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Abstract
This thesis addresses ultrafast magnetization dynamics from a theoretical perspective.

The manipulation of magnetization using the inverse Faraday effect has been studied, as
well as magnetic relaxation processes in quantum dots.

The inverse Faraday effect — the generation of a magnetic field by nonresonant, cir-
cularly polarized light — offers the possibility to control and reverse magnetization on
a timescale of a few hundred femtoseconds. This is important both for the technologi-
cal advantages and for the deeper fundamental understanding of magnetization dynamics
that can be gained. However, several aspects of the inverse Faraday effect have remained
poorly understood. The question of whether light can manipulate magnetization alone
or whether an additional angular momentum reservoir is needed, in particular, remains
unanswered.

This question is answered here: the light beam that causes the inverse Faraday ef-
fect provides the angular momentum required for the magnetization to precess. No other
reservoir is needed. This implies that manipulation of the magnetization occurs on the
timescale of a laser pulse, which can be made extremely short. Even magnetization re-

versal on this timescale could be possible, provided a material with a sufficiently strong
magnetooptical response can be found. This is a technical challenge, not a fundamental
obstacle.

The Faraday effect in the presence of optical birefringence has also been analyzed.
This effect has been used for imaging magnetization dynamics in transparent media on
an ultrafast timescale, but transparent magnetic materials usually have a complex crys-
tal structure and complicated optical properties, which render the relationship between
Faraday rotation and magnetization unclear. We have shown that the Faraday effect can

be used to measure the instantaneous magnetization, even in the presence of birefrin-
gence, provided certain experimental conditions are met. Suggestions concerning these
experimental conditions are made.

The relaxation of magnetization, particularly the relaxation of a spin in a quantum
dot, has been studied. This problem is relevant to the fields of quantum computing
and highly-multiplexed optical memory, both of which are of great current interest. We
have investigated the interaction of the spin with a metallic electrode and calculated the
dephasing and dissipation rates. We found that under current experimental conditions,
this relaxation pathway is negligible compared to spin-phonon scattering, but as systems
are miniaturized, interactions with electrodes become more important.

The methods developed to study the relaxation of a spin were also applied to the
relaxation of a charge in a double quantum dot, another important problem in quantum
computing. Again, we found that the interaction with a gate electrode is generally much
weaker than the interaction with phonons but may be important for smaller systems.



Kurzfassung

Diese Dissertation behandelt die ultraschnelle Dynamik der Magnetisierung aus einer
theoretischen Perspektive. Die Manipulation der Magnetisierung mit Hilfe des inversen
Faraday-Effektes wird untersucht, wie auch magnetische Relaxationsprozesse in Quanten-
punkten.

Der inverse Faraday-Effekt — die Erzeugung eines magnetischen Feldes durch nicht-
resonantes, zirkular-polarisiertes Licht — bietet die Möglichkeit der Kontrolle und Schal-
tung der Magnetisierung auf einer Zeitskala von wenigen hundert Femtosekunden. Dies ist
wichtig sowohl aus technologischen Erwägungen als auch für die Gewinnung eines tieferen
Verständnisses der grundlegenden Dynamik der Magnetisierung. Es gibt bis heute einige
Aspekte des inversen Faraday-Effektes, die nicht gut verstanden sind. Insbesondere bleibt
die Frage unbeantwortet, ob Licht allein eine Magnetisierung manipulieren kann oder ob
eine zusätzliche Drehimpulsquelle notwendig ist.

Diese Frage wird hier beantwortet: Der Lichtstrahl, der den inversen Faraday-Effekt
bewirkt, stellt auch den Drehimpuls zur Verfügung, der für Präzession erforderlich ist.
Keine andere Drehimpulsquelle ist notwendig. Dies bedeutet, dass die Kontrolle der Mag-
netisierung auf der Zeitskala eines Laser-Pulses, der sehr kurz sein kann, stattfindet. Selbst
die Umkehr der Magnetisierung könnte in diesem Zeitrahmen möglich sein, vorausgesetzt,
dass ein Material mit einer ausreichend starken magnetooptischen Antwort gefunden wer-
den kann. Dies ist eine technische Herausforderung, kein grundlegendes Hindernis.

Der Faraday-Effekt unter dem Einfluss optischer Doppelbrechung wird auch analysiert.
Dieser Effekt wird benutzt um die Magnetisierungsdynamik in transparenten Medien
auf einer ultraschnellen Zeitskala zu visualisieren. Transparente magnetische Materialien
haben jedoch in der Regel eine komplexe Kristallstruktur und komplizierte optische Eigen-
schaften, die die Beziehung zwischen Faraday-Rotation und Magnetisierung verschleiern.
Wir zeigen, dass der Faraday-Effekt verwendet werden kann, um die momentane Mag-
netisierung zu messen. Dies funktioniert auch unter dem Einfluss von Doppelbrechung,
sofern bestimmte experimentelle Bedingungen erfüllt sind. In diesem Zusammenhang wer-
den entsprechende experimentelle Methoden vorgeschlagen.

Die Relaxation der Magnetisierung, vor allem die Relaxation eines Spins in einem
Quantenpunkt, wird untersucht. Dieses Problem ist von großer Bedeutung im Gebiet des
Quanten-Computing und “highly-multiplexed” optischer Speicher. Wir untersuchen die
Wechselwirkung des Spins mit einer metallischen Elektrode und berechnen die Dephasings-
und Dissipations-Raten. Wir stellen fest, dass die Relaxation unter den gegenwärtigen
experimentellen Bedingungen gegenüber der Spin-Phonon-Streuung vernachlässigt werden
kann. Mit fortschreitender Miniaturisierung wird die Wechselwirkung mit den Elektroden
jedoch an Bedeutung gewinnen.
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Die Methoden, die zur Beschreibung der Spin-Relaxation entwickelt werden, sind auch
auf die Relaxation der Ladung in einem doppelten Quantenpunkt angewendet. Let-
zteres ist ein weiteres wichtiges Problem im Gebiet des Quanten-Computing. Auch hier
stellen wir fest, dass die Wechselwirkung mit einer Elektrode bei heute realisierbaren Sys-
temgrößen viel schwächer ist als die Wechselwirkung mit Phononen, jedoch in kleineren
Systemen wichtig werden kann.
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Chapter 1

Introduction

1.1 Magnetization dynamics

1.1.1 Magnetism in technology

Magnetism has proven to be extremely useful in the field of data storage. From Poulsen’s
early attempts to record telephone conversations on steel wire [62,85] up to modern hard
drives and credit cards, magnetism has offered the possibility of storing information reli-
ably and stably, with ever-increasing densities of data. An excellent review of the impact
of magnetism on technology is given in Ref. [62].

One reason for the prevalence of magnetism in data storage is that the binary nature of
magnets is compatible with the binary nature of semiconductor computation. Computers
consist of an array of transistors that are either “on” or “off”; similarly, magnets consist
of a large number of domains that, assuming certain geometrical constraints are met, are
directed either “up” or “down”1 [100]. This allows a very clear mapping between stored
data and computations. Consequently, system design is greatly simplified.

The existence of these “up” and “down” states is made possible by geometric- and
size-effects [100,110,111]. Such states would not be identifiable in a bulk, isotropic ferro-
magnet, which is a classical example of spontaneous symmetry breaking: it is energetically
preferable for a nonzero, homogeneous magnetization to form, but all directions are equiv-

alent [119]. To break rotational symmetry and ensure that the magnetization prefers to
point either up or down (relative to some fixed axis), either the shape of the magnet must
be constrained or a magnetic crystal that is suitably anisotropic must be used [110,111]. In
general, it is more practical to use geometric constraints, e.g. magnetic tapes use needle-
like particles of Fe2O3 [197]. Furthermore, the system must be kept small. As the system
passes a certain critical size, weak long- range forces cause the magnetization to break into
domains with different orientations of the magnetic vector; by keeping the system below
this size, domain effects can be suppressed [3, 23,141,181].

The up and down states of a small needle-shaped magnet are very stable against
random perturbations. This is related to the fact that the largest energy scale of the system
is the exchange energy, which is responsible for the homogeneity of the magnetization. Any
perturbation that tries to disorder the magnetism, e.g. thermal fluctuations, is strongly

1Both of these statements require qualification, but are true at a certain level of abstraction.
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1.1. Magnetization dynamics 7

suppressed. However, homogeneous changes that occur when writing information to the
magnetic medium are not as strongly suppressed [141,181]. This stability against random
fluctuations is a very important property, particularly in archiving applications, where the
data may be stored for several years (or even decades).

The dipole interaction is the only long-range interaction between two separate magnets.
It is extremely weak, so a region in which all the magnetic needles are in the up-state can
be very close to a region of down-state needles without incurring any loss of stability.
Each region (usually referred to as a bit) independently holds a piece of information, so
if stability of stored information were the only design criterion, high densities would be
attained.

However, the density of data storage is not only constrained by stability considerations.
It is also important that data can be read and written. Great advances have been made in
the field of reading magnetic fields. In particular, the discovery of giant magnetoresistance
(GMR) [10,18] has led to the possibility of accurately measuring extremely small magnetic
fields. This has greatly increased the possible storage density and improved the speed at
which data can be read, for which reason GMR earned its discoverers the 2007 Nobel prize.
The speed at which data can be written, however, remains slower than that of reading
and there are numerous investigations underway to increase this speed. This is discussed
further in the following sections.

1.1.2 Magnetic switching

In many ways, writing is more complicated than reading [131]. Reading is a non-destructive
technique, while writing destroys the information that was previously stored. Writing not
only involves destabilizing the bit and driving the magnetization in the required direction,
it also involves waiting for the system to settle back to equilibrium (the modern equivalent
of waiting for ink to dry).

In the context of magnetic data storage, writing is often referred to as magnetization
reversal or magnetic switching. I shall use these terms interchangeably in what follows.

The conventional method of writing a magnetic bit involves (approximately) the ap-
plication of a large magnetic field in the desired direction2. This makes the desired state
lower in energy and destabilizes the opposite state. If the bit is already in the desired
state, the magnetic field does not cause any dynamics. If the bit is in the opposite state,
it will start to move towards the lower energy state.

In the case where both the magnetization and applied field are homogeneous, the mo-
tion towards the lower energy state is not coherent. The higher energy state is destabilized,
but still exists as an unstable equilibrium position. Motion away from it is governed by
the growth of perturbations that are caused by quantum and thermal fluctuations. These
perturbations are nondeterministic. In the homogeneous case, switching is a stochastic
process.

To provide more reliable switching times, an inhomogeneous applied field is used. This
causes a magnetic gradient that leads to deterministic and predictable switching. However,
even with deterministic switching the motion between the states is not instantaneous. The
magnetic field must be applied for long enough to guarantee switching.

2There are, of course, many technical subtleties, but this is the basic concept. For further details see,
e.g., Refs. [131,197]
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Once the magnetization is mostly pointing in the correct direction, the magnetic field
can be removed and the “write-head” (the object that provides the magnetic field) can
move on to write a different bit. However, the writing process of the original bit is not yet
finished. The bit must be in either an up or a down state; it should not be in a “mostly
up” state. It requires some time to relax to equilibrium.

Relaxation to equilibrium is a vital part of switching. It allows us to be quite cavalier
about the application of the magnetic field. It is not necessary to keep the magnetic field
acting until the magnetization is pointing exactly where we want it to; we can remove the
magnetic field as soon as we are sure that the magnetization will relax to the state that
we want. This is referred to as placing the magnetization in the basin of attraction of the
final state [201].

However, relaxation has some disadvantages. It reduces the speed of writing by dissi-
pating energy during switching. Furthermore, the heat generated during switching and the
subsequent relaxation must be rapidly removed to prevent a loss of stability. Of course,
the closer we place the magnetization to the final state, the less time we lose waiting for
equilibration and the less heat is produced.

1.1.3 New methods

Magnetization reversal using a strong magnetic field in the desired direction is now a
mature technology. Advances are still being made to increase the storage density3 , but
hopes for massive increases of storage densities and write speeds seem to lie in other
technologies [7,94,99,144]. This is particularly important for the development of magnetic
random access memory (MRAM), which is a proposed form of nonvolatile memory that
could reduce power consumption by up to 99% [54,184]. The random access memory of a
computer requires very fast read and write speeds, much faster than those needed for long-
term data storage devices4. The current generation of MRAM is slower than static RAM
(SRAM) and has a lower storage density (and is thus more expensive) than dynamic RAM
(DRAM). For these reasons, it has not been widely adopted for commercial use. However,
with the modern drive towards energy-saving technology, MRAM has a lot to offer and
much work is being done on reducing the cost and increasing the storage density and
write-speed. This has led to many alternative methods of controlling magnetization being
intensely investigated.

One candidate for high-speed writing is precessional switching [8, 9, 14, 52, 88, 172].
Precessional switching uses a magnetic field orthogonal to the equilibrium direction of
magnetization instead of using a field parallel to the desired direction and waiting for
fluctuations to push the magnetization into the lowest energy state. As with Larmor
precession [73], the orthogonally-oriented field exerts a torque on the magnetization, which
then starts to rotate. By tuning the magnetic pulse length and shape [52], the rotation can

3A recent example is perpendicular recording, which was discovered in 1977 [80] and
first implemented in commercial disk drives in 2005 by Toshiba; see the press release at
http://www.toshiba.co.jp/about/press/2004_12/pr1401.htm

4The reason for this is that programs must generate data before writing it to long-term storage media,
so writing to memory occurs more often than writing to the hard-drive. Furthermore, bottlenecks due to
slow hard-drive write-speeds can generally be avoided by using a memory buffer. Writing to memory, on
the other hand, occurs frequently and constantly throughout the execution of a program, so it must be
extremely fast.

http://www.toshiba.co.jp/about/press/2004_12/pr1401.htm
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be stopped when the magnetization is very close to the desired final state. Precessional
switching is much faster than conventional switching; reliable precessional switching within
200 ps [9, 14, 172] has been demonstrated, while conventional switching requires several
nanoseconds [70, 120, 199]. However, the switching speed is determined by the rate of
precession, which is proportional to the magnetic field. Fast switching requires strong
magnetic fields, and since generation of strong magnetic pulses shorter than around 100
ps is out of the range of modern experiments [88], precessional switching offers limited
potential for improvement5.

Another method that is attracting much attention is spin-torque transfer [17,176]. This
is essentially the inverse of the GMR effect. In this method, a current is passed through a
ferromagnetic layer and emerges spin-polarized. This current then passes through the bit
that is to be written. If the magnetization of the bit is parallel to the direction of spin-
polarization, the current passes through the bit with little effect. If the magnetization is
antiparallel, the current scatters strongly. This scattering transfers angular momentum
from the current into the magnetization, leading to a torque that acts on the bit and
reversing the magnetization.

The discovery of GMR and the spin-torque effect has led to the growing field of spin-
tronics, which extends far beyond simple data storage and memory devices (see, e.g.,
Refs. [104,143,145,202]). However, spintronics is unlikely to advance into the subpicosec-
ond regime, primarily because ultrashort current pulses broaden rapidly as they propagate
through a wire, resulting in poor time resolution.

The above-mentioned methods, precessional switching and spin-torque transfer, rely
on the idea that the information is stored in the direction of the magnetization. However,
there have been some recent proposals to use vortices to store information instead [6, 28,
72,162]. In this case, the bit is a thin disc, with the magnetization within the plane. The
magnetization can be prepared such that it forms a circular, flux-closure pattern. Such a
configuration has a singularity at the centre of the disc where, if it were constrained to the
plane, the magnetization would have to point equally in all planar directions and therefore
vanish. The magnetization cannot vanish, so it points out of the plane near the centre.
With a symmetric sample, the energy is the same if the magnetization points “up” out of
the plane or “down” — these are the binary states that store information.

The flux-closure condition allows vortices to be brought closer to each other than
conventional magnetic bits. They are also more stable. The biggest problem with using
vortex cores to store information is that this high stability makes them difficult to switch.
Recent simulations indicate that trying to directly reverse the vortex is not the optimum
method of switching [55]. A more efficient and faster method is to nucleate a vortex-
antivortex pair with opposite polarity, which results in the antivortex annihilating the
existing vortex and leaving a reversed vortex plus some extra energy. (Note that an
antivortex is not simply a vortex with reversed vorticity; Fig. 1.1 clarifies the difference6.)

5Recent experiments have shown that even if very strong magnetic pulses could be made without
damaging the sample, magnetization dynamics under high fields may be unpredictable [186], which would
impose fundamental limits on the maximum precessional switching speed.

6Due to the use of APS copyrighted material, this thesis is subject to the following restriction: Readers
may view, browse, and/or download material for temporary copying purposes only, provided these uses
are for noncommercial personal purposes. Except as provided by law, this material may not be further
reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole
or part, without prior written permission from the American Physical Society.
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Figure 1.1: Schematic diagram of (a) a vortex and (b) an antivortex, taken from Ref. [72].
Note that an antivortex is not simply a vortex with reversed vorticity. Figure reprinted with
permission from R. Hertel and C. M. Schneider, Physical Review Letters 97, 177202 (2006).
Copyright (2006) by the American Physical Society.

This method gives switching on a similar timescale to precessional switching. Most of this
time is spent waiting for the excess energy to dissipate, since the actual nucleation and
annihilation processes require only a few tens of picoseconds [55]. However, because this
method relies on either a spin-current or a magnetic field to nucleate the vortex-antivortex
pair, the above disadvantages are still present. In particular, this method is very unlikely
to advance into the subpicosecond regime.

Indeed, out of all equipment that a solid-state physics researcher may have available,
only one device reliably generates pulses of subpicosecond length — the laser. The readily-
available Ti:sapphire laser is able to produce light pulses with full-width at half-maximum
(FWHM) of less than 100 fs. Therefore the fastest methods of magnetic switching are
likely to use the interaction of light and magnetism, usually referred to as magnetooptics.

1.2 Magnetooptics

1.2.1 Experiments

The study of magnetooptics dates back at least as far as Faraday, who discovered that a
magnetic field influences the propagation of light through a material. This effect, known as
the “Faraday effect”, is discussed in detail in the following chapter. However, the attempt
to reverse magnetization using optical pulses is much more recent.

The pioneering experiments in this field were performed in 1996 by the Strasbourg
group of Beaurepaire et al. [16]. They demonstrated that a 60 fs laser pulse absorbed
in a nickel film leads to demagnetization on a subpicosecond timescale. Beaurepaire’s
experiments were confirmed by Hohlfeld et al. [76], who provided further details on the
dynamics within the first 300 fs. These results were very surprising, since Vaterlaus et al.

had previously shown that spin-lattice relaxation occurs on the timescale of 100 ps [190];
the angular momentum of the spin appears to change much faster than it can flow into
the lattice. As discussed below, several mechanisms have been proposed to explain this,
most notably that electrons far from equilibrium experience a much stronger spin-lattice
interaction [103,178].

These experiments motivated intense experimental [2,61,171] and theoretical [79,208,
209] investigations. Already by 1999, it appeared that demagnetization could occur within

http://link.aps.org/abstract/PRL/v97/p177202
http://link.aps.org/abstract/PRL/v97/p177202
http://link.aps.org/abstract/PRL/v97/p177202
http://link.aps.org/abstract/PRL/v97/p177202
http://link.aps.org/abstract/PRL/v97/p177202
http://link.aps.org/abstract/PRL/v97/p177202
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50 fs of the pulse [61]. This estimate was limited by the resolution of the experiment, so de-
magnetization could be even faster. This estimate was supported by theoretical work that
claimed demagnetization could occur within 20 fs [79,209]. Of course, demagnetization is
not the same as magnetization reversal, but by inducing demagnetization in the presence
of an external magnetic field, complete magnetic switching can be achieved [60,75].

However, in 2000 an alternative interpretation of the experiments was provided by
Koopmans et al. [103]. They noticed that the instantaneous magnetization was being
measured with an optical technique that only admitted reliable interpretation provided the
sample was close to equilibrium. In the highly nonequilibrium state that appears when the
pulse is absorbed, the correspondence between the optical signal and the magnetization
interpretation no longer holds. By measuring both the Kerr rotation and the induced
ellipticity, Koopmans et al. showed that demagnetization occurs on the timescale of 500
fs; the apparent demagnetization on timescales shorter than this is due to a purely optical
effect [103].

The problem with using an optical method to probe magnetization is that light does
not interact directly with a magnetization. Instead, the magnetization leads to changes
in the electronic properties of the sample and the propagation of light depends on these
properties. Any nonmagnetic change of the electronic state also affects the light and must
be accurately taken into account. This is exceptionally difficult for a strongly nonequilib-
rium electron distribution. However, measurement with laser pulses is the only technique
available that can provide sufficient temporal resolution to take “snapshots” of the mag-
netization — the difficulties in interpreting optical signals must be overcome.

In the case of the ultrafast demagnetization experiments, the main nonmagnetic contri-
bution to the optical signal arises from the depletion of electrons from the most optically-
active bands [103,146]. These electrons are excited by the light and, after absorption, have
their energy raised by h̄ω, with ω the frequency of the light. This means that the sam-
ple does not have a hot, thermalized distribution of electrons, but rather a cold thermal
distribution with one band depleted and the electrons displaced to higher energies [146].
When a probe pulse of the same frequency as the pump pulse interacts with the sam-
ple, its interaction is modified because the electrons with which it would interact most
strongly are depleted. This optical effect, known as “bleaching” or “state-filling” [103,146],
is responsible for the apparent instantaneous demagnetization. By using complementary
optical measurements, such as the rotation and the ellipticity [103], or by using different
frequencies for the pump and probe beams, this problem can be avoided.

Many experiments have been performed and there is general consensus that demag-
netization occurs within 100-300 fs [101]. Recent experiments using X-rays for the probe
beam and optical-frequency light for the pump [178] yielded an estimate of demagneti-
zation within 120 ± 70 fs. However, because of the heat generated and the difficulty of
causing magnetization reversal, it remains unclear whether this ultrafast demagnetization
can be reliably implemented in a commercial device.

The main question that has been asked since the advent of ultrafast demagnetization
is, “Where does the angular momentum go?” (see, e.g., the discussion in Ref. [102]).
It was precisely this question that led to the discovery of bleaching [103]. The issue of
angular momentum is considered in the next section.
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1.2.2 Angular momentum

The discovery of the Einstein-de Haas effect [42] demonstrated that spin angular mo-
mentum, which is responsible for ferromagnetism, can be converted into an equivalent
amount of mechanical angular momentum. This important result led to the realization
that reversal of magnetization is only possible if there is a reservoir of angular momentum
available; it is not enough simply to make the reversed state energetically preferable. The
rate at which angular momentum is transferred from the reservoir limits the maximum
speed of magnetization reversal. For optically-induced magnetic switching and demagneti-
zation, the question of which reservoir supplies the necessary angular momentum remains
controversial.

The magnetooptical switching methods described above are all thermal methods, i.e.
the laser pulse is absorbed and drives the electrons to a much higher temperature. Several
papers discuss the source of angular momentum of these experiments [102,103,178]. Some
estimates show that demagnetization within 300 fs is too rapid for phonon processes, and
it has been suggested that angular momentum is transferred between the spin and orbital
components of the electrons [102]. This can lead to a reduced magnetic moment, since
the orbital and spin components with the same angular momentum contribute differently
to the magnetic moment. However, an alternative explanation is that the nonequilibrium
electron distribution experiences a stronger spin-phonon interaction and that the phonons
provide the angular momentum [103,178].

By estimating the number of photons that are absorbed and the dichroism of the
substrate, Koopmans et al. showed that the photon angular momentum is irrelevant in
the nickel experiments [102]. Furthermore, in experiments performed using circularly-
polarized light on nickel, changes of the helicity of the light yielded a negligible change
in the demagnetization time [126]. On the other hand, some experiments with circularly
polarized light on GdFeCo show significant differences in the magnetic response when
the sense of polarization is reversed [179]. The difference between these experiments can
probably be attributed to the strong spin-orbit coupling of gadolinium, but much remains
to be clarified about the role of the photon angular momentum in thermal demagnetization.

Theoretical identification of the relevant angular momentum reservoir is complicated
by the highly nonequilibrium dynamics of the electrons. In this thesis, I have concentrated
on magnetooptical switching close to equilibrium. This is far more accessible theoretically,
but the main motivation for this choice is that I am convinced that nonthermal switching,
i.e. magnetization reversal without the generation of a hot electron gas, provides more
insights into the fundamental speed limits of magnetic switching and will also have more
relevance for technological applications, since it does not waste a lot of energy generating
heat.

1.2.3 Nonthermal switching

The magnetooptical switching processes described above have two clear obstacles prevent-
ing their technological implementation. The first is that many of the “ultrafast magne-
tization reversal” experiments are actually ultrafast demagnetization experiments — the
magnetization is driven from its ferromagnetic ground state into a disordered state with
a decreased magnetization. The lack of inertia in magnetic dynamics means that it is
difficult to ensure that the magnetization reorients itself in the reversed ground state af-
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ter dissipation. Experiments have shown that reversal can be attained using an external
magnetic field [60, 75], but this introduces the difficulty of having rapidly time-varying
magnetic fields if magnetic switching is to be allowed in both directions.

Assuming that a device can be designed in which magnetic switching functions as
expected, there is another problem. Absorption of a laser pulse drives the electrons far
from equilibrium, which involves a large increase of heat. This heat must be dissipated
and the device will suffer a significant cooling time, during which no further writing may
occur.

I mentioned above that writing to long-term data storage need not be of comparable
speed to writing to memory. As such, good use of memory buffers can ensure that this
cooling time is not too problematic for data storage, considered bitwise. However, the
cooling of individual bits is not the only thermal process. The most efficient method for
the bits to lose heat is to conduct it into the substrate surrounding the bit. If many bits
are written in a short period of time, the substrate itself heats up substantially. This heat
must be removed, or the stability of the storage device will suffer. Since a hard drive is
usually as isolated as possible, this heat must be convected across an air gap, which is not
a rapid process. The cooling of the hard drive is likely to be a nontrivial process.

In addition, the problem of cooling time eliminates such devices as candidates for fast
random access memories. Because MRAM should allow truly random access, each write
cycle must wait until the previous write cycle is finished, including equilibration back to
the operational temperature. The question of whether demagnetization occurs within 50
or 500 fs becomes irrelevant compared to the cooling time.

Finally, this excessive heat production is incommensurate with the modern drive to-
wards energy efficiency. Going from a ground state through a highly nonequilibrium
situation to another ground state is far from being the lowest energy pathway. Such de-
vices would be very unpopular, both from an environmental perspective and in terms of
the cost of power. It seems unlikely that this technology will find large-scale technological
application.

What is needed, therefore, is a nonthermal optical method of manipulating the mag-
netization, a method of controlling the electron spins without absorption of the light. In
2005, the experimental group in Nijmegen realized that there is a physical effect that
can provide such a method: the inverse Faraday effect [99]. The inverse Faraday effect
(IFE) is the induction of a magnetization in a sample by nonresonant, circularly polarized
light [152, 187]; it is discussed in detail in the following chapter. The Nijmegen group
showed that the IFE could trigger magnetic oscillations. Due to the nonresonance condi-
tion, the light is not absorbed and there is very little heating of the sample.

These experiments inspired most of the work contained in this thesis. As with the other
methods of optically-induced magnetic switching, the source of angular momentum in the
IFE was unknown. This problem has now been resolved; as shown in chapters 3 and 4, the
angular momentum is provided by the light7. This discovery suggests a further technique
for estimating the magnetization in the sample by evaluating the angular momentum lost
by the light. This is discussed further in chapter 4. Thereafter, in chapter 5, I present our
analysis of the Nijmegen experiments. Despite the lack of bleaching due to the proximity
to equilibrium, other optical effects hinder the evaluation of the magnetization. By taking

7This is a nontrivial result, considering the light is not absorbed.
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these into account and tailoring the experimental conditions appropriately, experiments
become simpler and more reliable.

However, before starting my exposition of the IFE, it should be noted that in the above
discussion, I have considered only classical computing methods. I referred to bits, to bi-
nary logic and to magnetization reversal. There is an alternative paradigm of computation
that is likely to become ever more prominent in the future: quantum computing. Since
several models of quantum computing use spin to store information, ultrafast magnetiza-
tion dynamics on a few-electron scale is relevant to quantum computing. In particular, the
relaxation rate of a nonequilibrium magnetization must be considered in order to provide
a timescale on which quantum computing may be reliable. Chapters 6 and 7 are devoted
to physical processes that are relevant to quantum computing. It is therefore appropriate
to provide here a brief overview of this rapidly-developing field.

1.3 Quantum Computing

1.3.1 What is quantum computing?

Simply stated, quantum computing is the use of algorithms that rely on quantum mechan-
ical concepts, particularly superposition and entanglement. Instead of representing data
with a sequence of independent zeros and ones, as in classical computing, information is
stored in quantum superpositions of zeros and ones. This allows more information to be
stored and processed in each computing operation [132]. Indeed, since quantum mechanics
contains classical mechanics as a limiting case, quantum computing can only offer greater
computing power than classical computing [37]. However, quantum computing requires
the manipulation of quantum objects, which is far more complicated than manipulating
classical objects. Successful large-scale quantum computers will only be built once the
understanding and control of quantum objects reaches a sufficiently advanced level, a goal
that has thus far not been achieved.

The idea of using quantum states for computing originated with Feynman [50], who
suggested that quantum systems would be more readily simulated on a quantum computer
than on a classical one. This idea is closely related to the practice of analog simulation in
the early days of computing, where instead of approximating an analog system by a digital
one and solving the digital system on a computer, an analog device would be built with
identical properties to the system being simulated [185]. The device would be designed so
that its parameters were easily adjusted and a simulation would be fast, thus providing
results for the original system. Similarly, a complicated quantum system (e.g. a system
that is too small to be measured, reacts too quickly, etc.) could be modeled by another
quantum device that is easier to prepare and monitor.

Several years later, the first “quantum algorithm” was found by Deutsch [35]. The
algorithm itself is not particularly useful (it involves determining whether a certain binary
function is constant or not), but it introduced ideas that led to the discovery of far more
powerful algorithms. Indeed, the modern popularity of quantum computing can be traced
to the 1994 paper of Shor [174], which was inspired by the work of Deutsch. In this paper,
Shor showed that large numbers may be factorized into primes exponentially faster on
quantum computers than on classical computers. This means that quantum computers
render certain public-key cryptography protocols [167] insecure. Fortunately, quantum
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computing brings with it the possibility for quantum cryptography [43], recovering the
possibility of secure communications. Other well-known applications of quantum comput-
ing include finding entries in a database [58], comparing protein sequences [78] and pattern
recognition [173]. An excellent overview of the field of quantum information processing is
provided in Ref. [142].

The discovery of quantum algorithms led to a search for appropriate hardware on which
these algorithms could be implemented. Generally, quantum computing uses quantum bits
(qubits), which are two-state quantum systems. During the calculation, an array of qubits
will be in an entangled superposition of states. This is in marked contrast to classical
computing, where each bit has a definite state and interactions between bits are to be
avoided as much as possible. The requirements that a two-state quantum system must
fulfill to be a candidate for a qubit have been presented by DiVincenzo [36–38] and I
summarize them here.

First, the qubit states must be accurately known and characterized. It is also essential
that the system is easily scalable, so that a large number of qubits can be used (and
entangled) simultaneously. In addition, it should be possible, and not too difficult, to
prepare, manipulate and measure the quantum states. Without the ability to prepare
and manipulate states, programming is impossible, while measurement allows results to
be obtained in classical terms. Finally, it is important that the system remain “quantum-
mechanical” during the computation. That is, it must not interact so strongly with its
environment that it decays into a classical state, or the quantum algorithms will fail.
An accurate estimate of the decoherence time — the time in which quantum-mechanical
coherence is destroyed — is very important; this decoherence even limits the possibility
of quantum error correction [25,39].

Many candidates for quantum computing have been proposed over the years. As
yet, none of the proposals satisfy all of the above requirements sufficiently, but work is
underway on several of them. Some of the more common proposals are summarized in the
following section; for a more detailed discussion see, e.g., Ref. [68]

1.3.2 Qubits

The earliest proposals to realize qubits came from the fields of quantum optics [30] and
nuclear magnetic resonance [53]. There have been successful demonstrations of quantum
algorithms in both types of system [26, 29, 63, 170, 189]. However, it seems that NMR
devices are not scalable to large numbers of qubits [97]; quantum computers based on
NMR will remain a useful testbed for developing new techniques, but are unlikely to have
commercial relevance. Quantum optical devices, such as ion traps, are more scalable,
but modern designs are heading in the direction of solid-state implementations, rather
than the original all-optical method [196]. Not only is scalability required to increase the
power of the computers, but quantum error correction methods also drastically increase
the number of qubits needed [25, 39] — solid-state systems appear to be the only viable
option.

Solid-state systems are advantageous from the point of view of scalability, but due to
the many degrees of freedom available, decoherence presents more of a problem. One of
the most important fundamental challenges in designing a solid-state quantum computer
is to find suitable qubits that do not interact too strongly with their environments.
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There are two types of solid-state systems considered for quantum computing — su-
perconductors and semiconductors. Superconductors have the advantage that they can
be macroscopic in size but still behave quantum-mechanically. Several experiments with
superconductors have been performed and many of the fundamental quantum computing
operations have been implemented [27, 135, 140]. There is even a company, D-Wave Sys-
tems8, that is aiming to produce 1000-bit quantum computers based on superconductors
by the end of 2008. Superconductors are not considered in this thesis and are mentioned
here for completeness. More details on superconducting quantum computers can be found
in, e.g., Ref. [68] and the references therein.

With semiconductors, there are two basic proposals. The first uses the nuclear spin of
an array of donor atoms as the qubit states [91]. An example setup would be 31P atoms
embedded in a Si matrix (using a very pure sample of the spinless isotope 28Si). While
such a setup can be reliably fabricated, this design has the problem that manipulation of
the nuclear spins is difficult.

The second proposal for semiconductor qubits, and the one that we investigated, is
to use quantum dots. These are far easier to manipulate and measure since they use
electron degrees of freedom. There are two categories of quantum dots: electronically-
defined [21, 74, 93] and self-assembled [44, 113]. Electronically-defined quantum dots are
formed at the interface between two semiconductors, often GaAs and AlGaAs [69, 77].
Because of the difference of Fermi levels of these materials, a two-dimensional electron gas
(2DEG) forms at the interface [100]. Metallic electrodes are patterned onto the surface
of one of the semiconductors using electron beam lithography. By setting the potential of
these electrodes, regions can be made in the 2DEG where the electrons are depleted. If
the potentials of the electrodes are carefully set, the 2DEG is almost completely depleted,
with the exception of some small regions. These regions are the quantum dots; electrons
can be injected into them, manipulated and then measured.

Self-assembled quantum dots are formed using the material properties of different
semiconductors. No external electrodes are needed to form the quantum dot structure,
although electrodes are usually present to manipulate and measure the electronic states.
Self-assembled quantum dots form during growth of one substance on another, e.g. molec-
ular beam epitaxial growth of a material on a substrate [122]. If the lattice vectors of the
substrate and deposited material are not matched, homogeneous growth is unstable and
the deposited medium forms small islands; these are the quantum dots. Self-assembled
quantum dots are usually smaller than lithographically etched (electronically defined) dots,
making them more useful for quantum computing and information storage. However, there
is not much control in the final positions or sizes of the quantum dots.

Apart from there being two categories of quantum dots, there are two methods of
encoding information in quantum dot qubits: spin and charge. In the case of spin, each
electron is confined to a single quantum dot and its spin is the two-level system with which
quantum computing proceeds. Information encoded in the electron spin is quite stable,
since there are not many spin-flip mechanisms available, even in a solid. However, such
information is more difficult to read and manipulate. Charge qubits, on the other hand,
require a double quantum dot structure for each electron. The position of the electron, i.e.
either in the “right” or “left” quantum dot, encodes the information. Because of the strong

8More information about this company can be found at their website: http://www.dwavesys.com/
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interaction of charges with their surroundings, such a system will decohere quite rapidly.
On the other hand, it is easy to manipulate and measure the position of an electron.

In chapters 6 and 7, I present our work on the dynamics of a spin within a qubit,
with particular attention paid to the relaxation of this system. In addition, I present the
results of our investigation on the relaxation of a charge qubit. These investigations were
motivated by a set of experiments, the details of which are given in the next section.

1.3.3 Manipulating qubits

The stability of an electron spin in a quantum dot makes it an ideal candidate for quantum
computing and quantum information processing [127]. This stability against various forms
of dephasing and dissipation has been studied in great depth and there is a comprehensive
literature on the calculation of relaxation rates (see, e.g., Refs. [56, 95, 96, 205] and the
references therein). The difficulties involved in initializing, controlling and measuring a
spin state are viewed as challenges, not fundamental obstructions, and much work has
been done to overcome these [45, 46, 127, 165]. It is somewhat ironic, therefore, that
the inspiration for our study of the dephasing of a spin in a quantum dot came from
experiments unrelated to quantum computing. These experiments, detailed in Refs. [51,
71, 112, 113] and summarized below, dealt instead with the possibility of constructing
spin-based, frequency-selective optical memory devices.

Frequency-selective optical memory using quantum dots was proposed in 1995 by Muto
[137]. This proposal relies on the fact that self-assembled quantum dots vary considerably
in shape and size and their optical properties change accordingly. More precisely, the
inhomogeneous broadening of absorption by an array of self-assembled quantum dots is
quite large (around 100 meV), while the homogeneous broadening for each quantum dot
is much smaller (several µeV). If an array of quantum dots is subjected to a laser field of a
specific frequency, only some of the quantum dots absorb the light and produce excitons.
The application of a strong electric field prevents recombination of these excitons by
causing the hole to tunnel out of the dot. (The electron can be made to remain in the
dot, as discussed below.) Thus the quantum dots that absorb at the frequency used
will be charged and thereby store information. If this process is repeated with a different
frequency, a different set of quantum dots are charged. Because of the large inhomogeneous
broadening, very large multiplexing factors are possible: within the same laser spot, it is
possible to store several hundred bits of information by using different frequencies.

This proposal was extended in 2004 by Kroutvar et al. to include spin selectivity [113],
i.e. the quantum dots can be selectively occupied by an electron of a particular spin. This
not only offers technological advantages but also provides a useful tool for studying spin
dynamics in quantum dots [71]. In the 2004 experiments [113], the relaxation rate of
the spins (explained below) was measured and compared to the theoretical result for
relaxation via spin-phonon scattering [95,96,205]. The fit was reasonably good, but relied
on parameters that could not be estimated accurately (e.g. the Dresselhaus velocity was
given as β = (2 ± 1) × 105 cm s−1). As such, we thought other dephasing mechanisms
might also be relevant; the results of our investigation are presented in chapter 7.

Spin selectivity is made possible by using circularly polarized light. In the ideal sit-
uation, this proceeds as follows. The relevant exciton states consist of electrons (L = 0,
S = h̄/2, Jz = ±h̄/2) and heavy holes (L = h̄, S = h̄/2, Jz = ±3h̄/2) [15]. Therefore there
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Figure 1.2: The experimental setup for a spin-selective optical memory using self-assembled
quantum dots, taken from Ref. [113]. A magnetic field, not depicted, is applied vertically to
split the optically active exciton states. Reprinted by permission from Macmillan Publishers
Ltd: Nature, Optically programmable electron spin memory using semiconductor quantum

dots, M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter and J. J.
Finley, 432, 81 (2004). Copyright (2004).

are four possible excitonic combinations: e↑h↓ (Jz = −h̄), e↓h↑ (Jz = h̄), e↑h↑ (Jz = 2h̄)
and e↓h↓ (Jz = −2h̄). The first pair of these are optically active, while the second pair
are not. By using circularly polarized light of helicity σ+ or σ−, one can selectively excite
excitons with either Jz = +h̄ or Jz = −h̄, respectively. The hole is removed using a bias
field. Thus, depending on the helicity of the light, the dots are either excited with spin
up or spin down electrons exclusively.

Of course, real solids are seldom ideal and quantum dots are no exception. The material
used in these experiments, GaAs, is not inversion symmetric. In addition, self-assembled
quantum dots are generally asymmetrically shaped. These asymmetries mix the two op-
tically active exciton eigenstates, which therefore cannot be independently excited. Spin
selectivity is made possible by the application of a large magnetic field (greater than 4 T),
which separates the eigenstates.

The experimental setup is depicted in Fig. 1.2, which is taken from Ref. [113]. The
quantum dots consist of small islands, roughly 30 nm wide and 5 nm high, of InGaAs
grown on a GaAs substrate [71, 113]. A thin layer of GaAs coats the quantum dots,
followed by a thick layer of AlGaAs. The structure is finished with a thin (5 nm) layer of
titanium; this is thin enough to be transparent to the light.

In a typical experiment, the entire structure is inserted in a homogeneous magnetic
field. A negative potential (Vbias = −1.2 V) is applied to the titanium layer and a laser
pulse of a particular helicity is sent through the structure. Because of the magnetic field,
excitons of a well-defined angular momentum are excited by the light in some of the
quantum dots (those with the appropriate absorption energy). The other quantum dots
remain in their previous state. The electric field pulls the electron towards the titanium
layer and pushes the hole in the opposite direction. However, the material is asymmetric:
the hole can easily tunnel out of the dot, but the electrons have a very low probability of

http://www.nature.com/nature/index.html
http://www.nature.com/nature/index.html
http://www.nature.com/nature/index.html
http://www.nature.com/nature/index.html
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tunneling through the AlGaAs. Thus the dot is charged with an electron of a well-defined
spin.

To read the information stored in the structure, the bias field is removed, i.e. the
potential of the titanium layer is set to zero. Within a few hundred nanoseconds, holes
tunnel into the charged quantum dots, recombination occurs and a photon is emitted.
Because each quantum dot has a well-defined energy, the resulting emission spectrum
should coincide with the spectrum that was absorbed. The information that was stored
can be recovered with the help of a spectrum analyzer. Furthermore, the photons will be
left- or right-circularly polarized depending on the spins of the electrons that led to their
emission. Information stored as spin can also be recovered.

This description omits the possibility of decay. If the delay between storing and reading
the information is long enough, many electrons will have tunneled out of the dot into the
titanium electrode. Once this occurs, the information is lost. It is also possible for
individual electrons to tunnel into neighbouring dots. This would not only destroy the
information stored in the first dot, but also generate a spurious signal from the second
dot, i.e. incorrect information would be found in the read-signal. Fortunately, at low
temperatures, this effect can be greatly reduced. It was found that below T = 50 K,
information is preserved over timescales of τ ≫ 1 ms [71].

The spin is not so fortunate. Because of the strong magnetic field, there is a large
Zeeman splitting between up and down electrons. Electrons excited into the lower energy
state will keep the same spin, while electrons in the higher state will relax towards the
lower. This was verified in the experiments. There is no noticeable change in the degree
of polarization of the emitted light for electrons in the lower energy state, even for delay
times up to 2 ms. On the other hand, if the higher energy state is excited, the polarization
of the emitted light changes as a function of the delay time: for short times, the emitted
light has predominantly the same helicity as the light that was absorbed, while for longer
times, the emitted light contains an ever-increasing number of photons with the opposite
helicity. From these results, the decay time of the spins can be estimated. As an example,
the decay time of the higher energy spin state was approximately T1 = 1.1 ± 0.2 ms at
T = 1 K, in the magnetic field B = 8 T. I should note that the polarization of the emitted
photons is never perfectly circular; there is always some admixture of the opposite helicity,
even for very short delays.

Clearly, if information was stored in the spin state of the electron and this decays, in-
formation has been lost. Furthermore, the mechanism that enables decay to a lower energy
state will also cause a loss of phase coherence with other qubits. If the above experimental
method can be extended to allow the generation of entangled spins in the quantum dots,
decay mechanisms will act to destroy this entanglement. The decay times, both the loss
of energy (dissipation) and the loss of phase coherence (dephasing), are important for the
application of this process to information storage and quantum computing. It is therefore
important to know all the relevant mechanisms through which the spin can decay. This
motivated the study presented in chapter 7.

Chapter 7 also addresses the dephasing and dissipation in charge qubits. This investi-
gation was motivated by the experiments presented in Ref. [69]. For these experiments, a
double quantum dot structure is defined electronically, i.e. using several gate electrodes at
different potentials to deplete regions in the 2DEG formed at the interface between GaAs
and AlGaAs. This is shown schematically in Fig. 1.3, which is reproduced with permission
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Figure 1.3: Schematic diagram of a double quantum dot, taken from Ref. [69]. The electrodes
GL, Gl, GC , Gr and GR define the region of the quantum dots L and R. Electrons are
provided by the source S and tunnel into the drain D. Figure reprinted with permission from
T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong and Y. Hirayama, Physical Review Letters
91, 226804 (2003). Copyright (2003) by the American Physical Society.

from Ref. [69]. The electrodes that define the quantum dot are labeled GL, Gl, GC , Gr

and GR. The two quantum dots are referred to as the “left” and “right” dots and are
labeled L and R accordingly. Finally, the source (S) and drain (D) electrodes are used to
initialize and measure the system.

A typical experiment proceeds as follows. First, a large source-drain potential is ap-
plied. This leads to a current through the double quantum dot (DQD) structure. Param-
eters are chosen so that this current is limited to sequential tunneling; electrons hop from
S to L, then into R and finally across into D. This process causes an excess electron to be
found in L. The potential is then removed suddenly, which isolates the DQD system. The
potentials of the two quantum dots become equal and coherent tunneling between them
occurs. After a predefined delay time tp = 80 − 2000 ps, the bias field is restored and the
current is measured. This current depends on whether the electron is found in L or R
when the potential is applied. By measuring the dependence of the current on the delay
time, oscillations between the quantum dots can be seen. The decay of these oscillations
for large delay times yields the decoherence rate.

Because rectangular pulses are used to start the coherent tunneling and to perform
the measurement, the time taken to switch from one stage of the experiment to another
is negligible. This implies that decoherence and other quantum-mechanical processes are
only relevant during the time when the coherent tunneling occurs; simulations need only
include this stage of the dynamics.

A brief analysis of decoherence was presented in Ref. [69] along with the experimental
results. The authors concluded that cotunneling was one of the main causes of decoherence,
but that many other mechanisms were present and individual contributions could not
be accurately estimated from the experiments. As for the dephasing of spin, several

http://prola.aps.org/abstract/PRL/v91/i22/e226804
http://prola.aps.org/abstract/PRL/v91/i22/e226804
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http://prola.aps.org/abstract/PRL/v91/i22/e226804
http://prola.aps.org/abstract/PRL/v91/i22/e226804
http://prola.aps.org/abstract/PRL/v91/i22/e226804
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theoretical studies of decoherence of charge states can be found in the literature (see, e.g.,
Refs. [68,180] and the references therein). However, the mechanism studied in chapter 7,
the interaction of the charge with the conduction electrons in the gate electrodes, has not
previously been studied.

This concludes the introduction. The work on the relaxation of both spin and charge
in quantum dots is contained in chapters 6 and 7, but first I present my work on ultrafast
magnetic switching using the inverse Faraday effect.



Chapter 2

The Inverse Faraday Effect

The inverse Faraday effect (IFE) has been briefly introduced in the previous chapter. In
this chapter, the history and modern understanding of the IFE is reviewed.

2.1 The Faraday effect

As the name suggests, the inverse Faraday effect is related to another physical effect:
the Faraday effect. The Faraday effect is important, because it allows magnetization
dynamics to be measured at a very high time resolution, as discussed further in chapter
5. The Faraday effect is the rotation of the polarization vector of linearly polarized light
as it propagates through a transparent sample in a magnetic field [48, 49, 116]. Here, I
present a brief derivation of this effect in the simplest case — an isotropic medium.

Consider the propagation of monochromatic light through a sample. As usual for
high-frequency fields, the distinction between currents causing a magnetization and a
time-dependent polarization density is not well-defined [116, 151], so introducing a mag-
netization due to the light would be “an unwarrantable refinement” [116]. In this case,
H = B and the susceptibility µ = 1. Magnetooptical effects are contained in the dielectric
tensor.

If the external magnetic field Hext vanishes, then the condition of isotropy ensures
that the dielectric tensor is diagonal and can be replaced by a scalar: ǫij = ǫδij . (The
subscript “ext” distinguishes the applied magnetic field from the magnetic field of the light
H.) For a nonzero magnetic field, time-reversal symmetry forces ǫij(Hext) = ǫji(−Hext).
Furthermore, to avoid absorption, the dielectric tensor must be Hermitian: ǫij(Hext) =
ǫ∗ji(Hext). These symmetries, together with truncation at linear order in Hext, lead to the
dielectric tensor having the form

ǫij = ǫδij + iγ
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(2.1)

which can also be expressed as

D = ǫE − iγE × Hext. (2.2)

In general, γH ≪ ǫ [210].
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Assuming that the light propagates in the z-direction and that the magnetic field Hext

is parallel to this direction, Hext = Hextẑ, the normal modes for the propagation of light
in the medium are easily found:

n+ =







1
i
0






, k+ = k

√

ǫ+ γHext ≈ k
√
ǫ(1 +

γHext

2ǫ
)

n− =







1
−i
0






, k− = k

√

ǫ− γHext ≈ k
√
ǫ(1 − γHext

2ǫ
). (2.3)

Here and throughout this thesis, k = ω/c. Assume that the light enters the sample linearly
polarized:
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eiωt + c.c.











, (2.4)

where θ is the angle between the polarization plane and the x-axis. Since the xy-plane is
isotropic, this angle can be set to θ = 0.

The reflection coefficients are approximately equal for the different normal modes and
the electric field in the material is

E(r, t) =
1

4
T |E|

(

n+e
i(ωt−k+z) + n−e

i(ωt−k−z) + c.c.
)

, (2.5)

with the transmission coefficient T describing the loss of intensity due to reflection. Eq.
(2.5) can be written in the more instructive form

E(r, t) =
1

2
T |E|ei(ωt−k

√
ǫz)







cos (V Hextz)
sin (V Hextz)

0






+ c.c. (2.6)

where V = kγ/2
√
ǫ is the Verdet constant [191]. It is clear from Eq. (2.6) that as the light

propagates, it remains linearly polarized, but the plane of polarization rotates. The angle
through which it has rotated after a distance z = d is

β = V Hextd. (2.7)

This rotation, discovered by Faraday in 1845 [48,49], is referred to as the Faraday effect.

2.2 Energy considerations

An experimental verification of the Faraday effect requires only a magnet, a polarizer and
a suitable medium. In practice, the third requirement can be ignored since all media
will exhibit a Faraday effect provided the magnetic field is strong enough. The ready
availability of these simple experimental tools led to the discovery of the Faraday effect
in the middle of the nineteenth century. The inverse Faraday effect, on the other hand,
required light of a very high intensity before it could be detected. The first experimental
demonstration of the IFE in 1965 [187] was made possible by the invention of the laser.
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The work that led to this discovery was part of a general search for nonlinear electro-
magnetic effects in crystals. The argument motivating this search was that if two fields
are simultaneously present in the crystal, with frequencies ω1 and ω2, then an effect with
the beat frequencies ω± = ω1 ±ω2 should be visible. In addition, if fields with frequencies
ω1 and ω± are used, an effect with the frequency ω2 should be visible and the magnitude

of these two effects should be related.

The first experimental observation of this type of relationship was the discovery that
the linear electro-optic effect is related to the induction of a static polarization by a laser
with the amplitude of polarization proportional to the intensity of the light [13]. The
linear electro-optic effect is the change of the optical properties of a material when a static
electric field is applied. A light beam passing through such a material has ω1 = ω, the
frequency of the light. The other relevant frequency is ω2 = 0 because the applied electric
field is static. From the above argument, effects can be expected with ω+ = ω, i.e. at
the fundamental frequency of the incident light. Such effects are interpreted as a change
of the optical properties and are indeed observed. For the inverse effect, the induction of
a static polarization in the presence of light, ω1 = ω+ = ω now describe the input fields
(the light, counted twice due to nonlinearity) and ω2 = 0 is the frequency of the result.
At first glance, these effects may seem to be unrelated. However, by taking nonlinearities
into account (i.e. using the above frequency mixing arguments), relationships are found.
Indeed, materials exhibiting a strong electro-optic effect also exhibit a strong induced
polarization, as predicted by the theory of nonlinear electrodynamics [13].

In 1965, van der Ziel et al. considered a similar effect, but with a static magnetic

field [187]. The propagation of light when such a field is applied is governed by the Faraday
effect, as described in the previous section. They found, however, that when the external
magnetic field is removed and the laser is circularly polarized, a static magnetization is
induced with amplitude proportional to the intensity of the light. As expected by analogy
to the electro-optic effect, the strength of this magnetization was found to be related
to the strength of the Faraday rotation. Therefore they named the formation of this
magnetization the “inverse Faraday effect”.

The possibility of such an effect had already been considered theoretically in 1961
by Pitaevskii [157] and a year later (independently) by Pershan [150], who showed the
connection to the Faraday effect. The name “inverse Faraday effect” was first used in
Ref. [187], which contained the first experimental demonstration of this effect.

To explain both the Faraday and inverse Faraday effects, the free energy of the material
is assumed to include a “potential function” of the form

∆F = iχnmHext(ExE
∗
y − E∗

xEy). (2.8)

Here, Hext is a static magnetic field oriented along the z-direction and Ex,y are the com-
ponents of a laser beam, propagating along the z-axis:

E(r, t) =
1

2
(Exx̂ + Eyŷ)ei(ωt−kz) + c.c. (2.9)

The frequency of this beam is taken away from resonance, i.e. no light will be absorbed
by the material. Note that for consistency with the rest of this thesis, Eq. (2.9) is different
by a factor of 1/2 from the definition used in Refs. [150,152,187]; the following equations
are changed appropriately.
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The potential function (2.8) can be rigorously shown to exist in all materials [150], but
the general arguments from which it is derived cannot be used to determine the magnitude
of χnm (which could even vanish). Therefore this parameter must be determined from
microscopic calculations or by experiment. Note the subscript nm indicates that the
sample is assumed to have no magnetic ordering.

The relationship between the potential function (2.8) and the Faraday effect is demon-
strated by noting that the dielectric tensor ǫij(ω) can be written in terms of the free energy
of the system F as

ǫij(ω) = 16π
∂2F

∂Ei∂E∗
j

. (2.10)

Therefore an additional energy of the form (2.8) leads to a change of dielectric function
by

∆ǫxy(ω) = 16iπχnmHext, ∆ǫyx(ω) = −16iπχnmHext (2.11)

Comparison with Eq. (2.1) shows that γ = −16πχnm. The “magnetooptical susceptibility”
χnm is related to the Faraday rotation angle. (Of course, this was the reason that a
potential function of the form (2.8) was postulated.)

Eq. (2.10) follows from assuming that Hext is fixed while Ex,y are variables. Equally,
one could consider the laser to be fixed and the magnetic field to vary. Then the potential
function causes an additional magnetic induction in the z-direction:

1

4π
∆B =

∂∆F

∂Hext
. (2.12)

Assuming that the external field Hext vanishes and that the material is nonmagnetic, we
find from B = H + 4πM that a magnetization is formed:

M = iχnm(ExE
∗
y − E∗

xEy)ẑ. (2.13)

This magnetization is proportional to the intensity of the circularly polarized component
of the light: i(ExE

∗
y − E∗

xEy) is maximized for circularly polarized light and vanishes if
the light is linearly polarized. Furthermore, it is linear in χnm and is therefore directly
proportional to the strength of the Faraday effect. Materials exhibiting a strong Faraday
effect will also exhibit a strong inverse Faraday effect.

If no external magnetic field is present but the material has a static magnetization m,
a potential function similar to (2.8) should be considered [98,150]:

∆F = iχfm(ExE
∗
y − E∗

xEy) (2.14)

or more generally

∆F = iχijk
f miEjE

∗
k , (2.15)

where χijk
f is a third-rank tensor. The subscript f indicates that the material is ferromag-

netically ordered. In this case, the inverse Faraday effect is the generation of an effective
magnetic field by circularly-polarized light. For the simplest case, where the potential is
given by Eq. (2.14), an equation similar to Eq. (2.13) is obtained:

H = iχf (ExE
∗
y − E∗

xEy)ẑ. (2.16)
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This equation will be rederived from angular momentum considerations in chapter 4 (com-
pare Eq. (4.31) using χf = −γ/16π). With the potential (2.14), the Faraday effect keeps
the same form (2.7), but now the Faraday rotation angle depends on the magnetization
instead of an external field. This angle can be measured and is used to estimate the
magnetization state of the material. (See chapter 5 for details.)

This derivation of the IFE is correct provided the system is in thermal equilibrium, the
light is monochromatic and the light fields Ex,y inside the material are known [98,152]. For
thin samples, the fields Ex,y can be taken as the external fields of the laser, as discussed
in chapter 4. If the light is not monochromatic, e.g. in the case of ultrashort pulses, it is
reasonable to expect that the effective magnetic field has the same time-dependence as the
intensity of the light. However, this cannot be proven from thermodynamics. Furthermore,
the effective magnetic field will cause precession of the magnetization (if the magnetization
is orthogonal to the field), i.e. a deviation from thermal equilibrium. Finally, no clue is
given within the thermodynamic theory for determining the parameters χnm or χf . To
overcome these deficiencies, Pershan et al. derived the IFE from quantum-mechanical
perturbation theory [152]. This work is summarized in the next section.

2.3 The effective Hamiltonian formulation

The starting point for the quantum-mechanical derivation of the IFE is to consider the
interaction of light with a system with a well-defined “ground-state manifold” [32], i.e.
several states lie very close in energy to the ground-state and there is a large gap between
these states and higher energy states1. The frequency of the light is far from any resonance,
so long-lasting transitions to excited states are rare. These excited states can therefore be
removed from consideration. However, they are not simply neglected, but rather are used
as virtual states to allow transitions between different ground states. This is referred to
as constructing an “effective Hamiltonian” [32].

It should be noted that if the driving field (in this case the laser) is perfectly monochro-
matic, transitions between ground states are not possible unless the ground states have the
same energies. Unless this condition is satisfied, the effective Hamiltonian only causes an
energy shift of each ground state, although these energy shifts can be different. However,
no field can be perfectly monochromatic unless it is present at all times, which is unrea-
sonable. Switch-on effects yield a time dependence that can cause transitions [152,157].

Before presenting the details of the derivation, it is worth spending a little time re-
viewing virtual processes in quantum mechanics [117]. The state of an arbitrary quantum-
mechanical system is given by a vector (which can be infinite-dimensional). The set of
possible state vectors spans the underlying Hilbert space and this space admits a basis in
which every vector is an eigenvector of the Hamiltonian, i.e. has a well-defined energy.
This energy is related to the phase velocity of the vector. If the system starts in an energy
eigenstate and is subjected to a perturbation of a given frequency, V (t) = V0 cos (ωt),
conservation of energy makes it impossible for transitions to occur to states that differ
from the original by an amount other than ±ω.

However, quantum mechanics also has uncertainty relations, in particular ∆E∆t ≥ h̄
[117]. This means that a system that should have energy E can occupy a state with the

1Terms like “close” and “large gap” are meant relative to the frequency of the light.
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Figure 2.1: Spin-flip via stimulated Raman scattering, taken from Ref. [98]. The excited state
|L = 1〉 is not occupied for a significant length of time, but contributes as a virtual state. Re-
produced with permission from Femtosecond opto-magnetism: ultrafast laser manipulation

of magnetic materials, A. V. Kimel, A. Kirilyuk and Th. Rasing, Laser & Photonics Reviews
1, 275-287 (2007). Copyright Wiley-VCH Verlag GmbH & Co. KGaA.

classically unacceptable energy E+∆E for a length of time ∆t, provided ∆t < h̄/|∆E|. If
nothing occurs during this time, energy conservation asserts itself and the system moves
back to the energy E. On the other hand, it is possible for the perturbation to interact
with the system a second time while the system is in an “unacceptable” state. The system
then moves into yet another state. If this state is still not energetically allowed, it will
rapidly decay, but if it is energetically allowed, the system will remain in this new state
until further perturbations act on it.

This is easily visualized using Fig. 2.1, which depicts a three-level system interact-
ing with light and was taken from Ref. [98]. First, consider the case where the light is
monochromatic, ω1 = ω2 = ω, and the ground state is degenerate (i.e. Ωm = 0 in Fig.
2.1). Assume the energy difference between the |L = 1〉 and |L = 0〉 states is h̄(ω + ∆ω)
and define the zero of energy by the |L = 0〉 state.

The system starts in the |L = 0,MS = 1/2〉 state. After absorbing a photon, the
system should have energy h̄ω. However, there is no available state with this energy, so
the system occupies the state |L = 1〉 for a time ∆t < 1/∆ω. During this time, it can
interact with the light again. If it absorbs another photon, then its energy is 2h̄ω, which
persists for time ∆t < 1/(ω−∆ω). More interesting is the case where a photon is emitted.
If there is a mechanism by which the |L = 1〉 spin states mix, the emission of a photon
can place the system in the |L = 0,MS = −1/2〉 state. This state has the correct energy
and can therefore persist indefinitely. A spin flip has occurred via a virtual transition.

If the ground state is non-degenerate, but the light is still monochromatic, then the
spin-flipped state has the incorrect energy and will decay within time ∆t < 1/Ωm. Finally,
if the light has a linewidth greater than Ωm, photons of frequency ω1 can excite the
|L = 0,Ms = 1/2〉 state to |L = 1〉 and photons of frequency ω2 = ω1 − Ωm can stimulate
emission down to the |L = 0,Ms = −1/2〉 state. In this case, the energy of the final state
is correct and this state persists indefinitely. This is stimulated Raman scattering.

Stimulated Raman scattering only occurs if the light is nonresonant, i.e. the frequency



28 Chapter 2. The Inverse Faraday Effect

of the light does not match the energy gap. If the light is resonant, the excited state is
occupied for an arbitrary length of time. In a perfect solid, this corresponds to lifting elec-
trons into the conduction band [100]. It is possible for these states to undergo stimulated
emission back to their ground states, but it is more likely that they will scatter before this
occurs. In this case, a nonequilibrium distribution of electrons forms and the dynamics
are far more difficult to analyze.

It is appropriate to mention here that virtual processes are also responsible for the
formation of the dipole moment of an atom in the presence of a nonresonant electric field.
Consider a hydrogen atom. In the ground state, the electron occupies the 1s orbital and
the system has no dipole moment. If a nonresonant electric field is applied, one might
naively expect (from Fermi’s golden rule) that it has no effect as it cannot cause transitions.
However, it can virtually excite the electron into the 2p states. This virtual excitation
does not last long because of the energy mismatch, but if a time-average is taken, the
virtual excitation will be seen. The electron spends a small but well-defined percentage of
its time in the 2p state. This causes the dipole moment.

Virtual processes allow energetically inaccessible states to influence the dynamics.
However, the length of time spent in such states is usually negligible in terms of the
experimental timescale. Particularly for the IFE, these states are only important because
they allow transitions between low-energy states that seem disconnected. The removal of
these excited states via the introduction of an effective Hamiltonian is now discussed.

Following Ref. [152], the total Hamiltonian is H = H0 + V (t). The perturbation
V (t) is assumed to be a slowly modulated periodic function, V (t) = v(t)eiωt + c.c. that
does not cause direct transitions within the ground-state manifold. In the interaction
representation, the Schrödinger equation becomes

ih̄
d

dt
ψ̃(t) = Ṽ (t)ψ̃(t), (2.17)

where

ψ̃(t) = eiH0t/h̄ψ(t), (2.18)

and

Ṽ (t) = eiH0t/h̄V (t)e−iH0t/h̄. (2.19)

Eq. (2.17) can be solved iteratively:

ψ̃(t) =

[

1 − i

h̄

∫ t

0
Ṽ (t′) dt′ − 1

h̄2

∫ t

0
Ṽ (t′)

∫ t′

0
Ṽ (t′′) dt′′dt′ + . . .

]

ψ(0). (2.20)

Now an effective Hamiltonian Heff is introduced such that it has exactly the same
effect on the ground-state manifold as the full Hamiltonian H, but does not couple this
manifold to the excited states [32]. For states |a〉, |b〉 within the ground-state manifold,
Heff must satisfy

〈a|1 − i

h̄

∫ t

0
Heff(t′) dt′ + . . . |b〉 = 〈a|1 − i

h̄

∫ t

0
Ṽ (t′) dt′

− 1

h̄2

∫ t

0
Ṽ (t′)

∫ t′

0
Ṽ (t′′) dt′′dt′ + . . . |b〉. (2.21)
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Since V (t) does not induce direct transitions between states in the ground-state manifold,
i.e. 〈a|Ṽ (t)|b〉 = 0, we find that

〈a|Heff(t)|b〉 = − i

h̄
〈a|Ṽ (t)

∫ t

0
Ṽ (t′) dt′|b〉

= − i

h̄

∑

n

〈a|Ṽ (t)|n〉
∫ t

0
〈n|Ṽ (t′)|b〉 dt′, (2.22)

where the sum is over all excited states |n〉. (The resolution of the identity 1 =
∑

n |n〉〈n|
has been used here.)

Until now, the envelope of the perturbation, v(t), has been completely general. To
describe an electric field, it is set to

v(t) = e(r+ER − r−EL), (2.23)

where the notation of Ref. [152] is used: r± = ∓(x ± iy)/
√

2, ER = (Ex − iEy)/
√

2 and
EL = (Ex + iEy)/

√
2. Introducing the additional notation Xab = 〈a|X|b〉 for any operator

X and ωab = (Ea −Eb)/h̄ for the differences between the energies of states, and assuming
that the time dependence of ER,L is negligible, we find that

(Heff)ab =
e2

h̄
[ERE

∗
R − ELE

∗
L]
∑

n

ω

ω2
nb − ω2

[(r+)an(r−)nb − (r−)an(r+)nb]

+
e2

h̄
[ERE

∗
R + ELE

∗
L]
∑

n

ωnb

ω2
nb − ω2

[(r+)an(r−)nb + (r−)an(r+)nb]

−2
e2

h̄
ERE

∗
L

∑

n

ωnb

ω2
nb − ω2

(r+)an(r+)nb

−2
e2

h̄
E∗

REL

∑

n

ωnb

ω2
nb − ω2

(r−)an(r−)nb. (2.24)

Eq. (2.24) is not particularly instructive. To simplify it, the assumption is made that J
is a good quantum number for the ground state manifold. This is reasonable for magnetic
systems (see Ref. [152] for a discussion). Thus every state in the ground state manifold can
be written as |a〉 = |0JM〉, where the magnetic quantum number M differentiates between
states within this manifold. Making use of the Clebsch-Gordon coefficients for vector
operators (see, e.g., Ref. [117]) and using the identification MδMM ′ = 〈0JM |Jz |0JM ′〉
yields

Heff = A[ERE
∗
R −ELE

∗
L]Jz

+ C

{

(ERE
∗
R + ELE

∗
L)

[

J2
z − 1

3
J(J + 1)

]

− ELE
∗
RJ

2
− − E∗

LERJ
2
+

}

, (2.25)

with the coefficients

A =
2e2

h̄

∑

α

[

ω〈0J ||r||αJ − 1〉〈αJ − 1||r||0J〉
(2J + 1)2J(ω2

αJ−1,0J − ω2)

− 2ω〈0J ||r||αJ〉〈αJ ||r||0J〉
(2J + 2)(2J + 1)2J(ω2

αJ,0J − ω2)

− ω〈0J ||r||αJ + 1〉〈αJ + 1||r||0J〉
(2J + 2)(2J + 1)(ω2

αJ+1,0J − ω2)

]

(2.26)
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and

C =
2e2

h̄

∑

α

[

ωαJ−1,0J〈0J ||r||αJ − 1〉〈αJ − 1||r||0J〉
(2J + 1)2J(2J − 1)(ω2

αJ−1,0J − ω2)

+
2ωαJ,0J〈0J ||r||αJ〉〈αJ ||r||0J〉

(2J + 2)(2J + 1)2J(ω2
αJ,0J − ω2)

+
ωαJ+1,0J〈0J ||r||αJ + 1〉〈αJ + 1||r||0J〉

(2J + 3)(2J + 2)(2J + 1)(ω2
αJ+1,0J − ω2)

]

. (2.27)

Here, 〈0J ||r||αJ ′〉 is a reduced matrix element, which is independent of M [117].

The first term of the effective Hamiltonian (2.25) describes the effective magnetic field
of the IFE. The other terms describe quadratic effects (e.g. the optical Stark effect [124])
and cannot be related to a magnetic field. However, quadratic effects are usually smaller
than linear effects [152], so the dominant effect of the effective Hamiltonian is magnetic.

This derivation places the IFE on a more rigorous theoretical footing. From it, it is
possible to investigate the effect of modulating the envelope of the laser field. One can
also study how a nonequilibrium situation affects the IFE. Furthermore, estimates of Eq.
(2.26) can be made, allowing the approximate evaluation of the strength of the IFE in
different materials. For more details on these topics, see Ref. [152].

The calculation of A from Eq. (2.26) is similar to the calculation of a dielectric constant.
That this should be so is clear from the derivation of the IFE in the previous section,
where the IFE is related to the Faraday effect, which is determined by the dielectric
constant. Calculations of the dielectric constant are notoriously difficult [130], but the
accuracy is improving. As improvements are made (largely thanks to the development
of supercomputers [166]), it becomes ever more likely that the strength of the IFE will
be accurately calculated. Calculations of related quantities (the strength of the Faraday
effect in small diamagnetic molecules) have been performed using time-dependent density
functional theory, coupled cluster expansion and the multiconfiguration self-consistent
field (MCSCF) method [19,33,83,114], but so far no indication has been given that such
calculations can be performed for solids.

The only fundamental question concerning the IFE that remains open concerns the
conservation of angular momentum. The magnetic field in Eq. (2.25) has been derived
from only the interaction between light and electrons in the ground state. If the spins of
these electrons precess because of the magnetic field, it seems that the light must provide
the angular momentum needed for precession. But in Ref. [98], it is claimed that this
is not true, that the light does not change polarization and therefore cannot change its
angular momentum. The authors of Ref. [98] argue that the IFE provides an effective
magnetic field in the sense of making certain states energetically preferable, but provides
no angular momentum. The angular momentum required for precession must be found
elsewhere.

The next two chapters are devoted to understanding the role of the light as an angular
momentum reservoir. Before this, I shall briefly review the details of the Nijmegen exper-
iments that inspired much of this work [99]. These experiments will often be referred to
in the following chapters.
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2.4 The ultrafast inverse Faraday effect

The first experiments that demonstrated the IFE were performed in 1965 using a ruby
laser [187]. These used relatively long pulses (30 ns), partly because the aim was to
demonstrate the existence of the IFE and partly because shorter pulses were not available
at the time. The primary material studied was europium-doped calcium fluoride, i.e.
Eu2+:CaF2, but several other glasses as well as some liquids were also investigated [187].

Surprisingly, no further experiments of the IFE in condensed matter were performed
until 1995 [163]. The most similar experiments that can be found in the literature are
the investigation of the influence of circularly polarized light on plasmas [22, 34] and the
discovery of the “specular inverse Faraday effect”, where circularly polarized light changes
the reflection properties of a solid [115, 159]. One possible reason for the lack of interest
in the IFE in solids was that no practical use for a light-induced magnetic field had been
conceived. Once the possibility of ultrafast optical manipulation of magnetization was
demonstrated [16], it was only a matter of time before attention returned to the IFE.

However, the experiments described in Ref. [163] and in the follow-up work of Ref. [164]
were not connected to ultrafast magnetization reversal. Rather, they were undertaken to
investigate the possible existence of the “axial magnetostatic field of the photon”2 proposed
by Evans and Vigier [47]. Their results confirmed that the IFE could be attributed to the
effective magnetic field described in the previous sections; the existence of a magnetostatic
field of the photon in vacuum has no experimental support [164]. While these results
were both interesting and important, they provided no indication that the IFE could be
technologically useful. The introduction of the IFE into the field of ultrafast control of
magnetization came later, with the work of Kimel et al. [99].

The experiments in Ref. [99] demonstrated the ultrafast IFE in DyFeO3. This material
belongs to the group of rare-earth orthoferrites and has a perovskite-type structure. The
dysprosium ions occupy very high spin-states, but these are not magnetically ordered
above 4 K. The iron spins are antiferromagnetically ordered. Due to the Dzyaloshinskii-
Moriya interaction [41,136], there is a slight canting of oppositely oriented iron spins above
50 K [200]. This yields an equilibrium magnetization of around 8 G. DyFeO3 exhibits a
strong Faraday effect, although this is complicated by the presence of optical birefringence.
(The Faraday effect in DyFeO3 is investigated in chapter 5.) The strength of the Faraday
effect indicates that DyFeO3 should exhibit a strong IFE.

Samples were cut to a thickness of around 60µm and irradiated with 200 fs laser
pulses at a photon energy of 1.55 eV. A linearly polarized probe pulse with intensity about
1/100 that of the pump pulse was used to measure the magnetization dynamics via the
Faraday effect (see chapter 5). The measured Faraday rotation indicates the instantaneous
magnetization in the material. By changing the delay between the pump and probe pulses,
the time evolution of the magnetization can be found. The fluence of the pump pulse was
around 30 mJ/cm2 and the repetition rate was 1 kHz. For more details, see Ref. [99].

A typical result of this experiment is given in Fig. 2.2, which is taken from Ref. [99].
In this figure, σ+ and σ− indicate the different helicities of light. The dependence on
the helicity is clear. The magnetization is perturbed by the light, after which it starts

2According to Evans and Vigier [47], the photon has an axial magnetic field, even in vacuum, and this
field causes the inverse Faraday effect. This contrasts with the classical understanding of the IFE, derived
above, which shows that the IFE is caused by the interaction of the photons with the material.
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Figure 2.2: Magnetic excitations in DyFeO3 probed by the Faraday effect. This figure is
taken from Ref. [99]. σ+ and σ− indicate the different helicities of light, which clearly have
different effects. Both a rapid change of magnetization as well as magnetic oscillations are vis-
ible. Reprinted by permission from Macmillan Publishers Ltd: Nature, Ultrafast non-thermal

control of magnetization by instantaneous photomagnetic pulses, A. V. Kimel, A. Kirilyuk,
P. A. Usachev, R. V. Pisarev, A. M. Balbashov and Th. Rasing, 435, 655 (2005). Copyright
(2005).

to decay back towards the ground state. During this decay, magnetic oscillations occur.
Two types of decay are seen: decay of the amplitude of oscillations and decay of the mean
magnetization.

In Ref. [99], the effective magnetic field from the IFE was estimated to be 0.3 T, with
the possibility of being increased to 5 T before the damage threshold is reached (although
later estimates place the maximum field at 10 T [98]). In agreement with the results
from the previous sections, the strength of the effective magnetic field was shown to be
linear in the intensity of the electric field. In addition, the magnetization dynamics were
found to be consistent with a weakly perturbed equilibrium state: the IFE does not cause
significant departures from equilibrium and is a truly nonthermal effect. Full reversal
of the magnetization could not be attained with these pulse strengths and durations,
but control of the magnetization was demonstrated [66]. Further results from recent
IFE experiments can be found in the review [98]. All-optical, nonthermal magnetization
reversal has not yet been demonstrated, but it seems to be just a matter of time.

http://www.nature.com/nature/index.html
http://www.nature.com/nature/index.html
http://www.nature.com/nature/index.html
http://www.nature.com/nature/index.html


Chapter 3

Conservation of Angular

Momentum: Small Systems

3.1 Introduction

The importance of angular momentum transfer in magnetic switching has already been
mentioned in Chapter 1, but the primary message is worth repeating: the rate of angular

momentum transfer into the magnetization places a fundamental limit on the speed of

magnetic switching. This rate is determined by the reservoir used to supply angular
momentum. The maximum speed of switching can only be estimated once the active
angular momentum reservoir has been identified.

As with other optical methods of magnetic switching, the source of angular momen-
tum in the IFE has not been identified1, despite much theoretical and experimental
work [66, 99, 150, 152, 179, 187]. However, the nonthermal nature of the IFE simplifies
the discussion, since several of the reservoirs discussed in Chapter 1 cannot play a role.
Electrons are not excited to higher orbital states except virtually, which means that the
electrons are almost always near the ground state. Under the assumption that the ground-
state manifold consists only of spin excitations (this will be assumed throughout this chap-
ter), it follows that spin cannot be converted into orbital angular momentum. Angular
momentum transfer occurs too rapidly for phonons to be relevant; the proposed mecha-
nisms for increasing the spin-phonon interaction [103, 178] are not applicable, since the
electron population is very close to equilibrium.

In this chapter, I show that the angular momentum is provided by the photons, i.e.
the IFE both drives magnetic switching and provides the necessary angular momentum.
This implies that nonthermal switching can occur within the timescale of a laser pulse,
provided a material with strong enough magnetooptical response can be found. Because
switching occurs via precession and is much faster than relaxation, the magnetization can
be placed arbitrarily close to the switched equilibrium state. Thus the IFE should provide
much faster switching than other optical methods of magnetization reversal, which require

1 There is some confusion about this in the literature, due to an unfortunate naming convention. In
plasma physics, the term “IFE” describes any magnetic field generated by circularly polarized light, even
when the light is absorbed. Angular momentum transfer in this case has been investigated [65,106], and it
has been shown that the absorption of photons transfers angular momentum into the plasma. This result
is not relevant to the nonresonant IFE, which is the subject of this thesis.
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long times to dissipate heat and to relax to equilibrium.
Throughout this chapter, I make several assumptions concerning the system being

studied. These assumptions are made to prevent other physical effects from obscuring the
IFE. Specifically, I assume that circularly polarized light is scattering from a small sample,
i.e. the sample is much smaller than both the wavelength of the light and the width of
the laser beam. The passage to larger samples is described in Chapter 4. Furthermore,
I assume that all states in the ground-state manifold have equal energy. This allows
unrestricted motion between these states even for perfectly monochromatic light. Finally,
I assume that the ground state manifold consists only of magnetic excitations; this allows
the magnetic information to be highlighted and removes complications due to rotational
and vibrational degrees of freedom. The inclusion of rotational and vibrational modes
(corresponding to phonon modes in solids) is, to a first approximation, irrelevant for
magnetooptical effects. These modes will give a small correction to magnetooptical effects
in higher order perturbation theory, but this is beyond the scope of this thesis.

3.2 Angular momentum of light

It has been asserted that in the IFE, the angular momentum of the photons does not
change [98]. This conclusion was reached because the IFE is caused by Raman scattering,
which conserves both photon number and polarization. However, it is shown below that
spin-orbit coupling causes the scattered photons to exhibit a spin-dependent change of
propagation direction. This changes their angular momentum, which is parallel to the
direction of motion. Thus the photons can provide angular momentum, even though their
polarization is unchanged and they are not absorbed.

Considered classically, a change of photon propagation direction is a shift of the inten-
sity distribution of the laser. Although this shift can be related to the angular momentum,
it is simpler to calculate the radiated angular momentum directly. For an electromagnetic
field interacting with a material, conservation of angular momentum is described by [82]

d

dt

∫

V
(Lfield + Lmech)i dV = −ǫilm

∫

S
TjlrmdSj , (3.1)

where ǫilm is the completely antisymmetric unit tensor of third rank, repeated indices are
summed over, Lfield and Lmech are the angular momentum densities for the electromagnetic
field and the sample, respectively, and Tjl is the Maxwell stress tensor:

Tjl =
1

8π

[

2EjEl + 2HjHl − δjl(E
2 +H2)

]

.

Because the light is nonresonant, only motion within the ground-state manifold of the
material is allowed: for a small magnetic sample, the mechanical angular momentum
∫

V LmechdV can be replaced by the spin S(t). Note that the right-hand side of Eq. (3.1)
includes both the spin and orbital angular momentum of the light [4]; for problems with
a single scattering site, there is no need to separate these contributions.

The electric and magnetic fields entering Tjl are superpositions of the homogeneous
laser field

E(r, t) =
1

2

(

E0e
i(ωt−k·r) + c.c.

)

, H(r, t) =
k

k
× E(r, t) (3.2)
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and the radiation from the sample, which is treated as a dipole

d(t) =
1

2

[

d0(ω, t)e
iωt + c.c.

]

. (3.3)

Here, c.c. means complex conjugate. Through spin-orbit coupling, d0(ω, t) ≡ d0(ω,S(t))
depends on the magnetization, which evolves much slower than the period of the light.

Eq. (3.1) is a continuity equation, showing that the rate of change of angular momen-
tum in the volume V is equal to the flow of angular momentum across the boundary S.
By continuity, angular momentum lost by the spin S(t) is not immediately radiated across
the boundary, but flows first into the field within V , reaching the boundary only after
some delay. To circumvent this retardation, the integrals are evaluated assuming that
d0 is constant. Then Lfield is periodic with period 2π/ω, and its contribution vanishes
when Eq. (3.1) is averaged over one period of the light. After performing the surface
integral over an infinitely distant surface, the time-dependence of d0 is reintroduced at
the nonretarded time. In this way, any change of spin angular momentum is immediately
compensated by the radiation, without the need for complicated volume integrals2.

The surface integral in Eq. (3.1) is calculated using the classical expressions for the
electric and magnetic fields of a dipole (see, e.g., Ref. [82]), yielding

d

dt
S(t) =

1

2
Re [d0(ω, t) ×E∗

0] = 〈d(t) × E(r, t)〉. (3.4)

Here, the brackets 〈. . .〉 indicate time-averaging over one period of the light. S(t) and
d0(ω, t) evolve very slowly, and their time-averaging can be neglected. Eq. (3.4) describes
the angular momentum radiated in the interference flux, i.e. only terms linear in both E

and d are retained. Terms in E2 vanish, while terms in d2 are negligible because induced
fields are much weaker than driving fields.

The accuracy of Eq. (3.4) in describing the IFE is limited by the validity of the dipole
approximation (3.3) and the assumption that S(t) has no spatial dependence; both fail
for extended systems. However, the linear dependence on d(t) in Eq. (3.4) implies that
the radiation of angular momentum from an extended system is equal to the sum of the
radiation from the constituents. Provided dipole moments and spin moments can be
sensibly defined for the constituents, the results found here are applicable to large systems
(see chapter 4 for more details).

It is appropriate to briefly consider the assumption that the precession of S(t) and the
associated change of d0(ω, t) can be neglected. The validity of this is more easily shown
in the frame where S(t) is stationary and the driving electric field E(r, t) rotates. The
spatial dependence is neglected and the electric field is written as E(t) = eiωtf(t) + c.c.,
where f(t) changes slowly in time. The general definition of a dipole moment (see, e.g.,
Ref. [116]) is

di(t) =

∫ ∞

−∞
αij(t− t′)Ej(t

′) dt′, (3.5)

2Expressed another way, the volume of integration in Eq. (3.1) is taken to be large enough that only
radiation effects are seen, but small enough that the time taken for this radiation to reach the integration
surface is negligible.
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where the time-dependent polarizability αij(t− t′) vanishes for t < t′ due to causality and
decays rapidly to zero as (t− t′) → ∞. Then since f(t) changes slowly in time, we find

di(t) = αij(ω)Ej(t) +

{

ieiωt d

dt
fj(t)

d

dω
αij(ω) + c.c.

}

. (3.6)

Here, αij(ω) =
∫∞
−∞ αij(t)e

−iωt and terms containing higher than the first derivative of
fj(t) are neglected. Clearly, precession of S(t) can be ignored provided |(dfj(t)/dt) (dαij(ω)/dω)|
is small. In dimensionless quantities, this condition becomes

| d
dt
fj(t)

d

dω
αij(ω)|/

∑

j

|αij(ω)fj(t)| ≪ 1. (3.7)

Note that the sum in the denominator ensures that the components of the dipole moment
are compared to the total “length” of the dipole moment. This reproduces the correct
result that, e.g., the vectors (0, 0, 1) and (0, 10−6, 1) are considered close to each other. (If
considered component-wise, these vectors would appear very different.)

Far from a resonance, the polarizability αij(ω) ∼ 1/(ω − ω0)
2, where ω0 is the nearest

resonance [100, 138]. Thus Eq. (3.7) becomes T |ω − ω0| ≫ 1, where T is the timescale of
precession. Assuming T ∼ 100 fs, which is extremely fast precession, we are justified in
neglecting this precession as long as ω is much more than 10 meV from resonance. This
condition is easily satisfied. Note also that Eq. (3.7) arises when considering whether a
pulse can be treated adiabatically or not. In this case, a realistic rise time for a pulse is
T ∼ 20 fs and ω must be more than 50 meV from resonance. Again, this condition is
easily met, so the adiabatic limit will be assumed in all that follows.

3.3 Effective magnetic field

The expression 〈d(t) × E(r, t)〉 in Eq. (3.4) is the time-averaged torque on a dipole in
an oscillating electric field (see, e.g., Ref. [116]). The appearance of this torque is not
surprising, since the total angular momentum radiated by a dipole must be compensated
by the torque on that dipole3. The new feature described by Eq. (3.4) is that this torque
causes magnetization dynamics. Eq. (3.4) leads to a novel interpretation of the inverse
Faraday effect: light induces a dipole moment, which is deflected from the plane in which
the electric field oscillates by spin-orbit coupling. This deflection leads to a torque on the
dipole moment by the light, causing motion within the ground-state manifold, i.e. rotation
of the spin.

Expressed in terms of an effective magnetic field, Eq. (3.4) becomes

gµBeff × S(t) =
1

2
Re [d0(ω, t) ×E∗

0] . (3.8)

Here and in the next chapter, the gyromagnetic ratio is represented in the form suitable
for atomic physics, i.e. gµ [100].

3This is a very general statement, since torque and change of angular momentum are related by defini-
tion. However, the explicit calculation showing that the torque on a dipole in an electric field is equal and
opposite to the radiation of angular momentum from the dipole was not performed until 1982 [107], and
even that calculation was not for the general case.
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Eq. (3.8) can only be used to recover the components of Beff orthogonal to the spin.
This should come as no surprise: Eq. (3.8) was derived from dynamical considerations,
while the component of Beff parallel to S(t) does not influence the dynamics. To calculate
this component, conservation of energy must be invoked.

The energy of a dipole in an electric field is U = −1
2d(t) · E(r, t) (see, e.g., Ref. [116];

the factor 1
2 arises because the dipole is induced by the field). This energy contains both a

spin-dependent and a spin-independent contribution; the latter is removed by subtracting
the spin-averaged dipole moment and the remainder is identified with the Zeeman energy:

gµBeff · S(t) = −1

4
Re
[

(d0(ω, t) − d0(ω)) ·E∗
0

]

. (3.9)

Here d0(ω) is the time-independent, spin-averaged dipole moment, d0(ω) =
∫

M d0(ω,S) dµ,
where M is the ground-state manifold and dµ is the appropriate normalized measure,
∫

M dµ = 1. (See, e.g., Ref. [195] for details of integration over manifolds.) As above,
rapidly-oscillating terms have been removed by averaging over one period of the light.

Eq. (3.9) is not as accurate as Eq. (3.8). Eq. (3.8) describes the torque on the system,
which (because of the assumptions made) can only be ascribed to an effective magnetic
field. However, Eq. (3.9) describes the energy. Although the spin-independent energy has
been subtracted, there will also be energetic contributions proportional to S2 (the optical
Stark effect [124]) and possibly even higher powers of S. These terms have not been
subtracted, but must be if the Zeeman energy is to be correctly identified. However, such
terms are small and Eq. (3.9) is a reasonable approximation. Note that these additional
terms also arose in the effective Hamiltonian formulation, i.e. in Eq. (2.25).

From Eqs. (3.8)-(3.9) the effective magnetic field is

gµBeff =
1

4S2
Re
{

2S × (d0 × E∗
0) − S

[

(d0 − d0) ·E∗
0

]}

. (3.10)

As for any effective Hamiltonian, this magnetic field should not depend on the state of the
sample within the ground-state manifold, i.e. Beff should not depend on S(t) [32]. Indeed,
this is shown to be true in the next chapter, provided the polarizability d0 is suitably
approximated. If the full polarizability is used, including the S2 and higher order effects
that enter Eq. (3.9), some dependence of Beff on S(t) will be seen. The strength of this
dependence provides a measure of the accuracy of Eqs. (3.9) and (3.10).

3.4 Demonstration using hydrogen atom

To demonstrate the accuracy with which Eq. (3.4) describes the IFE, simulations were
performed of a hydrogen atom interacting with a laser. The IFE causes the electron spin
to precess as it would in a magnetic field. The integral of Eq. (3.4),

S(t) = S(0) +

∫ t

0
〈d(t′) × E(t′)〉dt′, (3.11)

shows that the change of angular momentum of the precessing spin will be compensated
by the radiated angular momentum.
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The hydrogen atom is described by the Hamiltonian

H0 = −1

2
∇2 − 1

r
+ λl · s, (3.12)

where Hartree atomic units (a.u.) are used. The nucleus is treated as a static Coulomb
potential and the spin-orbit coupling λ is a free parameter. (By varying λ, the simulation
time is reduced, and the dependence of the inverse Faraday effect on λ may be investi-
gated.) Following Ref. [152], the interaction with the laser is evaluated in the electric
dipole approximation:

H = H0 + E(r, t) · r. (3.13)

The electric field has the form (3.2) and is switched on adiabatically. The electron wave-
function is expanded using the eigenfunctions of h = −∇2/2 − 1/r, with the expansion
limited to the first 28 spinor eigenfunctions (i.e. up to radial quantum number n = 3).
The atom starts in the ground state |n, l〉 = |1, 0〉 and the initial spin is varied. The
evolution of the wavefunction is determined by solving the Schrödinger equation using the
implicit midpoint method to ensure unitary evolution. The rapid oscillations of the light
are resolved by using a timestep of 0.01 fs.

Guided by Eq. (3.11), I have monitored the evolution of S(t) and
∫

〈d× E〉. Both are
calculated from the wavefunction: the components of S(t) are the expectation values of
the Pauli matrices and d(t) is the expectation value of the position operator r. Fig. 3.1
shows the calculation starting from the initial state S(0) = (0, 0, 1

2) a.u., with parameters
λ = 20 meV, ω = 1 eV and E0 = (1, 0, i) × 10−3 a.u. (corresponding to a laser beam with
intensity of 1015 Wm−2 propagating in the y-direction). For clarity, only a few values of
[S(0) +

∫

d× E] are shown. It is clear that the dipole radiation accounts completely for
the changing angular momentum.

Further calculations revealed that the precession frequency is quadratic in E0 and
linear in λ, there is no precession for light propagating parallel to the spin direction or
for linearly polarized light, and changing the sense of circular polarization reverses the
precession. These are known properties of the IFE [152]. Eq. (3.4) was found to be
accurate: the largest difference between S(t) and [S(0) +

∫

〈d× E〉] was less than 0.01 a.u.
and this difference does not grow in time.

The hydrogen atom can also be used to demonstrate the accuracy of Eq. (3.10). Fig.
3.2 shows Beff calculated for several values of S(0), with λ = 0.02 eV, ω = 1 eV and
E0 = (1, i, 0) × 10−3 a.u. (This time, the light propagates in the z-direction.) The value
of d0 was calculated from linear response, and d0 was determined by setting λ = 0. The
x and y components of Beff are not plotted, as they are less than 1% of the magnitude
of the z component. Due to symmetry, Beff does not depend on Sx or Sy and only the
dependence on Sz is plotted.

The value of Beff varies by less than 3%, indicating that Eq. (3.10) is a good approx-
imation. Furthermore, the dependence of Beff on Sz is almost completely linear — the
deviation from linear behaviour is less than 0.0001%. This suggests that the accuracy of
Eq. (3.10) can be further improved by subtracting the S2 terms from the energy (3.9).
This is beyond the scope of this thesis and remains a goal for future research.

To summarize, I have shown that in the inverse Faraday effect, the light both induces
magnetization dynamics and provides the necessary angular momentum. The angular
momentum gained by the magnetization is compensated by a change of angular momentum
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Figure 3.1: Precession of a spin due to the inverse Faraday effect. Solid line: S(t), circles:
[S(0) +

∫ 〈d × E〉], see Eq. (3.11). Parameters: λ = 0.02 eV, E0 = (1, 0, i) × 10−3 a.u. and
ω = 1 eV.
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Figure 3.2: The effective magnetic field [Eq. (3.10)] as a function of Sz. A straight line has
been added as a guide.
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in the interference pattern between the incident and scattered light. No other angular
momentum sources are required. Magnetization reversal can occur on the timescale of
the laser pulse, which implies that the fundamental speed of magnetic switching could be
less than 100 fs. To exploit this fast switching, magnetic materials are required that have
a strong magnetooptical response and are transparent at typical laser frequencies. The
search for suitable materials requires the calculation of the spin-dependent polarizability,
which is possible for small molecules [19,33,83,114] but remains a challenge for solids.

In the next chapter, the current results are extended to larger systems. In addition,
the link between the IFE described by Eq. (3.10) and the IFE of the previous chapter [see
Eq. (2.16)] is demonstrated.



Chapter 4

Conservation of Angular

Momentum: Extended Systems

Many of the results of the previous chapter are not limited to the case of small systems.
The torque and energy of a dipole in an external field [see Eqs. (3.8) and (3.9)] are locally-
defined quantities, independent of their surroundings. For this reason, Eq. (3.10) is easily
generalized to extended systems:

Beff(r) =
1

4 [m(r, t)]2
Re

{

2m(r, t) × [P(r, ω, t) × E∗
0(r)]

−m(r, t)
[

(P(r, ω, t) − P(r, ω)) · E∗
0(r)

]

}

. (4.1)

Here, in keeping with the usual definitions for an extended system, the spin S has been
replaced by the magnetization m and the dipole moment d0 by the polarization density
P. As in Eq. (3.10), P depends on time through the time-dependent magnetization.

If Eq. (4.1) is to be used, some work is needed to ensure that the polarization density
is correctly defined. For low-density gases, the atomic polarizabilities can be used, while
for solids, the Clausius-Mossotti relation needs to be used to account for internal fields
[100]. This is a minor change and the transition to extended systems seems well-defined.
However, while this may be true from a computational viewpoint (i.e. Eq. (4.1) is the
correct equation for the effective magnetic field), it is not necessarily true in terms of the
physical mechanisms involved.

There are essentially two physical mechanisms considered in chapter 3. The first is the
mechanism by which light rotates the spin: light induces a dipole moment, this is deflected
by spin-orbit coupling and the light generates a torque on this dipole. This mechanism is
still valid in a solid, provided the correct definition of the dipole moment is used.

The other physical mechanism used in chapter 3 involves the conservation of angular
momentum. If the spin rotates, angular momentum must flow into the light. This angular
momentum was found to be radiated in the interference flux, i.e. the interference between
the radiation from the dipole and the original beam.

For several reasons, this mechanism is not appropriate in the context of a solid. First,
quantities radiated via interference can only be summed together if their sources are
incoherent. If the sources are coherent, which is likely to be true for a crystalline solid,
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all interfering fields must be determined before physical quantities can be evaluated. In
other words, the superposition of the radiation fields emitted by all of the dipoles must
be calculated, rather than separately evaluating the angular momentum flux of each and
summing these fluxes. The second objection to the use of the interference flux is more
pragmatic: once light has entered a solid, there is no “original beam” remaining, so the
interference of the dipole radiation with the original beam is undefined. All light entering
a solid is influenced by the solid and it would be incorrect to assume otherwise.

Despite these fundamental objections, the overall picture of angular momentum flowing
into the light must remain true. If light takes up angular momentum on a local scale, this
angular momentum must still be present in the light when a larger scale is considered.
As described in chapter 3, no other angular momentum reservoir is available. But if the
angular momentum is not in the interference flux, where is it? This chapter is devoted
to answering this question and determining the experimental consequences of the answer.
Gaussian units are used throughout this chapter.

4.1 Description of the problem

The propagation of light through a solid is governed by Maxwell’s equations [82,116]:

∇ · D = 0, ∇× E = −1

c
Ḃ

∇ ·B = 0, ∇× H =
1

c
Ḋ, (4.2)

where the charge density and current have been set to zero. The electric displacement
D and magnetic induction B are assumed to be linear in the electric and magnetic fields
respectively:

Di = ǫijEj, Bi = µijHj . (4.3)

Here, the Einstein notation of summing over repeated indices is used.
The simplest medium admitting magnetooptical effects is an isotropic crystal with

a magnetization. Such a medium will exhibit the Faraday effect [116] and is therefore
expected to exhibit the inverse Faraday effect, too. A medium of this type has a dielectric
tensor of the form [116]

ǫij = ǫδij + iγ







0 −mz my

mz 0 −mx

−my mx 0






(4.4)

where m = (mx,my,mz) is the magnetization and γ is the magnetooptical coupling con-
stant. Note the similarity between Eq. (4.4) and Eq. (2.1).

All magnetooptical effects have been placed in the dielectric tensor, so the permeability
tensor µij can be set equal to the identity matrix; this is permissible at optical and higher
frequencies [116, 151]. Monochromatic waves are used in the following, so the frequency
dependence of ǫ and γ can be neglected. I consider only the case of normal incidence; the
reasons making this a convenient choice are described in the next section. The crystal is
assumed to occupy the region z > 0 and the incident light propagates in the z-direction.
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If the magnetization is in the z-direction, m = (0, 0,m), then the inverse Faraday
effect will not generate a torque. The energy of the system will change by the Zeeman
energy due to the effective magnetic field, but no dynamics will occur. On the other hand,
linearly polarized light passing through such a system will undergo Faraday rotation. As
in chapter 2, I assume that |γm| ≪ ǫ. Similarly to Eq. (2.7), the Faraday rotation angle
will be

β = kdγm/2
√
ǫ. (4.5)

Here, k is the wave-vector of the incident light (k = ω/c) and d is the distance through
the sample that the light has propagated before being measured. Eq. (4.5) will be useful
below, as it allows us to relate the physically measurable Faraday rotation angle to the
magnetooptical constant γ.

For the IFE to have a dynamical effect, there should be a component of the magne-
tization orthogonal to the z-direction. For simplicity, I assume that the magnetization is
constrained to the xy-plane. In this case, a simple rotation of the coordinate system makes
the magnetization point along the y-direction. I therefore assume that the magnetization

is initially oriented along the y-axis. The dielectric tensor (4.4) becomes

ǫij =







ǫ 0 iγm
0 ǫ 0

−iγm 0 ǫ






(4.6)

Note that γ is measured in units of inverse magnetization, since γm is dimensionless.

4.2 Orbital angular momentum of light

A similar problem to the current one was studied by Moe and Happer in Ref. [133]. They
studied the problem of light passing through a transparent anisotropic atomic vapour. In
their work, they showed that angular momentum is conserved, i.e. that the torque on the
atoms is equal to the loss of angular momentum of the light per unit time. Their work
demonstrates that other reservoirs of angular momentum are not needed for magnetoop-
tical effects to occur. However, they focused only on what happens to the light. They did
not consider the effect of the torque on the spins, nor did they make the connection to the
inverse Faraday effect. Furthermore, they considered only the case of an infinitely large
gas, from which the light never emerges. I show below that the emergence of the light has
some important effects.

Ref. [133] was written to make certain arguments in Ref. [67] more rigorous. In Ref.
[67], it was shown that the transfer of angular momentum between the atoms and the
light has negligible influence on the polarization of the light, provided the atomic spin is
transverse to the light propagation. Therefore, it was claimed that the orbital angular
momentum, r × h̄k, of the photons must be modified if a torque is present. (See, e.g.,
Ref. [4] for details about the orbital momentum of a photon.) The photons are not
scattered to a different k-value, so the torque causes a change of r, i.e. a beam of light
passing through a medium in a transverse magnetic field will be laterally displaced. This
was confirmed experimentally by Blasberg and Suter [20] and Schlesser and Weis [169],
although both groups used light very close to resonance, so that the anisotropy of the
medium was caused by absorptive processes and differs from the inverse Faraday effect.
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Note that this lateral displacement occurs even in the case of normal incidence. It
is well known that if light is incident on a sample at an oblique angle, light emerging
on the other side of the sample will be parallel to the incident light, but displaced [84].
On the other hand, it is usual for light meeting a sample in normal incidence to pass
through the sample without a change of position [84]. Magnetooptical effects cause a
lateral displacement even in normal incidence. All results in this chapter are derived for
the case of normal incidence. This is a convenient choice, because any lateral displacements
can only be attributed to magnetooptical effects; in the case of oblique incidence, the non-
magnetic displacement would need to be subtracted.

Returning to the problem of the IFE in solids, Refs. [67,133] show that a change of the
polarization of the light is unlikely to contain the missing angular momentum. This is not
surprising, because the polarization of the light is related to its spin angular momentum,
which always points in the direction of propagation. Since the IFE changes the angular
momentum transverse to the direction of propagation, the spin angular momentum cannot
contribute. Thus it is only the orbital angular momentum of the light that needs to be
considered.

The contribution from the orbital momentum is easily understood in terms of Fig. 4.1,
which is taken from Ref. [169]. As light enters the material, it is deflected slightly. More
precisely, its Poynting vector is deflected. Its momentum, which points in the direction
of k, remains in the same direction. After propagating through the medium, the light is
laterally displaced, but emerges parallel to the direction in which it entered. This displace-
ment without a change of final propagation direction gives rise to an angular momentum
in the direction orthogonal to both the displacement and propagation (the z-direction,
in the case of Fig. 4.1). So for the IFE, we may anticipate that as the light induces a
torque on the spins, it is displaced in a direction orthogonal to its linear momentum. By
measuring the displacement of the beam, it is possible to estimate the angular momentum
that has been deposited in the sample.

This discussion highlights one of the primary differences between the analysis for ex-
tended systems and that for small systems — the finite breadth of the laser beam. With
small systems, the laser is much broader than the system. The boundary of the system
must be included — it is automatically included in the definition of the dipole moment
of the system — but since the boundary of the laser beam is far from the region where
angular momentum transfer occurs, the beam can be treated as infinitely wide.

In the case of an extended system, transfer of angular momentum is expected to happen
throughout the sample, not only at the boundaries. As such, it should be safe to neglect
the boundaries and treat the system as infinite. If the light is also taken as infinitely broad,
then no angular momentum transfer will be seen. That is, there will be no interference
flux and there can be no displacement of the “beam” — an infinitely broad beam does
not have a position. Therefore the laser beam must have a finite breadth.

The difference is clear. If the angular momentum is to be radiated in the interference
flux, the system boundaries must be taken into account, so the system must be finite. If
angular momentum is to be transferred into the orbital angular momentum of the laser
beam, the beam must have a well-defined position and therefore must be finite. However,
the local picture of light imposing a torque on an induced dipole is the same in both cases.
This explains why Eq. (4.1) can be valid even in the case of a solid.

Although the beam must be finite, it need not be particularly narrow. It is generally
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Figure 4.1: The deflection of light as it propagates through an anisotropic medium, taken from
Ref. [169]. (a) shows the change of direction of the Poynting vector as the light enters the
medium (in this case, an atomic vapour in a magnetic field). (b) shows the full experimental
setup used in Ref. [169]. The light emerges parallel to the incident direction, but laterally
displaced. Note that the choice of coordinate axes in these figures does not coincide with the
axes used in the text. This figure is reused with permission from R. Schlesser and A. Weis,
Optics Letters 17, 1015 (1992). Copyright 1992, Optical Society of America.
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true, however, that any calculations for a broad beam can be performed using an infinite
plane wave, provided only those quantities are considered that do not depend on the light
being finite. For example, conservation of angular momentum as expressed in Eq. (3.1)
cannot be used, since it involves integrals over infinite surfaces and volumes. On the
other hand, the Poynting vector and momentum density of a broad beam will coincide
almost exactly with the same quantities for an infinite plane wave. Therefore, despite
insisting that the beam must be finite, I have performed the following calculations using
a homogeneous plane wave, with care taken to use only well-defined quantities.

4.3 Propagation of light

The quantity of interest is the lateral displacement of the laser beam. This displacement
can be measured as the shift of the peak intensity of the beam, i.e. shift of the peak energy.
Since the Poynting vector describes the flow of energy, it follows that the displacement is
related to the direction of the Poynting vector in the system. This vector is calculated
below. The momentum density, necessary for calculating the angular momentum, is also
calculated. In this section, the solid is assumed to extend infinitely far in the z-direction.
The effect of a second interface is considered in section 4.5.

At z = 0, a homogeneous plane wave

E(r, t) =
1

2

(

E0e
i(ωt−kz) + c.c.

)

(4.7)

is incident on a material with dielectric tensor (4.6) and permeability µ = 1. Using
Maxwell’s equations (4.2) and the boundary conditions

Dout
z = Din

z , Eout
‖ = Ein

‖ , Bout = Bin (4.8)

(where “in” means inside the medium and “out” means in the vacuum), it can be shown
that the electric field inside the medium is [203]

E(r, t) =
1

2

(

E+n+e
i(ωt−k+z) + E−n−e

i(ωt−k−z) + c.c
)

. (4.9)

The normal modes and their associated wavevectors are

n+ =







0
1
0






, k+ = k

√
ǫ

n− =







1
0

iγm/ǫ






, k− = k

√

ǫ− γ2m2/ǫ, (4.10)

and the coefficients of these modes in Eq. (4.9) are

E+ =
2k

k + k+
Ey

0 , E− =
2k

k + k−
Ex

0 . (4.11)

There is also a reflected wave in the vacuum region, but since this is not displaced relative
to the incident beam, it carries no orbital angular momentum and can be ignored.
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The magnetic field inside the medium can be calculated from the electric field (4.9)
and Faraday’s law ∇× E = −1

c Ḃ, yielding

B(r, t) = H(r, t) =
1

2

(

−k+

k
E+x̂ei(ωt−k+z) +

k−
k
E−ŷei(ωt−k−z) + c.c

)

. (4.12)

Here I have used the notation x̂ for the unit vector in the x-direction and similar notation
for ŷ and ẑ. From the electric and magnetic fields, (4.9) and (4.12), the Poynting vector
can be calculated [82,116]

S ≡ c

4π
(E × H)

=
c

8π
ẑ

(

k+

k
|E+|2 +

k−
k
|E−|2

)

− c

8π
ŷ
k+γm

kǫ
Re
(

iE−E
∗
+e

i(k+−k−)z
)

. (4.13)

The rapidly oscillating terms proportional to e±2iωt have been dropped from this equation.
Eq. (4.13) has several important features. First, since γm/ǫ≪ 1, the Poynting vector

is almost parallel to ẑ at all times. The light continues almost in the same direction that
it entered, with only a small lateral displacement. Second, this displacement is in the
y-direction. Since we expect the momentum to travel in the z-direction, the torque will
be parallel to x̂. This is the correct direction for the torque on a magnetization mŷ in a
magnetic field Bẑ. Finally, reversing the sign of either Ex

0 or Ey
0 will change the direction

of displacement, because of Eq. (4.11). Hence a change of the sense of circular polarization
will change the sense of the torque.

These comments show that Eq. (4.13) has the correct qualitative features to explain
the IFE in solids. For a quantitative analysis, the momentum density g is required [82].
The calculation of this is straightforward and yields

g ≡ 1

4πc
(D × B)

=
1

8πc
ẑ

[

ǫ
k+

k
|E+|2 +

(

ǫ− γ2m2

ǫ

)

k−
k
|E−|2

]

. (4.14)

The lateral displacement of the beam is also needed. This is calculated from the Poynting
vector as follows. First, the Poynting vector is normalized so that its z-component is
unity. The normalized vector Ŝ is then integrated over z from the origin to z = z0.
This provides a vector describing the beam position after the beam has propagated in the
sample for a distance z0 in the z-direction. The lateral components of this vector provide
the displacement of the light. In equations, this reads

Ŝ = ẑ− ŷ
k+γm

ǫk+|E+|2 + ǫk−|E−|2
Re
(

iE−E
∗
+e

i(k+−k−)z
)

(4.15)

and

R ≡
∫ z0

0
Ŝ dz

= z0 ẑ− ŷ
k+γm

ǫk+|E+|2 + ǫk−|E−|2
Re

(

iE−E
∗
+

ei(k+−k−)z0 − 1

i(k+ − k−)

)

. (4.16)
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Eqs. (4.14) and (4.16) allow us to determine the angular momentum density of the
light after it has propagated in the sample for a distance of z0 (in the z-direction):

L ≡ R × g

= −x̂
k+γm

8πck(|E+|2 + k−

k+
|E−|2)

[

|E+|2 +

(

1 − γ2m2

ǫ2

)

k−
k+

|E−|2
]

×Re

(

iE−E
∗
+

ei(k+−k−)z0 − 1

i(k+ − k−)

)

. (4.17)

At this point, it becomes useful to make several approximations. The first has already
been mentioned above in the derivation of Eq. (4.5) and in the discussion following Eq.
(4.13): γm≪ ǫ. This simplifies Eq. (4.17) and also yields k+ ≈ k− [see Eq. (4.10)]. From
this, it follows that both modes propagate with the same phase velocity, vp = c/

√
ǫ.

However, k+ = k− (or rather |k+ − k−| ≪ 1) is not a dimensionless equation and is
therefore not an acceptable approximation. The only dimensionless quantity in Eq. (4.17)
containing (k+−k−) is the product (k+−k−)z0. This leads us to the next approximation1:
(k+ − k−)z0 ≪ 1 ⇒ k

√
ǫz0 ≪ ǫ2/γ2m2.

With these two approximations in place, Eq. (4.17) becomes

L = −x̂
γm

√
ǫz0

8πc
Re
(

iE−E
∗
+

)

. (4.18)

This is the angular momentum density of the light at a depth of z0. The torque on the
light at this depth can be estimated using the group velocity of the light:

d

dt
L = vg

d

dz0
L = −x̂

γm

8π
Re
(

iE−E
∗
+

)

. (4.19)

Here, I have used the group velocity vg = c/
√
ǫ and neglected the transverse components

of this velocity. As noted in the discussion following Eq. (4.13), these components are of
order γm/ǫ≪ 1.

Eq. (4.19) is the torque on the light. An equal and opposite torque is imposed on the
material. As in the previous chapter, this torque can be identified as a magnetic field.
Before introducing this field, it is useful to rewrite Eq. (4.19) in coordinate-free form and
in terms of the external electric field of the light, E0. Using Eq. (4.11) and the relation
x̂ = ŷ × ẑ, the torque on the material T can be expressed as

T =
γ

4π(1 +
√
ǫ)2

mŷ × (iE0 ×E∗
0) . (4.20)

The vector (iE0 × E∗
0) is real-valued and oriented in the z-direction for light propagating

along z; its magnitude is maximized for circularly polarized light and vanishes in the case

1This approximation implies that our attention is focused only on a region near the surface of the
material. However, because magnetooptical effects are quite weak, this “surface region” can be quite
thick, e.g. assuming γm/ǫ ≤ 0.01 (which is true even for materials with a very strong magnetooptical effect
[31,182,210]) and assuming the light has an optical wavelength (i.e. k ≈ 1/700 nm−1), this approximation
is still valid at a depth of several hundred micrometres. Thus this approximation holds throughout the
samples used in Ref. [99], which were around 60 µm thick.
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of linear polarization (see Appendix A for details). This vector also arises in the classical
derivation of the IFE, as shown by Eq. (2.16).

The torque (4.20) has been obtained directly from Eq. (4.19). It is easily shown
that exactly the same torque is found using the definition T = P×E of the torque by an
electric field on a dielectric. Here, P = (D−E)/4π is the macroscopic polarization density
calculated from Eqs. (4.6) and (4.9). The equality of these torques shows that angular
momentum has been conserved. This result is equivalent to that derived in Ref. [133].

Eq. (4.20) is almost in the required form. All that remains is to note that m = mŷ and
to introduce the effective magnetic field Beff and one obtains the solid-state equivalent of
Eq. (3.8):

Beff × m(t) = − γ

4π(1 +
√
ǫ)2

(iE0 × E∗
0) × m. (4.21)

As in the previous chapter, this equation identifies the components of the magnetic
field orthogonal to the magnetization. To recover the parallel component, the Zeeman
energy is needed. However, the calculation of this is not as straightforward as before.
The problem is that there are many contributions to the energy that are linear in the
magnetization and yet should not be included in the Zeeman energy. These terms arise
because the transmission and reflection coefficients can be linear in the magnetization.

Consider two possible extremes, m = mŷ and m = mẑ, with the light propagating
along the z-axis in both cases. For the first case, the electric and magnetic fields have
already been calculated in Eqs. (4.9) and (4.12). The total energy is

U =
1

8π
(E ·D + B · H) (4.22)

and it is trivial to see that the term linear in m vanishes. Indeed, the only field component
that is linear in m is Ez and this multiplies Dz = 0. Thus the Zeeman energy vanishes for
m = mŷ, as expected.

If, on the other hand, m = mẑ, the normal modes and wavevectors coincide with those
given in Eq. (2.3), repeated here for convenience

ñ+ =







1
i
0






, k̃+ = k

√
ǫ+ γm ≈ k

√
ǫ(1 +

γm

2ǫ
)

ñ− =







1
−i
0






, k̃− = k

√
ǫ− γm ≈ k

√
ǫ(1 − γm

2ǫ
). (4.23)

The electric field inside the sample is now

E(r, t) =
1

2

(

Ẽ+ñ+e
i(ωt−k̃+z) + Ẽ−ñ−e

i(ωt−k̃−z) + c.c
)

, (4.24)

with the coefficients

Ẽ+ =
k

k + k̃+

(Ex
0 − iEy

0 ), Ẽ− =
k

k + k̃−
(Ex

0 + iEy
0 ). (4.25)
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The wavevectors (4.23) and the coefficients (4.25) are linear in m. Therefore all of the
fields entering the energy (4.22) contain terms that are linear in m. The calculation of the
“Zeeman” energy is relatively straightforward, yielding

Umag =
γ

2π(1 +
√
ǫ)3

(iE0 × E∗
0) ·m. (4.26)

Comparing Eqs. (4.21) and (4.26), we see that the coefficients differ by a factor of −2/(1+√
ǫ). Even the sign is incorrect!

The sign error is easily corrected by noting that Eq. (4.22) is the energy stored in the
fields, while the Zeeman energy is the energy of the magnetization. By energy conservation,
these energies are opposite in sign and Eq. (4.26) should be multiplied by −1.

A further factor of 1/(1 +
√
ǫ) arises because the transmission coefficients (4.25) are

linear in m, i.e. the intensity of light within the sample depends linearly on the mag-
netization. Clearly if the intensity of the light is changed, the strength of the inverse
Faraday effect must also change. This is not a fundamental change in the IFE, merely a
consequence of the fact that the reflection of light depends on the magnetization. It does
not occur for small samples, where reflection is negligible and the intensity of the light is
independent of the spin.

Finally, the factor of 2 enters because the magnetic contribution to the energy, B·H/8π,
is identical to the contribution from the electric fields, E·D/8π. This is in stark contrast to
the previous chapter, where the IFE was described in terms of an electric field interacting
with an induced dipole and the magnetic field of the light played no role. The reason for the
appearance of a magnetic energy is clear from Eqs. (4.23) and (4.25): both the wavelengths
and the transmission coefficients are linear in m. A smaller wavelength implies that more
periods of the light fit into a given distance, increasing the energy density. Similarly, a
larger transmission coefficient increases the intensity and thus the energy density. Neither
result has any connection to the IFE and both should be subtracted if the correct Zeeman
energy is to be found.

Having identified the spurious factors entering Eq. (4.26), the question remains of how
to correct these. Fortunately, this is easily done by setting k̃+ = k̃−. This corrects both
the change of wavelength and the change of transmission coefficients. In this case, the
Zeeman energy is

Umag = − γ

4π(1 +
√
ǫ)2

(iE0 × E∗
0) · m. (4.27)

This coincides with the Zeeman energy expected from Eq. (4.21). Therefore the effective
magnetic field is

Beff = − γ

4π(1 +
√
ǫ)2

(iE0 × E∗
0) , (4.28)

The above-mentioned problem that both the reflection of light and the wavelength
depend on the magnetization cannot be neglected in experiment. However, these effects
only influence the energy of the system, not the precession of the magnetization. This
precession will be governed by the magnetic field (4.28). The difference of energy will only
be noticed when extremely long laser pulses are used and relaxation in the effective field
dominates the precessional dynamics.

Finally, it is instructive to compare Eq. (4.28) with Eq. (4.1), which is the direct gener-
alization of the results of the previous chapter to extended systems. At first glance, these
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equations seem unrelated. Eq. (4.1) contains the magnetization m and the polarization
density P0, while Eq. (4.28) contains neither of these. However, it was noted in the previ-
ous chapter that the effective magnetic field cannot depend on m; it should be possible to
cancel m from Eq. (4.1). Furthermore, the polarization is related to the electric field by
the dielectric tensor (4.4). This suggests that it may be possible to relate these equations.

First, it is necessary to eliminate the polarizability from (4.1). From the dielectric
tensor (4.4), the polarization can be written

P0 =
ǫ− 1

4π
E0 +

iγ

4π
m× E0. (4.29)

Averaging the polarization over all directions of magnetization yields

P0 =
ǫ− 1

4π
E0. (4.30)

Substituting this into Eq. (4.1) yields (after some straightforward manipulation)

B̃eff = − γ

16π
(iE0 × E∗

0) , (4.31)

where a tilde has been used to distinguish this field from that in Eq. (4.28). Note that
Eq. (4.31) coincides exactly with Eq. (2.16).

Eqs. (4.28) and (4.31) differ by a factor of 4/(1 +
√
ǫ)2. This is exactly the factor

relating the intensity of light within the medium to the intensity of the incident light [see
Eq. (4.11)]. The reason for this difference is clear. Eq. (4.31) was derived for a small
system; light is scattered but reflection is extremely weak. Eq. (4.28) refers to a larger
system, where reflection cannot be neglected. Such a system will experience a slightly
weaker intensity of light and therefore exhibit a diminished inverse Faraday effect2. (Note
that 4/(1 +

√
ǫ)2 < 1.) However, I show in section 4.5 that if the system has a finite

thickness, multiple reflections cause additional contributions to the IFE and Eq. (4.31) is
recovered.

Finally, it should be noted that in the above, I have neglected the precession of the
magnetization, i.e. Eq. (4.28) was derived for a static magnetization. This is acceptable
for two reasons. The first is that the effective magnetic field does not depend on the
magnetization. The magnetization will experience the same field throughout its precession.
Secondly, the timescale on which precession occurs is much longer than the time required
to form a polarization density. The change of magnetization is therefore adiabatic and
can be ignored3.

Nonetheless, there are two features about the precession of the magnetization that
must be considered in experiments. The first is that the surface at which the light is
incident will feel the magnetic field first. The magnetization nearest this surface will
start precessing before the magnetization deeper in the sample, creating a small magnetic

2This change of intensity is independent of the magnetization, making this effect different to that
discussed immediately after Eq. (4.26).

3Strictly speaking, the condition for adiabaticity is Tdǫij/dω ≪ 1, where T is the period of precession.
Far from resonance, dǫij/dω is dominated by the distance to the nearest resonance peak. If the precession
period is 100 fs, which is extremely fast, the adiabatic condition is satisfied provided the frequency of light
is much more than 10 meV from resonance. This condition is easily achieved. For further details, see the
discussion in chapter 3.
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gradient. If the pulse has a slow rise-time compared to the period of magnetic precession,
this gradient will be visible. (In general, this condition is unlikely to be satisfied unless
the experiment has been designed with this end in mind.)

Secondly, if the pulse length is large compared to the precession period, different
parts of the pulse will see different magnetizations and be displaced in different directions.
Depending on the beam width and the magnitude of displacement, this will either manifest
itself as the broadening of the beam or as the formation of a circle of high-intensity light
with a dark spot in the middle. This effect will not be visible for femtosecond laser pulses,
but if much longer pulses (e.g. of nanosecond duration) are used, it will be apparent.

4.4 Change of polarization

The above results rely on the fact that (k+ − k−)z ≪ 1. Of course, this will not be valid
for very thick samples. It will also fail in the case of multiple reflections in thin samples:
once the pulse has traversed the sample several times, it will have accumulated a large
phase shift (although it may have negligible amplitude by this point). I consider here what
happens when the assumption (k+ − k−)z ≪ 1 is relaxed. For this section, it is assumed
that the magnetization is in the y-direction and that the light is circularly polarized, i.e.
iE−E∗

+ is real [see Eq. (4.11)].
Consider Eq. (4.16) without assuming (k+−k−)z ≪ 1. For ease of notation, I introduce

the real constant

C =
k+γm

ǫk+|E+|2 + ǫk−|E−|2
iE−E

∗
+. (4.32)

Note that the assumption γm ≪ ǫ is retained here, so that C ≪ 1. The displacement
vector (4.16) becomes

R = z0 ẑ − ŷCRe

(

ei(k+−k−)z0 − 1

i(k+ − k−)

)

= z0 ẑ − ŷC
sin(k+ − k−)z0

k+ − k−
. (4.33)

For small (k+ − k−)z0, the light beam is shifted in the y-direction by a small amount
that grows linearly with z0. As (k+ − k−)z0 approaches π/2, the growth of the lateral
displacement starts to diminish. It reaches a maximum value and then starts to move back
towards the y = 0 line. The maximum value attained is very large, since 1/(k+ − k−) ∼
ǫ2/γ2m2 ≫ 1, but is smaller than the distance traveled in the z-direction by a factor of
2C/π.

If the light beam starts moving back towards zero displacement, its angular momentum
density must decrease. Indeed, at z0 = π/(k+ − k−), the light is back at y = 0 and
contains no angular momentum density. But while propagating through the initial part of
the sample, it imposed a torque on the magnetization. What has happened to this angular
momentum?

The answer is contained in Eqs. (4.9) and (4.10). After a distance z0 = π/2(k+ − k−),
the phase of the normal mode n+ has changed by π

2 more than the phase of n−. The
light, which started out circularly polarized, has become linearly polarized. As the light
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continues to propagate beyond this point, it gains a circular polarization of the opposite
sense and causes a reversed inverse Faraday effect. All the atoms between z0 = π/2(k+ −
k−) and z0 = π/(k+ − k−) experience a magnetic field in the opposite direction to those
between z0 = 0 and z0 = π/2(k+ − k−) and their contributions to the angular momentum
cancel. If the sample is large enough, regions of differently oriented precession will be
visible.

In the case of multiple reflections, it will be shown below that the reflected light
propagates back along the original path. The atoms that lie in this path will experience
different magnetic fields from the different polarizations of multiply scattered light. If the
sample is chosen to have the thickness z0 = π/2(k+ − k−) and if losses due to reflection
can be ignored (i.e. a negligible amount of light is transmitted into the vacuum) then the
magnetic fields from forward and backward propagating light will cancel each other and
there will be no precession. On the other hand, if a thickness z0 = π/(k+−k−) is used, the
magnetic fields from forward and backward propagating light will have the same sign and
the effective field is doubled. This magnetic field will be different at different depths in the
sample and, as with an infinitely thick sample (with no reflection), regions of differently
oriented precession will be visible.

Samples used in experiments will not be infinitely thick. It is clear from the above
discussion that reflection from the second interface, and all subsequent reflections, have an
influence on the IFE. The following section shows how the inclusion of the second interface
changes the analysis.

4.5 The second interface

4.5.1 First reflection

The results of section 4.3 and Ref. [133] were derived for the light while it is still in the
medium. However, as indicated in Fig. 4.1 (b), the light exits the medium before being
measured. If the light is to be used to estimate the angular momentum transferred to the
sample, this second interface must be taken into account. Furthermore, reflection from the
second interface gives rise to additional magnetic fields that should be taken into account.

Estimates of the effect of the second interface can be made by treating the fields (4.9)
and (4.12) as incident waves on the second interface and calculating the transmission and
reflection coefficients. Such a calculation is not perfect, as it ignores interference effects.
Nonetheless, this “first reflection” gives several insights into the problem and it is useful
to consider this case before the full multiple-reflection calculation is performed.

The calculation of reflection and transmission at the second interface is very similar
to the calculation given in section 4.3 for the first interface. It is straightforward to show
that the transmitted electric field is

E(r, t) =
1

2

(

ET e
i(ωt−kz) + c.c.

)

(4.34)

with

Ex
T e

−ikd =
2k−
k + k−

E−e
−ik−d, Ey

T e
−ikd =

2k+

k + k+
E+e

−ik+d. (4.35)
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Here, d is the thickness of the sample and E± are given in Eq. (4.11). Likewise, the
reflected field can be calculated:

E(r, t) =
1

2

(

Ẽ+n+e
i(ωt+k+z) + Ẽ−n−e

i(ωt+k−z) + c.c
)

(4.36)

with

Ẽ+ =
k+ − k

k+ + k
E+e

−2ik+d, Ẽ− =
k− − k

k− + k
E+e

−2ik−d. (4.37)

The transmitted wave (4.34) propagates in the z-direction, as expected. Its intensity
is less than that of the wave inside the medium, which should be taken into account if
quantitative estimates of the angular momentum transferred into the medium are to be
made by measuring the transmitted light, but again, this is the expected result.

The properties of the reflected beam are also not surprising. The Poynting vector for
(4.36) can be calculated and it is found to be almost exactly the negative of the Poynting
vector (4.13). The only differences are its magnitude and the phase factor ei(k+−k−)z,
which changes to ei(k+−k−)(2d−z). The phase factor is different because the light has
already propagated through the sample a distance d, but since (k+ − k−)d ≪ 1, the
difference in phase is negligible for the first reflected wave. (The importance of the phase
in multiple reflections has already been mentioned in the previous section and is discussed
further below.) The difference of magnitudes is also clear: not all the light in the medium
is reflected. Therefore the energy density of the reflected wave is less than that of the
incident wave. However, this changes the amplitude of both the ẑ and ŷ components
by the same factor and the direction of the reflected Poynting vector is almost exactly
opposite that of the incident vector (4.13).

Since the Poynting vector of the reflected beam is opposite that of the incident beam,
the light returns along its original path. Both the direction of travel and the helicity of
the light are inverted, so the effective magnetic field due to the reflected beam will be
similar to that from the incident beam, i.e. it will point in the same direction, but will be
smaller in magnitude. Ignoring the phase shift (for now) and setting k+ = k− = k

√
ǫ, the

additional effective magnetic field is

Breflected =

(√
ǫ− 1√
ǫ+ 1

)2

Bincident, (4.38)

where Bincident is the field given in Eq. (4.28).

Eq. (4.38) allows an approximate generalization to the treatment of multiple scattering.
When the reflected wave returns to the original interface, some part of it will reflect again
and a similar equation will hold. Therefore the total effective magnetic field will be a
geometric series:

Btotal = Bincident +

(√
ǫ− 1√
ǫ+ 1

)2

Bincident +

(√
ǫ− 1√
ǫ+ 1

)4

Bincident + . . .

=
(
√
ǫ+ 1)2

4
√
ǫ

Bincident. (4.39)
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This is the same as Eq. (4.31), the equation describing the IFE in small systems, dimin-
ished by a factor 1/

√
ǫ. It will be shown below that this factor arises due to the incorrect

treatment of interference. Eq. (4.39) also ignores the cumulative phase change from multi-
ple reflections and, even if it correctly included interference, would only apply to extremely
thin samples. A correct treatment of multiple reflection is presented below, but first, I
discuss the effect of the reflected beam on angular momentum.

4.5.2 Loss of angular momentum

Although the reflected wave allows the approximate recovery of Eq. (4.31), it brings with
it an alarming contradiction. To see this, consider a short pulse traveling through the
medium. As it travels, it is laterally displaced, gathering angular momentum. Assume
that immediately before colliding with the second interface, it has angular momentum
density L0. After hitting the interface, some part of it is transmitted. The transmitted
wave continues in the same direction with the same displacement and therefore carries
off the angular momentum TL0, where T is the transmission coefficient. However, the
reflected wave keeps the same displacement (at least initially) but travels in the opposite
direction. Its angular momentum is therefore −RL0. The total angular momentum is now
(T −R)L0 = (1 − 2R)L0 6= L0. Angular momentum is not conserved!

Of course, angular momentum must be conserved. The resolution of this contradiction
lies in the radiation pressure due to the reflected beam [82]. Part of the initial linear
momentum of the beam has been transferred to the material when reflection occurs. This
transfer occurs at a point that is laterally offset from the origin (the point at which the
original beam was incident), so the material gains a mechanical angular momentum. The
sample will start to rotate.

In the current formulation, the spatial dependence of ǫij (through which the position
of the sample enters) is fixed. The sample cannot rotate. Therefore angular momentum
transfer to the sample cannot occur and angular momentum is apparently not conserved.
Maxwell’s equations for a fixed sample do not conserve angular momentum4.

The rotation of the sample will be small and is unlikely to be seen in experiments.
However, this extra source of angular momentum shows that if the angular momentum

transferred to the magnetization is determined by calculating the angular momentum of

the light, the second interface cannot be included.

Consider what would happen if both interfaces were included in the calculation, but
the rotation of the sample was ignored. The total angular momentum transferred to
the magnetization could be calculated from the angular momentum of the light. The
angular momentum of the light is divided into two contributions, one from the light that is
transmitted through the second interface and the other, back-reflected beam that emerges
from the first interface. The latter emerges at the origin and carries no angular momentum.
The former, on the other hand, carries some angular momentum. However, it has a lower
intensity than the intensity of light that initially entered the sample and the estimated

4This is analogous to the well-known fact that Maxwell’s equations do not conserve linear momentum
for a fixed sample. Any light reflected by a medium has its linear momentum changed. If the motion of
the sample is neglected, momentum is not conserved. The resolution of this is to note that the medium
takes up the momentum and starts moving, but this motion is generally not noticeable on any reasonable
timescale.
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magnetic field will be even less than (4.28). This is true even if phase changes are excluded.
Multiple reflections, which should increase the IFE, will diminish it if the rotation of the
sample is excluded.

However, there is a way to determine the strength of the IFE including the effect of
multiple reflections. This relies on the discussion following Eq. (4.20), that the torque on
the magnetization due to the light can be calculated by using T = P × E. In Eq. (4.20),
this torque was balanced by the torque on the light. If the second interface is included,
the torque on the magnetization will be balanced by the torque on the light plus the
mechanical torque on the sample; nonetheless, it will be the correct torque and yield the
correct strength of the IFE. This is evaluated in the next section.

4.5.3 Multiple reflection

The solution to Maxwell’s equations with two interfaces is more intricate than that with
a single interface, but the method is the same. That is, one starts by evaluating the
normal modes in each medium — the vacuum for z < 0, the material for 0 < z < d
and the vacuum for z > d — and then the boundary conditions are used to evaluate the
coefficients [82]. Assuming that the magnetization m = mŷ, the normal modes for the
material have already been determined in Eq. (4.10). The calculation of the coefficients is
straightforward and the electric field in the medium is

E(r, t) =
1

2

(

E+n+e
i(ωt−k+z) + E−n−e

i(ωt−k−z) + Ẽ+n+e
i(ωt+k+z) + Ẽ−n−e

i(ωt+k−z) + c.c
)

(4.40)
with

E+ =
2k(k+ + k)

(k+ + k)2 − (k+ − k)2e−2ik+d
Ey

0 , Ẽ+ =
k+ − k

k+ + k
e−2ik+dE+

E− =
2k(k− + k)

(k− + k)2 − (k− − k)2e−2ik−d
Ex

0 , Ẽ− =
k− − k

k− + k
e−2ik−dE− (4.41)

The polarization density P is determined from the electric field (4.40) and the dielectric
tensor (4.6) and the torque is calculated from T = P × E, yielding

T = x̂
γm

8π
Re(iw) − ẑ

γ2m2

8πǫ
Re(w). (4.42)

Here, I have introduced the auxiliary variable

w =
(

E∗
+e

ik+z + Ẽ∗
+e

−ik+z
) (

E−e
−ik−z + Ẽ−e

ik−z
)

(4.43)

for notational convenience.
The main contribution to the torque (4.42) is in the x-direction; the ẑ component is

smaller than this by a factor of γm/ǫ ≪ 1. The x̂ component has a similar form to the
torque found in Eq. (4.19), except that the sign has changed (since this is the torque on
the magnetization, not on the light), the backward-propagating beam is included and the
coefficients E+ and E− are different.

The ẑ component of the torque is small but nonzero. This component arises because
the light changes its polarization as it propagates through the sample, thereby changing
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spin angular momentum. The comparative smallness of this effect is related to the large
propagation distances that are necessary before the change of polarization is noticeable,
as described in section 4.4. Since this component of the torque is quadratic in m, it cannot
be thought of as being related to an effective magnetic field and it will not be included in
the calculation of the magnetic field below.

In their full generality, Eqs. (4.41) and (4.43) can only be analyzed numerically. How-
ever, approximating k+z = k−z allows us to rewrite w in a more useful form5:

w = 4
(
√
ǫ+ 1)2 + (

√
ǫ− 1)2 + 2(

√
ǫ+ 1)(

√
ǫ− 1) cos [2k

√
ǫ(d+ z)]

(
√
ǫ+ 1)4 + (

√
ǫ− 1)4 − 2(

√
ǫ+ 1)2(

√
ǫ− 1)2 cos (2k

√
ǫd)

(Ey
0 )∗Ex

0 . (4.44)

This equation is correct up to terms of the order of kdγ2m2/ǫ2, which can be neglected
for thin samples. Note that for circularly polarized light, w is purely imaginary and the z-
component of the torque (4.42) vanishes. Similarly, the x-component of the torque vanishes
for linearly polarized light. The IFE will therefore be extremely weak, i.e. of the order
of γ2m2/ǫ2kd, for linearly polarized light. (In fact, it vanishes for linearly polarized light,
but gains a contribution because the light becomes circularly polarized after traversing the
sample several times.)

Once again, the equation for the torque (4.42) is not sufficient to identify the effective
magnetic field. However, if the Zeeman energy for a general magnetization is calculated,
a similar problem will arise as in section 4.3 where the transmission coefficients depend
linearly on m. Instead of repeating this analysis, it is easier simply to use the fact that the
effective magnetic field must be independent of the magnetization [32] and to determine
the Zeeman energy for m = mŷ, which vanishes. Then by moving to a coordinate-free
expression for (Ey

0 )∗Ex
0 , one finds the effective magnetic field

Beff = − γ

4π

(
√
ǫ+ 1)2 + (

√
ǫ− 1)2 + 2(

√
ǫ+ 1)(

√
ǫ− 1) cos [2k

√
ǫ(d+ z)]

(
√
ǫ+ 1)4 + (

√
ǫ− 1)4 − 2(

√
ǫ+ 1)2(

√
ǫ− 1)2 cos (2k

√
ǫd)

(iE0 × E∗
0) .

(4.45)
The field (4.45) has a complicated dependence on d and z. This is related to the

fact that internally reflected light has its polarization changed and can either enhance or
reduce the IFE, and will do so differently at different depths in the sample. Although the
exact dependence on d and z is difficult to visualize unless all the parameters for a given
material are known, the bounds on the effective magnetic field can be determined. The
field is found to satisfy

γ

4π(ǫ+ 1)2
|iE0 ×E∗

0| ≤ Beff ≤ γ

16π
|iE0 × E∗

0|. (4.46)

The upper bound coincides with the magnetic field for a small system (4.31).
If the sample is extremely thin compared to the wavelength of the light, 2k

√
ǫd ≪ 1,

the magnetic field (4.45) becomes equal to the upper bound of Eq. (4.46) for all z. In this
case, Eq. (4.45) coincides with Eq. (4.31). This is the expected result, since an extremely
thin sample is correctly viewed as a “small” sample.

5Note that unlike the case where multiple reflections are taken into account stepwise, extremely long
path lengths of the light do not occur in the correct treatment of multiple reflection. The long path lengths
are implicitly accounted for in the interference pattern. This has the effect that neither k+ nor k− is ever
multiplied by a distance larger than d. Therefore k+z = k−z only needs to be assumed for 0 < z < d; the
validity of this approximation is easily verified.
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The upper bound of Eq. (4.46) coincides with the classical expression for the IFE
(2.16). The equation for a general sample, Eq. (4.45), shows that the correct internal
electric field must be used to determine the magnetic field, not simply the field of the
incident light. These fields are equal for thin samples.

The question can be raised, why are we now able to recover the correct result for a
small system (4.31), while in Eq. (4.39), it was only recovered up to a factor of 1/

√
ǫ ?

Surely the limit 2k
√
ǫd ≪ 1, the limit in which phase shifts can be neglected, is identical

for the two treatments.
The answer to this question lies in interference. The forward- and backward-propagating

waves in the medium interfere with each other. Eq. (4.39) was derived by ignoring inter-
ference and directly summing the effective magnetic fields. Since the magnetic fields
are quadratic in E0, this is similar to ignoring interference when summing intensities of
light [84]. The correct method of performing the calculation is to sum the amplitudes of
the electric fields and then convert the result to an effective magnetic field. In terms of a
geometric series, this becomes

Btotal =



1 +

(√
ǫ− 1√
ǫ+ 1

)

+

(√
ǫ− 1√
ǫ+ 1

)2

+ . . .





2

Bincident

=
(
√
ǫ+ 1)2

4
Bincident. (4.47)

Comparing this to Eq. (4.39) shows that the extra 1/
√
ǫ has been removed and the correct

result obtained.
Thus all possible contradictions have been resolved. Eq. (4.45) is the correct general-

ization of the results of the previous chapter (and the IFE in general) to extended systems,
at least to isotropic systems, and the question of angular momentum flow has been re-
solved. Angular momentum is transferred between the light and the magnetization and
also between the light and the material. The conclusion from chapter 3 still holds: no
other sources of angular momentum are needed for precessional switching via the IFE.

The treatment for anisotropic systems is far more intricate than the current work and
useful analytical results are unlikely. The method for deriving the torque is straightfor-
ward: calculate the polarization density P and the electric field E and use T = P × E.
However, the magnetic field is related only to that part of the torque that is proportional
to the magnetization; the torque due to crystalline anisotropy will cause deformations of
the crystal, not motion of the magnetization.

There are several possible generalizations of the above work. First, we have used the
fact that an effective Hamiltonian does not depend on the state of the system to ignore
the precession of m. While this could be rigorously argued for the case of an infinite solid
using the adiabatic motion of the magnetization, it is not so clear for the case of multiple
reflection. Strictly speaking, the formation of the interference pattern in the solid takes an
infinitely long time. On such a timescale, the motion of the magnetization is not adiabatic.
Reflected light will interact with a different magnetization. While it is expected that this
will simply complicate the equations without changing the effective magnetic field (because
the effective field doesn’t depend on m), this should be shown more rigorously.

Secondly, the above derivation using interference patterns assumes that the light pulse
is quite long compared to the thickness of the sample, i.e. that the front of the pulse
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has traversed the sample several times and set up interference patterns before the end of
the pulse enters the sample. If the pulse is short (e.g. a 100 fs pulse is 30µm long in
the vacuum, which is roughly half the thickness of the samples used in Ref. [99]) there
will be less interference and the magnetic field strength will lie between (4.39) and (4.45).
Furthermore, this magnetic field will not occur all within the timescale of a single pulse
— magnetic fields due to reflected pulses will only occur later. If the dynamics of the
magnetization are to be calculated for comparison with experiment, this delay in the
magnetic field will have to be taken into account. These generalizations would certainly
be interesting and useful, but they are beyond the scope of this thesis.

To conclude this chapter and to allow future comparison with experiment, it is useful
to provide an estimate of the displacement of the light. It is convenient to have this in
terms of other measurable quantities of the material, e.g. the Faraday rotation angle (4.5).
Setting k+ = k− in Eq. (4.16) and assuming the condition (k+ − k−)d ≪ 1, we find that
for circularly polarized light (Ex

0 = ±iEy
0 ),

R = d

(

ẑ∓ ŷ
γm

ǫ

)

. (4.48)

Thus the lateral displacement is

R‖ = ∓ŷβ
2

k
√
ǫ
, (4.49)

where β is the Faraday rotation angle. In terms of β, the condition (k+ − k−)d ≪ 1
becomes

β2 ≪ 1

2
k
√
ǫd. (4.50)

Assuming the wavelength of the light is 0.5µm, β ≈ 1 radian and ǫ = 16 (which is
rather large, but the results do not depend strongly on ǫ), the condition (4.50) is valid
for d ≫ 1µm. Therefore, we may take an arbitrarily large sample provided the total
Faraday rotation through the sample is around 1 radian. (A 3 mm sample of ZnSe under
a magnetic field of 1 T yields this rotation [206].) Given that β = 1 radian, the lateral
displacement (4.49) will be roughly 1µm, which is a measurable displacement (see, e.g.,
Ref. [169]).



Chapter 5

The Difficulty of Measurement

5.1 Measuring ultrafast magnetization dynamics

Ultrafast magnetic switching experiments require ultrafast magnetic imaging techniques.
Unless time-resolved images of the magnetization are available, the timescale on which
reversal occurs cannot be determined, even approximately.

Since the advent of ultrafast switching, optical measurement methods have been favoured.
These offer several advantages: ultrafast switching experiments are already optics-based,
which simplifies the setup and timing of measurements; ultrashort optical pulses can be
made, providing an “instantaneous” measurement of the system; pulses can be made with
very low intensity, so that measurement does not affect the dynamics; optical technol-
ogy is in an advanced state, which means that properties of the probe pulse are reliably
measured; repetition of the experiment is straightforward, enabling good data collection.
However, the most significant advantage of optical measurement methods is that no other

methods of magnetic imaging provide the necessary temporal resolution.

Of course, optical methods have some problems. The main problem is that they are an
indirect measure of magnetization. The measured quantities are related to the effect of the
sample on a probe pulse; the magnetization must be derived from these quantities. Sepa-
rating the magnetization from other optical effects is nontrivial. In Chapter 1, I mentioned
the problem of bleaching, where the depletion of electrons with energy similar to that of
the probe pulse causes a change of the signal that has nothing to do with magnetism.
This problem was important in the early development of ultrafast demagnetization and
has been solved by using the two-colour method. More recently, experiments were per-
formed where the magnetization was recovered from optical measurements using sum rules
derived for an equilibrium distribution [178]; whether these sum rules are valid in highly
nonequilibrium situations is still uncertain. Even close to equilibrium, non-magnetic influ-
ences on the probe pulse can make recovery of the magnetization difficult. In this chapter,
I present our investigation of determining the magnetization in the presence of optical
birefringence. The results of this chapter were published in Ref. [203]1

Kimel et al. [66,99,179], whose experiments inspired a large portion of this thesis, use
Faraday rotation to measure magnetization dynamics. Faraday rotation is the rotation

1These results are reused with permission from S. R. Woodford, A. Bringer and S. Blügel, Journal of
Applied Physics 101, 053912 (2007). Copyright 2007, American Institute of Physics.

60



5.2. Orthoferrites 61

of linearly polarized light as it propagates through a magnetic material. (See Chapter 2
for a detailed explanation.) In isotropic media, the relationship between Faraday rotation
and magnetization is well-known (see, e.g., Refs. [116, 210]). However, the material used
in Ref. [99], DyFeO3, is optically birefringent, which complicates the interpretation sig-
nificantly. Below, I show how to correctly interpret the rotation. In addition, I correct
several deficiencies of the analysis of Ref. [99] and I make recommendations to improve
the reliability of experiments.

For convenience, I briefly repeat here the details of Ref. [99]. Using an ultrashort,
circularly polarized laser pulse, magnetic oscillations were excited in DyFeO3, which is a
canted antiferromagnet with m0 ≈ 8 G. This excitation is caused by the inverse Faraday
effect (IFE). From the phenomenological relationship between the Faraday effect and IFE
[150, 152, 187], Kimel et al calculated the strength of the effective magnetic field to be
around 0.3 T, with a FWHM of 200 fs [99]. Magnetization dynamics were measured
using Faraday rotation and they estimate the amplitude of magnetic oscillations as (m−
m0)/m0 ≈ 1/16. The effect of their calculated effective magnetic pulse has been simulated
in a micromagnetic model using the Landau-Lifshitz equation [148, 149], which yields a
similar amplitude of oscillation.

5.2 Orthoferrites

There are certain aspects of the interpretation of Faraday rotation measurements that
pass unmentioned in [99] and that deserve more attention. These aspects arise in any
experiments performed on orthoferrites, which are not only birefringent [182,183] but also
have enhanced magnetooptical properties due to the so-called “anisotropic orbital quench-
ing” [87]. To obtain a reasonable estimate of the amplitude of magnetization dynamics,
these effects must be taken into account.

It is well known (see, e.g., Ref. [210]) that birefringence limits the rotation angle of
plane-polarized light: instead of being linearly proportional to the sample thickness d, the
rotation is a periodic function of d and can vanish if d is poorly chosen. In addition, there
exists an antiferromagnetic Faraday effect, where the antiferromagnetic vector l causes
rotation of the light’s polarization plane via “anisotropic orbital quenching” [87]. (Sym-
metry considerations show that this effect is only possible in materials with inequivalent
magnetic sublattices, like the orthoferrites [156].) Since the ferromagnetic- and antifer-
romagnetic vectors react differently to external fields, the two rotations can oppose each
other, leading to a reduced observable rotation [108].

For the remainder of this chapter, I assume that the material has the magnetic and
crystal structure of the orthoferrites. More precisely, I consider an orthorhombic crystal,
antiferromagnetically ordered with the antiferromagnetic vector l directed along the a-
axis. Due to a small canting of the antiferromagnetic sublattices, there is a weak residual
ferromagnetic component m directed along the c-axis [200]. Birefringence is due to the
crystal structure, so the birefringence axes coincide with the crystal axes. The light
beam is assumed to propagate parallel to the c-axis. Because I am interested in near-
equilibrium properties, the dynamics of the antiferromagnetic vector will have a negligible
effect. Furthermore, I assume that the ferromagnetic vector remains directed along c at
all times and only its magnitude varies. Therefore l = lâ and m = mĉ, with l a constant
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and m a variable. In what follows, x, y, and z represent the a, b and c directions of the
orthorhombic structure, respectively.

5.3 Faraday rotation in a birefringent weak ferromagnet

The Faraday effect in isotropic, non-magnetically ordered materials predicts that, after
propagating through the material, linearly polarized light remains linearly polarized and
has its polarization plane rotated by the angle (see Eq. (2.7) and Refs. [116,187,210])

β = V Hd, (5.1)

where d is the path length of the light, H is an external magnetic field and V is the
Verdet constant. Eq. (5.1) is only valid when the material is isotropic, optically inactive
and non-magnetically ordered; how Eq. (5.1) changes as birefringence and magnetic order
are introduced is the subject of this section. (Optical activity is the rotation of linearly
polarized light due to a structural asymmetry of the medium. Since I am most interested
in the orthoferrites, which are optically inactive, I do not consider the effect of optical
activity.)

Orthoferrites are orthorhombic structures. In the absence of magnetic order, the di-
electric tensor is symmetric and diagonal: ǫ = diag(ǫx, ǫy, ǫz). In general, ǫx 6= ǫy, so
the material is birefringent. Since the light is assumed to propagate along the z-axis, ǫz
does not enter the analysis. Magnetic ordering introduces antisymmetric terms into this
tensor [156]. It can be shown (see, e.g., Refs. [109, 207] and the references therein) that
the antisymmetric part of ǫij is proportional to the dual of the ferromagnetic vector m,
i.e. ǫxy contains mz, etc. This has already been used in the previous chapters. However,
it is not true for the antiferromagnetic vector l: lx transforms in the same way as mz, so
lx enters ǫxy and not ǫyz, as one might naively expect [109,207].

As noted above, the deviation from magnetic equilibrium is assumed to be small.
Then the antiferromagnetic vector l has fixed length and direction, while the ferromagnetic
vector m, which is the result of a small canting of the antiferromagnetic order, has variable
length and direction. To simplify the analysis, I fix the direction of m and allow only the
magnitude to vary, i.e. m = (0, 0, m). Under these assumptions, ǫxz = ǫyz = 0 and

ǫxy = −ǫyx = i(f1 + ξ1
m

m0
). (5.2)

The phenomenological parameters f1 and ξ1 describe the antiferromagnetic and ferromag-
netic contributions to ǫxy respectively, and m0 is the equilibrium magnitude of m. Intro-
ducing the “ferromagnetic deviation” κ = (m −m0)/m0 allows Eq. (5.2) to be rewritten
as

ǫxy = iγ0(1 + ζκ) ≡ iγ. (5.3)

Here, γ0 = (f1+ξ1) describes the equilibrium magnetooptical properties of the system and
ζ = ξ1/γ0 measures the ferromagnetic contribution to magnetooptics. Experimental values
of γ0 for the various rare-earth orthoferrites at different wavelengths of light can be found in
Ref. [182]. The parameter ζ is more difficult to find in the literature; it has been evaluated
as ζ ≈ 0.23 ± 0.13 for YFeO3 at T = 295 K, using light with wavelength λ = 0.6328
µm [207]. This value should vary with frequency and temperature, although it should
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not vary significantly for different rare-earth orthoferrites, as the rare-earth species has
negligible effect on the magnetic order at high temperatures [105]. Since the dependence
of ζ on temperature and frequency is not known, I fix ζ = 0.23 for the remainder of this
chapter.

Eq. (5.3) is valid provided the magnetic field that caused the change of magnetization
from equilibrium has stopped acting, i.e. Eq. (5.3) holds while the system relaxes towards
equilibrium. If the magnetic field is still present, then a diamagnetic term should be
added [207]. This was neglected in Ref. [108], which explains why their estimate ζ ≈ 0.13
differs from that found in Ref. [207].

The above assumptions yield [183,210]

D =







ǫ+ η iγ 0
−iγ ǫ− η 0
0 0 ǫz






E. (5.4)

The strength of the birefringence is determined by η. Assuming no conduction current
exists, D and E obey the wave equation

1

c2
∂2D

∂t2
= ∇2E. (5.5)

All magnetooptical effects have been placed in the dielectric tensor and therefore the
permeability µ is a scalar quantity [116,151]; as in the previous chapters, I set µ = 1. Eq.
(5.5) can be solved for a plane wave propagating along the z-axis:

E =







Ex

Ey
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ei(ωt−k̃z) (5.6)

Substituting (5.6) into Eq. (5.5) and using Eq. (5.4) leads to

(

ǫ+ η − k̃2/k2 iγ

−iγ ǫ− η − k̃2/k2

)(

Ex

Ey

)

= 0. (5.7)

This equation provides both the admissible wavevectors

k± = k

√

ǫ± γ
√

1 + Γ2 (5.8)

and the normal modes in the material:

n+ =

(

1

i(Γ −
√

1 + Γ2)

)

n− =

(

1

i(Γ +
√

1 + Γ2)

)

.

(5.9)

Here, I have introduced Γ = η/γ to describe the relative strength of the birefringence
compared with magnetic effects. The medium admits two normal modes, which are ellip-
tically polarized and which propagate at different velocity (since k+ 6= k−). The difference
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in velocities is related to the magnitudes of γ and η, i.e. to both the magnetization and
the birefringence. In general, the light will emerge from the material elliptically polarized;
“rotation” of the light is therefore defined as the change of direction of the major axis of
the polarization ellipse.

Now assume that plane polarized light is normally incident at z = 0, i.e.

Ez=0 = |E|
(

cos θ
sin θ

)

eiωt, (5.10)

where θ is the angle between the polarization plane and the x-axis. The reflection of both
normal modes is approximately equal and can therefore be ignored — its only effect is to
reduce the intensity2. Upon entering the material, the field (5.10) decomposes into normal
modes

E =
1

2
|E|

(

α+n+e
i(ωt−k+z) + α−n−e

i(ωt−k−z)
)

; (5.11)

α± are complex parameters determined from Eqs. (5.9) and (5.10).
As the wave (5.11) propagates through the medium, its polarization rotates. Since the

goal is to determine this rotation relative to the initial angle θ, it is convenient to rotate
to the coordinate frame (x′, y′) in which the light is initially polarized along the x′-axis.
In this new coordinate frame, after the light has propagated a distance d, the electric field
vector is

Ez=d =
|E|ei(ωt−kd)

√
1 + Γ2

( √
1 + Γ2 cos δd− iΓ sin δd cos 2θ
− sin δd + iΓ sin δd sin 2θ

)

(5.12)

where k = (k+ + k−)/2 and δ = (k+ − k−)/2. Note that under the assumption that
√

η2 + γ2 ≪ ǫ (which is true in most materials, including the orthoferrites), Eq. (5.8)
allows us to rewrite the wavevector mismatch δ as

δ ≈ kγ
√

1 + Γ2

2
√
ǫ

. (5.13)

The polarization ellipse of the outgoing light (5.12) is described by the lengths of the
major and minor axes and the orientation of the ellipse (see, e.g., Ref. [118] for details).
Relative to the initial angle (i.e. relative to the x′-axis), the direction of polarization has
rotated through the angle β, where

tan 2β =
2Re(E∗

xEy)

|Ex|2 − |Ey|2
=

−
√

1 + Γ2 [sin 2δd+ Γ(1 − cos 2δd) sin 2θ cos 2θ]

cos 2δd
[

1 + Γ2 sin2 2θ
]

+ Γ2 cos2 2θ
.

(5.14)

The lengths of the major axis b+ and minor axis b− of the polarization ellipse are:

b±
|E| =

1

|E|

(

√

|E|2 + 2Im(E∗
xEy) ±

√

|E|2 − 2Im(E∗
xEy)

)

2Throughout this chapter, I am more interested in ratios between different components of light, rather
than absolute intensities. Since both normal modes have similar reflection coefficients, including reflection
leads to a diminishing of the total intensity without affecting ratios of components. As such, reflection is
neglected in this chapter.
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=

{

1 +
Γ sin 2δd sin 2θ√

1 + Γ2
− Γ(1 − cos 2δd) cos 2θ

1 + Γ2

}1/2

±
{

1 − Γ sin 2δd sin 2θ√
1 + Γ2

+
Γ(1 − cos 2δd) cos 2θ

1 + Γ2

}1/2

.

(5.15)

These equations are the key to investigating the effect of magnetization changes on the
outgoing light beam. Since magnetic effects are described by γ, which is contained in
both δ (see Eq. (5.13)) and Γ = η/γ, the dependence on magnetization is complicated and
analytical results are only available in certain limits.

5.4 Limiting cases

5.4.1 Zero birefringence

The first limit that should be examined is the case of zero birefringence. In this limit,
Γ = 0 and Eq. (5.14) reduces to

tan 2β = − tan 2δd, (5.16)

i.e. the polarization plane of the light rotates through an angle β = −δd = −dkγ/2√ǫ.
Furthermore, the light emerges linearly polarized: b− = 0. I define the angle β0 as the
rotation caused when the sample is in magnetic equilibrium:

β0 = −dkγ0

2
√
ǫ
. (5.17)

Using the definition of γ from Eq. (5.3) yields

β = β0 + β0ζκ. (5.18)

The dependence of the angle β on magnetization is contained in κ = (m−m0)/m0.
Eq. (5.18) is the analogue of Eq. (5.1) for canted-antiferromagnetic materials (also

called weak ferromagnets [210]). The effect of magnetic ordering is most clear if we consider
a magnetic configuration in which the magnetization vanishes. In the case of Eq. (5.1),
this occurs for H = 0 and there is no Faraday rotation. On the other hand, for Eq. (5.18)
the magnetization vanishes at κ = −1, but Faraday rotation still occurs: β = β0(1 − ζ).
Since ζ is the ferromagnetic contribution to magnetooptics, it is clear that the factor of
(1 − ζ) implies that the residual rotation is caused by the antiferromagnetic ordering.

The Verdet constant, which describes the magnetooptical response of the material, is
defined from the slope of β(m). Introducingm = χH in Eq. (5.1) (where χ is the magnetic
susceptibility [82]),

V =
χ

d

∂β

∂m
.

From this definition, Eqs.(5.17)-(5.18) and letting χ now represent the zz-component of
the susceptibility in the magnetic medium,

V = −χζβ0

dm0
.
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This allows a calculation of the Verdet constant, a useful magnetooptical constant.
Finally, note that for the purposes of interpreting experimental data, it is more useful

to rewrite Eq. (5.18) as
β − β0

β0
= ζκ = ζ

m−m0

m0
. (5.19)

This equation shows that the change of rotation, normalized against the equilibrium ro-
tation, is proportional to the change of magnetization, normalized to the equilibrium
ferromagnetic moment. The proportionality constant is ζ, the ferromagnetic contribution
to magnetooptics. Note that for zero birefringence, β0 defined by Eq. (5.17) is nonzero
and Eq. (5.19) is always well-defined.

5.4.2 Large birefringence, small θ

The second limit that we considered is the relevant limit for analysis of the orthoferrites,
i.e. large birefringence. Indeed, the orthoferrites generally satisfy γ0 ≪ η (see, e.g.,
Ref. [31]). For the particular setup described in [99], where DyFeO3 is probed by light
with wavelength λ0 ≈ 0.7 µm, experimental results reveal that |γ0/η| ≈ 1/30 [182], so the
parameter Γ0 ≈ 30. It will be useful in the subsequent analysis to note that in equilibrium,
this system has δ0 = π/20 rads µm−1 for light with wavelength λ0 = 0.7 µm and ζ = 0.23,
as mentioned above.

When birefringence is present, the polarization direction of the incident beam is im-
portant. Analysis of Eq. (5.14) for large Γ and arbitrary θ is best performed numerically.
In this section, I consider only the case where the angle θ is small, i.e. the incident light
is polarized approximately parallel to the x-axis (i.e. the a axis of the crystal.)

First, let me quantify what I mean by “small θ”. Expanding Eq. (5.14) in κ, it is clear
that the θ dependence can be neglected up to linear order in κ provided

cot δ0d≫ Γ0 sin 2θ, (5.20)

where Γ0 = Γ(κ = 0) and δ0 = δ(κ = 0). Note the dependence of this condition on d — for
poorly chosen sample thickness, the experimental alignment must be extremely accurate.

To illustrate the order of magnitude of the critical value of θ, consider DyFeO3 with d
chosen so that cot δ0d ≈ 1 for convenience. Then θ-dependence can be neglected provided

sin 2θ ≪ 1/30

i.e. θ must be less than 1◦ away from the birefringence axis. This accuracy in alignment
is not difficult to achieve and makes the subsequent analysis of experimental results far
easier and more reliable.

For θ small enough, Eq. (5.14) can be reduced to

β = β0(1 − ζκ) − ζκ cos 2δ0d
δ0d

|Γ0|3
, (5.21)

where
β0 = − sin 2δ0d/|2Γ0|, (5.22)

and terms of O(κ2) have been neglected. Eq. (5.22) shows the well known (see, e.g.,
Refs. [183, 210]) phenomenon that the rotation induced by the sample in equilibrium
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depends on the sample thickness periodically when birefringence is strong, not linearly
as in the zero-birefringence case described by Eq. (5.17). Note also that the equilibrium
(κ = 0) rotation is constrained to lie between two limiting angles (βmax, min = ±(2Γ0)

−1),
another well known fact [183].

Now consider the effect of magnetic deviations on the Faraday rotation angle. Γ−3
0 is

assumed to be small, so the final term in Eq. (5.21) can be neglected, except when β0 is
also small (i.e. for particular values of d). If the thickness of the sample is not near the
value where β0 vanishes then

β − β0

β0
= −ζκ, (5.23)

which is identical to Eq. (5.19), up to a factor of −1.
This change of sign arises because the magnetization enters Eq. (5.14) through two

different parameters, the wavevector mismatch δ and the relative strength of the birefrin-
gence Γ. Increasing the magnetization (i.e. increasing γ) will increase δ and decrease Γ.
For zero birefringence, the rotation is governed by changes to δ (see Eq. (5.19)), while
when birefringence is large, the rotation is dominated by changes in Γ. This is clear from
Eq. (5.21), where the first term in κ arises from expanding Γ, while the second, smaller,
κ-term is due to the change in δ. This explains the difference of sign between Eq. (5.19)
and Eq. (5.23).

When Eq. (5.23) holds, i.e. when the light is accurately aligned and the equilibrium
rotation β0 is nonzero, then magnetization dynamics are easily inferred from the measured
rotation. The accuracy of this correspondence is determined by the accuracy of measure-
ment of β and the accuracy with which ζ, the ferromagnetic magnetooptical parameter, is
known. It is important to note that the angle by which the rotation must be normalized
is not the limiting angle βmax, but the equilibrium angle β0. Since this depends both on
the material and also on the sample thickness, β0 should be separately measured for each
sample used. Furthermore, note that if β0 is small (but still larger than Γ−3

0 , so that Eq.
(5.23) holds), the change of rotation will be extremely small, even for large changes in the
magnetization.

Eq. (5.23) is valid provided

sin 2δ0d≫ cos 2δ0d
2δ0d

Γ2
0

.

Since Γ0 is large (strong birefringence), this condition fails when sin 2δ0d is extremely
small, i.e. 2δ0d ≈ nπ (with n an integer). Writing 2δ0d = nπ+ ϕ, |ϕ| ≪ 1, it is clear that
Eq. (5.23) is invalid if

|ϕ| ≤ nπ

Γ2
0

. (5.24)

In this case, the final term in Eq. (5.21) must be included in the analysis. Depending on
the sign of β0, this additional term may either enhance or diminish the magnetization-
dependent rotation. However, in either case it is clear from Eq. (5.21) that the rotation
induced by the sample is extremely small, so that variations in the rotation as the mag-
netization changes will be difficult to measure reliably. The sample thickness should be
chosen such that β0 is large to avoid this problem.

I illustrate the above analysis using numerical values relevant to the experiment de-
scribed in Ref. [99]. I define the parameter P as the ratio between the change of rotation
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Table 5.1: Theoretical values of β0 (5.22) and P (5.25) as a function of the thickness d of a
dysprosium orthoferrite sample, probed with light of wavelength λ ≈ 0.7 µm. Also provided
are values for −ζβ0/P ; if this parameter is close to 1, then Eq. (5.23) is approximately valid.
For this material, βmax ≈ 1◦.

d (µm) β0 (degrees) P (degrees) −ζβ0/P (dimensionless)

55 0.95 -0.22 1.00
58 0.56 -0.13 0.97
59 0.30 -0.07 0.94
60 0.00 -0.004 0.00
61 -0.30 0.06 1.07
62 -0.56 0.13 1.03
65 -0.95 0.22 1.00

and the normalized change of magnetization, i.e.

P ≡ β − β0

κ
= −β0ζ − ζ cos 2δ0d

δ0d

|Γ0|3
. (5.25)

Table 5.1 shows the values of β0, P and −ζβ0/P for several values of the sample thickness
d. Note that if P ≈ −ζβ0, then Eq. (5.23) is approximately valid.

From Table 5.1, we see that small changes of the sample thickness may lead to large
changes both in β0 and in P . However,−ζβ0/P remains approximately constant for most
values of d. Finally note that β0 and P depend strongly on the values of Γ0 and δ0, which
are known only approximately. For this reason, our estimates of the critical thicknesses
for which β0 vanishes are only approximations; it would be more reasonable to determine
these critical thicknesses from experiment. This sensitive dependence of the results on δ0
and Γ0 explains why it is preferable to work in a regime where Eq. (5.23) may be used,
rather than trying to work directly with Eq. (5.14).

I conclude this section with a discussion of the frequency dependence of the above
results. From Ref. [182], we see that the parameter δ0 (and, to a lesser extent, Γ0)
is frequency dependent. Thus if a sample is measured using two different frequencies,
one should find two different values of the angle β. If these are correctly normalized,
taking into account the frequency dependence of β0, the measurements will yield consistent
results for the magnetization. If, on the other hand, the rotations are compared without
normalization (or if the frequency dependence of β0 is neglected), the results will appear
inconsistent. In an equilibrium DyFeO3 sample that is 65µm thick, for example, light with
a wavelength λ0 = 0.7µm will be rotated β0 = βmax ≈ 1◦, while light with λ0 = 0.75µm
will be rotated only β0 ≈ 0.5◦. If the wrong value of β0 is used to interpret experimental
rotations, estimates of the amplitude of the magnetic oscillations will be wrong by a factor
of 2. If β0 ≈ 0 for one of the frequencies used, the error can be arbitrarily large.

This is of particular importance in the case where the magnetic excitation is induced
by the same laser source that provides the measurement pulses (as in the inverse Faraday
effect experiment described in Ref. [99]). For the same sample and fluence, but with two
different laser frequencies, significantly different rotations will be observed. If these are not
correctly normalized, it will appear that the induced magnetization is different between
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the two experiments, i.e. that magnetic excitation via the inverse Faraday effect is strongly
dependent on the excitation frequency. This is inconsistent with what is known about the
inverse Faraday effect (which, being a nonresonant effect, has a very weak dependence
on frequency). This example highlights the importance of correct normalization of the
measured rotation.

Another problem that may arise due to frequency dependence is that extremely short
laser pulses suffer from frequency broadening, and the above derivation should be repeated
using a wave packet rather than a plane wave. However, this only becomes necessary
when either the frequency broadening of the pulse is very large, or when the frequency
dependence of δ0d is very strong. Fortunately, laser pulses with a time-width of 200 fs
do not suffer significant frequency broadening and are sufficiently short for measuring
magnetic oscillations, which have a period of the order of 1 ps. However, if we want to use
the Faraday effect to probe faster magnetic dynamics, e.g. dynamics during excitation,
shorter pulses and a wave-packet approach must be used to interpret the results.

5.5 Numerical exploration of nonperturbative regions

The results of the preceding section may be summarized as follows. For incident light with
θ ≈ 0, the dependence of the rotation angle on magnetization is linear for small κ, with
the ratio given approximately by the κ = 0 rotation. This “equilibrium rotation” depends
both on the material and on the sample thickness and must be measured for each sample
used.

If θ is not extremely small (i.e. if the condition (5.20) is not satisfied), the relation-
ship between β and κ must be determined from Eq. (5.14), which requires an accurate
knowledge of all parameters. Furthermore, the analysis of the previous section does not
extend to larger values of κ. (Recall that since both m and m0 are small near magnetic
equilibrium, κ can be large without violating the assumption of near-equilibrium.)

To investigate the relationship between rotation and magnetization for large θ and κ,
numerical methods must be used. We calculated β(κ) from Eq. (5.14), where κ appears
(through γ) in both δ and Γ, using the physical constants appropriate for DyFeO3, i.e.

Γ0 ≈ 30, δ0 ≈ π

20
radsµm−1, ζ = 0.23.

To allow easy comparison with experiment, I plot ∆β ≡ β − β0 in degrees. The magnetic
deviation κ is dimensionless; to emphasize this, I write it as κ = ∆m/m0.

Fig. 5.1 shows the rotation vs. magnetization for x-polarized light propagating through
samples of thickness d = 55, 60 and 65 µm. For d significantly different to 60 µm, the
behaviour is almost linear for all κ, so that determining magnetization from a measured
rotation is easy even for large κ. The proportionality “constant” between rotation and
magnetization changes with thickness, even changing sign (compare the behaviour for
d = 55 µm with d = 65 µm). In fact, the ratio between changes of β and changes of κ
is very well approximated by β0 and Eq. (5.23) is found to be valid even for large values
of κ. This only holds provided d is kept away from the critical regions and the incident
light is assumed to be x-polarized. Around d = 60 µm, the relationship between κ and
β is no longer linear when κ not small. In fact the figure is not even symmetric around
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Figure 5.1: Comparison of the angle of rotation ∆β (in degrees) with the deviation from
magnetic equilibrium κ = ∆m/m0 (dimensionless) as a function of sample thickness. Note
the change of scale between different plots. In all of these, the incident light is x-polarized,
i.e. θ = 0◦.

κ = 0. In this case, symmetric magnetic oscillations will give rise to asymmetric rotation
measurements.

Next, I fix d and consider the effect of changing the angle θ. I avoid the region where
β0 vanishes by setting d = 65 µm. Fig. 5.2 depicts ∆β as a function of κ for values of θ
equal to 0◦, 44◦ and 60◦. Note that despite the range of κ being much smaller than that
of Fig. 5.1, Faraday rotation is still found to be as large as 0.5◦ for θ = 44◦. Note also
that for θ = 60◦, the Faraday rotation is nonlinear and extremely weak; for most other
values of θ, the linear approximation is reasonable, although the ratio between ∆β and
κ is dependent on θ. In particular, Eq. (5.23) is a very poor approximation when θ 6= 0.
Measurements with nonzero θ are useful for experimentally evaluating the values of δ0 and
Γ0.

5.6 Summary

In this chapter, I have presented our investigation of Faraday rotation in birefringent,
magnetically-ordered media and the relationship between the measurable rotation and the
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Figure 5.2: Comparison of the angle of rotation ∆β (in degrees) with the deviation from mag-
netic equilibrium κ = ∆m/m0 (dimensionless) as the incident polarization angle is changed.
The angle θ is measured in degrees counter-clockwise from the x-axis. The sample thickness
is kept at d = 65 µm throughout. Note that the scale varies between plots.
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magnetization of the sample. We found that Faraday rotation is a valid probe for magneti-
zation dynamics, but that care must be taken when interpreting the results. Birefringence
breaks the symmetry of the plane orthogonal to the light propagation direction, so that
alignment of the polarization axis relative to the crystal orientation becomes an important
consideration. Furthermore, results must be normalized against the equilibrium rotation,
which depends on both the material used and the sample properties (most notably, sample
thickness).

We restricted our investigation by neglecting magnetization dynamics in the plane or-
thogonal to the propagation of the probe pulse, higher order corrections to the dielectric
tensor and diamagnetic terms. The first two of these should have some effect on the rota-
tion, but can only be included at the cost of introducing a number of unknown parameters,
which are difficult to estimate. On the other hand, the diamagnetic contribution will have
no effect on the rotation unless an external magnetic field is present. If Faraday rotation
is used to measure magnetic relaxation after an external field has been switched off, the
diamagnetic term may be neglected; however, when trying to determine the magnetoop-
tical parameters of the material using a static magnetic field, the diamagnetic term must
be included.

We have focused primarily on the rotation and neglected the ellipticity of the outgoing
light. Although these contain equivalent information, it is advisable to measure both and
to check that the results are consistent. Inconsistency between these could indicate that the
material parameters are not known accurately enough. On the other hand, inconsistency
could reveal the presence of an additional effect that has been neglected in the above
analysis. It was exactly this type of inconsistency that led to the discovery of optical
bleaching [103]!



Chapter 6

Interaction of a Quantum System

with a Heat Bath

6.1 Dephasing and dissipation

In the preceding chapters, I have considered the interactions that either excite or measure
ultrafast magnetization dynamics. These are the most important interactions when con-
sidering an ultrafast magnetization reversal experiment. However, over longer timescales,
other interactions will influence the dynamics. Of particular importance are interactions
of the system with an external environment. The main effects of such interactions are
dephasing and dissipation. This chapter and the next are devoted to the study of these
effects.

Dephasing and dissipation are the quantum mechanical analogues of friction in Newto-
nian mechanics. On short timescales, Newton’s laws show that the acceleration of particles
is determined by the applied forces only. However, over longer timescales, non-applied
forces due to the inevitable presence of an environment influence the dynamics and must
be taken into account. These non-applied forces have two characteristics that make their
study possible — the interactions are weak, allowing perturbation theory, and they involve
a large number of particles, so that statistical mechanics can be used. These features also
permit their study in quantum mechanical problems.

As mentioned in chapter 1, dissipation is the loss of energy of a quantum mechanical
system. This manifests itself by the decay of the diagonal elements of the density matrix
towards thermal occupation values. In the quantum dot experiments described in chapter
1, dissipation causes electrons in the high-energy states to scatter to lower energy states.
If the states used for quantum computing or spin-based memory have different energies,
dissipation leads to a loss of information, limiting the timescale on which the device is
useful. However, dissipation does not only have negative consequences. One example
of its positive consequences comes from magnetic switching, where the decay of small
deviations ensures that each ground state has a finite basin of attraction. Provided the
switching process places the magnetization in the correct basin of attraction, switching
will be successful. In this case, dissipation makes the system more tolerant of stochastic
fluctuations. This was described in chapter 1.

Dephasing is more difficult to define, but broadly speaking it gives an indication of the

73
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loss of quantum-mechanical information in the system. Unlike dissipation, it cannot be de-
fined in terms of wavefunctions, since a wavefunction is always fully quantum-mechanical.
Dephasing measures the rate at which the quantum system decays away from a “pure”
state (i.e. a wavefunction) into a mixed state, which can only be described in terms of a
density matrix (see, e.g., Refs. [117, 194] for a description of pure and mixed states). An
appropriate definition, therefore, could be that dephasing is the decay of the off-diagonal
terms of the density matrix.

These definitions of dephasing and dissipation refer to decay rates of components of
the density matrix. This renders these concepts somewhat ill-defined, since density matrix
components are dependent on the basis in which the density matrix is expressed. A change
of basis mixes diagonal and off-diagonal elements. Which basis should be chosen?

A natural choice, which links energy loss to the decay of the diagonal density matrix
components as required by the above definition, is to use the basis of energy eigenfunc-
tions, i.e. eigenfunctions of the full Hamiltonian (including the environment). However,
such eigenfunctions include many variables pertaining to the environment, and cannot be
calculated; indeed, calculating these eigenfunctions is equivalent to solving the dynamical
problem, in which case the density matrix formalism is not needed. On the other hand,
the use of the “bare” Hamiltonian, i.e. decoupled from the environment, would not be
satisfactory, since the environment can lead to a renormalization of the energy, unrelated
to the decay. Energy flows out of the system, but is stored in the system-environment
interaction and does not flow into the environment.

Basis-independent definitions of dephasing and dissipation are also unsatisfactory: for
dissipation, the renormalization of the energy still provides problems, while for dephasing,
there is a conceptual problem that the thermodynamic state (which should be interpreted
as completely dephased) cannot be distinguished from a pure wavefunction when the
temperature is low and the ground state is nondegenerate. As such, basis-independent
measures of dephasing (e.g. von Neumann entropy or deviation from idempotency of the
density matrix [142, 192, 193]) will show that an initial wavefunction dephases initially,
then “rephases” towards the thermodynamic state. This can be seen in section 6.3.1,
Figs. 6.1 (c) and (d).

Thus the concepts of dephasing and dissipation are not perfectly well-defined. However,
provided the interactions are weak enough, the above-mentioned problems are negligible.
Just as energy can be given a reasonable definition even in the presence of decay [116],
dephasing and dissipation can be approximately defined. Throughout this chapter and
the next, I shall use the definition that dissipation and dephasing refer to the decay rate
of the diagonal and off-diagonal components of the density matrix, respectively, where the
density matrix is written relative to the basis of the eigenfunctions of the bare Hamiltonian.

6.2 The generalized master equation

The dephasing and dissipation rates of a quantum system in contact with a large reservoir
(heat bath) are determined from the dynamics of the density matrix. The evolution of
the density matrix involves not only the dynamics of the quantum system under the
influence of the reservoir, but also the motion of the reservoir due to the interaction with
the quantum system. This is generally an intractable problem. However, under certain
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conditions, it is possible to determine the approximate evolution of the quantum system,
with the dynamics of the reservoir treated perturbatively. In this section, I present the
generalized master equation method. This is well-suited to the problem studied in the next
chapter of electrons in quantum dots interacting with heat baths.

The use of master equations to describe relaxation processes was pioneered by Pauli
[147] and placed on a more rigorous physical basis by van Hove [188], Nakajima [139],
Zwanzig [211], Montroll [134] and Prigogine and Resibois [161]. Here I present the
Nakajima-Zwanzig method; in the next chapter I show the application of this method
to the study of quantum dot dephasing. A general review of this method has been given
in Ref. [64], which I have followed closely in producing this summary.

The Nakajima-Zwanzig method can be applied to any system composed of two in-
teracting parts, a “system” S and “bath” B, provided both S and B become separate
physical systems when the interaction is set to zero. The method is formally exact, but
relies on approximations for useful results to be obtained; therefore it is only useful when
the interaction is weak enough, in a sense that is made more precise below.

I consider only the case where S ⊕ B forms a closed quantum system. The method
can be extended to describe open systems (see, e.g., Ref. [64] for details), but this was not
needed for our work. The complete system S ⊕B is described by a density operator W (t)
that obeys the Liouville-von Neumann equation

Ẇ (t) = − i

h̄
[H,W (t)] ≡ −iLW (t), (6.1)

where the Hamiltonian H and Liouvillian L are time-independent. These operators may
be decomposed into three parts, describing the system, bath and interaction respectively:

H = HS +HB +HSB
L = LS + LB + LSB. (6.2)

The density operator W (t) includes variables from both S and B. A description of
the subsystem S alone is obtained by performing a trace operation over the B-variables,
yielding the “reduced density operator”

ρ(t) = TrBW (t). (6.3)

This operator acts only in the Hilbert space describing S; the Hilbert space of the bath
has been “integrated out”.

The equation governing the evolution of ρ(t) is derived from Eq. (6.1) by introducing
the projection operator

P = BrefTrB. (6.4)

Here, Bref is a normalized (TrBBref = 1) state vector in the Hilbert space describing the
bath B. This vector may be freely chosen, making the method very flexible; judicious
choice of Bref can allow even strongly interacting systems to be studied. As shown below,
Bref is the reference state relative to which the correlation functions of bath variables are
calculated. Perturbation expansions in bath variables will converge more rapidly if Bref is
as close as possible to the true physical state of the bath. If the system-bath interaction is
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strong, this choice can be determined self-consistently1. In the work of the next chapter,
the bath is assumed to be thermodynamically large and the thermodynamic equilibrium
state was the most appropriate choice.

By acting with P (6.4) and the associated projector P ′ = 1−P on Eq. (6.1), we obtain

PẆ (t) = −iPLPW (t) − iPL(1 − P)W (t)

(1 − P)Ẇ (t) = −i(1 − P)LPW (t) − i(1 − P)L(1 − P)W (t). (6.5)

The second equation may be formally integrated to

(1 − P)W (t) = exp [−i(1 − P)Lt](1 − P)W (0)

−i
∫ t

0
dt′ exp

[

−i(1 − P)Lt′
]

(1 − P)LPW (t− t′). (6.6)

Substituting Eq. (6.6) into the first of Eqs. (6.5) gives an integrodifferential equation for
PW (t) = Brefρ(t), with ρ(t) defined in Eq. (6.3). By taking the trace over the bath
variables, we obtain an integrodifferential equation for the reduced density operator:

ρ̇(t) = −iLeffρ(t) +

∫ t

0
dt′K(t′)ρ(t− t′) + I(t). (6.7)

Here, I have followed Haake’s notation [64] for the effective Liouvillian, the integral kernel
and the inhomogeneity, which are defined as

Leff = TrBLBref = LS + TrBLSBBref

K(t) = −TrBLSB exp [−i(1 − P)Lt](1 − P)(LB + LSB)Bref

I(t) = −iTrBLSB exp [−i(1 − P)Lt](1 − P)W (0) (6.8)

The effective Liouvillian Leff describes how the motion of the system in the presence of the
environment would be, if the environment were in the reference state Bref . The “memory
kernel”, K(t), describes how this reference state evolves in time under the influence of
the system (and due to its own internal dynamics). Thus the motion of the system is
“remembered” by the environment, which influences the environment’s interaction with
the system. Finally, I(t) takes into account the actual initial state of the environment
(relative to Bref), including correlations with the system. This term will dominate the
dynamics if Bref is a poor approximation to the state of the environment. On the other
hand, if the environment is initially close to Bref , I(t) can be neglected. Note that any
deviation from Bref after the system is initialized is accounted for in K(t), not I(t).

It is worth noting that the decay of K(t) gives an indication of the memory time and
stochasticity of the environment. If K(t) decays slowly, the environment is always close
to the state that the system induces in it. The environment remembers all dynamics of
the system, and behaves deterministically. On the other hand, if K(t) decays rapidly,

1An example of this is found in laser physics, where the resonant interaction of light with atoms is
strong and keeps both systems far from thermal equilibrium. In this case, an initial guess for the state of
the light can be used as Bref . The steady-state of the atomic subsystem is determined from this, which
gives rise to a new reference state for the light. This process can be repeated until self-consistency is
reached [64].
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information about the system is rapidly lost, and the impact of the environment is largely
stochastic.

Eq. (6.7) is the generalized master equation, also referred to in the literature as the
kinetic equation [128]. It is formally exact; the bath dynamics have not been eliminated,
but simply hidden in the exponential factors. Approximations of these exponentials must
be made before a solution can be found. Furthermore, Eq. (6.7) is an operator equation,
so it must be mapped to a matrix equation by projecting onto the basis of S before it can
be solved.

Before describing the methods of solution, it is appropriate to discuss several useful
simplifications that we employed in our study of quantum dots interacting with large heat
baths. First, we used the freedom in the state vector Bref to choose

Bref = e−βHB/TrB
[

e−βHB

]

. (6.9)

Here, the standard notation β = 1/kBT is used, with kB the Boltzmann constant and T
the temperature [158]. The choice of vector (6.9) implies that LBBref = 0 and the integral
kernel K(t) is at least quadratic in LSB. Note that even with this choice of Bref , Eq. (6.7)
is still exact. It is only when approximations are made that the choice of Bref affects the
results.

Next, we assumed that in the initial state, there is no correlation between S and B
and that the bath starts in the thermodynamic state. Then

W (0) = e−βHB ⊗ ρ(0) (6.10)

and

I(t) = 0 = (1 − P)W (0). (6.11)

Finally, we truncated the kernel K(t) at second order in the interaction by setting

exp [−i(1 − P)Lt] ≈ exp [−i(1 − P)(LS + LB)t]. (6.12)

A natural question that arises after the truncation (6.12) is whether all second-order
terms have been included. To show that all such terms are included, we directly expanded
the definition ρ(t) = TrB exp [−iLt]W (0) to second order in LSB. This yielded the same
equation as (6.7) with the truncation (6.12). The truncated equation is the time repre-
sentation of the Dyson equation for ρ(t) in the second-order Born approximation [129].
Although the same equation arises, it should be noted that deriving the equation from the
generalized master equation method is both faster and conceptually clearer.

Equation (6.7) preserves both the normalization and the hermiticity of ρ. It is eas-
ily shown that these important physical properties are also preserved in the truncated
equation, i.e. that Eq. (6.12) is a “conservative approximation” [86].

6.3 Solving the master equation

Eq. (6.7) is an integrodifferential equation for the reduced density operator ρ of the system
S. Because of the trace operation TrB, operators pertaining to B are contained within cor-
relation functions that are independent of the dynamics of S. These correlation functions
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are weighted by the state vector Bref , which justifies naming Bref the “reference state”.
(This is quite a general statement and will be explained in more detail in the next chapter
when a specific physical model is chosen.)

By expressing ρ relative to the basis of energy eigenfunctions, we obtain equations for
all the components of the density matrix ρij . These equations can be rearranged into a
vector integrodifferential equation with the general form

ẋ(t) = Ax(t) +

∫ t

0
B(t− t′)x(t′)dt′, (6.13)

where A and B are matrices. The matrix B contains time-dependent correlation functions
of the bath B. Note that the time-arguments in the integrand of Eq. (6.13) are different
to those of Eq. (6.7), but are related by substitution. Eq. (6.13) can be integrated once,
yielding the following Volterra equation [11]:

x(t) = x(0) +

∫ t

0
C(t− t′)x(t′)dt′ (6.14)

with

C(t− t′) = A+

∫ t−t′

0
B(s)ds. (6.15)

In this section, I present two methods of solving Eq. 6.14, with a brief explanation of
their positive and negative attributes. Before introducing these methods, some comments
should be made about the vector x.

First, the generalized master equation (6.7) preserves the hermiticity of the density
matrix. This means that if the density matrix components ρij are directly mapped to
components of x, these components will not be independent (e.g. if x2 = ρ12 and x3 = ρ21,
then x2 = x∗3). It is therefore more appropriate to form x from the real and imaginary parts
of the ρij , as it renders x a real-valued vector, with (nearly-)independent components. The
length of x is N2, where N is the number of eigenfunctions of the system S.

Second, Eq. (6.7) preserves the trace of ρ, so the elements of x corresponding to the
diagonal components of ρij are not all independent. (This explains the use of the term
“nearly-independent” in the preceding paragraph.) One of these components could be
eliminated. However, this leads to the introduction of a time-dependent inhomogeneous
term in Eq. (6.14), which makes the numerical solution more complicated2. Therefore we
preferred to keep all N2 components of x and solve an equation of the form (6.14).

6.3.1 Numerical integration

The most obvious method of solving Eq. (6.14) is to approximate the integral by a finite
sum over a uniformly discretized time mesh [11]. We introduce the time-step ∆t and
assume that the time t at which Eq. (6.14) must be solved satisfies t = n∆t for some
integer n. (The solution at intermediate times can be determined by interpolation.) Then
with the notation xn ≡ x(n∆t), Cn ≡ C(n∆t), Eq. (6.14) becomes

xn = x0 + ∆t
n
∑

k=0

wn,kCn−kxk. (6.16)

2An inhomogeneous term is not in se problematic, but in this case the inhomogeneity increases linearly
with time and must be canceled by a corresponding term in the integral kernel B. This causes numerical
inaccuracy and significant difficulty, without yielding any reasonable improvement in speed.
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The integration weights wn,k determine the stability and accuracy of this numerical scheme.
Eq. (6.16) is an implicit equation for the unknown xn; it can be made explicit by reorga-
nizing it as

xn = (I − ∆t wn,nC0)
−1

[

x0 + ∆t
n−1
∑

k=0

wn,kCn−kxk

]

, (6.17)

with I the N2 × N2 identity matrix. Assuming that C0 is not singular, the matrix (I −
∆t wn,nC0) is invertible for small ∆t, so that this equation is well-defined. Given xk for
all k < n, Eq. (6.17) determines xn.

A review of some of the more common choices of weights wn,k is given in Ref. [11].
The n-th order Newton-Cotes scheme is unstable due to “Runge’s phenomenon” [168],
so composite weighting schemes are preferred. Repeated trapezoidal rule is the simplest,
but we used a modified form of the repeated Simpson’s rule, which is more accurate for a
comparable amount of effort.

The modified scheme is applied as follows. Simpson’s rule is used when n is even:

wn,0 = wn,n =
1

3
, wn,2k+1 =

4

3
, wn,2k =

2

3
. (6.18)

If n is odd and larger than n = 1, the weights (6.18) are used for wn,k with 0 ≤ k ≤ n− 4;
the remaining weights are

wn,n−3 =
17

24
, wn,n−2 = wn,n−1 =

9

8
, wn,n =

3

8
. (6.19)

When n = 1, we use the trapezoidal rule since this is the most accurate 2-point scheme.
The weights (6.19) are derived from the “3/8-rule” (third order Newton-Cotes formula):
wn,n−2, wn,n−1 and wn,n are given directly by the 3/8-rule, while wn,n−3 = 1

3 + 3
8 , which

is the sum of the endpoints of Simpson’s rule and the 3/8-rule.
The choice of weights (6.18)-(6.19) is called the “Simpson’s plus upper 3/8-rule” [11],

since the 3/8-rule is applied to the weights wn,k with k close to n (the “upper” limit of k).
This scheme is stable and accurate [11]. By contrast, the Simpson’s plus lower 3/8-rule,
where the 3/8-rule determines wn,k for k ≤ 3, is unstable.

This numerical scheme works extremely well for small n. However, the method scales
as n2, since each new step requires a sum over all previous time points. It is therefore not
suitable for very long simulations. If the integral kernel C(t− t′) decays rapidly to zero, a
cutoff “memory-time” τ can be introduced. By neglecting the contribution from all x(t′)
with t′ < (t− τ), the method becomes linear in n. A similar truncation can be performed
if C(t− t′) decays to a nonzero constant, although this requires more book-keeping. More
precisely, assuming C(t− t′) → C∞ as t→ ∞, Eq. (6.14) can be rewritten as

x(t) ≈ x(0) +

∫ t

t−τ
C(t− t′)x(t′)dt′ + C∞

∫ t−τ

0
x(t′)dt′. (6.20)

Clearly, we need to keep track of
∫ t−τ
0 x(t′)dt′ as the simulation progresses. Although this

makes programming more complicated, it renders the method linear in n, allowing much
larger timescales to be explored.

Despite this increase of speed, the method is still slow for certain applications. In
particular, if the kernel C(t − t′) oscillates rapidly, then ∆t must be small enough to
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resolve these oscillations. If we also find that x(t) evolves slowly, extremely large values
of n will be needed to show these dynamics.

We investigated the methods described in this chapter for the purpose of studying
the dephasing of a quantum dot due to the interaction with a metal electrode. The
characteristic oscillation time of C(t− t′) is the plasma frequency of the metal, h̄ωp ≈ 10
eV, while dissipation in quantum dots occurs on a microsecond (or longer) timescale. For
such a system, n = 1 × 1011 is not unreasonable. However, a simulation of n = 1 × 108

requires about a day of computing3, meaning that this method is not applicable to these
systems.

We attempted to accelerate the dynamics by increasing the strength of the interaction.
This appeared to work well even if the interaction was increased by a factor as large as
λ = 1 × 108. However, the only way to confirm the accuracy of such a method is to run
simulations of the unenhanced dynamics and compare the outcome. This can only be
done for short timescales, but good agreement on short timescales does not necessarily
imply agreement over longer times. As such, this acceleration technique may be useful
for producing estimates of the resulting decay rates and for checking the results of other
methods, but is not adequate on its own.

Another drawback of the numerical integration method (6.17) is that simulations must
be performed for a variety of initial conditions. Dynamical features such as the rates of
dissipation and dephasing could depend on the initial conditions. A general dephasing
rate can only be inferred after adequate sampling of initial conditions and only if similar
decay rates are found in all simulations.

Despite these drawbacks, the time-marching algorithm is useful in providing a visu-
alization of the dynamics. As an example of this, I include here some figures showing
the evolution of a charge qubit interacting with a metal electrode. The charge qubit was
modeled as a single, 1-dimensional quantum dot with infinitely high boundaries. This is a
very simple model, far simpler than the physically reasonable model described in the next
chapter. We studied this model only as part of a preliminary investigation into methods of
solving the generalized master equation. Since its physical relevance is limited, I shall not
provide a detailed analysis of the problem. Only three points need to be made about the
model. First, only the lowest two eigenstates — ϕ1 = cos (πx/2R) and ϕ2 = sin (πx/R),
with R = 10 nm — were used. Second, the interaction with a metal gate 100 nm away
from the qubit was treated using the screened Coulomb interaction, as detailed in the next
chapter. Finally, the interaction was enhanced by a factor of λ = 1× 106 to obtain results
within reasonable time. These results are plotted in Fig. 6.1.

Since Fig. 6.1 depicts results for a highly-idealized system, the numbers themselves have
little physical meaning. However, Fig. 6.1 provides a good overview of how the dynamics
proceed. The absolute value of the off-diagonal element decays toward 0, as seen in Fig.
6.1(b) . Fig. 6.1(a) shows that the diagonal elements decay about twice as fast as the
off-diagonal parts and their asymptotic value is determined by thermal equilibrium. (In
this case, T = 100 mK, so the system approaches the ground state.)

It is generally accepted that the diagonal density matrix components must decay slower
than twice the decay rate of the off-diagonal components, i.e. if T1 is the characteristic

3Although the truncated method scales linearly with n, the coefficient of n is related to the decay rate
of the kernel and can be extremely large. The numbers given are based on a kernel decaying within 600
fs, the timescale on which thermal fluctuations are damped.
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Figure 6.1: Evolution of the density matrix of a simplified charge qubit due to the interaction
with a gate electrode. The interaction strength has been increased by a factor of λ = 1× 106.
(a) and (b) show the evolution of the diagonal and off-diagonal parts, respectively, revealing
a dissipation rate of 6.88 ns−1 and a dephasing rate of 3.44 ns−1. (c) and (d) show that
traditional measures of dephasing, Tr(ρ2) and S(ρ) = −Tr(ρ ln ρ), are adequate over short
timescales, but imply an unphysical “rephasing” of the solution over longer times.
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decay time of the diagonal elements and T2 that for the off-diagonals, then

2T1 ≥ T2. (6.21)

This relationship can be easily demonstrated for a 2-state system, assuming T = 0 and
that the decay is exponential, i.e.

ρ =

(

1 − |c2|2e−t/T1 c1c
∗
2e

iEt−t/T2

c∗1c2e
−iEt−t/T2 |c2|2e−t/T1

)

(6.22)

where c1 and c2 are the coefficients of the eigenstates in the initial wavefunction. With
the evolution given in (6.22), Eq. (6.21) follows from Tr(ρ2) ≤ 1. The physical basis
for Eq. (6.21) is the existence of two types of scattering: elastic and inelastic. Inelastic

interactions lead to energy transfer, which yields dissipation. Such inelastic interactions
also cause dephasing, because information flows between the interacting particles, but
this occurs at half the rate of dissipation. Elastic collisions conserve the energy of the
interacting particles and cannot yield dissipation, but information can be exchanged and
dephasing can occur. This leads to Eq. (6.21). Usually, Eq. (6.21) is rewritten as an
equality by introducing the “pure dephasing” time:

1

TΦ
=

1

T2
− 1

2T1
. (6.23)

Thus TΦ governs the dephasing rate due to elastic collisions, T1 yields the dissipation rate
(due to inelastic collisions) and T2 measures the total dephasing time due to a combination
of scattering processes. The results in Fig. 6.1 (a) and (b) show that the dynamics of the
system under consideration are dominated by inelastic processes, as the pure dephasing
rate is negligible.

Figs. 6.1(c) and (d) show the evolution of two traditional measures of dephasing, Tr(ρ2)
and the von Neumann entropy S(ρ) = −Tr(ρ ln ρ) [142,192,193]. As mentioned in section
6.1, these adequately demonstrate dephasing during the initial evolution, but as the system
evolves towards the thermodynamic ground state, the system appears to “rephase”. This
is because the thermodynamic ground state is very similar to the zero-temperature ground
state, which is a pure state. The decay of |ρ12| is a more consistent definition of dephasing.

In summary, numerical integration methods are very useful for visualizing the evolu-
tion, but are not fast enough to allow an adequate study of dephasing. A faster and more
general method must be used. One example of such a method is the Laplace transform,
described in the next section.

6.3.2 Laplace transformation

Eq. (6.14) is a special type of Volterra equation — it has a convolutive kernel [57]. This
means that the integrand has the form C(t− t′)x(t′), rather than the more general form
C(t, t′)x(t′). Under the Fourier or Laplace transforms, convolution becomes multiplication
and Eq. (6.14) becomes an algebraic equation. The Laplace transform is more appropriate,
because the time interval starts at t = 0, not t = −∞ [57].

We multiply Eq. (6.14) by exp(−zt) and integrate over t. Here, z is a complex variable
with real part chosen large enough that all relevant integrals converge. Then defining

x̃(z) =

∫ ∞

0
e−ztx(t)dt (6.24)
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and a similar definition of C̃(z), Eq. (6.14) becomes

x̃(z) =
1

z
x(0) + C̃(z)x̃(z). (6.25)

For any z, the solution x̃(z) can be found by matrix inversion. Thus it is possible to
reconstruct x(t) using the inverse Laplace transform [57]

x(t) =
1

2πi

∫ γ+i∞

γ−i∞
eztx̃(z)dz, (6.26)

where γ is some real number chosen to ensure convergence. The integration path in (6.26)
is parallel to the imaginary axis.

The reconstruction of x(t) using (6.26) requires the evaluation of an integral for each
value of t. As such, it requires computation time similar to the direct time-stepping
algorithm presented in the previous section. A minor advantage offered by this method
is that the reconstruction parallelizes well; values of x(t) at different values of t can be
calculated independently of each other. Another advantage is that the inverse transform
(6.26) is essentially a Fourier transform, which introduces the possibility of using the Fast
Fourier Transform [160] to speed up the calculation. A possible disadvantage of the Laplace
transform compared to the numerical integration method defined above is that C̃(z) may
be impossible to calculate analytically. In the examples that we studied (presented in the
next chapter), this was not the case.

However, if certain properties of the evolution can be assumed, the Laplace transform
can greatly speed up the solution of the problem. In particular, if we assume that the
evolution is asymptotically dominated by exponential decay, the solution of the problem
becomes a search for the poles of the Laplace transform. The assumption of exponential
decay is usually valid when the dissipation is caused by interaction with a thermodynam-
ically large bath, which is the case for most quantum computing systems [59, 132, 142].
Tests for the validity of this assumption and the consequences of its failure are described
at the end of this section, but first I present how x(t) is found if this assumption is made.

It is well-known that the positions of the simple poles of the Laplace transform yield
the exponential decay rates. (Singularities at the origin correspond to algebraic decay.)
For asymptotic analysis, only the poles with the largest (and sometimes second largest)
real parts are significant; the smaller the real part, the faster the decay of that component.
Therefore, the strategy for analyzing Eq. (6.25) is to find the poles of x̃(z) with the largest
real parts and to investigate the nature (multiplicity, residues, etc.) of these singularities.

Eq. (6.25) can be rewritten as

[

I − C̃(z)
]

x̃(z) =
1

z
x0, (6.27)

with the right-hand side finite away from z = 0. This equation must have a unique solution
for all z, since x(t) is uniquely determined by Eq. (6.14) and x̃(z) is uniquely defined by

x(t). It follows that the singularities of x̃(z) occur where the determinant of
[

1 − C̃(z)
]

vanishes and at z = 0. Thus we are led to the problem of finding the roots of a scalar
function of a complex variable.

This problem is most conveniently solved using the Newton-Raphson method [160].
The numerical integration method of the previous section is useful for providing estimates
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of dephasing rates, which are good starting points for the root-finding algorithm. Note
that this reformulation of the problem shows that the singularities of x̃(z), and therefore

the decay rates, depend only on the determinant of
[

1 − C̃(z)
]

and not on the initial

conditions x(0). Decay rates are a general feature of the dynamics and do not depend on
the initial configuration.

Finally, once the poles have been found, the residues at these poles are calculated using
finite differences:

Res(a) = lim
z→a

(z − a)x̃(z) ≈ δx̃(a+ δ), (6.28)

where δ is a complex number with small magnitude, |δ| ≪ 1. A residue can be either zero,
finite or infinite4. If it is zero, the singularity is removable and does not contribute to the
exponential decay. If a residue is infinite, the singularity is more complicated than a simple
pole. This signals asymptotic behaviour different to exponential decay. If the residue is
finite and nonzero, the singularity is a simple pole, with corresponding exponential decay.
From the values of the residues and the location of the singularities, the approximate
solution x(t) can be constructed.

It is worth noting that when x(t) describes the evolution of a density matrix, we expect
x̃(z) to have a simple pole at the origin. Such a pole would describe a constant term in
the density matrix and yield the asymptotic value of x(t). Because Tr(ρ) = 1, we expect
some components of x(∞) to be nonzero.

The method outlined here is used in the following chapter to determine the dephasing
of qubits due to interaction with metallic electrodes. However, before presenting these
results, some attention should be given to the possibility of nonexponential behaviour of
x(t).

It was already mentioned above that if the residue calculated at an isolated singularity
is found to be “infinite” (i.e. the singularity is a higher order pole), then the behaviour of
x(t) is nonexponential. More precisely, if x̃(z) ∼ 1/(z − a)n near z = a, with n > 1, the
corresponding evolution is x(t) ∼ tn−1eat.

For finite δ, the finite difference evaluation of the residue presented in Eq. (6.28) will
never give an infinite result. Thus the signal that a higher order pole could be present
is that the residue is extremely large, at least of the order of 1/|δ|. To evaluate the
multiplicity of the pole, the well-known formula

∫

C

f ′(z)
f(z)

dz = 2πi(Z −N), (6.29)

where Z and N are the number of zeros and poles of f(z) within the closed contour C. By
choosing C to be a circle of very small radius centered at the singularity of interest, such
that other singularities and zeros are all outside C, Eq. (6.29) provides the multiplicity of
the pole.

A more complicated problem occurs when x̃(z) has a branch cut. These can be
extremely difficult to search for numerically, since they are not signaled by any easily-
identifiable local behaviour of x̃(z). However, it is clear from Eq. (6.27) that branch cuts

4The residue calculated by Eq. (6.28) will appear to be infinite if the singularity in x̃(z) is a higher
order pole. Strictly speaking, this should not be referred to as an infinite residue, but I use this notation
as it provides a more intuitive feeling for the output of a numerical residue evaluation.
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in x̃(z) are associated with branch cuts in
[

I − C̃(z)
]

. Thus if
[

I − C̃(z)
]

is known to be

single-valued (which is true for the systems studied in the following chapter), x̃(z) cannot
have branch cuts.

In general, when using the singularities of x̃(z) to determine an approximate solution
to (6.14), it is a good idea to plot (z − a)x̃(z) for several values of z near the singularity
a. This is the easiest and most reliable method of locating unexpected behaviour, and is
not numerically intensive.



Chapter 7

Dephasing of Quantum Dots:

Coulomb Interaction with a Gate

7.1 Overview

The development of a solid-state quantum computer is hindered primarily by the fact
that solid-state systems contain many subsystems that interact with the qubits. These
interactions cause information loss and limit the timescale on which reliable results can
be obtained, as described in the previous chapter. Examples of such subsystems are
phonons, impurities and surface effects. To limit this information loss, or at least to be
able to estimate the timescale on which it occurs, it is necessary to consider the individual
subsystems and evaluate the relevance of each. In this chapter, I show how we used
the generalized master equation method described above to determine the dephasing and
dissipation rates of quantum dots due to their interaction with gate electrodes.

Gate electrodes are metallic strips that are ubiquitous in quantum dot experiments. In
electronically-controlled quantum dots, gate electrodes define the quantum dot structure
within a quantum well and can also be used to prepare initial states [44, 69, 154]. Self-
assembled quantum dots, on the other hand, require electrodes to manipulate the charge
degrees of freedom [51, 112, 137]. Even when spin is the primary degree of freedom, gate
electrodes have been used to provide an electric field gradient that separates electrons and
holes and prevents recombination — see the discussion in chapter 1 and Refs. [71,113].

A brief note of caution is needed. In some quantum dot experiments, electrons tunnel
into the dot from nearby metallic leads (see, e.g., Ref. [44] and the references therein).
These leads exhibit a strong coherence with the quantum dot state. Such experimental
setups are not considered here; we have only investigated the case where the metallic
strips are far enough from the quantum dot that tunneling and exchange interactions are
prohibited. To prevent confusion, I use the term “electrode” or “gate” for a metallic strip
that is far from the quantum dot and “lead” for a strip that is close.

Usually, the electrodes are assumed to contribute only a classical field, but this is not
necessarily true. Their internal degrees of freedom may interact with the quantum dot,
leading to both dephasing and dissipation. However, until our work, dephasing due to gate
electrodes has only been considered within either the classical framework of interaction
with transient magnetic fields due to thermally-induced current fluctuations [96] or the
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quantum-mechanical framework of the spin-boson model [121, 198], where the electrodes
are treated as a noninteracting boson gas [12]. The former neglects the interaction with
charge fluctuations, while the latter neglects relaxation processes within the electrode.
In an attempt to improve on these results, we implemented the full Coulomb interaction
with the gate. We also did not make the Markov approximation, as Refs. [12, 96] did;
memory effects in the gate are included using the master equation approach described in
the previous chapter.

Before presenting the details of our investigation, it is relevant to note that quantum
dots in contact with a heat bath exhibit two distinct types of dephasing. The first occurs
as the initial, experimentally-prepared state evolves into a quasiparticle state of the many-
body system. For example, a bare exciton excited by a photon will rapidly lose coherence
when “dressed” with phonons [81]. Similarly, an electron beam passing through a quantum
dot dephases as it induces an image charge in a nearby point contact [5, 24, 123, 175,
177]. I shall refer to this type of dephasing as “initialization dephasing”. It is caused
by renormalization and, if the environment (i.e. everything apart from the quantum dot
system) is stationary, it has only limited effect: it ceases to act once a quasiparticle state is
formed. If the environment is nonstationary, as in a current-based “which-path” detector
[5, 24, 123, 175, 177], a true quasiparticle state cannot form. In this case, initialization
dephasing may be unlimited. However, unlike the Coulomb-induced dephasing present in
“which-path” detectors, our Coulomb bath has zero current. We therefore neglected the
initialization dephasing and assumed that the image charge in the gate electrodes and all
related renormalization effects were included in the initial conditions.

We investigated the second type of dephasing, which is caused by interactions of the
quasiparticle state with the environment. This proceeds either via scattering of the quasi-
particle or by the interaction of the quasiparticle with fluctuations (both quantum and
thermal). It is referred to as “dynamical dephasing”. Typically, dynamical dephasing acts
on a much slower timescale than initialization dephasing, but is unlimited in effect; it will
eventually lead to complete decoherence of the system. For example, a bare exciton will
be dressed by LA phonons within several picoseconds of excitation, causing up to 25% loss
of coherence [81]. The dressed exciton is more stable and subsequent dephasing occurs on
the timescale of nanoseconds [69,180].

We have studied the dephasing of both spin and charge qubits due to the interaction
with gate electrodes. Many aspects of these two investigations are identical, so only the
calculation for spin qubits is presented in full detail. For charge qubits, I present only the
important differences from the spin qubit investigation and the results; a more detailed
account is available in Ref. [204]1. Hartree atomic units are used, except where otherwise
stated.

7.2 Dephasing of spin qubits

7.2.1 Structure of qubit

The structure of the spin qubit studied here has already been described in chapter 1.
It consists of a small island, roughly 30 nm wide and 5 nm high, of InGaAs between

1These results are reused with permission from S. R. Woodford, A. Bringer and K. M. Indlekofer,
Physical Review B 76, 064306 (2007). Copyright 2007 by the American Physical Society.
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two layers of GaAs [71, 113]. Other layers of different semiconductors are added to this
heterostructure, most notably AlGaAs to prevent the electrons tunneling out when the bias
field is applied. Finally, a thin metallic layer is added to provide the necessary bias field.
As described in chapter 1, this prevents the recombination of optically excited electron-hole
pairs, allowing charge to be “injected” into the qubit. In addition, the system is subjected
to a magnetic field along the direction of strong confinement, which separates the different
optically accessible exciton states and makes angular momentum a good quantum number.

The electron in the quantum dot is described by the Kane Hamiltonian [92,96]

H =
p2

2m∗ + U(r) + gµBσz − β(pxσx − pyσy). (7.1)

For GaAs, the effective mass is m∗ = 0.067, the g-factor is g = −0.44 and the Dresselhaus
velocity is β = (2±1)×105 cm s−1 [96,180]. The confining potential U(r) is approximated
as a square, 2-dimensional well with infinitely high walls.

Quantum computing requires a 2-state system. For a spin qubit, the relevant states
are usually the up and down states of the electronic ground state. The eigenstates of (7.1)
are not pure up or down states, since the Dresselhaus effect mixes the spin components.
However, the true eigenstates must be used; simultaneous perturbation theory in two
independent parameters (the Dresselhaus term and the interaction with the electrodes) is
difficult to perform consistently.

The true eigenstates of (7.1) could not be found analytically, so we relied on numerical
techniques. We expanded the unknown states over Fourier modes in the quantum well and
diagonalized the Hamiltonian relative to this basis. Since only the lowest two eigenstates
were needed, the number of Fourier modes could be limited to 10 modes for each spatial
direction. The probability densities of the two lowest-energy eigenstates are plotted in Fig.
7.1, separated into up and down spin components. Clearly, the mixing of spin components
is small enough that the states can be referred to as “up” and “down” states, which is
done in what follows.

Before describing the coupling to the gate electrodes, it is relevant to mention the
other studies of spin qubit dephasing that are available in the literature. This will allow
comparison with our results and reveal the relative importance of the different interactions.

The most-studied mechanism is phonon scattering [56, 95, 96, 155, 205], in which the
higher energy state decays to the lower state by the emission of a phonon. There are
many different ways that a phonon can cause a spin-flip in a quantum dot. The clearest
mechanism is through piezoelectric coupling [96]. In this case, fluctuations of the spin
cause changes of the local electric field via the spin-orbit coupling. If the energies match,
this electric field can move the nuclei and generate a phonon. For the spin qubit considered
here, this process yields an energy dissipation rate of Γ1 = 1.5 × 103 s−1 for a magnetic
field B = 1 T and h̄ω = 10 K (this is the energy separation between different orbital levels
in the dot, in Kelvin) [96]. This dissipation rate scales as B5 at low temperatures. The
dephasing rate is approximately half the dissipation rate [56].

In addition to the piezoelectric coupling, phonons may cause a nonadiabatic change
in the parameters of the Hamiltonian, i.e. m∗, β, g and U(r), each of which can give rise
to spin-flip scattering [205]. Generally, these processes are weak, although they become
important for quantum dots smaller than about 20 nm. All except the change of the
Dresselhaus parameter lead to dissipation rates that scale as B5; the scattering rate for
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Figure 7.1: Probability densities (|ψ|2) of the spin components of the lowest two eigenstates
of the quantum dot. (a) and (b) are the up- and down-components of the lowest eigenstate,
respectively, while (c) and (d) are the up- and down-components of the second lowest eigen-
state. The strong spin polarization of these low-energy states permits them to be referred to
as the “up” and “down” states, respectively. Due to the strong confinement, the dependence
on z takes the form of a δ-function and is not shown.
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Figure 7.2: (a) The experimental setup considered here, taken from Ref. [113]. (b) An
approximate model of (a), including the most important features. The quantum dot is assumed
to be a square well with infinitely high walls and the gate electrode is assumed thick enough
that it may be approximated as a bulk metal filling the region z > 0. (a) is reprinted by
permission from Macmillan Publishers Ltd: Nature, Optically programmable electron spin

memory using semiconductor quantum dots, M. Kroutvar, Y. Ducommun, D. Heiss, M.
Bichler, D. Schuh, G. Abstreiter and J. J. Finley, 432, 81 (2004). Copyright (2004).

changes of β is linear in B. In principle, this linear dependence will dominate at low fields,
but due to the extreme weakness of this mechanism, the transition to the linear regime is
unlikely to be detected.

Several other spin-flip mechanisms were discussed in Ref. [96]: phonon-induced modu-
lation of the hyperfine coupling with nuclei, interaction with the fluctuating magnetic field
of the electrodes and exchange scattering processes between the bound electron and the
conduction electrons2. In general, these are all far weaker than the piezoelectric phonon
scattering [89, 90, 96]. The coupling of charge fluctuations in the gate to the spin of the
electron via spin-orbit coupling, which is the mechanism that we studied, has not received
attention until now.

7.2.2 Coulomb interaction with the gate

A diagram of the experimental setup (taken from Ref. [113]) is depicted in Fig. 7.2, along
with the model that we used to approximate the system. The electrode consists of a thin
layer (around 5 nm) of metal located above the dot; it covers the entire structure, not
just the part of it indicated in Fig. 7.2 (a). Because metals have a small skin depth and
the edges of the electrode are far from the quantum dot, we have treated the electrode
as a semi-infinite metal bulk occupying the entire z > 0 region. This is a reasonable
approximation even in the case where there are several gate electrodes charged to different
potentials (e.g. the experiments described in Ref. [44]) — the dynamical properties of such
a configuration will not be notably different from the single-electrode model [204].

2These pathways have also been considered previously in connection with spin-flip processes in arrays
of donor atoms [1,155].

http://www.nature.com/nature/index.html
http://www.nature.com/nature/index.html
http://www.nature.com/nature/index.html
http://www.nature.com/nature/index.html
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As mentioned previously, we assumed that static renormalization effects have already
been taken into account in the potential U(r), i.e. that the square-well potential includes
the image charge. When calculating the dynamical properties of the gate, the static
image charge is therefore assumed to vanish. We also assumed that at t = 0, there is no
correlation between the gate and the electron in the qubit. This means that for t < 0,
the quantum dot system behaves classically, and at t = 0 we “turn on” the quantum
mechanics. This is equivalent to assuming that at t = 0, we prepare the dot very rapidly
in a particular quantum state, thus breaking all correlations with the gate. Since spin
injection occurs on a nanosecond timescale and subsequent dynamics on a microsecond
scale, this is a reasonable assumption [113].

The closed quantum system consisting of the gate electrode and the quantum dot is
governed by the Hamiltonian

H =
2
∑

i=1

Eia
†
iai +HB

+
∑

i,j

∫

drdr′
1

ǫr|r− r′|ϕ
∗
i (r)ϕj(r)Ψ

†(r′)Ψ(r′)a†iaj . (7.2)

The quantum dot is expressed in the energy eigenfunction basis: ϕ1 and ϕ2 are the
numerically-constructed up and down eigenstates of Eq. (7.1), respectively, with spin den-

sities plotted in Fig. 7.1. The creation and annihilation operators a†i and ai of the quantum
dot are expressed relative to this basis. The position representation is used for the gate
electrons. HB is the Hamiltonian for the bare gate and ǫr is the dielectric constant of the
semiconductor medium between the dot and the gate.

The position representation is preferable for describing the gate, since it shows explic-
itly that the interaction couples the quantum dot states to the electron density of the gate
[via the operator n(r′) = Ψ†(r′)Ψ(r′)]. This has the advantage that the density-density
correlation function used below has the form of a 2-point bosonic correlator; in any other
basis, it appears as a 4-point fermionic correlator (with two creation operators and two
annihilation operators). Although the interaction term in Eq. (7.2) is similar to the spin-
boson interaction, i.e. it consists of a 2-state system coupled to bosonic operators, Eq.
(7.2) is not the spin-boson model: the Hamiltonian HB contains fermionic terms that
cannot be expressed in terms of n(r). In terms of the electron density operator n(r), the
above-mentioned vanishing of the static image charge can be written as

〈n(r)〉 =
TrB [exp(−βHB)n(r)]

TrB [exp(−βHB)]
= 0. (7.3)

Following the methods of chapter 6, we determined the equations of motion for the
reduced density matrix of the quantum dot, ρij(t), expressed relative to the energy eigen-
function basis spanned by {ϕ1, ϕ2}. As mentioned in chapter 6, the generalized master
equation is only tractable when approximations are made; therefore we truncated Eq. 6.7
at second order, as in Eq. (6.12). The reference vector Bref was chosen as the thermo-
dynamic state (6.9) and the initial separability of the quantum dot and the electrode,
condition (6.10), was assumed.

Even with these approximations, the equations of motion are complicated and new
notation is needed to write them in a reasonable form. The wave-functions of the quantum
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dot enter the master equation in overlap integrals with the Coulomb interaction kernel:

Tij(r
′) ≡

∫

drϕ∗
i (r)

1

|r − r′|ϕj(r). (7.4)

In addition, the following density-density correlation functions of the metal gate arise:

G >(r, s, t)

= TrB

(

e−β(HB−Ω)eiHBtΨ†(r)Ψ(r)e−iHB tΨ†(s)Ψ(s)
)

= 〈n(r, t)n(s)〉 (7.5)

G <(r, s, t)

= TrB

(

e−β(HB−Ω)Ψ†(s)Ψ(s)eiHB tΨ†(r)Ψ(r)e−iHB t
)

= 〈n(s)n(r, t)〉. (7.6)

Here, 〈X〉 denotes the thermal expectation value of the operator X and we follow the
notation of Kadanoff and Baym [86] in which the “greater-than” function has the order
of its arguments (r, s) preserved, while the “less-than” function has the order reversed3.
Finally, using the notation Eij = (Ei−Ej), the generalized master equation (6.7) becomes

ρ̇ij(t) = iEjiρij(t) +

1

ǫ2r

∑

m,n

∫ t

0
dt′
∫

dr′dr′′
{

G>(r′′, r′, t′)
[

eiEnit
′
ρmn(t− t′)Tim(r′)Tnj(r

′′)

−eiEjmt′ρnj(t− t′)Tmn(r′)Tim(r′′)
]

+G<(r′′, r′, t′)
[

eiEjmt′ρmn(t− t′)Tnj(r
′)Tim(r′′)

−eiEnit′ρim(t− t′)Tmn(r′)Tnj(r
′′)
]}

dt′. (7.7)

Eq. (7.7) appears to be far more complicated than Eq. (6.13), which is the expected
form of the master equation. It can be simplified by noting that the functions G<,> and
Tij are independent of the density matrix and can be calculated separately. By combining
these into another function

R<,>
ijkl (t)=

1

ǫ2r

∫

dr′dr′′Tij(r
′)Tkl(r

′′)G<,>(r′′, r′, t), (7.8)

we can rewrite Eq. (7.7) as

ρ̇ij(t) = iEjiρij(t) +
∑

m,n

∫ t

0
dt′
[

eiEnit
′
R>

imnj(t
′)ρmn(t− t′) − eiEjmt′R>

mnim(t′)ρnj(t− t′)

+eiEjmt′R<
njim(t′)ρmn(t− t′) − eiEnit′R<

mnnj(t
′)ρim(t− t′)

]

dt′. (7.9)

Once the functions R<,>
ijkl have been calculated, Eq. (7.9) can be solved using the meth-

ods of the previous chapter. In the next section, I present the method that we used to
approximate G<,> and Tij, from which R<,>

ijkl is determined.

3Strictly speaking, the “less-than” correlation function of an operator X(r, t) is defined by G<
X(rt, r′t′) ≡

〈X†(r′, t′)X(r, t)〉; in writing Eqs. (7.5)-(7.6), we have used invariance in time to eliminate one of the time
variables and also used the hermiticity of the density operator, n(r, t) = n†(r, t).
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7.2.3 Response function of the gate

To obtain G<,>(t), we made use of the generalized reflection coefficient g(q, ω), which is
a well known quantity in surface science [125, 153]. The function g(q, ω) is defined as
the coefficient of the reflected potential induced by a point charge near a surface. More
precisely, given a potential

φext(r, t) =
2π

q
e−q(z+d)eiq‖·r‖eiωt, (7.10)

the induced potential due to the image charge will be

φind(r, t) = −g(q, ω)
2π

q
eq(z−d)eiq‖·r‖eiωt. (7.11)

If the dot is reasonably far away from the gate (farther than about 10nm [153]), then the
approximate form for g is [125,153]

g(q, ω) =
1

ǫr

ǫ(ω) − 1

ǫ(ω) + 1
. (7.12)

Linear- and higher-order corrections in q are only relevant when the dot is so close to the
gate that the electric field lines are not orthogonal to the surface [125,153].

An alternative method of evaluating g(q, ω) is to determine the linear response of the
surface charge density to a potential of the form (7.10). The induced charge density is
related by a Kubo formula to the retarded density-density correlation function [129]

Gret(r, s, t) ≡ iθ(t)
[

G>(r, s, t) − G<(r, s, t)
]

.

By the Kubo formula, g(q, ω) can be related to the correlation functions G<,>(r, s, t). The
details of this calculation are straightforward and we found that

G>(q, ω) = eβωG<(q, ω) =
2qǫr

(2π)5(1 − e−βω)
Im[g(q, ω)], (7.13)

where G<,>(q, ω) is the Fourier transform of G<,>(r, s, t) and the translational invariance
of the surface has been used to write G<,>(q, ω) as functions of a single momentum.

By Fourier transforming the Coulomb interaction term 1/|r−r′|, we expressed R<,>
ijkl (t)

as

R<,>
ijkl (t)=

1

2π2ǫ2r
I<,>(t)

∫

dr′dr′′ϕ∗
i (r

′′)ϕj(r
′′)ϕ∗

k(r
′)ϕl(r

′)
∫

dq‖
1

|q‖|
e|q‖|(z′+z′′)eiq‖·(r′′‖−r′‖).

(7.14)
The time dependence is governed by I<,>(t), with

I>(t) = I<(−t) =

∫

dω
1

1 − e−βω
e−iωtIm

[

ǫ(ω) − 1

ǫ(ω) + 1

]

, (7.15)

and the integration variables r′, r′′ in Eq. (7.14) have been resolved into components, e.g.
r′ = (r′‖, z

′).
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Finally, inserting the identity

1

q
eq(z

′+z′′) =

∫

dk
1

q2 + k2
eik(z′+z′′) (7.16)

into Eq. (7.14) yields

R<,>
ijkl (t)=

1

πǫ2r
I<,>(t)

∫

dr′dr′′
ϕ∗

i (r
′′)ϕj(r

′′)ϕ∗
k(r

′)ϕl(r
′)

√

|r′′‖ − r′‖|2 + (z′ + z′′)2
. (7.17)

The spatial integral contains the qubit wavefunctions with a well-defined kernel. Since
these wavefunctions were determined numerically, the integral can be computed for any
choice of indices {i, j, k, l}.

Due to symmetry reasons, Rijkl vanishes if 3 of the indices coincide and differ from the
fourth. From Eq. (7.9), it can readily be checked that this causes the diagonal components
of ρ to evolve independently from the off-diagonal components. This reduces the search
for poles of the Laplace transform from the vanishing of the determinant of a 4× 4 matrix
(see section 6.3.2) to the vanishing of two determinants of 2 × 2 matrices.

Before Eq. (7.9) can be solved, the time-dependent factors I<,>(t) must be calculated.
We assumed that ǫ(ω) could be approximated by the Drude formula [40],

ǫ(ω) = 1 −
ω2

p

ω(ω + 2iγ)
, (7.18)

with ωp the plasma frequency and γ the relaxation rate at the Fermi energy [100]. Eq.
(7.18) allows I>(t) to be evaluated explicitly using contour integration, yielding

I>(t) ≈















πω2
pe−γt

4x e−ixt − 2π
β

∑∞
n=1 e

−2πnt/βgn t > 0

πω2
peγt

4x e−ixt − 2π
β

∑∞
n=1 e

2πnt/βgn t < 0

(7.19)

Here, the function gn is defined as

gn =
8πnβ3γω2

p

4(2π)4n4 + 4(2π)2n2β2(ω2
p − 4γ2) + ω4

pβ
4

(7.20)

and x = (ω2
p/2 − γ2)1/2 is the real part of the first-quadrant pole of Im[(ǫ − 1)/(ǫ + 1)].

Since ωp is typically of the order of 10 eV and γ ≈ 1 eV, exp(−ixt) oscillates extremely
rapidly, i.e. with a period of approximately 0.1 fs. This fact was used in the previous
chapter to argue that numerical integration is inadequate for solving Eq. (7.9) over long
timescales.

In Eq. (7.19), terms that are a factor of exp(−βωp) smaller than the leading order terms
have been neglected; for ωp = 10eV, this is a reasonable approximation for temperatures
as high as 1000K and is certainly justified for the temperatures considered here.

The preferred method of solution of Eq. (7.9) is the Laplace transform technique,
introduced in the previous chapter. For this, the Laplace transforms of the factors I<,>(t)
are needed. This calculation is complicated by the slow convergence of the sum in Eq.
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(7.19) and is presented in the next section. Before describing this calculation, it is useful
to make some general comments about the equations derived above.

The integral kernel in Eq. (7.17) is similar to the classically-determined interaction
of a charge with its image charge [82]. This allows us to interpret the above equations
as describing the interaction of the electron in the qubit with its image charge. Since
we assumed that the static image charge vanishes (7.3), only fluctuations of the image
contribute to this interaction. The time-dependent term I(t) shows that the interaction
is not instantaneous; fluctuations and scattering events in the electrode make the image
charge dynamics lag behind those of the electron in the qubit. This causes memory effects:
through the interaction, the electron “remembers” where it was previously.

Of course, there are differences from the classical result. The classical interaction of
an electron with its image charge contains only charge densities [82], while Eq. (7.17)
contains wavefunctions. Furthermore, a classical image charge does not undergo quantum
fluctuations. Nonetheless, this interpretation provides some physical insight into the main
features of the problem and is helpful in understanding the results below.

7.2.4 Laplace transform of I
>(t)

Here, I present the calculation of the Laplace transform of Eq. (7.19). Laplace transforms
of a convergent series can be performed termwise, yielding

Ĩ>(z) ≈
πω2

p

4x(z + γ + ix)
− 2π

β

∞
∑

n=1

gn

z + 2πn/β
, (7.21)

with gn defined in Eq. (7.20). Similarly to Eq. (7.19), this equation is only approximate
since terms that are a factor of exp(−βωp) smaller than the leading order terms are
neglected.

The series in Eq. (7.21) can be (approximately) evaluated analytically in the limits
|z|β ≫ 1 (when the gate is in the ground state) and |z|β ≪ 1 (high temperature). However,
we found that for most choices of physical parameters (magnetic field, temperature and
separation distance between the quantum dot and the metal), the gate is neither very
hot nor very cold: |z| ∼ E21 ∼ 1/β. For example, if the magnetic field is 10 T and the
temperature is 100 mK, βz ≈ 0.4. In this case, the series in Eq. (7.21) must be calculated
numerically using a truncation at some large value N .

The factor gn decays as n−3 provided n ≫ βωp ≡ ωp/kBT . Since the plasma energy
is much larger than the temperature, the series needs very large N . However, if N is too
large, the accuracy will be reduced due to round-off errors. This problem is aggravated by
the almost complete cancellation of the first term of Eq. (7.21) with the series — typically,
the real part of the series sums to approximately 0.2, while Re[Ĩ>(z)] ≈ 10−6.

We found that the optimal number of terms is N ∼ 108. For T > 40 mK, the
tail of the series is negligible if N = 1 × 108 terms are used; for smaller temperatures,
N = 4 × 108 terms were needed. The maximum possible round-off error (using double-
precision arithmetic) for this number of terms is approximately three orders of magnitude
less than Ĩ>(z); this is sufficiently small that it does not affect the results. To numerically
verify that round-off effects were negligible, we reversed the order of the sum and we
also broke the term πω2

p/4x(z + γ + ix) into N terms and included these terms in the
summation; neither of these modifications significantly affected the result.



96 Chapter 7. Dephasing of Quantum Dots: Coulomb Interaction with a Gate

7.2.5 Results

In order to obtain numerical results, the physical constants entering Eqs. (7.1), (7.9) and
(7.21) must be specified. The semiconductor surrounding the quantum dot is assumed to
be GaAs, for which ǫr ≈ 13, g = −0.44, β = (2 ± 1) × 105 cm s−1 and m∗ ≈ 0.067. To
describe the metal, we take the “typical” values ωp = 10 eV and γ = 1 eV [100,138]. The
side-length of the (square) quantum dot was set to R = 30 nm, which is a typical size for
self-assembled quantum dots [71,113]. The other three parameters, temperature, magnetic
field and distance to the gate, were varied. When each of these was varied, the others were
chosen at the following default values: temperature T = 1 K; magnetic field B = 8 T;
distance to the gate d = 50 nm. These parameters were chosen to aid comparison with
the experimental results of Ref. [113].

We found qualitatively similar results for all choices of the parameters. The evolution
of the diagonal elements ρ11 and ρ22 is dominated by two real, simple poles in their
Laplace transforms. A pole at z = 0 ensures that there is a nondecaying component and
another pole at z < 0 describes the decay. From the residues at these poles, we found
that asymptotically (i.e. after a transient period during which poles at smaller z values
influence the dynamics), the diagonal matrix elements evolve according to

(

ρ11(t)
ρ22(t)

)

=

(

a+ (1 − a)e−t/T1 a(1 − e−t/T1)

(1 − a)(1 − e−t/T1) 1 − a(1 − e−t/T1)

)(

ρ
(0)
11

ρ
(0)
22

)

(7.22)

where a and T1 are functions of the parameters and I use the standard notation T1 to
denote the energy relaxation time. Eq. (7.22) preserves the relation ρ11 + ρ22 = 1 and
shows that all initial conditions decay to the same final state,

(

ρ11(∞)
ρ22(∞)

)

=

(

a
1 − a

)

(7.23)

The dynamics of the off-diagonal elements ρ12 and ρ21 are governed by a complex
conjugate pair of simple poles with negative real part. Many of the residues at these poles
vanish and the evolution is asymptotically described by

(

ρ12(t)
ρ21(t)

)

=

(

e−t/T2+iǫ21t 0

0 e−t/T2−iǫ21t

)(

ρ
(0)
12

ρ
(0)
21

)

(7.24)

Clearly, this evolution preserves the relation ρ12 = ρ∗21. The oscillation frequency ǫ21 is
always slightly larger (around 1%) than the energy difference between the up and down
states E21, showing that the gate assists transitions between the two states.

Fig. 7.3 shows both the dephasing rate and the pure dephasing rate as functions of B,
d and T . The pure dephasing rate was defined in Eq. (6.23) as

1

TΦ
=

1

T2
− 1

2T1
. (7.25)

It is a general theorem that this rate should be positive (see, e.g. Ref. [142] and the
discussion in chapter 6). As is clear from Figs. 7.3 (d)-(f), our calculations did not yield
this result. On the contrary, 1/TΦ was negative for all parameters.
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Figure 7.3: The dephasing rates (a)-(c) and pure dephasing rates (d)-(f) of a spin quantum
dot due to the interaction with the gate electrode. The pure dephasing rate is defined in Eq.
(7.25). These rates are functions of the magnetic field, distance between the gate and the
quantum dot and temperature. In (a) and (d), we varied the magnetic field, keeping d = 30
nm and T = 1 K. In (b) and (e), B = 8 T, T = 1 K and the distance was varied. Finally, (c)
and (f) show the dependence on temperature, with B = 8 T and d = 30 nm.
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Figure 7.4: The asymptotic value of ρ11 as a function of B (with T = 1 K) and T (with
B = 8 T). The solid line indicates the thermal equilibrium value, while the circles are the values
calculated from the residue of the z = 0 pole of the Laplace transform. In both figures, d = 30
nm. Varying d changes neither the calculated asymptotic value nor the thermal equilibrium
value.

The resolution of this apparent inconsistency lies in numerical round-off errors. In the
previous section it was noted that the calculated values of both 1/T1 and 1/T2 are accurate
up to three significant figures. Beyond this, errors related to finite precision arithmetic
may become important. Since the calculated values for 1/TΦ are always at least six orders
of magnitude less than 1/T2, they are within this error region. As such, these values are
not meaningful. All that can be concluded about the pure dephasing rate is that it is far
smaller than the dephasing and dissipation rates, which is usually the case for quantum
dot systems [56].

The dephasing rate due to the interaction with the gate electrode is less than 6× 10−4

s−1. This is much smaller than the dephasing rate due to phonon scattering, which is of the
order of 103 s−1 [96]. However, Fig. 7.3 (a) shows that the dephasing rate is proportional
to B3, while phonon dephasing rates scale as B5; at very low magnetic fields, dephasing
due to the gate could dominate. Furthermore, the dephasing rate calculated here increases
rapidly as d decreases, i.e. as the gate approaches the qubit. This will influence potential
miniaturization of the device. However, for the current design of quantum dots, the gate
will have very little effect.

Finally, Fig. 7.4 shows the asymptotic value of ρ11 compared with the thermal equilib-
rium value 1/(1+e−βE21). It is clear from the agreement between these two quantities that
the final qubit temperature is the same as that of the gate, as expected. This is a useful
confirmation of the accuracy of the calculation. Note that the difference between using
E21 (the energy difference between bare up and down states) and ǫ21 (the true oscillation
frequency) to evaluate the thermal equilibrium distribution is negligible. The results using
E21 were consistently closer to the numerically determined asymptotic values, but both
results were always within 0.1% of each other.

In conclusion, the gate electrodes do cause dephasing and dissipation of the spin in the
qubit. Generally, this happens on a timescale that is much slower than other mechanisms,
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at least for the experimental configuration described in Refs. [71, 113], but for smaller
systems with lower magnetic fields, this dephasing mechanism could become noticeable.

7.3 Dephasing of charge qubits

7.3.1 Difference between charge and spin qubits

The analysis of dephasing of charge qubits is very similar to the analysis for spin qubits.
For this reason, I discuss here only those points where the calculations differ. Further
details can be found in Ref. [204]

Charge qubits have already been described in chapter 1. They consist of a pair of
quantum dots separated by a tunnel barrier. Because the barrier has a finite height, the
“left” and “right” states (where the electron is fully contained in one or the other quantum
dot [69]) are not eigenstates. An electron initially in one of these states will move into
the other and then return to the original state. By changing the height of the barrier, the
rate of this oscillation can be varied.

Many experiments with charge qubits use electronically-defined quantum dots, not
self-assembled quantum dots as in the spin case (see, e.g., Refs. [69, 77]). Electronically-
defined quantum dots are usually larger and the network of electrodes is more complicated.
A schematic diagram of a typical charge qubit is shown in Fig. 7.5(a). A 2-dimensional
electron gas is formed at the interface between GaAs and AlGaAs. A double quantum
dot structure [indicated by the dashed lines in Fig. 7.5(a)] is defined by charging the gate
electrodes to different potentials; these are also used to influence the height of the tunnel
barrier.

With spin quantum dots, the gate electrode is usually a single metallic sheet. For
electronically-defined dots, as shown in Fig. 7.5(a), there are several electrodes, each of
which may be at a different potential. From the point of view of the quantum dot, each
electrode has two separate effects: the potential of each electrode statically defines the
two quantum dots and each electrode exhibits a dynamical response to the motion of
the electron. Since the potential of an electrode has a negligible effect on its Fermi level,
plasma frequency and electron mean free path, each electrode will have a similar dynamical
response [204]. Indeed, from the dynamical point of view, there is little difference between
a system with several separate electrodes and a system with a single, large electrode; the
primary differences are the increase of interaction area and the neglect of eddy currents,
both of which are small effects in this system. We therefore separated the contribution
from the gate electrodes into a static part, which defines the potential landscape of the
quantum dots, and a dynamical part, which is taken to be equivalent to an infinite metal
layer. This is shown schematically in Fig. 7.5(b) and makes the geometries for spin and
charge qubits very similar [compare Fig. 7.2 (b)].

Next, consider the quantum dot system. As for the spin qubit, we assumed that the
confinement in the z direction is significantly stronger than that in the x or y directions,
so that the wavefunction may be written

ϕi(r) =
√

δ(z)ϕi(r‖). (7.26)

In the x and y directions, we assumed that each quantum dot consists of a square-well
potential with infinitely high walls except in the tunneling direction. Both wells have the
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Figure 7.5: (a) A schematic drawing of a double quantum dot system. The electrodes define
the quantum dots (indicated by the dashed lines), control tunneling into the source or drain
electrodes (not shown) and determine the tunnel barrier. (b) An approximated system, in
which the electrodes are replaced by a single, infinite electrode and the double quantum dot
system is represented with a pair of square well potentials of equal height connected via a
tunnel barrier. The gate electrode is assumed thick enough that it may be approximated as a
bulk metal, filling the region z > d.

same depth, so the wavefunctions obey the time-independent Schrödinger equation

(

− 1

2m∗∇
2
‖ + V (r‖)

)

ϕi(r‖) = Eiϕi(r‖), (7.27)

with the potential

V (r‖) =
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2 ]

∞ otherwise

(7.28)

The height of the tunnel barrier V0 is chosen so that the tunneling energy matches that
of the experiments described in Ref. [69], i.e. (E2 − E1) ≡ E21 ∼ 10µeV.

Similarly to the analysis for spin qubits, we considered only the two lowest energy
states of Eq. (7.27); these are the bonding and antibonding wavefunctions. Using the
separability of Eq. (7.27), the x component can be determined numerically by expanding
ϕ in a cosine or sine series (for the bonding and antibonding orbitals, respectively) and
the y component is calculated analytically. For the numerical calculation, we used 300
modes in the series expansion; the convergence of this series was confirmed by repeating
the calculation using 500 modes.

As for the spin case, we assumed that the initial correlation between the qubit and the
gate vanishes, the static image charge is incorporated into the definition of the potential
(7.28) and that the second order Born approximation suffices. Under these conditions,
the dynamics are governed by Eq. (7.9), where now the wavefunctions of the charge qubit
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must be used in Eq. (7.8) to determine R<,>
ijkl . Because the eigenfunctions of Eq. (7.27) can

be chosen to be real, R<,>
ijkl becomes symmetric with respect to some permutations of the

indices {i, j, k, l}. This simplifies the form of the master equation, but since the integrals
are determined numerically, it does not simplify the calculation. Again we find that Rijkl

vanishes if any 3 of its indices coincide and differ from the fourth — for charge qubits,
like for spin qubits, the diagonal components of ρ evolve independently of the off-diagonal
components.

To summarize: under the above assumptions, the evolution of a charge qubit is de-
scribed by the same equations as the evolution of a spin qubit. The only difference lies in
the calculation of R<,>

ijkl , for which eigenfunctions of Eq. (7.27) must now be used.

7.3.2 Results

Many of the physical parameters for charge qubits coincide with those for spin qubits. The
semiconductor surrounding the quantum dots is assumed to be GaAs/AlGaAs, for which
ǫr ≈ 13 and m∗ ≈ 0.067. The parameters describing the metal are taken as ωp = 10 eV
and γ = 1 eV [100,138]. Since electronically-defined quantum dots are usually larger than
self-assembled dots, the size of the quantum dots was chosen to be R = 50 nm. This time,
there are four parameters that can be varied — temperature, tunneling energy, distance
between the dots and distance to the gate. When each of these was varied, the others
were chosen at the following default values: temperature T = 100 mK; tunneling energy
E21 = 8µeV; distance between the dots s = 100 nm; distance to the gate d = 50 nm.
These parameters were chosen so that our results could be compared with the experimental
results of Ref. [69].

The evolution was found to be qualitatively similar to that of spin qubits. The dy-
namics of the diagonal elements are dominated by two real, simple poles, one at z = 0
and another with z < 0. After the initial transients vanish, the evolution is given by Eq.
(7.22), i.e.

(

ρ11(t)
ρ22(t)

)

=

(

a+ (1 − a)e−t/T1 a(1 − e−t/T1)

(1 − a)(1 − e−t/T1) 1 − a(1 − e−t/T1)

)(

ρ
(0)
11

ρ
(0)
22

)

(7.29)

(Of course, the parameters a and T1 differ from those for the spin qubit.)
The dynamics of the off-diagonal elements are governed by a complex conjugate pair

of poles with negative real part. The evolution is described by Eq. (7.24), i.e.

(

ρ12(t)
ρ21(t)

)

=

(

e−t/T2+iǫ21t 0

0 e−t/T2−iǫ21t

)(

ρ
(0)
12

ρ
(0)
21

)

(7.30)

with the dephasing given by T2. Again, the oscillation frequency ǫ21 is slightly larger than
the bare tunneling energy E21 — the gate assists transitions between the qubit states.

The results are contained in Figs. 7.6, 7.8 and 7.9. Fig. 7.6 shows the dephasing rate
as a function of E21, d, s and T . The dephasing rate clearly increases very rapidly as
d is reduced or as the tunneling energy is increased. Comparing Fig. 7.6(a) with Fig.
3(b) of Ref. [69] (reproduced in Fig. 7.7 for convenience), it is clear that the dependence
of dephasing on tunneling energy is far stronger for the Coulomb interaction than for
cotunneling or for the electron-phonon interaction. If this trend persists to very large
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Figure 7.6: The dephasing rate of the double quantum dot system, due to the interaction
with the gate electrode, as a function of tunneling energy (a), distance between the gate and
the quantum dots (b), distance between the quantum dots (c) and temperature (d). In (a)
we set d = 50 nm, s = 100 nm and T = 100 mK. In (b) E21 = 8µeV, s = 100 nm and
T = 100 mK. In (c) E21 = 8µeV, d = 50 nm and T = 100 mK, and finally in (d) we used
E21 = 8µeV, d = 50 nm and s = 100 nm.
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Figure 7.7: Fig. 3(b) of Ref. [69]. Experimental decoherence rate, T−1
2 , of an electron in a

double quantum dot as a function of tunneling energy ∆. The decoherence rates calculated
from cotunneling (Γcot) and the spin-boson model of phonon scattering (Γsb) are shown by solid
and dashed lines, respectively. For more details, see Ref. [69]. Figure reprinted with permission
from T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong and Y. Hirayama, Physical Review
Letters 91, 226804 (2003). Copyright (2003) by the American Physical Society.

tunneling energies, there could be competition between these effects; at the tunneling
energies considered here, the Coulomb interaction is negligible.

One difference between the dephasing of charge qubits and spin qubits is that the pure
dephasing rate (7.25) is not negligible for charge qubits. The pure dephasing rate was
found to be a little less than 1% of the dephasing rate; it is plotted in Fig. 7.8. Although
small, it is larger than the numerical errors associated with double precision arithmetic,
which cause inaccuracies of around 0.1% of the dephasing rate. As expected from physical
grounds, the pure dephasing rate is always positive.

Finally, in Fig. 7.9 I show the comparison of the asymptotic value of ρ11 with the ther-
mal equilibrium value 1/(1 + e−βE21). It is clear from the agreement between these two
quantities that the final qubit temperature is the same as that of the gate, i.e. the gate
causes complete thermalization of the quantum dot. As for the spin qubit investigation,
there is negligible difference — less than 0.1% — between using E21 (the bare tunnel-
ing energy) and ǫ21 (the true oscillation frequency) to evaluate the thermal equilibrium
distribution.

In general, the dephasing and dissipation rates for a charge qubit due to interaction
with a gate electrode are of the order of 10 ms−1. This is significantly slower than the
typical phonon dephasing rate [69,180], which is around 1 ns−1 for the system parameters
considered here. Gate-induced dephasing yields a negligible contribution for the current
design of double quantum dots. However, the dephasing rate increases rapidly as either d
is decreased or E21 is increased. It is possible that as systems are miniaturized or higher
oscillation frequencies are sought, this form of dephasing will become increasingly relevant.

http://prola.aps.org/abstract/PRL/v91/i22/e226804
http://prola.aps.org/abstract/PRL/v91/i22/e226804
http://prola.aps.org/abstract/PRL/v91/i22/e226804
http://prola.aps.org/abstract/PRL/v91/i22/e226804
http://prola.aps.org/abstract/PRL/v91/i22/e226804
http://prola.aps.org/abstract/PRL/v91/i22/e226804
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Figure 7.8: The pure dephasing rate, defined in Eq. (7.25), as a function of tunneling energy
(a), distance between the gate and the quantum dots (b), distance between the quantum dots
(c) and temperature (d). The other parameters are chosen as in Figs. 7.6(a)-(d), respectively.
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Figure 7.9: The asymptotic value of ρ11, as a function of E21 (with T = 100 mK) and T
(with E21 = 8µeV). The solid line indicates the thermal equilibrium value, while the circles
are the numerically-determined asymptotes. In both figures, s = 100 nm and d = 50 nm.



Chapter 8

Concluding Remarks

This thesis is devoted to the study of ultrafast magnetization dynamics. This very broad
field includes a variety of length-scales (from macroscopic media down to individual spins),
timescales (from milliseconds down to femtoseconds) and experimental techniques (optics,
spin-polarized currents, magnetic fields, high-energy electron beams and many more). No
thesis can address this entire range. We have investigated two topics: manipulation of
magnetization using the inverse Faraday effect and relaxation of magnetization via the
interaction with a metallic electrode.

Our study of the first topic was inspired by the “rediscovery” of the inverse Faraday
effect (IFE) by the experimental group in Nijmegen [99]. The IFE was first derived over
40 years ago [150, 157, 187], but the idea of using it to provide nonthermal control of
magnetization was only conceived in 2005 [99]. Its usefulness had gone unnoticed, so
several aspects of how the IFE functions had not been clarified. The question of whether
the IFE can manipulate magnetization alone or whether an additional angular momentum
reservoir is required, in particular, had been unanswered.

This question has been answered in this thesis. The light beam that causes the IFE
provides the angular momentum required for the magnetization to precess. No other
reservoir is needed. This implies that control of the magnetization occurs on the timescale
of a laser pulse, which can be made extremely short. Whether magnetization reversal can
occur on this timescale is now a question of finding a material with a sufficiently strong
magnetooptical response. This is a technical challenge, not a fundamental obstruction.

The light beam supplies the angular momentum in two ways. For samples that are
much smaller than the beam width, most of the light is unaffected by the sample. However,
some radiation will be scattered. Angular momentum is transported away from the sample
in the interference between the original light and the radiation. On the other hand, if the
sample is much broader than the light beam, refraction dominates the angular momentum
transfer. The beam position is displaced in a direction orthogonal to its propagation,
which displaces the momentum density and yields an angular momentum that balances
the torque on the magnetization. This displacement occurs even when the laser beam
impinges at normal incidence; it is not related to ordinary refraction.

In addition to angular momentum transfer, we also investigated the interpretation of
the experimental results of Ref. [99]. The magnetization was measured using the rotation
of the polarization plane of linearly-polarized light (Faraday rotation). We found that an
important optical effect — birefringence — had been ignored and that the quantitative
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analysis of the results was flawed. This led to several improvements to the experiments
being suggested. In particular, certain critical values of the sample thickness must be
avoided. Furthermore, the sample should be carefully aligned so that the plane of polar-
ization of the light is very close to one of the crystal axes. If this is not done, the rotation
will depend on many parameters that cannot be accurately determined and the results
cannot be quantitatively analyzed.

The second topic that we studied was the relaxation of magnetization. Again, this is too
broad a topic for a single thesis and we focused on the quantum-mechanical relaxation of a
single spin within a quantum dot. This, too, was inspired by recent experiments [113] and
is an important problem in the field of quantum computing. We considered the dephasing
and dissipation that result from the interaction of the spin with a nearby metallic gate. In
general, this was found to be negligible compared to the dephasing due to phonons, but in
certain limits (small gate-dot separation, weak magnetic fields) this may be an important
effect.

The methods developed to study the relaxation of a spin are also applicable to the
relaxation of a charge in a double quantum dot; this is also relevant to quantum computing
[69]. For this reason, some time was devoted to the interaction of a charge with a gate
electrode. As for the spin, this interaction is generally much weaker than the interaction
with phonons but may be important when the electrode is very close to the quantum dot
and when the tunnel barrier is large.



Appendix A

Propagation and Polarization of

Electromagnetic Waves

Propagation of monochromatic electromagnetic waves in vacuum is generally a well un-
derstood topic that is taught to most physics undergraduates. However, since these waves
consist of vectors propagating through 3-dimensional space, it can be difficult to keep track
of the directions in which different vectors point. This appendix is intended as a reference
to simplify the visualization of these waves. I have closely followed the excellent textbooks
of Landau and Lifshitz [118] and Jackson [82] in preparing this appendix; a more thorough
exposition can be found in these references. Gaussian units are used in this appendix.

A.1 Monochromatic plane waves

Electromagnetic fields in a vacuum are governed by the source-free Maxwell equations:

∇ · E = 0, ∇× E = −1

c
Ḃ

∇ ·B = 0, ∇×B =
1

c
Ė. (A.1)

By combining the two curl equations and using the vanishing of the divergence, we find
that E and B each satisfy the vector wave equation:

1

c2
E −∇2E = 0,

1

c2
B−∇2B = 0. (A.2)

Of course, a solution of Eq. (A.2) is only physically meaningful if it also satisfies Maxwell’s
equations (A.1). In particular, if we solve the wave equation for the electric field E(r, t),
the magnetic field B(r, t) is uniquely determined from Eq. (A.1).

The simplest E(r, t) that satisfies Eq. (A.2) is the monochromatic plane wave

E(r, t) =
1

2

(

E0e
i(ωt−k·r) + c.c.

)

, (A.3)

where the vector E0 is complex and the complex conjugate is added to ensure the electric
field E(r, t) is real. According to Fourier’s theorem, any electric field that satisfies Eq.
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(A.2) can be written as a superposition of waves of the form (A.3), which justifies the
study of these simple solutions.

The wave equation (A.2) forces a relationship between the frequency ω and the wave-
vector k:

√
k · k ≡ k =

ω

c
. (A.4)

In addition, Gauss’s law (the first of Maxwell’s equations) yields

k ·E0 = 0. (A.5)

Finally, the magnetic field B(r, t) associated with the electric field (A.3) is

B(r, t) =
1

2

(

k̂× E0e
i(ωt−k·r) + c.c.

)

, (A.6)

where k̂ = k/k is the unit vector in the direction of k. It is useful to note that at every
point (r, t) in space-time, the vectors E(r, t), B(r, t) and k are mutually orthogonal:

E(r, t) ·B(r, t) = 0, E(r, t) · k = 0, B(r, t) · k = 0. (A.7)

Light is therefore a transverse wave.

The energy flux density associated with an electromagnetic wave is given by the Poynt-

ing vector

S =
c

4π
E(r, t) × B(r, t). (A.8)

For the monochromatic plane wave described by Eqs. (A.3) and (A.6), the Poynting vector
(averaged over one period of oscillation 2π/ω) is

S =
c

8π
|E0|2k̂. (A.9)

The energy flows in the direction of the wave-vector k, which is also the direction of the
group velocity of the wave:

vg =
dω

dk
= ck̂. (A.10)

This shows the expected result that light in a vacuum propagates with the velocity c.

A.2 Polarization of plane waves

It is clear from the above discussion that the degrees of freedom available when defining a
monochromatic plane wave are k and E0; given these, ω, B0 and S are uniquely defined.
Furthermore, Eq. (A.7) imposes a relationship between k and E0, k ·E0 = 0, so that these
two vectors cannot be independently chosen.

We therefore have the freedom to choose the 3 real components of k, but only 2 complex
components of E0. The components of E0 could be chosen relative to the Cartesian



A.2. Polarization of plane waves 109

E1

E2

ε1

ε2

θ

E

(a)

ε1

ε2

b1

b2

(b)

Figure A.1: The electric field of light for (a) linear and (b) elliptic polarization. The light
propagates in the direction of the normal to the page. The magnetic field of the light is within
the page, orthogonal to the light.

coordinates, but it is usually more convenient to choose them relative to a coordinate
basis defined by k. That is, introduce two real unit vectors ǫ1 and ǫ2 such that

ǫ1 · ǫ2 = 0, ǫ1 · k = 0, ǫ2 · k = 0. (A.11)

Then E0 can be expressed as

E0 = E1ǫ1 + E2ǫ2, (A.12)

where E1 and E2 are complex scalars. Thus the electric field (A.3) becomes

E(r, t) = Re
[

(E1ǫ1 + E2ǫ2) e
i(ωt−k·r)

]

. (A.13)

If E1 and E2 have the same phase, i.e. E1 = |E1|eiα, E2 = |E2|eiα, then Eq. (A.13)
simplifies to

E(r, t) = (|E1|ǫ1 + |E2|ǫ2) cos (ωt− k · r + α). (A.14)

At all points in space, this electric field points in the same direction, and the light is referred
to as linearly polarized. The electric field vector of linearly polarized light is depicted in
Fig. A.1 (a). This is a 2-dimensional plot, because the electric field is orthogonal to the
direction of light propagation. As time progresses, or as we change position in space, the
electric field changes its amplitude while maintaining the same direction.

If the phases of E1 and E2 differ, the light will be elliptically polarized. The physical
meaning of this is easily exposed by introducing two phase angles, α and β, such that

E1 = |E1|ei(α−β), E2 = |E2|ei(α+β). (A.15)

Then the electric field (A.13) becomes

E(r, t) = cos β (|E1|ǫ1 + |E2|ǫ2) cos (ωt− k · r + α)

+ sinβ (|E1|ǫ1 − |E2|ǫ2) sin (ωt − k · r + α). (A.16)
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As the argument (ωt−k · r+α) changes (either by the progression of time or by changing
position), the electric field (A.16) traces out an ellipse. The axes of this ellipse can be
determined from (A.16):

b1 = cos (γ + β) |E1|ǫ1 + cos (γ − β) |E2|ǫ2,

b2 = sin (γ + β) |E1|ǫ1 + sin (γ − β) |E2|ǫ2, (A.17)

with γ defined by

tan 2γ =
|E2|2 − |E1|2
|E2|2 + |E1|2

tan 2β. (A.18)

With these definitions, the electric field (A.16) becomes

E(r, t) = b1 cos (ωt− k · r + α+ γ) + b2 sin (ωt− k · r + α+ γ). (A.19)

Elliptically polarized light is depicted in Fig. A.1 (b). Note that if the two axes b1 and b2

have equal lengths, we say that the light is circularly polarized. This occurs for β = π/4
and |E1| = |E2|.

A useful measure of the type of polarization is the vector s = iE0 × E∗
0/|E0|2. This

vector is real (due to the antisymmetry of the cross product) and points in the direction
of light propagation. The notation s is used, as this term is the normalized “spin angular
momentum” of the light [4]. If the vectors ǫ1 and ǫ2 introduced in Eq. (A.11) are chosen
such that ǫ1 × ǫ2 = k̂, we find that

s ≡ i
E0 × E∗

0

|E0|2

=
2Re(iE1E

∗
2)

|E1|2 + |E2|2
k̂

=
2|E1||E2| sin (2β)

|E1|2 + |E2|2
k̂, (A.20)

where Eq. (A.15) has been used. Linearly polarized light has β = 0, in which case |s| = 0.
Elliptically polarized light satisfies 0 < |s| < 1. Finally, if the light is circularly polarized,
|s| = 1.
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30 June 2008 Ph.D. exam at RWTH Aachen


	Abstract
	Kurzfassung
	Introduction
	Magnetization dynamics
	Magnetism in technology
	Magnetic switching
	New methods

	Magnetooptics
	Experiments
	Angular momentum
	Nonthermal switching

	Quantum Computing
	What is quantum computing?
	Qubits
	Manipulating qubits


	The Inverse Faraday Effect
	The Faraday effect
	Energy considerations
	The effective Hamiltonian formulation
	The ultrafast inverse Faraday effect

	Conservation of Angular Momentum: Small Systems
	Introduction
	Angular momentum of light
	Effective magnetic field
	Demonstration using hydrogen atom

	Conservation of Angular Momentum: Extended Systems
	Description of the problem
	Orbital angular momentum of light
	Propagation of light
	Change of polarization
	The second interface
	First reflection
	Loss of angular momentum
	Multiple reflection


	The Difficulty of Measurement
	Measuring ultrafast magnetization dynamics
	Orthoferrites
	Faraday rotation in a birefringent weak ferromagnet
	Limiting cases
	Zero birefringence
	Large birefringence, small 

	Numerical exploration of nonperturbative regions
	Summary

	Interaction of a Quantum System with a Heat Bath
	Dephasing and dissipation
	The generalized master equation
	Solving the master equation
	Numerical integration
	Laplace transformation


	Dephasing of Quantum Dots: Coulomb Interaction with a Gate
	Overview
	Dephasing of spin qubits
	Structure of qubit
	Coulomb interaction with the gate
	Response function of the gate
	Laplace transform of I>(t)
	Results

	Dephasing of charge qubits
	Difference between charge and spin qubits
	Results


	Concluding Remarks
	Propagation and Polarization of Electromagnetic Waves
	Monochromatic plane waves
	Polarization of plane waves

	Bibliography
	List of Publications
	Acknowledgments
	Curriculum Vitae

