introdued:j = �E: (3.18)The ondutivity relates to the dieletri funtion by�(!) = �i!"0�(!): (3.19)



20 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSAbsorption of waves: In vauum, the eletri �eld of a free eletromagnetiwave follows the wave equation4E(r; t) = �0"0 �2�t2E(r; t); (3.20)whih has solutionsE(r; t) = E0ei(kr�!t): (3.21)When penetrating matter, the amplitude deays exponentially,E = E0e� 12�z; (3.22)with the absorption oeÆient � de�ned asdIdz = ��I (3.23)for penetration in z-diretion, and I � jEj2 the intensity. The omplex refrativeindex �n(!) = n(!) + i�(!) (3.24)inlude the real refrative index n and the extintion oeÆient �. The dieletrifuntion is oupled via the relation"(!) = �n2(!) (3.25)with the dieletri onstant "(!) = "1(!)+ i"2(!). The real and imaginary part arerelated to n and � asn2 � �2 = "1 (3.26)2n� = "2; (3.27)or vie versan = s12 �q"21 + "22 + "1� (3.28)� = s12 �q"21 + "22 � "1�: (3.29)Taking into aount the boundary onditions of the eletri and magneti �eld atan interfae of one dieletri to air, the reetivity of a bulk surfae readsR = �1� �n1 + �n�2 = (n� 1)2 + �2(n+ 1)2 + �2 : (3.30)In the ase of thin �lms, di�erent formulae have to be used to determine the re-etivity, taking into aount multiple reetions inside the �lm and interferene ofthese.



3.4. RELATION BETWEEN REAL AND IMAGINARY PART 21Tensor properties: In the general ase, the ouplings (3.14),(3.18) are not sim-ple salars, but tensor-like and they are not onstants but depend on the frequeny! and momentum k. Sine the oupling is homogeneous in time, and for the maro-sopi approah also in spae, the arguments of the suseptibilities readP (r; t) = "0 Z d3r0 Z dt0 �(r � r0; t� t0)E(r0; t0) (3.31)M(r; t) = Z d3r0 Z dt0 �m(r � r0; t� t0)H(r0; t0) (3.32)Causality has to be onserved by appropriate integration boundaries, or by de�ningthe suseptibilities zero for this values. In Fourier spae this onvolution givesP (k; !) = �(k; !)E(k; !) (3.33)M(k; !) = �m(k; !)H(k; !): (3.34)3.4 Relation between real and imaginary partThe real and imaginary parts of the refrative index and of the dieletri funtionare not independent, but losely related to eah other. Due to the Dira relation1! + i� = P 1! + i�Æ(�) (3.35)a spetral distribution funtion with an energylike parameter !G(!) = lim"!0 1N Z d3k F (k)E � E(k)� i" (3.36)has its real part<G(!) = 1NP Z d3k F (k)! � !(k) (3.37)and its imaginary part=G(!) = �N Z d3k F (k)Æ(! � !(k)); (3.38)whih are Hilbert transforms of eah other. P denotes the priniple value of anintegral, that is the integral with singularities exluded. For instane if within theinterval [a; b℄ the funtion f ontains one singularity at x0, the prinipal value readsP bZa dx f(x) = limg!+0 x0�gZa dx f(x) + bZx0+g dx f(x): (3.39)The prinipal value might onverge even if eah of the two integrals on the rightside diverge.



22 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSKramers-Kronig Relation: These relations onnet the real and imaginary partof any spetral funtion that relates two �elds in a linear and ausal way. Therelations read�1(!) = 1 + 1�P +1Z�1 d� �2(�)� � ! (3.40)�2(!) = � 1�P +1Z�1 d� �1(�)� 1� � ! : (3.41)P denotes the prinipal value of the integral. Sine ! > 0 it is desirable to transform(3.40) to integrals over the domain (0;1). Utilizing the relation"(�!) = "1(�!) + i�(�!)�! = "�(!); (3.42)and by multiplying both the numerator and denominator of (3.40) with (�+!), oneyields�1(!) = 1 + 2�P 1Z0 d� ��2(�)�2 � !2 (3.43)�2(!) = � 2�P 1Z0 d� �1(�)� 1�2 � !2 : (3.44)The onsequene of the Kramers-Kronig relations is that one the imaginary partis known for the whole spetrum, the real part is known as well, and vie versa. Itis also worth to notie that these relations are of universal validity sine they donot imply any knowledge of the interations inside the solid. However, it poses adiÆult task in experiments to san the whole frequeny range.One an also onstrut Kramers-Kronig relations for other quantities, like themagnitude and the phase of the omplex reetion oeÆient.3.5 Marosopi Dieletri FuntionUp to now there is no onnetion between the dieletri funtion and the quantummehanial state of the system. The �rst suh formulation has been given in theself-onsistent �eld (SCF) method. Starting point is the single-partile Liouville-vonNeumann equationi���t = [H; �℄ (3.45)



3.5. MACROSCOPIC DIELECTRIC FUNCTION 23with H the Hamiltonian and � the density operator. H is separated into an time-independent part H0 and a time-dependent perturbation V ,H = H0 + V (r; t): (3.46)The unperturbed system has solutionsH0jki = E(k)jki; (3.47)and the density operator of this system ats like�0jki = f0(E(k))jki; (3.48)f0 being the Fermi distribution funtion for zero temperature. By assuming thedensity operator of the perturbed system to be of the form � = �0 + �1, one arrivesat the linearized form of the Liouville equation (3.45)i��1�t = [H0; �1℄ + [V; �0℄ (3.49)if the term of higher order [V; �1℄ is negleted. Assuming a time dependene V �e�i!teÆt of an eletromagneti osillation, one obtainshkj�1jk + qi = f0(E(k + q))� f0(E(k))E(k + q)� E(k)� ~! + i~Æ hkjV jk + qi: (3.50)This self-onsistent �eld method relates the indued density �1 to the perturbingpotential. The form of the perturbing potential makes this a semi-lassial model,treating the eletrons quantum mehanially and the photon as a lassial eletro-magneti wave (though it gives away its energy quantized). Lindhard [Lin54℄ hasgiven an expression for the dieletri funtion within this self-onsistent �eld method"(q; !) = 1� 4�e2q2
� limÆ!0 Z d3k f0(E(k + q))� f0(E(k))E(k + q)� E(k)� ~! + i~Æ : (3.51)The integration runs over the whole system, 
� is the system's volume. Ehrenreihand Cohen [EC59℄ showed that this is equivalent to a many-partile approah basedon the random-phase approximation (RPA) for a Fermi gas at zero temperaturegiven by Nozi�ere and Pines [NP58b, NP58a℄. Ehrenreih applied this to solids ofubi struture and obtains"(q; !) = 1� 4�e2q2
 limÆ!0Xi;f Z d3k jhf;k + qjikij2Ef(k + q)� Ei(k)� ~! + i~Æ �[f0(Ei(k + q))� f0(Ef(k))℄; (3.52)the two summation indies running over all bands. The integration runs over theunit ell with volume 
. The q indiate involved phonons, taking up a di�erene



24 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDS

Figure 3.1: Sketh of interband and intraband transitions. In the shown model bandstrutures (i.e. plots of energy E vs. rystal momentum k) the spots indiate one-partilestates. On the left an interband transition from band i to band f is drafted, on the rightan intraband transition within one band i.in rystal momentum. Compared to (3.51) the square of the matrix element in thenumerator has appeared. Perturbation theory in the limit jqj ! 0 yieldsjhf;k + qjikij2 = Æfi + (1� Æfi)� qm!fi�2 j
fkjri jik�j2; (3.53)with ~!fi = Ef(k) � Ei(k). The jiki are Bloh states. In order to onsider thelong-wavelength limit q ! 0, the dieletri funtion is split up into the interbandand the intraband part skethed in Fig. 3.1,"(!) = "inter(!) + "intra(!): (3.54)For reasons of onveniene, both parts are split into their real and imaginary parts" = "1 + i"2. The intraband ontribution gives [ZL83℄"intra1 (!) = 1� ~!2p!2 (3.55)"intra2 (!) = �i�~!2p ��! Æ(!): (3.56)An intraband transition involves a photon and is therefore a proess of higher order.The imaginary part vanishes everywhere exept of ! = 0 and has a singularity atthis point. The plasma frequeny !p of a homogeneous eletron gas of density n isde�ned by!2p = 4�e2nm : (3.57)



3.5. MACROSCOPIC DIELECTRIC FUNCTION 25The e�etive plasma frequeny ~!p together with the optial e�etive mass mopt isde�ned by~!2p � mmopt!2p = 4�e2~2 Xi 1VG Z d3k f0(Ei(k))r2kEi(k): (3.58)The interband part takes the form"inter1 (!) = e2�2m2 Xi;f P Z d3k ~2Ef(k)� Ei(k) j
fkjri jik�j2 �f0(Ei(k))[1� f0(Ef (k))℄(Ef(k)� Ei(k))2 � (~!)2 (3.59)"inter2 (!) = e22�m2!2 Xi;f Z d3k j
fkjri jik�j2 �Æ(Ef(k)� Ei(k)� ~!) � f0(Ei(k))[1� f0(Ef(k))℄: (3.60)The two summation indies indiate transitions i! f from an oupied to an uno-upied state. For non-ubi strutures, the tensor takes the same form, exept thatthe square of the matrix element turns to a tensor produt. Converting the volumeintegral to a surfae integral, the imaginary part of the interband ontribution tothe dieletri tensor reads"��2 (!) = e22�m2!2 Xi;f Z dk2 
ikjr�i jfk�Dfkjr�i jikEjrk(Ef(k)� Ei(k))j �f0(Ei(k))[1� f0(Ef (k))℄: (3.61)This funtion has been implemented in this thesis. The integral runs over theonstant-energy surfae ~! = Ef (k) � Ei(k). A term often referred to in thisontext is the joint density-of-states (JDOS)J(E) =Xi;f Z dk2jrk(Ef(k)� Ei(k))j (3.62)over the plane of onstant energy E = EF (k)�Ei(k). For propagation q along unitvetor uq the dieletri funtion is"2(!) =X�� uq;�uq;� � "��2 : (3.63)The longitudinal and transversal projetors are de�ned byL = uq Æ uq; T = 1� uq Æ uq; L+ T = 1: (3.64)



26 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSThe dieletri tensor an thus be partitioned into" = (L+ T )"(L + T ) (3.65)= L"L+L"T + T "L+ T "T (3.66)= "ll + "lt + "tl + "tt: (3.67)In a homogenous medium like the free-eletron gas, longitudinal (transverse) ele-tromagneti �elds would only ause a longitudinal (transverse) response. In inho-mogeneous media suh as periodi rystals a purely longitudinal or transverse �eldindues both kinds of responses. Above, only the longitudinal response has beenalulated. It has been shown by Ambegaokar and Kohn [AK60℄ for ubi rystalsand by Del Sole and Fiorino [SF84℄ for rystals of lower symmetry that in the limitof vanishing q the e�et of a transverse perturbation (eletro-magneti �elds) anbe desribed by a longitudinal response.3.6 Mirosopi Dieletri FuntionThe derivation above started from a marosopi point of view, i.e. the marosopiMaxwell equations. However, a preise desription on the mirosopi sale is onlygiven by the mirosopi Maxwell equationsr � e = �mi"0 (3.68)r� b = �0jmi + �0"0 ��te (3.69)r � b = 0 (3.70)r� e = � ��tb (3.71)with e = e(r; t) the mirosopi eletri �eld and b = b(r; t) the mirosopi mag-neti indution. The marosopi quantities result from the mirosopi ones byaveraging over one unit ell� = h�mii; j = hjmii; E = hei; B = hbi: (3.72)The inverse of the marosopi and mirosopi dieletri funtion (or tensor, re-spetively) are both related to the eletri displaement D byE(r; t) = "�10 Z d3r0 Z dt0 "�1ma(r � r0; t� t0)D(r0; t0) (3.73)e(r; t) = "�10 Z d3r0 Z dt0 "�1mi(r; r0; t� t0)D(r0; t0): (3.74)



3.6. MICROSCOPIC DIELECTRIC FUNCTION 27As in (3.31) ausality must be onserved. Both dieletri funtions are homogeneousin time, but only from the marosopi point of view the medium is homogeneous;thus the relation for the mirosopi dieletri funtion is more omplex. The FouriertransformsE(k; !) = "�10 "�1ma(k; !)D(k; !) (3.75)e(k +G; !) = "�10 XG0 "�1mi(k +G;k +G0; !)D(k +G0; !) (3.76)reet this. In (3.76) reiproal spae arguments have been parted into a reiproallattie vetor G (or G0, respetively) and a vetor k within the Brillouin zone.Due to the oupling of the inverse of the dieletri funtion to the eletri dis-plaement in (3.74), this is the quantity that an initially be derived. Out of thisthe dieletri funtion itself is determined. "�1mi is not only the inverse with respetto the tensor harater, but it relates to the dieletri funtion by"�1mi(r; r0; t� t0)"mi(r0; r00; t0� t00) = Æ(r�r0)Æ(r0�r00)Æ(t� t0)Æ(t0� t00)1: (3.77)Adler [Adl62℄ and Wiser [Wis63℄ derived the expliit onnetion of the mirosopiand marosopi quantities. For this it is useful to understand the vetors G;G0from the Fourier transform as matrix indies. This way the mirosopi dieletritensor"mi(k +G;k +G0; !) ! ["mi(k; !)℄GG0 (3.78)appears as a matrix with elements whih are tensor funtions of k and !. Eq. (3.76)turns to a vetor equation with a matrix-vetor multipliation on the right. Theinverse of the marosopi tensor is equal to the inverse of the mirosopi tensorfor G = G0 = 0,"�1ma(k; !) = "�1mi(k;k; !): (3.79)This an be written like"ma(k; !) = �"�1mi(k;k; !)��1 (3.80)as well, but one has to remember the matrix harater of "�1mi. Only the negletionof all o�-diagonal matrix elements G 6= G0 (the so-alled loal �eld e�ets) gives theeasy relation"ma(k; !) = "mi(k; !): (3.81)In pratial appliations the matrix "mi has to be onstruted for a set of G vetorsand the (0; 0)-element has to be determined.For the atual derivation [ZL83℄ all quantities are onsequently Fourier trans-formed. For the longitudinal response, an expression for the mirosopi dieletrifuntion and its inverse depending on the indued mirosopi harge density an bealulated. For the approximation of independent partiles, in the long-wavelengthlimit the same result as in the marosopi ase (3.60) is found when loal �elds arenegleted.
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Chapter 4Basis setsAs already mentioned in Setion 2.3, the eigenfuntions are usually expanded in abasis,hrjiki =  i(k; r) = 1p
XG Cik+G�k+G(r); (4.1)where 
 is the unit ell volume. The Hamilton and overlap matries H and S areonstruted for a set of k-points, and the generalized eigenvalue problem[H(k)� �iS(k)℄ i(k) = 0 (4.2)is solved, with i(k) = (Cik+G) the vetor of the C-oeÆients (of eigenvalue i andvetor k) for all G's. Many questions of detail, as well as general properties of thealulation like auray and omputational e�ort depend on the hoie of the basisset. The better the basis funtions math the shape of the atual wavefuntions, thebetter the onvergene is. Some basis sets may have drawbaks that an not alwaysbe lifted by a bigger ut-o�.At this point two possibilities to exploit symmetry should be noted. First onedoes not need to alulate the whole Brillouin zone (BZ), but an redue the om-putation to the irreduible part (IBZ) in whih points an not mapped onto eahother by symmetry operations. Furthermore the presene of inversion symmetry hasa speial inuene on the wavefuntion oeÆients. Let I be the inversion operatorIr ! �r: (4.3)The Hamilton operator is hermitian, H(k; r) = H�(k; r). If the system possesses29



30 CHAPTER 4. BASIS SETSinversion symmetry (i.e. H(r) = H(�r)), the Hamiltonian matrix elements readHGG0(k) = Z d3r '�G(r)H(k; r)'G0(r)= Z d3r '�G(�r)H(k;�r)'G0(�r)= Z d3r 'G(r)H�(k; r)'�G0(r)= (HGG0(k))� ; (4.4)if the basis funtions obeyI'G(r) = '�G(r): (4.5)The same is obviously true for the overlap matrix. This means that in this ase thegeneralized eigenvalue problem deals with real instead of omplex matries, whihmeans a signi�ant ease of alulation. Of ourse also the expansion oeÆients Care real in this ase.4.1 The Plane-Wave BasisA very simple basis set is build out of plane waves (PWs), the eigenfuntions for aonstant potential, that are free eletrons�k+G(r) = ei(k+G)r;The use of this basis omplies to a simple Fourier transform. Typially this is a goodhoie for nearly free eletrons and deloalized eletrons. The simple analyti formusually leads to well-performing alulations that are straight-forward to implement.The Hamilton and overlap matries an easily be alulated asHG;G0(k) = ~22m jk +Gj2ÆGG0 + V(G�G0); (4.6)V(G�G0) = Zu d3r e�i(G�G0)r Veff(r)SG;G0 = ÆGG0The matrix elements of the momentum operator for instane in this basis (in termsof the eigenfuntions) give
fkjri jik�PW = 1
XG (k +G)Cf�k+GCik+G: (4.7)The hoie ofG-vetors is illustrated in Fig. 4.1. After hoosing a ut-o� valueGmax,all (k +G)-vetors are used that obey jk +Gj � Gmax. This hoie is neessarybeause of numerial reasons. The number of basis funtions obviously depends onthe k-point in onsideration.



4.1. THE PLANE-WAVE BASIS 31

Figure 4.1: Used G-vetors in expansion. Small x-like rosses indiate the basis vetorsof reiproal spae. The plus-like rosses indiate the (k +G)-vetors orresponding tothe k-vetor drawn in the origin. The large irle enloses all vetors of jGj < Gmax, thesmaller one those of jk +Gj < Gmax.Potentials: The prie for this simpliity is the inability of this basis set to desribethe strong interations inluding the nulear potential� 1r . As a solution, the idea ofpseudopotentials has been developed. The potentials are idential to the all-eletronpotential outside a given ore-radius, but of di�erent, smoother shape inside. Theyare onstruted just that the resulting pseudo-wavefuntion mimis the all-eletronwavefuntion outside this radius as lose as possible.For many elements, this method is appliable, i.e suh pseudopotentials an beonstruted. Usually systems inluding loalized valene eletrons, like transitionmetals, are more problemati.Symmetry: The potential and the harge density are represented in planewavesexp(iGr) whih are k-independent, in ontrast to the expansion of the wavefun-tions. The needed ut-o� should be at least twie as large as for the eigenvetors.The symmetry of the lattie an be used to simplify the representation. The sumof the planewaves of all G-vetors obtained by the spae group operations of thelattie applied on one G-vetors is alled a star,�S = 1NOpXR eiRG(r�t): (4.8)



32 CHAPTER 4. BASIS SETSNOp is the number of the spae group operationsR; t. Potentials and harge densitiesan be expanded in these stars.Planewaves naturally obey the relationIei(k+G)r = �ei(k+G)r�� ; (4.9)whih means that (4.4) is valid for this basis, i.e. H is real in ase of inversionsymmetry.4.2 The APW method

Figure 4.2: Spatial partitioning in augmented basis sets. The irles are the muÆn tins,leaving the interstitial region, plotted grayed.A basis set of better shape has been proposed by Slater already in 1937 [Sla37℄.In this Augmented PlaneWave (APW) basis, spae is divided into spheres that areentered around eah atom, so-alled muÆn-tins (MTs), and into the remaininginterstitial region (IS)1. While plane waves are used as basis funtions in the inter-stitial, they are augmented in the spheres by spherial harmonis time radial basisfuntions that are solutions to of the radial Shr�odinger equation to an l-dependentenergy�� ~22m �2�r2 + ~22m l(l + 1)r2 + V (r)� El� rul(r) = 0: (4.10)If the aording relativisti equation is solved, the solutions are spinors, ontaining alarge and a small omponent. Expanding the funtion in a series of these funtions1For non-bulk systems, di�erent hoies an be made. For slabs, an additional vauum regionis introdued as a two half-spaes, expanding the funtion in deaying exponentials [Kur00℄.



4.2. THE APW METHOD 33up to an l-uto� lmax, this gives the basis funtions (the augmented plane waves)�k+G(r) = 8><>: ei(k+G)r r 2 ISlmaxXl=0 lXm=�l a�lm(k +G)ul(r; E�l )Ylm(r̂) r 2 MT�: (4.11)The alulation of matrix elements beomes more ompliated due to the radialfuntions being non-orthogonal when restrited to the muÆn-tins, and due to theomplex shape of the interstitial region.It is useful to normalize the radial funtions likehuljuli = R�Z0 dr julj2 = 1 (4.12)To ensure that these basis funtions are ontinuous, one has to math the muÆn-tinfuntions to the planewaves on the boundaries. To arrange this, one expands thespherial harmonis into planewaves using the Rayleigh relationeiKr = 4�Xlm iljl(rK)Y �lm(K̂)Ylm(r̂): (4.13)K = jKj is the length of the vetor K = k +G, and jl is the Bessel funtion ofthe �rst kind. Atoms that an be transformed into eah other with a symmetryoperation form one atom kind. For eah atom kind, one of its atoms is delared asits representative (see Fig. 4.3). An atom � at position S� owns a oordinate frame(U�;S�) (in the style of symmetry operations 3.1, U� being the rotation matrix). Inthis frame, a plane-wave takes the formeiKr ! ei(U�K)(r+U�S�) (4.14)Mathing the planewaves on the sphere boundaries with the muÆn-tin funtions forevery augmented wave gives the a-oeÆients asa�lm(K) = eiKS� 4�ilul(R�; E�l )jl(KR�)Y �lm(U�K̂): (4.15)This leaves the C-oeÆients (and the energies E�l ) as the variational parameters ofthe method, the a's being determined by them. In fat this mathing works only ona few points exatly, but the so-hosen A-oeÆients yield the smallest mismath.With these basis funtions the wavefuntion take the form i(k; r) = 8>><>>: 1p
XG Cik+Gei(k+G)r r 2 ISXG Xlm Cik+Ga�lm(k +G)ul(r; E�l )Ylm(r̂) r 2 MT� (4.16)
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Fα
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MTα
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SαSβFigure 4.3: Equivalent atoms and its oordinate frames. MT�, MT� are the spheresentered at S�, S�. The loal frame F� of the representative of this atom kind oinideswith the global frame Fg, while the seond sphere's frame evolves from the �rst by arotation.Sine the a-oeÆients are { together with the expansion oeÆients C { the onlyterms inside the spheres depending on G, one an write the whole wavefuntionshorter as i(k; r) = 8><>: 1p
Cik+Gei(k+G)r r 2 ISXlm Ai;�lm(k)ul(r; E�l )Ylm(r̂) r 2 MT� (4.17)with the shorthandAi;�lm(k) =XG Cik+Ga�lm(k +G): (4.18)Potentials: Sine these basis funtions are the solutions of a onstant potentialin the interstitial and a spherial potential in the muÆn tins, this muÆn-tin ap-proximation for the shape of the potentials has initially been used. In the warpedmuÆn-tin approximation, the interstitial potential is extended to general shape,that means extended in planewaves.Sine the atual inuene all eletrons are taken into aount, this method ountsto the all-eletron methods, other than pseudopotential methods. However, it isreasonable to treat the inner shells of the atoms independently sine these orestates do not take part in the hemial bond. Only the outer shells are determined



4.2. THE APW METHOD 35by solving the rystal eigenvalue problem. Nevertheless, the potentials is made upof all eletrons.Symmetry: The representation of harge densities and potentials by stars is over-taken from the planewaves for the interstitial region. In the spheres, due to symme-try operations one an ollet spherial harmonis to lattie harmonis and expandin this basis [Sin94℄.Applying the inversion operator on the APW basis funtions onsidering theonstrution of the A oeÆients, it turns out that { like the planewaves { also theaugmented planewaves obeyIei(k+G)r = �ei(k+G)r�� ; (4.19)whih makes the Hamiltonian H real in ase of inversion symmetry [Kur00℄.The A oeÆients of equivalent atoms are onneted, though this an not be seeneasily due to the (lm)-expansion in di�erent loal frames. However, for the ase oftwo equivalent atoms �,� mapped onto eah other by inversion, the oeÆients obeyAi;�lm = �Ai;�lm�� (4.20)for all (lm) and all states i.Problems of the method: Aording to (4.15) the A's are determined ompletelyby the planewave oeÆients. So these C oeÆients together with the energy pa-rameters El are the variational parameters of this method. If the energy parameterswere taken as �xed rather than as a variational parameter, the method would simplyonsist of the use of the APW basis set with solving the seular equation (4.1). Thesolutions would give the band energies.Unfortunately, this is not a workable sheme. The basis funtions lak variationalfreedom, this means they do not yield orret results if the energy parameters Elmismath the atual band energies. This means that these energies for one k-pointan not be obtained from a single diagonalization, but it has to be solved iteratively.This makes this method muh more omputationally demanding.Furthermore it is diÆult to use a general potential beyond the warped muÆn-tin approximation [Sin94℄. Another obstale is the so-alled asymptote problem.There might be energy parameters for whih ul vanishes or beomes very small onthe sphere boundary. As a onsequene the planewaves and the radial funtionsbeome deoupled.



36 CHAPTER 4. BASIS SETS4.3 The LAPW methodMuh work has been devoted to lifts the desribed problems, e.g. the modi�ed aug-mented planewave (MAPW) approah by Bross [Bro64, Bro68, BBM+70℄. In 1975,Andersen introdued the Linearized Augmented Plane Wave (LAPW) method. Theentral idea is to desribe the basis funtions inside the muÆn-tins not only by solu-tions of the radial Shr�odinger equation ul(r; El), but as well by its energy derivatives_ul(r; El) � ��Eul(r; El). If El di�ers slightly from the true band energy �, aordingto an expansion with respet to the energy,ul(r; �) = ul(r; El) + (�� El) _ul(r; El) +O((�� El)2); (4.21)the true radial funtion an be approximated suÆiently. The error in the bandenergies will be of the order O((��El)4). The energy derivatives an aquired from(4.10), taking the energy derivative:�� ~22m �2�r2 + ~22m l(l + 1)r2 + V (r)� El� r _ul(r) = rul(r): (4.22)The basis funtions are now�k+G(r) = 8>>>>><>>>>>:
1p
ei(k+G)r r 2 ISlmaxXl=0 lXm=�l [a�lm(k +G)ul(r; E�l )+b�lm(k +G) _ul(r; E�l )℄Ylm(r̂) r 2 MT�: (4.23)Analogous to the APW method, the muÆn-tin oeÆients are determined asa�lm(K) = eiKS� 4�ilW Y �lm(U�K̂)[ _ul(R�)Kj 0l(KR�)� _u0l(R�)jl(KR�)℄ (4.24)b�lm(K) = eiKS� 4�ilW Y �lm(U�K̂)[ul(R�)Kj 0l(KR�)� u0l(R�)jl(KR�)℄ (4.25)with the WronskianW = [ _ul(R�)u0l(R�)� ul(R�) _u0l(R�)℄: (4.26)Colleting terms equivalent to the APW basis set, with the de�nitionsAi;�lm(k) = XG Cik+G � a�lm(k +G);Bi;�lm (k) = XG Cik+G � b�lm(k +G) (4.27)



4.3. THE LAPW METHOD 37the wavefuntions take the form i(k; r) = 8>><>>: 1p
XG Cik+Gei(k+G)r r 2 ISXlm �Ai;�lm(k)ul(r; E�l ) +Bi;�lm (k) _ul(r; E�l )�Ylm(r̂) r 2 MT� (4.28)The detailed onstrution of the H and S matries is desribed in [Kur00℄. Theformulation above reets a non-relativisti ansatz. The relativisti approah usuallydetermines the relativisti radial wavefuntions ul(r) inside the muÆn-tins, whihare spinors. In the interstitial, the Hamiltonian is treated non-relativisti. Forthe mathing on the muÆn-tin boundaries, only the large omponent is taken intoaount, sine the small omponent pratially vanishes on the sphere boundaries.With this additional exibility, the LAPWs form a good basis for most setups. Inontrast to the APW method only one diagonalization is needed to obtain the bandenergies. And sine it is very unlikely that both radial funtion and its derivativevanish the asymptote problem does not our.Potentials: In the APW method, a desription of the potential beyond themuÆn-tin approximation leads to serious problems. For the LAPW method on theother hand, this proedure an be implemented. This full-potential LAPW method(FLAPW or FPLAPW) [Ham79, WKWF81℄ expands the potential into stars in theinterstitial, and into spherial harmonis in the spheres.Basis onversion: A method to link the simpliity of the planewave basis withthe auray of the more sophistiated LAPW basis set has been proposed byKrasovskii [KSS99℄. In this Augmented Fourier omponents method (AFC), theviinity of the ore ontaining rapid alterations of the wavefuntions is onsideredto be of low inuene on the hemial behavior. The results of alulation in LAPWbasis are therefore gauged by an appropriate funtion, generating a smoother wave-funtion in this region and leaving a slowly varying valene harge, whih an berepresented adequately in a planewave basis. From this results, quantities an bealulated in the simple planewave formalism.Symmetry: The LAPW basis obviously inludes the same symmetry as the APWbasis set. Aording to (4.20), the oeÆients for two atoms onneted by inversionsymmetry obeyAi;�lm = �Ai;�lm�� ; Bi;�lm = �Bi;�lm�� (4.29)



38 CHAPTER 4. BASIS SETS4.4 The Loal Orbital extensionThere might be situations where the variational freedom of the LAPW basis setis not suÆient. One example are semi-ore states, whih are states of low energythat do not deay ompletely within the muÆn-tins, but have an overlap into theinterstitial. Singh [Sin91℄ introdued the Loal Orbital extension to the LAPW setto deal with suh problems.The idea is to expand the basis set by additional funtions that are zero inthe interstitial, to extend exibility inside the muÆn-tins. By onstruting theseadditional basis funtions suh that the derivative vanishes on the sphere boundariesas well, the A- and B- oeÆients onstruted in (4.24) remain unhanged. The newbasis funtion should have the harateristi of a ertain angular momentum llo andenergy Elo. This is ensured by a ombination of three radial wavefuntions. Henethe additional wavefuntion (i.e. one loal orbital) takes the form�k+Glo(r) = lloXm=�llo[a�lo;m(k +Glo)u�l (r; E�l ) + b�lo;m(k +Glo) _u�l (r; E�l ) +�lo;m(k +Glo)u�llo(r; Elo)℄Yllo;m(r̂): (4.30)inside muÆn-tin �, ompare (4.23). The index lo = 1; : : : ; nlo runs over the numberof loal orbitals introdued, the alo; blo; lo are the orresponding oeÆients for eahsphere. The l = llo indiates the angular momentum quantum number assoiatedwith this loal orbital. Eah loal orbital ontains only anm-sum. This onstrutionontains the essential harateristis in the third part (llo; Elo), enrihed with theLAPW-like �rst two parts ensuring the onditions of the boundary (i.e. the funtionitself and its derivative equal zero).These two onditions together with the normalization ondition do determinethe three oeÆients of eah loal orbital. But furthermore they are oupled to�tiious planewave, indiated above by the vetors Glo. Though no boundaryonditions have to be satis�ed, this ensure the loal orbital to have Bloh form.2.The a; b;  oeÆients above result from this mathing.Colleting the loal orbital oeÆients similar to (4.27), the wavefuntions insidesphere � take the form i(k; r) = Xlm �Ai;�lm(k)ul(r; E�l ) +Bi;�lm (k) _ul(r; E�l )�Ylm(r̂) +Xlo;m[Ai;�lo;m(k)ul(r; E�l ) +Bi;�lo;m(k) _ul(r; E�l ) + (4.31)Ci;�lo;m(k)ullo(r; Elo)℄Yllo;m(r̂):2For details on this, as well as on the onstrution of the matrix elements, see [Kur00℄



4.5. A NOTE ON THE KINETIC ENERGY IN THE LAPW BASIS 39The �rst line is the unhanged LAPW, while lines two and three are the ontributionsof the loal orbitals, whih are summed together in the A,B,C with index (lo;m).These oeÆients are sets of oeÆients di�erent from the standard LAPW A,BoeÆients, as well as from the plane-wave oeÆients C.4.5 A note on the kineti energy in the LAPWbasisWithin the standard APW method one an in priniple alulate the exat eigen-funtions by inreasing the number of basis funtions. For the LAPW basis this isnot obvious sine one does not perform an iteration to solve the eigenvalue problem.Though the LAPW has been very suessful in alulations of the eletroni stru-ture and thus is widely used, it turns out that while yielding good energy eigenvalues,the quality of the wavefuntions is de�ient.But this property is of signi�ant importane for the alulation of matrix ele-ments in general and for the momentum matrix elements and optial properties inspeial. An investigation of this fat has been done by Krasovskii et al. [KNA93℄.Di�erent approahes have been developed to improve this fat. Bross et al. for in-stane enhaned the MAPWmethod, and developed the spline augmented planewave(SAPW) method. This method yields good values for the momentum matrix ele-ments [Feh88℄. Within the LAPW framework, this disrepany of MMEs has in fatbeen one of the reasons of the development of the loal orbitals, and the similar ap-proah of Extended Linear Augmented Planewaves (ELAPW) by Krasovskii [Kra97,KS01℄.
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Chapter 5ImplementationThe implementation of the dieletri funtion for this thesis has been done with theFLEUR ode [FLE℄ in bulk mode. FLEUR is a full-potential linear augmented plane-wave (FLAPW) ode. In the following setions some details of this implementationshall be disussed.Sine the linearized augmented plane-waves are the basis of hoie, the formulaeof the momentum matrix elements in this basis are presented in Setion 5.1. Detailson performing the k-spae integration to obtain the real part of the dieletri funtionare shown in 5.2. The real part is obtained in 5.3. Due to a restrition of FLEUR, thee�et of bakfolding has to be disussed in Setion 5.4. The problemati inueneof this bakfolding on the numerial integration is desribed in Setion 5.5. Someremarks in 5.6 are followed by a two test alulations.When referring in the following to the dieletri funtion, often it's imaginarypart is meant. This should be lear from the ontext.5.1 Momentum matrix elements in the LAPWbasisThe momentum matrix elements (MMEs)1~i hfkjrj{ki = ~i Zu d3r  �f (k; r)r {(k; r) �Mfi(k) (5.1)are to be alulated in the LAPW basis. Due to the partitioning of the unit ellinto muÆn-tins and the interstitial region by the hoie of the augmented basis, thematrix elements have to be alulated in these regions separately:hri = hriIS +X� hriMT� : (5.2)1To avoid onfusion with the imaginary unit i, the initial eletroni transition level is labeled {.41



42 CHAPTER 5. IMPLEMENTATIONThe formulae are presented in atomi units (see appendix C), so the fator ~ = 1disappears.5.1.1 Interstitial ontributionIn the interstitial, the wavefuntions are2j{kiIS = 1
XG C {k+Gei(k+G)r; r 2 IS; (5.3)and the nabla operator ats likerj{ki = 1
XG i(k +G)C {k+Gei(k+G)r; r 2 IS; (5.4)so that the interstitial part of the matrix element reads
fkjri j{k�IS = 1
XGG0(k +G)Cf�k+G0C {k+G ZIS d3r ei(G�G0)r: (5.5)The non-trivial interstitial volume the integral ats on is handled by subtrating themuÆn-tins from the whole unit ell 
:ZIS d3r ei(G�G0)r = Z
 d3r ei(G�G0)r �X� ZMT� d3r ei(G�G0)r: (5.6)While the �rst integral gives the simple value 
ÆGG0 , the integral over a muÆn-tinentered at S� gives the split solutionZMT� d3r ei(G�G0)r = ( V G = G03V� sinx�x osxx3 � ei(G�G0)S� G 6= G0 (5.7)with x = jG�G0jR� and R�; V� the radius and the volume, respetively, of sphere�. Altogether this gives (f. Setion 5.6)
fkjri j{k�IS = 1
XG (k +G)"C {k+G 
�X� V�!�XG0 6=GCf�k+G0X� 3V� sin x� x os xx3 � ei(G�G0)S�35 (5.8)= XGG0(k +G)C {k+GCf�k+G0 � s(G�G0): (5.9)2For onveniene, the general Ket symbol is used in plae of its spatial representation.



5.1. MOMENTUM MATRIX ELEMENTS IN THE LAPW BASIS 43In the last line, the expressions of the preeeding integral were merged into thefuntion s, that iss(G�G0) = 8<: 1
(
�P� V�) G = G0� 3
P� V� sin x�x osxx3 ei(G�G0)S� G 6= G0 (5.10)with the above x = jG � G0jR�. This is the Fourier representation of the step-funtionS(r) = ( 1; r 2 IS0; r 2MT; (5.11)whih is onstruted already for the setup of the Hamilton and overlap matries Hand S in the self-onsisteny part.5.1.2 MuÆn-tin ontributionsThe further proedure depends on what form of wavefuntions you start from. If youuse the LAPW funtions written expliitly in the basis funtions (4.23), without thesummation (4.27) in the alulation of your MMEs (5.1), you obtain the summationsover G,l,m eah twie. In the further derivation, not only one pair of the (l; m)-summation vanishes, but also, by lever onversion, the seondm-summation [Krab℄.This leaves summationsG;G0; l. If you do this, you an simply hek the hermitiityof your matrix for every G-vetor.In the derivation used in this thesis, LAPWs of the aumulated form (4.28)are used. To derive the matrix elements in the spheres, the momentum operatoris expressed in spherial oordinates, and its impat on the spherial harmonis isalulated. Sine this part is a bit lengthy, it is moved to appendix A.In allusion to the ladder operators L+ and L� of the angular momentum operator,one expresses the momentum matrix elements not in terms of (�x; �y; �z)T , but inthe rotated form0B� �x + i�y�x � i�y�z 1CA =M0B� �x�y�z 1CA � 0B� �1�2�3 1CA ; (5.12)with the base hange matrix and its inverseM = 0B� 1 i 01 �i 00 0 1 1CA ; M�1 = 0B� 12 12 0�12 i 12 i 00 0 1 1CA : (5.13)



44 CHAPTER 5. IMPLEMENTATIONThe result ontains only one (l; m)-summation and an be expressed ashfkj�nj{kiMT� = lmax�1Xl=0 lXm=�l (5.14)[ ( R ul+1u0l r2dr � l R ul+1ul rdr) Af�l+1;m0A{l;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) Af�l+1;m0B{l;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) Bf�l+1;m0A{l;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) Bf�l+1;m0B{l;m ℄ F (2n�1)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) Af�l;mA{l+1;m00+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) Af�l;mB{l+1;m00+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) Bf�l;mA{l+1;m00+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) Bf�l;mB{l+1;m00 ℄ F (2n)l+1;m00for n = 1; 2; 3 indiating the omponents, and m0,m00 given bym0 = 0B� m+ 1m� 1m 1CA ; m00 = 0B� m� 1m+ 1m 1CA for n = 0B� 123 1CA : (5.15)The fators F (n)lm are de�ned in appendix A. In the ombinations of oeÆientsowning angular quantum numbers l and l + 1 in the produts, one reognizes thedipole seletion rules, i.e. the onservation of angular momentum.The notation already indiates that only the large omponent of the wavefuntioninside the muÆn-tins is taken into aount. For the valene states onsidered thisis a good approximation.5.1.3 Properties of the matrix elementsHermitiity: Sine the momentum operator is an observable and therewith her-mitian, so must be its matrix elements. This an be shown easily by applying partialintegration to the de�ning formula of the matrix elements (5.1). It is also obviousfor the MMEs written in the plane-wave basis (4.7).However it an be hardly seen from the formulae written in LAPW basis, sinethe interstitial plane-waves are expanded on the muÆn-tin boundaries in terms ofspherial harmonis utilizing the Rayleigh relation (4.13). If one applies partialintegration to the LAPW formulae, one an see that e.g. for the (x+ iy)-omponentof the muÆn-tin ontribution to the MME, parts of the fators ontaining F (1)l;mompensate with the omplex onjugate of the fators ontaining F (2)l+1;m�1, leavingthe boundary values of the integration un-ompensated.



5.1. MOMENTUM MATRIX ELEMENTS IN THE LAPW BASIS 45The rest has to be taken by the di�erene in onjugating the interstitial ontri-bution, whih is sensitive to onjugation due to the fator (k +G) in the �rst sumin (5.9).Reality: The diagonal matrix elements are real sine the momentum operatoris an observable. Furthermore this an also be seen from and ompared with thederivatives of the energy bandsh{kjrj{ki = 1~ �E{(k)�k : (5.16)The non-diagonal parts are in general omplex, as an be assumed beause of theomplex A,B muÆn-tin oeÆients. For the ase of inversion symmetry, however,the matrix elements beome real. This is obvious in the ase of a plane-wave basisset (4.7) due to the now real C oeÆients, but not for LAPW basis (due to there-expansion on the muÆn-tin boundaries).Equivalent atoms: If one views the muÆn-tin part of the MMEs, one sees thatapart from the radial funtions ul(r) and its derivatives the A,B oeÆients are theonly ontributions spei� for the atoms. The former are idential for equivalentatoms, aording to Chapter 4. The latter are dependent for equivalent atoms. Forthe ase of inversion symmetry, the oeÆients of symmetry equivalent atoms arethe omplex onjugates of eah other. So are the momentum matrix elements,hfkjrj{kiMT� = hfkjrj{kiMT� (5.17)for equivalent atoms �,� due to 4.29 and 5.14.5.1.4 IllustrationTo give an impression of the amplitude and k-dependene, a band struture-like plotof matrix elements is shown in Fig. 5.1. These are seleted MMEs for a simple-ubiAluminum setup with one atom per unit ell, that is investigated in Setion 5.4.The path is (0; 0; 0) ! (12 ; 0; 0) ! (12 ; 12 ; 0) ! (12 ; 12 ; 12) ! (0; 0; 0), and due to bigvariations in amplitude, the plot uses a logarithmi y-axis.The progression of the urve is monotonous in most areas. On the orners of thepath, the matrix elements are not unique due to degeneray (ompare to the bandstrutures in Setion 5.4). However, some transitions have a rapid hange in ampli-tude when approahing the orners. In this ase, only the sum over the transitionshas a physial meaning and gives deterministi results. Another irregularity arejumps that our within a path, whih an usually be onneted to band rossings.
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Figure 5.1: The absolute value of matrix elements for �ve seleted transitions evolvingon paths on the border of the irreduible Brillouin zone. The initial and �nal level { andf are given in the legend.5.2 k-spae integrationThe task to perform an integration in k-spae1VG Xi ZBZ d3k U(k)f(�i(k)) (5.18)(VG being the volume of the Brillouin zone, f the Fermi fator at temperature zero,i.e. a step funtion) frequently appears in band struture alulations, for instane inthe determination of the Fermi energy in the self-onsisteny of the density funtionaltheory desribed in Setion 2.3. The integrand U(k) is alulated only for a very�nite set of sample k-points.There are di�erent kinds of methods, e.g. the speial points method [CC73,Cun74℄. It provides a set of speial k-points in the irreduible Brillouin zone withalleged weights to alulate the integrand on. This transfers the integration (5.18)into a summation1VG Xi ZBZ d3k U(k)f(�i(k))!Xi Xk U(k)wik: (5.19)



5.2. K-SPACE INTEGRATION 47For smoothly varying funtions this yields reliable results. However, for inompleteoupied bands the integrand in (5.18) is not smooth due to the sharp Fermi fator.Consider for instane a band lose to the Fermi energy. In the self-onsisteny, thisband ould be shifted above or below the Fermi energy, resulting in big hanges inthe harge density. This an degrade or even destroy the onvergene. One animplement a more elaborate Fermi fator like the true Fermi funtionf(�) = 1e ��EFkT + 1 ; (5.20)that is making the integrand smoothly by a temperature broadening.Another method of integration is to divide the volume into subvolumes of aertain shape and perform the integration in the volume analytially over the inter-polated funtion. Among the method of Gilat and Raubenheimer [GR66, Bro93℄,the Tetrahedron Method is the most prominent integration method of this kind.Tetrahedra: This method was introdued independently by Lehmann and Taut [LT72℄in 1972 and by Andersen and Jepsen [JA71℄ in 1971. It's idea is to divide the inte-gration volume into tetrahedra. This is always possible, though not uniquely. Thetetrahedra an in priniple have arbitrary shape, but ought to be as regular in shapeas possible (e.g. not attened). The integration thus hanges to1VG ZBZ d3k ! XfTetg VTVG ZVT d3k : (5.21)VT is the tetrahedron's volume. In eah tetrahedron, the energy interpolated linearlyis given uniquely by the four orner energies.Interpolation in one tetrahedron: The orners are labeled from 0 to 3 withinreasing energy, i.e.3�0 < �1 < �2 < �3: (5.22)For the k-vetors (with the same indies ordered in terms of its orresponding energy)the energy in linear interpolation is�(k) = �0 + b � (k � k0): (5.23)3In this integration sheme one has to avoid equal energies. This does not pose a problem sineone an slightly shift the energies without introduing a signi�ant error. In the ase of two (orthree) idential energies (i.e. ��ij = 0, f. appendix B) the ontribution of one tetrahedron (or theorner weights, respetively) is equal to a tetrahedron with one of the ritial energies shifted by� in the limit �! 0.
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~Figure 5.2: A tetrahedron with orner labels sorted by energy, and interpolation vetorb. The small irle marks the penetration point of the vetor.Here, the vetor b is de�ned suh that the energy oinides for k equal k0;k1;k2;k3with the given orner energies. This is provided by the de�nitionb = 3Xi=1 (�i � �0)ri; (5.24)inluding the auxiliary vetors~ki = ki � k0; i 2 f1; 2; 3g (5.25)ri = 1VT ~kj � ~kk; fi; j; kg yli: (5.26)This interpolation yields a ontinuous energy in the whole integration volume BZmade out of the set of tetrahedra. The integrand an be interpolated analogouslylike U(k) = U0 + b0 � (k � k0) (5.27)with the aording de�nitionb0 = 3Xi=1 (Ui � U0)ri: (5.28)With this the whole integrand is ontinuous in the integration volume. A possiblesimpli�ation is to take the integrand set to a onstant value �U averaged over thetetrahedron. With this, the quantity is of ourse not ontinuous anymore.Given this linear form of the integrand, the integration in eah tetrahedron anbe performed analytially.



5.2. K-SPACE INTEGRATION 49Spetral alulations: This method works �ne for spetral integrals, for instanethose kinds of integrals mentioned in Setion 3.4. Take integrals of the type of thedensity-of-statesD(E) = 1VG Xi ZBZ d3k Æ(E � Ei(k))= 1VG Xi ZE=Ei(k) dS 1jrkEi(k)j : (5.29)If this integrand is interpolated linearly like in (5.27), it gives1jrkE(k)j = 1jbj : (5.30)The onstant-energy plane E = Ei(k) in one tetrahedron is the ross-setion of aplane perpendiular to b. There are three possible ases of this plane to ut thetetrahedron, yielding a utting area A and leading to a ontribution of the integralequal Ajbj . The expliit results are [LT72℄
DT (�) = 8>>>>>>>><>>>>>>>>:

0 � < �1 or �4 < �VTVG 3(�� �1)2�21�31�41 �1 < � < �2VTVG 1�31�41 �3�21 + 6(�� �2)� 3(�31 + �42)(�� �2)2�32�42 � �2 < � < �3VTVG 3(�4 � �)2�41�42�43 �3 < � < �4(5.31)with the energy di�erenes �ij = �i � �j.Inlusion of Fermi fators: The proeeding desribed will not give good resultsif the integrand is not ontinuous but inludes Fermi fators, like in (5.18) or (3.61).For orners with energy above Fermi energy the value zero will be used for inter-polation irrespetive of the oupation of the tetrahedron. But a Fermi fator justde�nes a onstant-energy plane that separates the oupied and unoupied part.Due to the linear interpolation, suh an energy plane is easy to determine, as donefor the density of states.Taking one Fermi fator into aount (like in integral (5.18)) means uttingout the remaining valid volume, i.e. the volume the Fermi fator is unequal zero in.Depending on the energy � and the Fermi energy �F referring to, this volume onsistsout of zero volume (�F < �1), one subtetrahedron (�1 < �F < �2), three subtetrahdra(�2 < �F < �3 or �3 < �F < �4), or the omplete tetrahedron (�4 < �F ) [RF75℄.
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Figure 5.3: A tetrahedron that is divided due to two Fermi fators. The numbers at theorners are the sorted energy indies for the initial and �nal bands { and f , the two vetorsare the orresponding b vetors (5.24). In this diagram the energy uts both bands withinthe tetrahedron and results in two rossing onstant-energy planes. Cutting of vetorswith these planes or the tetrahedra boundary are marked with small irles. The validsubvolume is marked with the red arrow, as well as shown on the left, with its divisioninto three subtetrahedra.For an integral ontaining two Fermi fators like (3.61), one performs on eahsubtetradron obtained for the �rst Fermi fator the (inverse) oupation proedurefor the seond Fermi fator, resulting in at most nine subtetrahedra for the initialtetrahedron. Note that for the seond step a renumbering has to be made due tothe possibly di�erent order of the energies Ef .For the integration (3.61), this means that for every transition { ! f , the validvolume is determined, and the remaining integrand, i.e.U(k) = h{kjp�jfkihfkjp�j{kijrk(Ef (k)� E{(k))j ; (5.32)is evaluated for eah of the valid volume's tetrahedra.Weighted formulation: Bl�ohl has shown that the tetrahedron method an alsobe written to result in the form of a weighted summation (5.19). These weights aregiven in appendix B. With this formalism, arbitrary ontinuous funtions an beintegrated without doing the geometri derivation (i.e. alulating the ross setionof the onstant-energy plane with the tetrahedron) mentioned above for the densityof states.It should be noted that the obtained weights do not oinide with those of thespeial point method whih are based on symmetry, i.e. the tetrahedron methoddoes not take into aount the high symmetry harater of the irreduible zone'sboundaries. This leads to a worse onvergene than using the speial points method,



5.2. K-SPACE INTEGRATION 51and is the reason why the tetrahedron method is usually not used for the self-onsisteny, but for spetral alulations.Attempts have been made to raise the level of interpolation to a quadrati one.When marking out suh a formalism to the linear one introdued above, the latterone is referred to expliitly as linear tetrahedron (LT) method.Redution to the Irreduible Brillouin Zone (IBZ): Usually the eigenve-tors and eigenvalues are alulated only in the irreduible part of the Brillouin zone.Let's onsider the e�et on integral (3.61). Let R be an appropriate rotation matrix.The energies are the same at the rotated k-pointE{(k) = E{(Rk); (5.33)but the eigenvetors are rotated:hrj{;Rki = hR�1rj{;ki (5.34)For the alulation of the momentum matrix elements, instead of rotating the eigen-vetors one an also rotate the oordinate system and therewith the nabla operator,in symbols rRr = Rrr. With this the matrix element for a k-point Rr in the �rstBrillouin zone, but outside the irreduible wedge, an be omputed likehf;Rkjrj{;Rki = Z d3r  �f(Rk; r) rr  {(Rk; r)= Z d3r  �f(k;R�1r) rr  {(k;R�1r)= Z d3r  �f(k; r) rRr  {(k; r)= Rhfkjrj{ki (5.35)When alulating the integral"��2 (!) �X{f BZZ~!=�E dS h{kjr�jfkiyhfkjr�j{kijrk(Ef(k)� E{(k))j f(E{(k))[1� f(Ef(k))℄ (5.36)with only use of the irreduible part, one uses the identity of the energies at theorresponding k-points (5.33). Furthermore Ry = R�1, so that the numerator ofthe fration in the preeding integral givesh{;Rkjr�jf;Rkiyhf;Rkjr�j{;Rki = h{kjr�jfkiyhfkjr�j{ki (5.37)and the integral itself"��2 (!) � NRX{f IBZZ~!=�E dS h{kjr�jfki�hfkjr�j{kijrk(Ef(k)� E{(k))j f(E{(k))[1�f(Ef(k))℄ (5.38)with NR the number of symmetry operations.



52 CHAPTER 5. IMPLEMENTATIONA note on ubi systems: Sine we know from setion three that the dieletritensor is proportional to the unit matrix for ubi rystals, one an immediatelyredue the alulation (5.38) to the salar ase, using the square of the absolutevalue in the numerator.This is not to be mixed up with the momentum matrix elements itself, whihof ourse still have independent omponents. For instane remember the diago-nal MMEs being proportional to the band derivatives, whih have a well-de�neddiretion.Reality: The imaginary part of the dieletri funtion "2(!) is a real funtion. Somust be the results of (5.38). For the ubi ase this is obvious sine the denominatorredues to a real expression.In the ase of non-ubi systems (3.61), the integral ontains produts of mo-mentum matrix elements M��{f M�f{ whih are in general omplex. This means thatthe omponents of the tensor obtained from (5.38) an be omplex, obeying therelation "��2 = "���2 . But aording to (3.63), the resulting dieletri funtion alonga unit vetor u is omposed of a summation"2 =X�;� "��2 u�u�; (5.39)ontaining for every ontribution of "��2 the transposed part "��2 as well. Thereforethe dieletri funtion "2 beomes real, and one an redue the dieletri tensor toits real part ~"2 = <"2 (i.e. symmetrizing it by (~"��2 = 12("��2 + "��2 )). This alsorestores onsisteny with the statement in Chapter 3 that the dieletri tensor issymmetrial.5.3 The Real part of the Dieletri FuntionDue to the tight relation between real (3.37) and imaginary part (3.38) of spetralfuntions the real and imaginary part of the interband transitions both take similarform (3.59) and (3.60). The �rst possibility is to perform k-spae integrations forboth the real and imaginary part. This has been done e.g. for the magneti sus-eptibility by Gilat and Bharatiya [GB75℄. They used the tetrahedron integrationsheme to derive analytial expressions for the integral ontributions whih are quitelengthy. In this thesis, the alternative path is followed, i.e. only the imaginary part isdetermined, and the Kramers-Kronig integration transformation (3.43) is employedafterwards to obtain the real part.Numerial auray of the Kramers-Kronig relations: In this implementa-tion an external integration routine has been used (ourtesy of E. Krasovskii). The



5.4. BACKFOLDING 53auray of this method should be tested for a prominent analytial example, this isthe harmoni osillator. The real and imaginary part of the dieletri funtion aregiven by"1(!) = 1 + N0e2m (!20 � !2)(!2o � !2)2 + !2Æ2 (5.40)"2(!) = N0e2m !Æ(!2o � !2)2 + !2Æ2 : (5.41)
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Figure 5.4: Numerial results of the Kramers-Kronig transform for the harmoni osil-lator. The analytial solutions are plotted in straight blak lines, numerial solutions forfour di�erent numbers of mesh points are drawn in dotted olored lines.Several attenuations and resonane frequenies have been tested. Representativeurves are plotted in Fig. 5.4. The used data are Æ = 1:0, N0e2=m = 1, !max = 101s ,!0 = 1:51s . The numerial integration yields good agreement with the analyti urve,supposing that an appropriate set of mesh points (in the order of thousand or more)has been hosen.5.4 BakfoldingAt this point it should be mentioned that there are degrees of freedom in the hoieof the unit ell. There might be unit ells of di�erent shapes for the same numberof atoms, resulting in a di�erent reiproal lattie. In doing so the band struturestays unhanged in the reiproal spae, but appears di�erent due to the di�erentlyhosen basis. There is also the possibility and (possibly the need) to hoose a biggerunit ell to model the system, giving a smaller Brillouin zone with modi�ed bands.



54 CHAPTER 5. IMPLEMENTATIONThe e�et on the band struture, alled bakfolding, shall be disussed here.Sine the dieletri properties are understood to be transitions between bands, un-derstanding of the impat of bakfolding is essential if dealing with bigger unit ells.5.4.1 Algebrai onsiderationsTo understand the e�et of periodiity, the Bloh theorem should be reapitulated,to simplify matters in one dimension for a non-degenerate system inluding time-reversal symmetry. The Shr�odinger equationH n(r) = E n(r) (5.42)yields eigenvalues E and eigenvetors  . When the system onsists of unit ells oflength R, the orresponding translation operator is de�ned asTR : r ! r +R; (5.43)with the properties[TR;H℄ = 0; (5.44)TR n(r) =  n(r +R): (5.45)This translation operator shares a ommon set of eigenvetors with the Hamilto-nian. Sine the absolute square of the wavefuntions is independent under propertranslations,TRj j2 = TR( � ) = (T �R �)(TR ) = j�j2j j2; (5.46)the eigenvalues of the translational operator take the form � = eikr, whih at thesame time lassi�es the wavefuntions:  n(r)!  n(k; r). Furthermore, as a onse-quene of (5.44) these wavefuntions an be hosen to take Bloh form n(k; r) = eikR'n(k; r); 'n(k; r) = 'n(k; r +R); (5.47)onsisting of an exponential and a lattie-periodi funtion. The essential step nowis how Bloh waves shifted in k-spae reat on translations in real spae:TR n(k +G; r) = ei(k+G)R n(k +G; r) = eikR n(k +G; r): (5.48)This means that all shifted k-vetors k+G are assoiated to the same eigenvalue � =eikR of the translation operator. Therefore the set of eigenvalues and eigenvetors atk+G are equivalent to those at k. Therefore one an redue all onsiderations to the�rst Brillouin zone �K2 � k � K2 ; K = 2�L . One might be onfused by this insightsine the Hamiltonian in matrix representation in a basis seems to hange with asubstitution of k to k + G. For the ase of an in�nite basis this substitution only
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0 k K k+K-k0.5K 0.5KFigure 5.5: Sample band struture similar to nearly-free eletrons. The First Brillouinzone's boundary is at 12K. Two equivalent k-points to k are marked, �k and k +K.
onerns permutations of rows and olumns. For a �nite basis, one gets numerialproblems for high-lying states.The onsequene for the band struture is shown for a system similar to nearly-free eletrons in Fig. 5.5. The solid vertial lines at 12K;K; : : : are the boundariesof the Brillouin zones. The dashed lines indiate one k-point k and equivalents of itat �k and k +K.If one now imposes a lower periodiity like ~R = 2R, the reiproal lattie andtherewith the Brillouin zone redues to half the size, jkj � ~K; ~K = �L . A denserperiodiity of ~K = K2 is demanded now instead of K in the �rst plae, with . Thismakes the point �k (whih is equivalent to k due to time-reversal) equivalent to�k+ ~K = K2 � k. Sine these two points have (possibly) distint sets of eigenvaluesin the initial setup of high periodiity, these two sets sum up in this setup.The orresponding band struture is shown in Fig. 5.6. The periodiity ofbranhes has been doubled, the �rst Brillouin zone shrinks to half the size ~K, andthe number of bands in it doubled. This �gure gives an idea of the origin of theterm bakfolding. The bands look folded bak at the enter of the former biggerBrillouin zone; but the superposition with an additional band struture is a betterway to visualize.
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0 k-k0.5K K k+K

0.5~K

~K~K-kFigure 5.6: Sample band struture for a system for that a lower translational symmetrythan in Fig. 5.5 has been used. The new Brillouin zone border is 12 ~K. Additionally, ~K�kis marked as equivalent to k now.5.4.2 Representation in a basisThe impat of bakfolding on the energy eigenvalues has been shown in the previousparagraph. But the dieletri funtion essentially depends on the momentum matrixelements and therewith on the wavefuntions. Here, the e�et of bakfolding shouldbe illustrated for a plane-wave alulation.For simpliity, I hoose a simple, hypothetial system of Aluminum (Al) in asimple ubi (s) struture4. This is alulated in two setups (A denotes sets ofbasis vetors, D are atom positions in oordinates of these basis vetors)A1 = 8><>:L0B� 100 1CA ; L0B� 010 1CA ; L0B� 001 1CA9>=>; ; D1 = 8><>:0B� 000 1CA9>=>; (5.49)and A2 = 8><>:L0B� 100 1CA ; L0B� 010 1CA ; L0B� 002 1CA9>=>; ; D2 = 8><>:0B� 000 1CA ;0B� 0012 1CA9>=>; ; (5.50)4So in this ontext, SC is not meant to be an abbreviation of self-onsisteny, as in the theoretialpart before.



5.4. BACKFOLDING 57that is the seond setup doubles the �rst one in z-diretion. The resulting reiproallatties (written in form of Bravais matries, i.e. writing the (transposed) reiproalbasis vetors in matrix form) areB1 = 2�L 0B� 1 0 00 1 00 0 1 1CA ; B2 = 2�L 0B� 1 0 00 1 00 0 12 1CA ; (5.51)the seond setup having a Brillouin zone halved in z-diretion. The wavefuntionsshould be expressed in plane-waves for both setups, (1)i (k; r) = 1p
 XG12G1C(1)ik+G �k+G1(r); (5.52) (2)i (k; r) = 1p2
 XG22G2C(2)ik+G2 �k+G2(r); (5.53)with 
 the volume of the small unit ell, G1, G2 the two sets of G-vetors. The 'are the ommon plane-wave basis funtions�k+G(r) = ei(k+G)r: (5.54)As a result of the smaller Brillouin zone the set of G vetors in the seond setup isdouble as dense as in the �rst one, see Fig. 5.7. Sine we ut a sphere of jGj � Gmax,

Figure 5.7: The kx� kz-plane of the reiproal latties for the two setups. Basis vetorsare indiated by x-like rosses, (k +G)-vetors for one speial k drawn in the origin byplus-like rosses.the set G2 ontains approximately double the number of vetors. So for every vetor



58 CHAPTER 5. IMPLEMENTATIONG out of G1 we assign a vetorG = G + ~K; ~K = (0; 0; �L); (5.55)so that all the vetors fG;Gg form the seond set G2. This assignment works onlyapproximately due to the shape of the sphere, but is valid for a suÆient expansionut-o� Gmax: Sine the inuene (i.e. the magnitude of the expansion oeÆient)of large G-vetors vanish in the ase of a valid onvergene, the disrepany an benegleted. So we an take G2 double as large as G1, and omit indies to the G-vetorssine it should be lear from the ontext whih vetors are referred to.Let's wath the generalized eigenvalue problem (2.22). Sine the plane-wave areorthogonal, the overlap has unit shape:[H(k)� �(k)1℄(k) = 0: (5.56)For the two setups the elements of these matries read (see (4.6))H(1)G;G0(k) = ~22m jk +Gj2ÆGG0 + V (1)(G�G0); V (1)(G�G0) = 1
 Zu1 d3r e�i(G�G0)r Veff(r)H(2)G;G0(k) = ~22m jk +Gj2ÆGG0 + V (2)(G�G0); V (2)(G�G0) = 12
 Zu2 d3r e�i(G�G0)r Veff (r);(5.57)integrations performed over the real spae units ells one (u1) and two (u2).Now we want to relate the Hamilton matries of the two systems. Sine thefuntion Veff is periodi in the �rst unit ell u1 (thus twie periodi in u2), and anexponential exp (i(G�G0)r) is simple periodi in u2, ontributions of the potentialof mixed G-vetors vanish:V (2)(G�G0 ) = V (2)(G�G0 ) = 0: (5.58)If we therefore rearrange the vetors of G2 when applying them on H to group thevetors of G1 �rst, we obtain for the Hamiltonian the blok formH(2) =  H(2a) 00 H(2b) ! ; (5.59)the submatrix (a) taking the ontributions of the undashed, (b) taking those of thedashed G-vetors.Contributions (G�G0) to the potential are idential to ontributions (G�G0)of the orresponding undashed G-vetors. In the formula for the potential, the



5.4. BACKFOLDING 59double integration range anels with the fator 12 in front of the integral, and theontribution is the same as in the small setup:V (2)(G�G0) = V (2)(G�G0 ) = V (1)(G�G0 ): (5.60)Sine the kineti part of H(2a) is idential to H(1), so is the whole submatrix. Let'sturn fous on H(2b). It readsH(2b)G;G0(k) = ~22m jk +Gj2ÆGG0 + V(G�G0): (5.61)We assume time reversal symmetry, i.e. H(k) yields the same set of eigenvetors andeigenvalues for �k. We apply this on our submatrix H(2b). Beause of G = G+ ~Kand (5.60), our matrix elements are equivalent toH(2b)G;G0(k) = ~22m j( ~K � k) +Gj2ÆGG0 + V(G�G0) (5.62)= H(1)G;G0( ~K � k): (5.63)With de�ning a bakfolding operator Tk : k! ~K � k, the Hamiltonian readsH(2)(k) =  H(1)(k) 00 H(1)(Tkk) ! : (5.64)The spetrum of suh a matrix is the sum of the spetra of the submatries. Theeigenvetors are �lled up with zeros in its additional omponents. If the small setuphas the eigenvalues and eigenvetorsf�(1)j (k)g; fjjkig = n�C(1)j(k+G)�o ; (5.65)those of the large setup aref�(2)i (k)g = f�(1)j (k)g [ f�(1)j (Tkk)g andfjikig = ( C(1)j(k+G)0 !) [( 0C(1)j(Tkk+G) !) (5.66)(with j (i) running over all bands of the small (large) system).It should be noted that the derivations given above only �t approximately, dueto the �nite set of G-vetors. This is illustrated in Fig. 5.7, where a sample uttingsphere is plotted. For suh a small set of vetors, it is barely possible to make areasonable mapping (5.55). This e�et should diminish for an inreasing number ofbasis funtions.



60 CHAPTER 5. IMPLEMENTATIONThe experiene shows that the distintion (5.66) into two di�erent kinds of eigen-vetors is also valid for the same system in an LAPW basis. This has been testedfor the alulation presented in the next subsetion.However, if the bakfolding involves a more omplex transformation of basisvetors, these results { the form of the eigenvetors (5.66) { do not stand stritlyanymore.
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Figure 5.8: Band struture for s Aluminum, setup 1 (small unit ell).
5.4.3 IllustrationThis e�et should be demonstrated now by some band strutures for this system.Figs. 5.8 and 5.9 show the band strutures for the two systems along the path(0; 0; 0) ! (12 ; 0; 0) ! (12 ; 12 ; 0) ! (12 ; 12 ; 12) ! (0; 0; 0), eah in internal oordinates.Due to the symmetry mentioned above, every plot k1 ! k2 in the large system isthe sum of the plots k1 ! k2 and ( ~K � k1)! ( ~K � k2) of the small system (with~K = (0; 0; 2�L )).Due to the simple kind of bakfolding in this setup, one sees the bakfoldingniely in a plot along z-diretion. In Fig. 5.10 the path (12 ; 12 ; 0)! (12 ; 12 ; 12) is shown,that is the third setion of Fig. 5.9. The band struture of the large system is givenby that of the small system overlapped with the additional path (12 ; 12 ; 12)! (1; 12 ; 12).In Fig. 5.11 the band struture (0; 0; 0)! (12 ; 0; 0) is plotted. The bands of thelarge system on the right are those of the small system along the same line on the
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Figure 5.9: Band struture for s Aluminum, setup 2 (large unit ell).
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Figure 5.10: Bakfolded band struture parallel to z-diretion. On the left two bandstrutures of the small system are shown that overlap to the band struture of the largesystem on the right.very left, superposed by the bands (0; 0; 12)! (12 ; 0; 12). Here it is already diÆult todistinguish the two kinds of bands by a simple glimpse.
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Figure 5.11: Bakfolded band struture perpendiular to z-diretion. The right bandstruture (large setup) is the sum of the two on the left (small setup).5.4.4 Consequenes for omputationThe alulation of a physial property (i.e. the expetation value of a hermitianoperator) must be the same whatever hoie of the unit ell has been made. Sinethe band strutures hange, one might get the impression that this rule is violated.One essential ingredient of the dieletri funtion (3.61) are the transitions fromone band to another, that is a double sum over oupied and unoupied states. Thissummation will hange if the band struture hanges. The joint density of states(JDOS) for example, given by (3.62), relies on these transitions only, meaning onlyon the gradient of the energy di�erenes. It does not depend additionally on matrixelements like the dieletri funtion (3.61). This leads to di�erent results for abakfolded setup.To show this, the dieletri funtion (3.61) is plotted in graph 5.12 with matrixelements negleted, i.e. the numerator equal to one. Though not the same quantity,this term su�ers the same e�et with respet to bakfolding as the JDOS does. Itan diverge for small energies due to the fator 1!2 . This di�erene for the two setupsdoes not ontradit physis sine the JDOS is not an observable and does not havea physial meaning by itselves.The di�erene of the dieletri funtion for the two di�erent unit ells in thesmall graph in Fig. 5.12 results from the k-points being double as dense for thelarge setup as for the small one (the same number of k-points was used), and fromthe remaining e�ets of the additional bands. Furthermore one sees by omparingthe two urves for the small setup (blak urve with markers on the right, and the
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Figure 5.12: Dieletri funtion of s Aluminum without inlusion of matrix elements~"2 on the left and with inlusion of matrix elements "2 on the right. Both graphs showthe results for the large setup (red urve) and the small setup (blak urve with markers).The small graph on the left ~"2 of the small system is enlarged. 288 k-points have beenused.small graph on the left) that the pure band struture (i.e. negleting the momentummatrix elements) already possesses some of the harateristis, e.g. the two peaksat 0:6eV and 0:8eV . Other harateristis (like the derease for small frequenies)are obtained only by inluding the matrix elements.The dieletri funtion on the other hand yields the same results for both setupsdue to the momentum matrix elements inluded in its mathematial desription.These matrix elements have the property to vanish if being applied on a regular anda bakfolded eigenfuntion:hfkjrj{ki = 0 for a bakfolded transition; (5.67)that is one state of { or f being bakfolded, the other one regular. For the simplesetup of Setion 5.4, this an be seen easily from the form of the eigenvetors (5.66)and the form of the matrix elements in plane-wave basis (4.7).5.5 Resulting problems in the integrationUp to now, the interesting insights of the previous setion do not pose any analytialproblems. But in the numerial treatment, problems appear due to the interpolation



64 CHAPTER 5. IMPLEMENTATIONbetween k-points made in the integration sheme desribed above. The two di�erentkinds of problems enountered in the implementation are desribed in this setion.Before desribing the details, one should remember the way a omputer handlesbands. A human an onnet k-points logially to bands by wathing a band-struture, or an give it a mathematial harater. Initially, omputers an onlyenumerate the eigenvalues, and uses the aording eigenvetors. It needs additionale�ort [YKS℄ to reognize band rossings.5.5.1 The Inuene of DegenerayThe �rst problem with bakfolding arises at points with degenerated energy eigenval-ues. At these points the eigenvetors are determined only up to linear ombinationsof eah other. (This means that the matrix elements are not unique for eigenvetorswith degenerated eigenvalues, even not for an observable like the momentum. In thease of the dieletri funtion that ontains transitions from one level to another,only the sum over these transitions { as it is ontained in (3.61) { gives a uniquevalue.) An example for degenerated eigenvalues is skethed in Fig. 5.13. For in-stane, k3 ould be the zone boundary. It is known that the matrix elements vanishfor a degenerate energy eigenvalues,hfkgjrj{kgi = 0 for E{(kg) = Ef(kg); (5.68)as in our ase. (This is shown by Mavropoulos, Papanikolaou and Dederihs [MPD03℄.)It should be valid in the limit k! kg, too. Therefore, one should not expet prob-lems from this.The situation is di�erent if you onsider transitions to another band  in a systempossessing bakfolding. In the last named �gure, let bands a and  be regular, whileb is bakfolded. Transitions b !  should not give any ontributions. This isonsistent with the image that aording to (5.66), the eigenvetors of bands b and have the formjaki �  �0 ! ; jbki �  0� ! ; jki �  �0 ! ; k 2 (k1; k3): (5.69)At k3, however, due to the intermixture of a and b, the eigenvetors take the formjaki �  �� ! ; jbki �  �� ! ; (5.70)resulting in a matrix element Mb(k3) 6= 0. In the analytial solution this is noproblem due to the singularity of this point (or plane in three dimensions, respe-tively). In a linear interpolation sheme, though, this leads to �nite ontributions,as skethed in the small piture in Fig. 5.13.
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Figure 5.13: One-dimensional illustration of degeneray. The straight red lines are thetrue bands, while the dotted blak ones are interpolated linearly from the energy values(plotted as stars) at the mesh points k1,k2,k3. The horizontal dotted line indiates theFermi energy. In the small piture, a linear interpolation is skethed in dotted blak, thetrue disontinuous path in solid red.A possible solution: It is neither ommon nor possible without additional numer-ial e�ort to determine the \natural form" j{kgin of the wavefuntions at a k-pointkg possessing degeneray (that would be j{kgin = limk!kg j{ki). Furthermore it isquite improbable (if possible at all with limited numerial preision) for a samplek-point within the irreduible Brillouin zone to hit a point of degeneray. On theother hand degeneray on the Brillouin zone's boundary (and at high symmetrypoints in it, whih are in turn boundaries of the irreduible part of the Brillouinzone) is very ommon. Experiene aÆrms that matrix elements like Mb(k) quiklyvanish when moving o� the high symmetry (see next subsetion).Therefore a simple solution is just to shift all k-points marginally o� the bound-ary inside the irreduible wedge. If bakfolding is absent, this leads to only amarginal but notieable error, due to the quik variations of the matrix elementslose to high-symmetry planes. In the presene of bakfolding, the e�et is similar tonegleting the matrix elements (shown in Fig. 5.12): The dieletri funtion will getadditional ontributions due to wrong interpolation, espeially big values for smallfrequenies.



66 CHAPTER 5. IMPLEMENTATION5.5.2 The Inuene of Band rossing
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Figure 5.14: One-dimensional example for band rossing. The straight red lines are thetrue bands, while the dotted blak lines are interpolated from the energy values (plottedas stars) at the mesh points k1,k2,k3. Fermi energy is dotted in the upper third.In the ase of band rossing, the interpolation errors have a signi�ant inuene.This is illustrated for a one-dimensional example in Fig. 5.14. The true bands areapproximated linearly from the energy values at three sampling k-points k1,k2,k3.As in the sketh before the bands are labeled a,b,. For a human observer this refersthe true bands, while a omputer gives these labels to the eigenvalues ordered frombottom to up.Let the bands a and  be regular, while band b is bakfolded, and fous on theinterval [k1; k2℄. Aording to (5.66) the eigenvalues at k1 take the formjak1i �  �0 ! ; jbk1i �  0� ! ; jk1i �  �0 ! ; (5.71)and the formjak2i �  0� ! ; jbk2i �  �0 ! ; jk2i �  �0 ! (5.72)



5.5. RESULTING PROBLEMS IN THE INTEGRATION 67at point k2. This results in matrix elements for a transition b!  of the formMb(k1) = 0; but Mb(k2) 6= 0: (5.73)Due to the non-vanishing matrix element at k2, the matrix element is interpolatedin [k1; k2℄ ontinuous in the range [0;Mb(k2)℄. In the given example, this resultsin transitions at low frequenies �num (see Fig. 5.14), while analytially (and for anin�nitely dense mesh) only transitions down to �real are possible in this interval.Though also ourring in the absene of bakfolding, the impat on alulationsare stronger with bakfolding present due to the larger number of bands. Furtheron, the di�erenes resulting from matrix elements equal zero being interpolatedinorretly are ruial, espeially for small energies due to the fator 1!2 that goesinto the dieletri funtion (3.61).
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Figure 5.15: Dieletri funtion for f Aluminum, with and without sorted eigenvaluesto orret rossing with bakfolded bands (288 k-points).
An approah to avoid the problem: A method to minimize the ontribution ofbakfolding to this e�et is to renumber the bands. This is possible up to a ertainpoint for rossings of regular bands with bakfolded ones, as mentioned earlier (5.66).In Fig. 5.15, this method has been applied to aluminum for a mesh of 288 k-points. Only with this method one restores the orret absorption edge of the urve.Calulations show that without reordering of bands, this e�et is still present for aalulation involving 11000 k-points (likewise in the irreduible BZ).



68 CHAPTER 5. IMPLEMENTATIONThe higher the eigenvalues are, and the loser the k-points to high symmetrypositions, the worse is lassi�ation into regular and bakfolded ones. The �rst itemis not too serious beause transitions of higher energy ontribute less to the dieletrifuntion, due to the prefator 1!2 . Seond one an assume band rossings of regularand bakfolded bands not to appear in the very lose viinity of high-symmetryplanes. Starting from this one an hope to get good results with this method.
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Figure 5.16: The overlap of wavefuntions 1 and 2 of an f Copper system.In Fig. 5.16 the atual deay of overlap and absolute value of matrix elements isshown. The observed system is the seond test system in Setion 5.7, f Copper.The two lowest bands are examined along the k-vetors (z; z; z) for z 2 [0:499; 0:5℄.The plot is double logarithmi. It gives an idea of how far to shift k-points o� theboundary so that the matrix elements vanish (as they should) and the bands an belassi�ed orretly.5.6 A Note on Computational DemandsFor sophistiated spetral omputations you need an adequate set of k-points {possibly in the order of thousands. This meets the fat that for large systems witha big number of eletrons, the number of transitions roughly sales quadratially toit. Together this an result in signi�ant demands of omputer memory, so that onehas to onsider how to provide these matrix elements to your integration routine.It turns out that the alulation of the matrix elements (and herein the interstitialontribution) is the major omputational e�ort. So one an alulate the MMEs inadvane, resulting in minimal omputational osts and biggest memory demands.On the other hand the matrix elements an be omputed on-the-y, abandon the useof the big array memory, but needing to alulate the same matrix elements several



5.6. A NOTE ON COMPUTATIONAL DEMANDS 69times. In between, you an try to ahe seleted elements in memory to ombinethe advantages of both approahes with minimal drawbaks.At this point, the speial way of onnetions of your k-points to tetrahedra andthe order of tetrahedra an be of big help. For instane, regard a typial tetrahedraset onneting nearest neighbors in a set of nk k-points equidistant in the threespatial oordinates. This tetrahedra should be arranged in layers, e.g. in z-diretion,with the same order in eah layer (aording to the layer shape whih may di�er).If one proesses the tetrahedra sequentially, the data of the orresponding k-points (inluding the matrix elements) are not needed only for a short time. Con-versely, even if one does not want to alulate the matrix elements multiple times,you need to store only nsim matrix elements at the same time, where nsim an beonsiderably smaller than nk.
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Figure 5.17: Computational amount depending on ahe size (1470 k-points, 6591 tetra-hedra).If you take a ahe smaller than these nsim entries, you will have to alulatematrix elements partly again sine you have to skip some whih you need later.But you an still take good advantage of that method, depending on whih matrixelements you skip. In Fig. 5.17 this is illustrated for a k-point of 1470 points (it isa prism-shaped box with 14 equidistant points per edge), giving 6591 tetrahedra.Only matrix elements for nsim = 116 k-points are needed simultaneously not toalulate them repeatedly.If you lower the size of your ahe below this value, your number of alulationsinrease, depending on your strategy. The point (116; 1470) at the lower right isthe starting point of a omplete ahing. If the ahe is full when a matrix element



70 CHAPTER 5. IMPLEMENTATIONshould be stored, the �rst strategy writes the new element in the beginning of theahe, while the seond one looks for the oldest element in ahe. Though thenumber of omputations quikly nearly doubles for a small derease of ahe size(� (106; 2650)), it stays below 3000 { roughly double the omputational amount {for even a �fth of the starting size.As already mentioned, the alulation of the momentum matrix elements on-sumes most of the CPU time. In the urrent implementation the ontribution ofthe interstitial aording to (5.9) is ostly. Investigations gave a ration between 75%and more than 95%, depending on the system size. In future we plan to replae thisroutine (inluding a double summation over G-vetors) by an FFT tehnique.5.7 Test alulationThe parameters used for these systems as well as for the systems alulated inChapter six are listed in appendix D.5.7.1 Aluminum
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Figure 5.18: Total energy against the volume of the unit ell relative to the experimentalvalue, i.e. VVexp = ( LLexp )3.In nature, Aluminum exists in the fae-entered ubi on�guration. This an



5.7. TEST CALCULATION 71be modeled in the basisA1 = L0B� 12 12 012 0 120 12 12 1CA ; B1 = 2�L 0B� 1 1 �11 �1 1�1 1 1 1CA (5.74)of real and reiproal spae. In the urrent alulation it is modeled in the real-spaeand reiproal-spae basisA2 = L0B� 12 12 012 �12 00 0 1 1CA ; B2 = 2�L 0B� 1 1 01 �1 00 0 1 1CA ; (5.75)with two atoms per unit ell on internal oordinates (0; 0; 0) and 12(1; 1; 1). Thelattie parameter was varied and is plotted against the total energy in Fig. 5.18.Birh [Bir78℄ gives a relation for the total energy of a rystal against the volumeV . For hydrostati ompression of ubi rystals, the strain tensor e�� redues to asalar e. For the limit e! 0 the energy readsE(V ) = E0 + 98K0V0 "�V0V � 23 � 1#2 ; (5.76)with E0 the energy of the equilibrium state, V0 it's volume, and K0 = �V (�P�V )jV=V0is the modulus of ompression (or bulk ompression) in equilibrium. In this ase,the alulation reprodues the experimental lattie onstant nearly exatly, with adeviation of 0.3 perent, Lnum = 1:003Lexp. Though the urve of a quadrati �tdoes not di�er signi�antly, the loation of the minimum is di�erent.A band struture (along the same path as those in Setion 5.4) is shown inFig. 5.19, together with the density of states. The 3s eletrons of this system showa behavior similar to free eletrons, as an be seen in the parabola-like bands in theband struture, and in the square-root-like DOS. One an ompare these results tothose of the simple-ubi systems in Setion 5.4.The (imaginary) dieletri funtion has already been shown in Fig. 5.15 for asmall number of k-points to demonstrate the inuene of the sorting of eigenval-ues. In Fig. 5.20 it is shown for di�erent larger number of k-points. It shows theslow onvergene known from literature. Furthermore, two harateristi peaks areloated at 0:5eV and 1:6eV.Literature: Experimental data have been obtained by Ehrenreih and Phillips [EPS63℄.A �rst omputational approah has been made by Brust [Bru70℄. An analysis om-bining data from reetane, ellipsometry and other measurements is presentedin [SSIS80℄. An analysis of aluminum within the APW method has been doneby Szmulowiz and Segall [SS81℄. One plot from this artile is shown in Fig. 5.20.
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Figure 5.19: The band struture (0; 0; 0) ! (12 ; 0; 0)! (12 ; 12 ; 0)! (12 ; 12 ; 12)! (0; 0; 0) ofAluminum in f oordination is shown on the left. The right plot ontains the aordingDensity of states.
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Figure 5.20: The imaginary part of the dieletri funtion for f Aluminum is shownon the left for di�erent number of k-points, eah in the IBZ. On the right, the real part ofthe ondutivity �1(!) is plotted, taken from [SS81℄.It shows the not the imaginary dieletri funtion but the related real ondutivity�1(!) = !4�"2(!). It shows the same harateristi peaks. Position of the peaks andthe rough shape of the urve show good agreement. But due to the slow onver-gene, a quantitative omparison is not possible (therefore a hange of the plot from



5.7. TEST CALCULATION 73dieletri funtion to optial ondutivity has not been made).
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Figure 5.21: The imaginary part of the dieletri funtion of Aluminum for a mesh of288 k-points and three di�erent lattie onstants.
Numerial onsiderations: The self-onsisteny has been done for 6 k-pointsand alternatively for 100 k-points. The dieletri funtion does not show a visibledi�erene. The dependene on the Gmax ut-o� value has been heked for the valuesGmax = 3:5; 4:8. No di�erene is visible. (Both is not shown expliitely in graphs.)Further, the dieletri funtion was alulated for three slightly di�erent lattieonstants, shown in Fig. 5.21. Obviously the dieletri funtion is very sensitive tothe shape of the Fermi surfae, whih (among other things) depends on the lattieonstant and the Fermi energy. Thus a areful determination of the optimal lattieonstant is reommended.The auray and orretness were tested with respet to hermitiity and inde-pendene to the oordinate frame of referene and to the symmetry requirements.In both ases the deviations were within the overall auray. The hoie of themuÆn-tin radii (within a reasonable range) did ause no impat on the dieletrifuntion.
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Figure 5.22: Band struture and Density of states of Copper.5.7.2 CopperThe seond test system is opper, whih ondensates in the fae-entered ubistruture as well, therefore the same unit ell is used. This system was alreadyreferred to in Fig. 5.16 where the overlap for two bands is shown.Band struture and DOS are shown in Fig. 5.22. The valene band is formedout of ten 3d eletrons and one 4s eletron per atom. The bands in the range�5eV::: � 1eV are mostly d-like, while the lowest is mostly s-like. The dieletrifuntion is shown in 5.23. Due to the lonely band rossing the Fermi surfaeLiterature: Experimental results have been reported by Ehrenreih and Phillip [EP62℄.Calulations have been done by Mueller and Phillip [MP66℄. The alulated urveshow meets many harateristis of the latter literature referene. There is a gap upto 2eV , a peak at 4:5eV and a deay towards higher energies that is a bit slower thantowards lower energies. Beyond this qualitatively agreement, the numbers do notexatly �t, due to the di�erent alulation methods as well as due to the di�erentnumber of k-points.
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Chapter 6Appliation to Phase-ChangeMaterialsIn this hapter, the method previously presented is applied. After a brief introdu-tion of the idea of phase-hange materials two lasses of ompounds (namely GeTeand AgTe ompounds) are introdued. Band struture alulations are performed,and the dieletri funtion is determined for the GeTe system.6.1 Phase-Change Materials
Tr Tr Tr

Ta

Tm

Figure 6.1: The priniple of an information bit reorded by phase hange. The irlesillustrate a small region in the medium at room temperature Tr, indiated by the smallthermometers. The hanges in struture are indued by foused laser beams symbolizedby the large thermometers, heating up the spot above the melting temperature Tm, orabove the ativation temperature Ta, respetively.The onept of phase hange reording is based on thin layers whih hangeits struture reversibly against temperature. Being a rystal struture at roomtemperature, the �lm loally melts when shortly heated above a spei� temperatureTm by a foused laser beam of high intensity. After swithing o�, the �lm rapidly77



78 CHAPTER 6. APPLICATION TO PHASE-CHANGE MATERIALSools down with a ooling rate > 109Ks . The rapid redution of atomi mobility tonegligible amplitudes keeps the material in this amorphous state.When heated up again briey above a ertain ativation energy Ta that is smallerthan the melting temperature, the material rerystallizes into the previous rystalstruture and keeps this struture during ooling down. Due to their di�erent stru-ture these two phases show di�erent response to light. This way a bit of informationan be stored. It is read out by a laser beam of low intensity, whih is reeteddi�erently depending on the struture of the spot of information.In atual implementations, the phase hange layer is sandwihed within a mul-tilayer system of several dieletris. This system is �xed onto a substrate.Motivation: In prodution of information storage devies di�erent demands om-pete with eah other, like aess time and prie per apaity. This has lead to ahierarhy of storage devies, primary memory (inluding random aess memory(RAM) tehnologies), seondary memory (mass media like hard diss, read-onlyompat-diss (CD-ROMs), Digital Versatile Diss (DVDs)), and tertiary memory(tapes). In the ategory of rewritable mass media (seond level of the hierarhy)apart from the well-known magneti devies two tehnologies in partiular developedinto atual produts, magneto-optial (MO) and phase hange (PC) based devies.The rewritable DVD is already based on a phase-hange e�et. New materials arethe subjet of ontinuous development to improve the quality of devies and todevelop new ones.Demands: To be of pratial use, a potential material must ful�ll several rite-ria [Wut01℄. In order to form a glass easily, the melting point should be reasonablylow, around 500ÆC. The biggest part of the absorbed energy should be onvertedloally into heat to indue the phase hange, resulting in a low power demand for thetransformation. On the other hand the ativation energy Ta to restore the rystalstruture should be suÆiently high that the amorphous phase and therewith thestored data are persistent for a long period of time. A high optial ontrast is im-portant to distinguish a signal from noise, ensuring a reliable readability. A entralproblem in building stable layers is the mehanial stress linked with the phase trans-formation and the related volume hange. For appliability a fast rerystallizationis ruial, sine this is the most time-onsuming proess, and an understanding ofthe underlying physis is needed. Investigations of potential phase-hange materialsinlude measurements of resistane, of struture, of mehanial stress, spetrosopiand ellipsometry measurements.At present, the disovery and development of phase-hange materials is mainlybased upon empirial strategies. Detemple et al. [DWWB03℄ lately presented astrutural riterion that needs to be met to enable the mandatory fast rerystal-lization with suÆient optial ontrast that haraterizes suitable phase-hange ma-terials. Only a ertain subset of Te alloys showed a suÆient density hange in



6.2. GETE COMPOUNDS 79rystallization whih is requisite for a suÆient optial ontrast between rystal andamorphous phase. The alloys of this subset show a ubi or near-ubi oordination.Using this improved knowledge of whih systems to study omputational meth-ods form a useful tool to support investigations. Two lasses are overed in thefollowing setions with fous on the optial properties.6.2 GeTe ompoundsThe majority of atoms that build the phase-hange materials in investigation arefrom the groups 13 to 16 (formerly IIIB to VIB) of the periodi table, that is havingone to four eletrons in the outer p-shell, most of them from the periods four and�ve (Ga, Ge, As, Se, In, Sn, Sb, Te). Together with Germanium, Tellurium is theelement hosen most frequently.Composites of these elements like GeTe, Ge1Sb2Te4, Ge4Sb1Te5, Ge2Sb2Te5 havebeen investigated [Wel02, Fri00, YOMU98℄. The �rst of these ompounds, GeTe, isnot only the easiest of these systems, but shows harateristis also found in otherompounds.Struture: The struture and binding of GeTe has been presented in [Wel02℄and [Sin01℄ (and referenes therein). GeTe appears in a high-temperature and alow-temperature struture, alled �- and �-struture. While being in trigonal stru-ture at room temperature, it merges into the roksalt struture when rossing thetransition temperature Ttr. A value of Ttr = 700K is reported for this temperature,showing a strong dependene on the stoihiometry of the sample.These properties of bulk di�er for thin �lms. After being reated by ther-mal evaporation or sputtering on glass or silion, respetively, the �lm transformsfrom the amorphous to the high-temperature roksalt struture during temperingat 480K. This oordination is onserved when being ooled down. This is notthe high-temperature phase but a meta stable phase. Investigations show that thelattie parameters are omparable to that of the high-temperature phase.The roksalt struture is skethed in Fig. 6.2. It an be seen as two ombinedf latties shifted by 12(1; 1; 1), i.e. half of the diagonal of the ube. The basis ellan be hosen asAf = bub2 0B� 1 1 01 0 10 1 1 1CA ; (6.1)forming a trigonal unit ell with angles � = 60Æ between the unit vetors and atom



80 CHAPTER 6. APPLICATION TO PHASE-CHANGE MATERIALS

Figure 6.2: A sketh of the roksalt struture. It onsists of two f latties plaed intoeah others vaant positions. The two kinds of atoms are symbolized by the blue andgreen balls, respetively. Three di�erent unit ells are marked with red stiks, a ubi oneon the bottom left, a trigonal one on the top left, and a hexagonal one on the right. Allatoms in the piture belong to one rystal. Only for reasons of survey, atoms not part ofthese three unit ells are painted smaller.positions in this basisrGeub = 0B� 000 1CA ; rTeub = Æ0B� 111 1CA ; Æ = 12 ; (6.2)or vie versa. When referring to a ubi unit ellAub = aub0B� 1 0 00 1 00 0 1 1CA ; (6.3)the struture is settled by the length of the ube aub = bubp2. The experimental



6.2. GETE COMPOUNDS 81lattie onstants is reported to be aexpub = 6:012�A [ZZ℄. The numerial lattie onstantanumub = 6:083�A is taken from [Wel02℄ (see also appendix D). This struture possessesthe usual ubi symmetries, that are three four-fold rotation axes along (100)-likeaxes, six two-fold axes along (110) and four three-fold rotation axes along (111) andthat like. It possesses inversion symmetry as well.The low temperature trigonal phase (also alled A7 phase) di�ers from the ubiphase expressed in a trigonal ell (6.1) by a hange of the edge length btrig = 4:293�A,and the three angles still being equal among eah other, but taking the value�exp = 58:128Æ. Furthermore the parameter Æ now deviates from Æ = 0:5 giving theon�guration with the farest distane to neighbors, but takes the value Æexp = 0:4746.The reason must therefore lie in the eletroni struture. This system does not pos-sess inversion symmetry anymore. One an imagine this as a roksalt struturestrethed in (111)-diretion and ompressed in the perpendiular diretions.In the present alulation this phase is modeled in hexagonal oordination de-sribed by two lattie parameters (a; ). To transform oordinates, the trigonal ellis written asAtrig = btrig0B� 0 X �X2Y �Y �YZ Z Z 1CA (6.4)with the naming X = q12(1� os�), Y = q16(1� os�), Z = q13(1 + 2 os�).The atoms are plaed atrGetrig = 0B� 000 1CA ; rTetrig = Æ0B� 111 1CA : (6.5)The resulting hexagonal parameters derive toahex = btrigp2(1� os�); hex =p3(1 + 2 os�) (6.6)and the atom positions torGehex = 8><>:0B� 000 1CA ;0B� 132313 1CA ;0B� 231323 1CA9>=>; ;rTehex = 8><>:0B� 00Æ 1CA ;0B� 132313 + Æ 1CA ;0B� 231323 + Æ 1CA9>=>; ; (6.7)



82 CHAPTER 6. APPLICATION TO PHASE-CHANGE MATERIALSreferring to the hexagonal basisAhex = 0B� ahex �12ahex 00 ahex os �6 00 0 hex 1CA : (6.8)Thus the resulting hexagonal unit ell is three times as large as the trigonal one.Eletroni struture: The roksalt struture was alulated in a basis set withshape like those used for the alulation of the f strutures Al and Cu in Chapter�ve, thus ontaining four atoms per unit ell. The hexagonal unit ell that was usedto model the A7 struture ontains six atoms.
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Figure 6.3: The band struture of GeTe (roksalt) with 4 atoms/u.. Here as well as inthe following band strutures and density-of-states plots, the oupied part below Fermienergy is marked with an orange �ll. For semi-ondutors, the Fermi energy is plaed inthe middle of the gap. The red ellipse marks the loation lose to whih large ontributionsto the dieletri funtion arise.The band struture for these two setups are shown in Figs. 6.3 and 6.4. Theompound is a semi-ondutor in both on�gurations. The bandgaps take values of0:51eV for the ubi struture and 0:65eV for the A7 struture. One should notethat these values are sensitive to a suÆient Gmax ut-o�.
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Figure 6.4: The band struture of GeTe (A7) with 6 atoms/u..The aording density-of-states are given in Fig. 6.5. Though not obvious fromthe band strutures due to the di�erent basis sets, one sees that there is only a smalldi�erene between the ubi and trigonal phase. Aording to [Wel02℄, the bukle at�11eV is formed mainly by Te s-eletrons, the bukle one around �8eV by the Ges-eletrons. The ontribution �5eV::0eV is made by the Ge p- and Te p-eletrons.The d-eletrons form lower lying states.To investigate the possible inuene of these d-states, the alulations have beenperformed with d-eletrons inluded in the valene band, .f. the dashed line inFig. 6.5. Both urves show good agreement in the oupied part. Therefore it seemsreasonable to treat these eletrons as ore states.Dieletri properties: The dieletri funtion for the GeTe system in the twostrutures are shown in Fig. 6.6. The energy range 0eV::19eV has been alulated.For both systems the dieletri funtion was alulated ubi-like. The peak is verylarge for both systems. Its main ontribution ould be loated lose to the regionmarked with a red irle in Fig. 6.3. Further analysis has to be made, espeially toorrelation to the number of k-points used.The imaginary part of both urves are quite similar, as expeted. The gaps lastuntil Eg � 0:75eV and Eg � 1:0eV , respetively (ubi/trigonal). The broad-
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Figure 6.5: The density of states for the two GeTe strutures (ubi: 75 k-points,trigonal: 50 k-points).
ening at 0:5eV::0:75eV (ubi) might be due to bakfolding e�ets. The largepeaks are loated at Ep = 1:50eV /Ep = 1:59eV and are of similar amplitude"2;max = 577/"2;max = 559. Both urves take a loal minimum around ~! � 5eVand rise again towards a loal maximum at ~! = 6:2eV /~! = 7:0eV . The di�erenein the resulting real parts of the dieletri funtion are more visible to the nakedeye. The positions of the peaks of the urve for ubi struture are slightly shiftedtowards lower energies. The urve in total is lower ompared to the urve of thetrigonal struture, giving a lower �rst posit iv peak and a seond negative peak ofhigher amplitude.To give a onnetion to the optial appliation the reetivity of a bulk surfaeof this material (aording to Eq. (3.30)) is shown in Fig. 6.7. However, in orderto ompare to reetivity measurements of thin �lms, a di�erent desription forthe reetivity has to be used. At low frequenies inluding the optial range thedi�erene between the two systems is marginal. Between 5:0eV and 6:5eV , however,the ubi struture shows a signi�ant lower reetion, investigating the di�erenein energies of exited states as well as in the matrix elements.At this point the omparison to alulations of amorphous strutures would beinteresting. From a numerial point of view, the inuene of the inlusion of thed-eletrons into the valene band on the dieletri funtion should be heked.
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Figure 6.6: The real and imaginary part of the dieletri funtion of the GeTe system.The roksalt struture is shown on the left, the trigonal A7 struture on the right.
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Figure 6.8: Sketh of spetrometri devies (in transmission mode). The left one baseson lattie spetrosopy. A beam from a light soure L (dashed line) is redued to a ertainwavelength by the monohromator M, and hits (after passing the apertures A) a probeP . The detetor's signal depends on the setting of the monohromator. On the right adraft of a Fourier Analyzer is given. The light beam hits a semi-permeable mirror M0that splits it into two beams (dotted lines) that are reeted at the mirrors M1 and M2and reunite again at M0 to ontinue the path to the probe P . While one of the mirrorsM1;M2 is �xed, the other is movable to introdue a slight di�erene in the length of theoptial path. The detetor's signal depends on this di�erene �x.Comparison to Measurements: In order to determine optial properties exper-imentally, a major group of investigations are formed by spetrosopi methods, thatare measurements to obtain a frequeny dependent spetrum [Sh00℄. It's prinipleis shown in Fig. 6.8. In diret spetrosopy, the wavelength of observation is seletedwith the monohromator. This gives the spetrum P (!) of the signal P at the de-tetor. In Fourier Spetrosopy, the light beam interferes with itself after being splitand introduing a di�erene in optial path �x. One measures an interferene spe-trum P (�x) whih is the Fourier transform of the desired spetrum P (!). Withthese spetrosopi methods one an obtain for instane spetra of the transmissionT (!) or reetion R(!). Another method of observation is ellipsometry, whih anbe used to determine the omplex dieletri funtion [Bas95℄.In Fig. 6.9 the dieletri funtion for the two GeTe strutures obtained by el-lipsometry measurements are shown. The divergene in the imaginary parts forsmall frequenies is expeted to be due to impurities within the samples. The am-plitude of the urves di�ers by one order of magnitude ompared to the alulatedurves in Fig. 6.6. This an not be explained at the moment. The peak positionsof Ep = 1:62eV /Ep = 1:65eV orrespond to the omputed values given above, on-
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Figure 6.9: Ellipsometry measurements of GeTe (by ourtesy of W. Welni, [Wel02℄).Real and imaginary part of the dieletri funtion are plotted for the ubi struture onthe left, and for the trigonal struture on the right.sidering the fat that a orretion of the bandgap (a systematially underestimatedquantity within LDA and GGA alulations) shifts the omplete dieletri funtionwith respet to energy. However, the shift of the peak (omparing ubi to trigonalsetup) is larger in omputation (0:09eV ) than in measurement (0:03eV ). While theamplitude lowers in omputation with the hange from ubi to trigonal setup, itrises in measurement. The deay in the omputed urve is more rapid than in mea-surement. In the measured urves the loal minima around 5eV and the proximateloal maxima seen in alulation an not be found. Due to these di�erene, the realparts of omputation and measurement share signi�ant harateristis, but do notagree quantitatively.Out of these data the bulk reetion has been alulated (see Fig. 6.10)1. Thegeneral shape does qualitatively agree with Fig. 6.7 in some points. For energies1:0eV::1:6eV in the infrared range the experimental urves show the same ampli-tude as the theoretial ones. For lower energies the impurities in the measuredsample turn the reetivity to one. In the optial range both strutures show pra-1Sine the dieletri funtion is determined by an expliit surfae measurement, the alula-tion of the reetivity in this ontext is of more aademial nature to determine the inuene ofdi�erenes in the dieletri funtion on the reetivity.
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Figure 6.10: The bulk reetivity of the two GeTe systems determined out of theexperimental ellipsometry data.tially idential but dereasing reetivity (with respet to the energy). Resultsfrom omputation also showed nearly equal but onstant values in this range. Alsofor the experimental data the ubi struture takes a signi�ant lower reetivity of0:4 around the energy of 5:6eV .6.3 AgTe ompoundsCompounds made of the elements Ag, In, Sb and Te have been shown to besuitable for the realization of fast optial data storage devies [BvR+01℄. Suhompounds frequently deompose into AgInTe2 and AgSbTe2 when persistentlyheated [IHN+01℄. These two ompounds have been investigated by Detemple etal. [DWWB03℄.Struture: AgInTe2 appears in halopyrite struture, while AgSbTe2 takes rok-salt struture. In the latter one, one f sublattie is oupied by Tellurium, theother sublattie is oupied alternately by Silver and Antimony. These halopy-rite struture is skethed in Fig. 6.11. The halopyrite struture resembles thezinblende struture. It also onsists of two f latties shifted against eah other byone fourth of the ubes diagonal. But sine one sublattie is oupied alternately byAg and In, the unit ell is double the size ompared to zinblende. The appearaneof this strutures �ts to the trend of a less ubi oordination of AgTe alloys theloser the third omponent (In and Sb in this ase) omes to the transition metals(from the point of view of the periodi table).
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Figure 6.11: Sketh of a unit ell of the halopyrite struture. It is formed by two fsublatties oupied by three onstituents in the ratio 1 : 1 : 2. For AgInTe2 for instane,the orange balls symbolize the Tellurium atoms while the green and blue balls symbolizethe Silver and Indium atoms.
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Figure 6.12: The band struture of AgSbTe2 in roksalt struture.
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Figure 6.13: The density-of-states of AgSbTe2 in roksalt struture.
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Figure 6.14: The band struture of AgInTe2 in roksalt struture.Eletroni properties: To investigate the impat of the di�erent strutures, thetwo ompounds have been alulated eah in roksalt and in halopyrite struture.The roksalt struture was modeled with four atoms per unit ell, while the unitell of the halopyrite struture takes sixteen atoms.Following [DWWB03℄, the two ompounds have been alulated in eah roksaltand halopyrite struture. The band struture and density-of-states of AgSbTe2 inroksalt struture are shown for in Figs. 6.12 and 6.13. The band struture and DOSof AgInTe2 in roksalt and halopyrite struture are shown in Figs. 6.14, 6.15 and
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Figure 6.15: The band struture of AgInTe2 in halopyrite struture.
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Figure 6.16: The density-of-states of both AgInTe2 ompounds.6.16. All of these systems are metals. (The gap in the plot of the DOS of AgInTe2in halopyrite struture results from an inadequately hosen k-point set omittingthe viinity of the �-point.)Dieletri properties: Due to the onsiderable omputational expense of thehalopyrite strutures, aused by the number of atoms in the unit ell and the lowsymmetry, studies of the dieletriity ould not be made. Further investigations are
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Chapter 7ConlusionIn this thesis we presented an implementation of the dieletri response funtionin linear response theory for optial exitations negleting the loal �eld e�etsand intraband transitions. The dieletri funtion is alulated within the densityfuntional theory in the loal density approximation and the generalized gradientapproximation. The dieletri funtion has been realized within the ontext of theFLAPW method Fleur and thus allows the treatment of materials ontaining tran-sition metals in omplex ompounds with open strutures and low symmetry. Themomentum-matrix elements, the tetrahedron method and the Kramers-Kronig in-tegration are desribed in detail as implemented to obtain the response funtion.Considerable problems ourred due to the spurious transitions of bakfolded statesdue to alulations arried out in non-minimal unit-ells, i.e. unit ells whih ontainmore than one hemial unit of a ompound. We areful examined these transitionsand to developed a proedure to minimize their ontribution.We give a detailed aount on the extensive tests arried out for Al and Cu whihinluded the dependene on the number of k-points, the number of basis funtions,the dependene on the symmetry and the hek of the hermitiity of the matrixelements. For Cu the results agree niely with those of Krasovskii [Kraa℄ and theresults for Al agree with results from literature [SS81℄.We alulated the eletroni properties in terms of the band struture and den-sity of states for GeTe in roksalt and trigonal A7 struture and for AgSbTe2 andAbInTe2 eah in roksalt and halopyrite struture for the theoretial lattie on-stants. Both are phase-hange materials under urrent experimental investigations.For GeTe in both strutures the bandstruture and DOS agree to large extended.The two AgInTe2 strutures reveal substantial di�erenes in eletroni struturelose to Fermi energy. For GeTe we alulated also the dieletri funtion and om-pared with ellipsometry measurements. Although the agreement of the reetivityis very nie, the peaks in the dieletri funtions from whih the reetivity is alu-lated di�er by a fator 10 with the experimental data. The origin of this di�ereneis not lear yet. 93



94 CHAPTER 7. CONCLUSIONThe method developed opens the possibility for the appliation on a large varietyof systems whih inlude di�erent phase-hange materials. The amorphous statemay be treated approximately using larger superells. Tehnial improvements mayinlude the loal orbitals to treat semi-ore states and to extend the basis set tohigher unoupied states. The method may be parallelized over the tetrahedra torun on multiproessor omputer arhitetures. The work done in this thesis providesa basis from whih on a development in various diretions beomes possible. Oneoption is to extend this method to deal with questions in the area of magneto-optis.The other option is to extend the treatment of the density funtional theory to theGW method to desribe the exitation within the framework of the many bodyperturbation theory or the time-dependent DFT.Though theoretially well understood, the opportunities of omputation make optismore lively than ever!



Appendix AMomentum matrix elementsThe matrix elements of the momentum operator should be expressed in terms of theLAPW basis set in summed form (4.28), i.e.
 {(k; r) = 8>>>>>><>>>>>>:

1p
XG C {k+Gei(k+G)r r 2 ISlmaxXl=0 lXm=�l [A{;�lm(k)ul(r;El)+B{;�lm (k) _ul(r;El)℄Ylm(r̂) r 2 MT�: (A.1)
The interstitial part of this matrix element is derived in setion 5.1.1. The partinside the muÆn-tins is more lengthy to derive and therefore done here. The matrixelement is not alulated in the arthesian basis but in the natural basis (�x +i�y; �x � i�y; �z). In spherial oordinates these partial derivatives read�x � i�y = sin �e�i' ��r + 1re�i' �os � ��� � isin � ��'��z = os � ��r � 1r sin � ��� : (A.2)The radial and spherial derivatives separate. Introduing the abbreviationsF (1)lm = � q (l+m+1)(l+m+2)(2l+1)(2l+3)F (2)lm = q (l�m)(l�m�1)(2l�1)(2l+1)F (3)lm = q (l�m+1)(l�m+2)(2l+1)(2l+3)F (4)lm = � q (l+m)(l+m�1)(2l�1)(2l+1)F (5)lm = q (l�m+1)(l+m+1)(2l+1)(2l+3)F (6)lm = q (l�m)(l+m)(2l�1)(2l+1) ; (A.3)
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96 APPENDIX A. MOMENTUM MATRIX ELEMENTSthe reurrene relations of the Legendre polynomials yield the equationse+i' sin �Yl;m = F (1)lm Yl+1;m+1 + F (2)l;mYl�1;m+1e+i' sin �Yl;m = F (3)lm Yl+1;m�1 + F (4)l;mYl�1;m�1os �Yl;m = F (5)lm Yl+1;m + F (6)lm Yl�1;m : (A.4)Furthermore the relationse+i' �os � ��� + isin � ��'�Ylm = �lF (1)lm Yl+1;m+1 + (l + 1)F (2)lm Yl�1;m+1e�i' �os � ��� � isin � ��'�Ylm = �lF (3)lm Yl+1;m�1 + (l + 1)F (4)lm Yl�1;m�1� sin � ���Ylm = �lF (5)lm Yl+1;m + (l + 1)F (6)lm Yl�1;m (A.5)In order to apply the derivatives on the LAPW funtions, we de�ne the funtions(omitting the muÆn-tin index � for onveniene)U ilm = Ai;�lm(k)ul(r;El) + Bi;�lm (k) _ul(r;El)V ilm = ��r U ilm= Ai;�lm(k)u0l(r;El) + Bi;�lm (k) _u0l(r;El)W ilm = 1r � U ilm= 1r � �Ai;�lm(k)ul(r;El) +Bi;�lm (k) _ul(r;El)� (A.6)
First omponent �x+i�y: If one expresses the LAPWs with these funtions (A.6)utilizing the relations (A.2) and (A.5), one yields for the operation of the operator(�x + i�y) i(k; r) = Plm h(V ilm � l W ilm)F (1)lm Yl+1;m+1(V ilm � (l + 1)W ilm)F (2)lm Yl�1;m+1i ; (A.7)omitting spatial oordinates, and the summation indies running through l = 0; : : : ; lmax; m =�l : : : l. Multiplying the orresponding bra givesRMT� d3r  �f (k; r)(�x + i�y) i(k; r)= Plm;l0m0 R�R0 r2dr H d
 Uf�l0m0Y �l0m0 h(V ilm � l W ilm)F (1)lm Yl+1;m+1 +(V ilm � (l + 1)W ilm)F (2)lm Yl�1;m+1i= Plm;l0m0 R�R0 r2dr (1)D1l0m0lm H d
 Y �l0m0Yl+1;m+1+Plm;l0m0 R�R0 r2dr (2)D2l0m0lm H d
 Y �l0m0Yl�1;m+1 (A.8)
with the abbreviations for D1,D2 equal to(j)D1l0m0lm = F (2j�1)lm Uf�l0m0(V ilm � l W ilm)(j)D2l0m0lm = F (2j)lm Uf�l0m0(V ilm � (l + 1)W ilm): (A.9)



97With the spherial harmonis being orthogonal,H d
 Y �l0m0Yl+1;m+1 = Æl0;l+1Æm0;m+1;H d
 Y �l0m0Yl�1;m+1 = Æl0;l�1Æm0;m+1; (A.10)the quadruple summation in the two terms redues to eah a double one:Plm;l0m0 :(j)D1l0m0lm Æl0;l+1Æm0;m+1 = lmax�1Pl=0 +lPm=�l :(j)D1l+1;m+1lmPlm;l0m0 :(j)D2l0m0lm Æl0;l�1Æm0;m+1 = lmax�1Pl=0 +lPm=�l :(j)D2lml+1;m�1: (A.11)Please note the maximum l dereased by one. Now applying the remaining radialintegration, and expanding the symbols D1 and D2 �nally gives:hfkj�x + i�yjiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;m+1Ail;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;m+1Bil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;m+1Ail;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;m+1Bil;m ℄ F (1)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m�1+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m�1+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m�1+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m�1 ℄ F (2)l+1;m�1Seond omponent �x�i�y: The proedure is analogous for the next omponent.Again (A.2) and (A.5) help to express it as(�x � i�y) i(k; r) = Plm h(V ilm � l W ilm)F (3)lm Yl+1;m�1(V ilm � (l + 1)W ilm)F (4)lm Yl�1;m�1i : (A.12)Multiplying the bra,RMT� d3r  �f (k; r)(�x � i�y) i(k; r)= Plm;l0m0 R�R0 r2dr (3)D1l0m0lm H d
 Y �l0m0Yl+1;m�1+Plm;l0m0 R�R0 r2dr (4)D2l0m0lm H d
 Y �l0m0Yl�1;m�1; (A.13)



98 APPENDIX A. MOMENTUM MATRIX ELEMENTSalulating the integral over the spherial harmonis and reduing the resultingfourfold summation analogous to the �rst omponent,Plm;l0m0 :(j)D1l0m0lm Æl0;l+1Æm0;m�1 = lmax�1Pl=0 +lPm=�l :(j)D1l+1;m�1lm= Plm;l0m0 :(j)D2l0m0lm Æl0;l�1Æm0;m�1 = lmax�1Pl=0 +lPm=�l :(j)D2lml+1;m+1; (A.14)yieldshfkj�x � i�yjiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;m�1Ail;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;m�1Bil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;m�1Ail;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;m�1Bil;m ℄ F (3)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m+1+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m+1+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m+1+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m+1 ℄ F (4)l+1;m�1:Third omponent �z: The same goes for the third omponent:�z i(k; r) = Plm h(V ilm � l W ilm)F (5)lm Yl+1;m(V ilm � (l + 1)W ilm)F (6)lm Yl�1;mi : (A.15)Multipliation of the orresponding bra from the left:RMT� d3r  �f (k; r)�z i(k; r)= Plm;l0m0 R�R0 r2dr (5)D1l0m0lm H d
 Y �l0m0Yl+1;m+Plm;l0m0 R�R0 r2dr (6)D2l0m0lm H d
 Y �l0m0Yl�1;m (A.16)
Redution of fourfold summation:Plm;l0m0 :(j)D1l0m0lm Æl0;l+1Æm0;m = lmax�1Pl=0 +lPm=�l :(j)D1l+1;mlm= Plm;l0m0 :(j)D2l0m0lm Æl0;l�1Æm0;m = lmax�1Pl=0 +lPm=�l :(j)D2lml+1;m (A.17)



99Result:hfkj�zjiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;mAil;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;mBil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;mAil;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;mBil;m ℄ F (5)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m ℄ F (6)l+1;m�1:More general notation: The results for the three omponents an be written inthe formhfkj�njiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;m0Ail;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;m0Bil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;m0Ail;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;m0Bil;m ℄ F (2n�1)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m00+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m00+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m00+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m00 ℄ F (2n)l+1;m00for n = 1; 2; 3, and �, m0,m00 given by� = 0B� �x + i�y�x � i�y�z 1CA ; m0 = 0B� m+ 1m� 1m 1CA ; m00 = 0B� m� 1m+ 1m 1CA for n = 0B� 123 1CA :Loal orbital ontribution: The ontributions of the basis funtions additionalin the loal orbital extension an be alulated analogially, resulting in extra termsof the same shape. The derivation an be found in [Abt97℄.



100 APPENDIX A. MOMENTUM MATRIX ELEMENTS



Appendix BTetrahedron methodAs already mentioned in setion 5.2, Bl�ohl, Jepsen and Andersen [BJA94℄ gave aonvenient general notation for the tetrahedron method. They onsider integralsover the Brillouin zone (BZ) in k-spae like those of the expetation value of anoperator X,hXi = 1VG Xn ZBZ d3k Xn(k)f(�n(k)); (B.1)where f is the Fermi fator to an energy �n. VG is the volume of the Brillouin zone,and the used k-dependent expetation value readsXn(k) = hnkjXjnki: (B.2)They show that in tetrahedron method this integral an be written ashXi =Xj;n Xn(kj)wnj: (B.3)This sum runs over all bands n and k-points j.B.1 Integration weightsThe weight of one k-point wnj is the sum of weights it gets in eah tetrahedron itbelongs to. In eah tetrahedra, the indies are assigned so that the energies areordered, �1 < �2 < �3 < �4.1. �F < �1w1 = w2 = w3 = w4 = 0: (B.4)101



102 APPENDIX B. TETRAHEDRON METHOD2. �1 < �F < �2w1 = C �4� (�F � �1)� 1�21 + 1�31 + 1�41��w2 = C �F � �1�21w3 = C �F � �1�31w4 = C �F � �1�41 (B.5)with C = VT4VG (�F � �1)3�21�31�41 : (B.6)3. �2 < �F < �3w1 = C1 + (C1 + C2)�3 � �F�31 + (C1 + C2 + C3)�4 � �F�41w2 = C1 + C2 + C3 + (C2 + C3)�3 � �F�32 + C3 �4 � �F�42w3 = (C1 + C2)�F � �1�31 + (C2 + C3)�F � �2�32w4 = (C1 + C2 + C3)�F � �1�41 + C3 �F � �2�42 (B.7)with C1 = VT4VG �F � �1)2�41�31C2 = VT4VG (�F � �1)(�F � �2)(�3 � �F )�41�32�31C3 = VT4VG (�F � �2)2(�4 � �F )�42�32�41 : (B.8)4. �3 < �F < �4w1 = C �4 � �F�41w2 = C �4 � �F�42w3 = C �4 � �F�43w4 = VT4VG � C �4� (�F � �1)� 1�21 + 1�31 + 1�41�� (B.9)



B.2. NUMBER AND DENSITY OF STATES 103with C = VT4VG (�4 � �F )3�41�42�43 : (B.10)5. �4 < �Fw1 = w2 = w3 = w4 = VT4VG : (B.11)B.2 Number and density of statesWhen negleting the matrix elements, one yields the well-known terms for the num-ber of states nT (E) and the density of states DT (E) of one tetrahedron, whih areequivalent to the formulae given for instane by Lehmann and Taut [LT72℄.Negleting the matrix elements means setting them to one, i.e. Xn(kj) = 1 in(B.3). With this the number of states and density of states take the formnT (�) = 4Xi=1 wi; DT (�) = ���nT (�); (B.12)and take the following values in the �ve regions:1. �F < �1nT (�) = 0DT (�) = 0 (B.13)2. �1 < �F < �2nT (�) = VTVG (�� �1)3�21�31�41DT (�) = VTVG 3(�� �1)2�21�31�41 (B.14)3. �2 < �F < �3nT (�) = VTVG 1�31�41 ��221 + 3�21(�� �2) + 3(�� �2)2 � �31 + �42�32�42 (�� �2)3�DT (�) = VTVG 1�31�41 �3�21 + 6(�� �2)� 3�31 + �42�32�42 (�� �2)2� (B.15)



104 APPENDIX B. TETRAHEDRON METHOD4. �3 < �F < �4nT (�) = VTVG �1� (�4 � �)3�41�42�43�DT (�) = VTVG 3(�4 � �)2�41�42�43 (B.16)5. �4 < �FnT (�) = VTVGDT (�) = 0 (B.17)



Appendix CUnitsAmong gaussian and SI and other unit systems, there are the so alled atomi units(see also appendix 6 in [ZL83℄), whih are favored in atomi alulations. Thisterm atually refers to two slightly di�erent salings. As in all unit systems, the�ne-struture onstant� = e24�"0~(here given in SI units) has to be onserved. For alulations on the atomi sale,the harateristi length is the Bohr radiusa0 = 4�"0~2me2 = 5:29 � 10�11m;while the Rydberg energyRy = ~22ma20 = 13:61eVis the typial energy dimension.� For Hartree units you set~ = 1; m = 1; e = 1; "0 = 14� ;  = 1� � 137;with the result that lengths are given in Bohr radii, and energies are multiplesof 2Ry, whih is alled one Hartree. The kineti operator takes the usual formp22 or k22 :� In the Rydberg set you plae~ = 1; m = 12 ; e2 = 2; "0 = 14� ;  = 2� � 2 � 137;105



106 APPENDIX C. UNITSresulting in lengths expressed in Bohr radii, and energies in multiples of oneRydberg. But the kineti operator takes the unnormal formp2 or k2:Whihever of the two salings you hoose, you an take a formula in gaussian orSI system and replae the quantities as mentioned above. The juntion to the SIquantities energy, frequeny and temperature is given by1eV = 1:602 � 10�19 Ws (C.1)1meV~ = 1:519 THz (C.2)1meVkB = 11:604 K: (C.3)



Appendix DParameters of alulationsEletroni shells: In the following table the atomi on�gurations for the ele-ments alulated with in this thesis are listed.Element number atomi levelsAl 13 [Ne℄.3s2:3p1Ge 32 [Ar℄.3d10:4s2:4p2Ag 47 [Kr℄.4d10:5s1In 49 [Kr℄.4d10:5s2:5p1Sn 50 [Kr℄.4d10:5s2:5p2Sb 51 [Kr℄.4d10:5s2:5p3Te 52 [Kr℄.4d10:5s2:5p4Au 79 [Xe℄.4f 14:5d10:6s1The notation of the atomi levels refers the the next smaller noble element, whihare: Element number atomi levelsHe 2 1s2Ne 10 [He℄.2s2:2p6Ar 18 [Ne℄.3s2:3p6Kr 36 [Ar℄.3d10:4s2:4p6Xe 54 [Kr℄.4d10:5s2:5p6This setions lists the most important parameters for the self-onsistent FLAPWbulk alulations, whih have been performed with the FLEUR ode [FLE℄. Therevised version (revPBE) [ZY98℄ of the GGA potential of Perdew, Burke and Ernz-erhof (PBE) [PBE96℄ has been used. The number of basis funtions is the maximumnumber of G-vetors used. The number of k-points refers to the self-onsistent al-ulation, the DOS and the alulation of the dieletri funtion.107



108 APPENDIX D. PARAMETERS OF CALCULATIONSTest systems: These systems were alulated in hapter �ve for testing purposes.Aluminum was alulated in simple ubi on�guration (s) for two unit ells toillustrate bakfolding. Al (hypoth.)lattie struture slattie parameter anum = 2:729�Ainversion symmetry yesatoms per unit ell 1 2Gmax[1=a0℄ 3.5 3.5# of basis funtions 110 206# of eletrons 3 6# of k-points 6 6It has been alulated in the atual fae-entered ubi (f) on�guration as wellto ompare to literature. Allattie struture fexperimental parameters aexp = 4:049�Alattie parameters anum = 4:049�Adi�erene (numexp � 1) 0:1%inversion symmetry yesatoms per unit ell 2Gmax[1=a0℄ 3.5# of basis funtions 184# of eletrons 6# of k-points 140, 300, variousThe seond test system was opper. Culattie struture flattie parameters a = 3:598�Aexperimental a = 3:615�Adi�erene (numexp � 1) �0:4%inversion symmetry yes



109atoms per unit ell 2Gmax[1=a0℄ 3.5# of basis funtions 142# of eletrons 22# of k-points 30, 300, 288
GeTe ompounds: The ubi and trigonal phases were investigated. Lattieparameters are taken from [Wel02℄.GeTe (high temp.)lattie struture roksaltexp. lattie parameters aexp = 6:012�Anum. lattie parameters anum = 6:086�Adi�erene (numexp � 1) +1:23%inversion symmetry yesatoms per unit ell 4Gmax[1=a0℄ 3.5# of basis funtions 567# of eletrons 20, 60# of k-points 84, 75, 288GeTe (low temp.)lattie struture trigonal (A7)exp. lattie parameters atr = 4:293�A� = 58:128Æexp., hexagonal aexp = 4:171�Aexp = 10:662�Anum., hexagonal anum = 4:273�Anum = 10:725�Adi�erene (numexp � 1) +2:45%;+0:59%Æexp1 0.47461Please see hapter 6 for the meaning of this parameter.



110 APPENDIX D. PARAMETERS OF CALCULATIONSÆnum 0.4747inversion symmetry noatoms per unit ell 6Gmax[1=a0℄ 3.2# of basis funtions 665# of eletrons 30# of k-points 85, 50, 146
AgTe ompounds: The seond lass of systems investigated were Silver-Telluriumompounds. The lattie numerial parameters are taken fromDetemple et al. [DWWB03℄.AgSbTe2lattie struture roksaltlattie parameters aexp = 6:08�Alattie parameters anum = 6:29�Adi�erene (numexp � 1) +3:5%inversion symmetry yesatoms per unit ell 4Gmax[1=a0℄ 3.4# of basis funtions 576# of eletrons 58# of k-points 84,75AgInTe2lattie struture halopyritelattie parameters aexp = 6:42�Aexp = 12:58�Alattie parameters anum = 6:84�Anum = 13:12�Adi�erene (numexp � 1) +6:5%;+4:3%inversion symmetry noatoms per unit ell 16Gmax[1=a0℄ 3.2



111# of basis funtions 1937# of eletrons 144# of k-points 26,50Detemple refers to [Hah53℄ for the experimental lattie onstants of this system.AgInTe2lattie struture roksaltlattie parameters aexp = 6:02�Alattie parameters anum = 6:22�Adi�erene (numexp � 1) +3:3%inversion symmetry yesatoms per unit ell 4Gmax[1=a0℄ 3.4# of basis funtions 554# of eletrons 36# of k-points 84,75
No experimental data are available for this struture.AgSbTe2 (hypoth.)lattie struture halopyritelattie parameters anum = 7:14�Anum = 13:49�Ainversion symmetry noatoms per unit ell 16Gmax[1=a0℄ 3.2# of basis funtions 1937# of eletrons 144# of k-points 26
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