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1 Introduction

Since many years, there has been great interest in the magnetic structure of thin film
systems as they proved to be the source of a wide spectrum of fascinating properties.
One main goal was to determine magnetic properties such as magnetic order (ferro- or
antiferromagnetic), the direction of magnetic moments, the formation of magnetic do-
mains and their stability, as well as their thermodynamical properties. Insights in these
properties had a big influence in the field of data storage devices, which use magnetic
thin film systems to store information in terms of magnetization directions (magnetiza-
tion pointing up and down corresponding to bit ‘1’ and ‘0’, respectively), and the data
density could be increased by several orders of magnitude by designing tailored thin
film systems. Over the past 10 years a consistent understanding of the magnetism in
thin magnetic films and heterostructures developed and theoretical and experimental
findings converged (for summary see for example the review [1]). Open questions arose
in molecular magnets and magnetic wires.

Therefore it came as an unexpected surprise as Kubetzka et al. [2] observed that all
domain-walls in in a thin film of two monolayers of Fe on W(110) have one rotational
sense. Statistically one would expect an equal distribution of left and right rotating
domain walls. A new vista of thin film magnetism opened with the discovery of a new
magnetic phase in an atomic monolayer of Mn on a W(110) substrate [3], whose ground
state is a spiraling magnetic structure of unique rotational sense. The occurrence of
this phase can only be explained by considering also the so called Dzyaloshinskii-Moriya
interaction (DMI) [4, 5]. It arises due to electrons propagating in inversion asymmetric
environments and is of the form

EDM = Dij · (Si × Sj) , (1.1)

with D being the Dzyaloshinskii-vector and Si and Sj two magnetic moments on lattice
sites i and j, respectively. The DMI favors spiraling magnetic structures of unique
rotational sense, depending on the sign of D, in contrast to other important interactions
as the Heisenberg exchange (usually preferring collinear magnetic structures or spirals
without being sensitive to the rotational direction) or the magnetocrystalline anisotropy
energy (preferring collinear alignment of magnetic moments in a certain crystallographic
direction). These competing interactions give rise to a variety of possible magnetic
ground states due to frustration.

The DMI can also explain other experimental observations [6], e.g. the regular for-
mation of domain walls in a double layer Fe on W(110) [7, 8], and their unique sense of
rotation along a path from one domain to the next. A detailed understanding of this
new kind of interaction may have impact in the context of facilitating applications in
spintronics and spin-dependent transport.
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1 Introduction

The DMI is a relativistic effect, because spin-orbit coupling (SOC) – meaning that
the intrinsic spin degree of freedom of an electron is coupled to its orbital motion –
is crucial for its occurrence. The contribution of SOC to the total energy is small
and methods with very high accuracy are needed. Density functional theory (DFT)
[9, 10] has become a powerful tool in theoretical solid state physics to study ground-
state properties of complex, realistic many-electron systems with astonishing accuracy
from ab-initio (meaning that no external parameters than the positions and charges of
nuclei are needed). In this thesis one of the most accurate methods, namely the full-
potential linearized augmented plane-wave (FLAPW) method [11, 12] as implemented
in the Fleur code [13] is used.

It is not straightforward to implement the calculation of the Dzyaloshinskii-Moriya
interaction efficiently in the existing ab-initio methods, because the combination of spin-
spiral calculations and spin-orbit coupling is needed. One especially faces problems,
when the SOC energy of spin spirals with period lengths over several chemical unit cells
shall be calculated. In the standard methods, which utilize a supercell in which the
magnetic structure is commensurate, the determination becomes impossible due to the
huge number of atoms in the magnetic unit cell. In this thesis, a recently implemented
perturbative treatment has been used, which treats spin-orbit coupling in first order
perturbation theory [14]. This method allows for calculations in the chemical unit cell.
However, because of the desired high numerical accuracy, the solution of the underlying
physical equations can be done only on state of the art supercomputers.

From an experimental point of view, scanning tunneling microscopy with a spin-
polarized tip (SP-STM) allows to study the magnetic properties of thin-film systems on
an atomic length scale and allows for comparison with the theoretical results.

A few thin-film systems consisting of 3d-transition metal layers (a double layer Fe
[2, 7, 8] or a monolayer Mn [3, 6]) on a tungsten substrate have been investigated by
means of both, DFT and SP-STM, and it was found that the Dzyaloshinskii-Moriya
interaction influences their magnetic structure. However, more systems must be studied
to obtain a chemical trend and to understand, which quantities determine e.g. the sign
and the strength of the DMI. In this thesis we present investigations on the magnetic
structure of a monolayer of Cr on W(110) by means of density functional theory. Because
of the high spin-orbit coupling strength of the heavy W atoms combined with their
magnetic moment induced by the antiferromagnetically ordered Cr-layer, this system is
a promising candidate for a strong DMI.

It is a widely used approach to determine the ground state by means of a model,
where the required model parameter are obtained by ab-initio calculations. We use
a micromagnetic model, because magnetic structures are expected to appear on long
length scales compared to the interatomic distance. Three energy contributions are
taken into account: the spin stiffness (corresponding to the Heisenberg exchange), the
magnetocrystalline anisotropy and the Dzyaloshinskii-Moriya interaction.

This thesis is structured as follows: In chapter 1 and 2 introductions to DFT and
the FLAPW method is given, respectively. In chapter 3 and 4 the important magnetic
interactions and the micromagnetic model and its solutions are discussed. The system
of a free-standing monolayer of Cr is investigated in chapter 5. The spin stiffness is
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determined here and special focus was laid on the required numerical cutoffs and errors of
applied approximations, e.g. the force theorem. Chapter 6 provides the detailed analysis
of the system of a monolayer of Cr on a W(110) substrate. We investigate structural
and magnetic properties of the system. We extract the three model parameters from
spin-spiral calculations with the FLAPW method. Finally, in chapter 7 we compare our
findings to the other systems investigated so far.
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2 Density Functional Theory

2.1 The microscopic Hamiltonian in solid state physics

In principle, the stationary Schrödinger equation for a complex many-body problem in
solid state physics is known to be

H |Ψ〉 = E |Ψ〉 , (2.1)

where H is the Hamilton operator (also called Hamiltonian), |Ψ〉 is the many-body wave-
function and E the eigenenergy of the system. In the following, a system consisting of
Ne electrons with mass m and Nk nuclei with (maybe different) mass Mk shall be con-
sidered. The Hamiltonian (in the following written in position representation) consists
of five different contributions:

H = −
Ne∑
i=1

~2

2m

∂2

∂ri2
−

Nk∑
k=1

~2

2Mk

∂2

∂Rk
2 (2.2)

+
∑
i<j

e2

|ri − rj |
+
∑
k<l

Zk Zl e
2

|Rk −Rl|

−
∑
i,k

Zk e
2

|ri −Rk|
,

where the terms in the first line correspond to the kinetic energy of electrons and nuclei,
respectively, in the second line they correspond to the electron-electron and nucleus-
nucleus interaction and the third line corresponds to the interaction of the electrons
with the nuclei. 2π ~ is Planck’s constant, e the elementary charge, and ri and Rk
denote the position of an electron and nuclei, respectively.

If one rewrites the problem to atomic units, which means that lengths are expressed
in Bohr radii a0 = ~2/me2 and energies are expressed in Hartree e2/a0, one finds

H = −1

2

∑
i

∂2

∂r̃2
i︸ ︷︷ ︸

Te

− 1

2

∑
k

m

Mk

∂2

∂R̃2
k︸ ︷︷ ︸

Tk

(2.3)

+
∑
i<j

1

|r̃i − r̃j |︸ ︷︷ ︸
Ve−e

+
∑
k<l

ZkZl∣∣∣R̃k − R̃l

∣∣∣︸ ︷︷ ︸
VK−K

−
∑
i,k

Zk∣∣∣r̃i − R̃k

∣∣∣︸ ︷︷ ︸
Ve−K

.

9



2 Density Functional Theory

Here one can already see, that the contribution of the kinetic energy of the nuclei is
relatively small because of the mass ratio of order m/Mk ≈ 10−3−10−5. Thus, one can
assume that the nuclei are frozen (i.e. TK = 0), which means that the electrons move
in a static potential caused by the nuclei. This approximation is also called adiabatic
approximation or Born-Oppenheimer approximation. The positions of the nuclei {Rk}
enter the Hamiltonian only as parameters in Ve−K and VK−K.

In the Born-Oppenheimer approximation one is left with the problem of solving the
Schrödinger equation for Ne electrons in a static potential. This is not an easy task,
because the number of degrees of freedom is still very big. Additionally, the Schrödinger
equation cannot be solved exactly due to the non-local electron-electron interaction
and the requirement that the many body wavefunction must be antisymmetric under
exchange of two electrons (because of the Pauli principle) makes the solution even more
difficult. A powerful method to treat such problems is called Density Functional Theory
and will be introduced in the next section 2.2.

2.2 Theorem from Hohenberg and Kohn

The calculation of the electronic many-body wavefunction Φ(x1, . . . ,xN ) of a system
with N electrons is a very demanding task. The Schrödinger equation cannot be solved
due to the enormous number of degrees of freedom for a realistic model of a material.
Additionally, the many-body wavefunction must be antisymmetric under exchange of
two particles because electrons are fermions (Pauli principle). And as a third problem,
it is impossible to store Φ in the memory of a computer. However, it contains too much
information for most purposes, and in density functional theory a less involved property,
namely the density

n(r) = 〈Φ|
N∑
i=1

δ(r− ri)|Φ〉 , (2.4)

is used as basic variable. This is a far more simple quantity, because it depends only on
3 spatial variables instead of 3N . Hohenberg an Kohn [9] proved that

• all ground-state properties are unique functionals of the (ground-state) density
n0(r),

• the ground-state density minimizes the energy functional E[n]:
E[n] > E[n0] for all n 6= n0.

The first theorem is quite astonishing, because starting from the exact many-body wave-
function the number of degrees of freedom has been reduced drastically and still all
information on the ground state is retained in the density. The energy functional used
in the second theorem can be written in two terms:

E[n] =

∫
vext(r)n(r) dr + F [n] , (2.5)

where vext(r) denotes the external potential, which is generated by the (fixed) nuclei
and other external fields. All remaining energy contributions, such as inter-electronic
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2.3 The Kohn-Sham system

interactions and kinetic energy, are summed up in F [n], which is universal (i.e. it does
not depend on the system), but unfortunately it is not known exactly.

2.3 The Kohn-Sham system

Despite the fact that the unique functional F [n] is not known, Kohn and Sham [10]
rewrote the energy functional (2.5) so that reasonable approximations could be made.
The main idea is to treat the complex many-body problem as a problem of non-interacting
electrons that lead to the same density as the true system. These electrons are moving in
an effective potential, which is generated by the nuclei and the other electrons. The ma-
jor advantage of this picture is, that one can work now with single-particle wavefunctions
ψi(r) and that the major contribution to the kinetic energy is known explicitly.

E[n] = Eext[n] + T [n] + EH[n] + Exc[n]︸ ︷︷ ︸
=F [n]

(2.6)

Additionally to the kinetic energy T [n], one can also separate the Hartree term EH[n]
from F [n] and remaining many-body effects – such as exchange and correlation – are
summed up in Exc. Again, this functional is not known explicitly, but reasonable ap-
proximations can be made, e.g. the local density approximation (LDA, see section 2.5).

The contributions in equation (2.6) can be written as (in Hartree units)

Eext[n] =

∫
vext(r)n(r)dr , (2.7)

T [n] = −1

2

N∑
i=1

∫
ψ∗i (r)∇2ψi(r)dr , (2.8)

EH[n] =

∫
n(r)n(r′)

|r− r′| dr′ dr . (2.9)

The ground state is found by minimizing equation (2.6) under the constraint, that the
single particle wavefunctions must be normalized. This is done by introducing Lagrange
parameters εi. Variation with respect to ψ∗i yields the Kohn-Sham-equation,(

−1

2
∇2 + Veff(r)

)
ψi(r) = εi ψi(r) . (2.10)

where the effective potential had been introduced,

Veff = Vext + VHartree + Vxc (2.11)

= Vext + 2

∫
n(r′)

|r− r′|dr′ +
δExc[n(r)]

δn(r)
. (2.12)

The density can be written as

n(r) = 2

N/2∑
i=1

ψ∗i (r)ψi(r) , (2.13)
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2 Density Functional Theory

where the summation runs over the N/2 states with lowest single particle energies εi
and a factor 2 accounts for the spin degeneracy.

The effective potential (2.11) is not only dependent on r, but also on the electron
density. Because the solution ψi of the Kohn-Sham equation (2.10) determines the
ground state density via equation (2.13), but this density also enters the Kohn-Sham
equation, one has to find a self-consistent solution. In DFT, this is done by solving the
Kohn-Sham equation iteratively, and thus approaching the ground state density from
an initial guess.

2.4 Vector-spin DFT

Without the restriction in (2.13) DFT can also deal with magnetic systems. The ground
state (energy) of a magnetic system is not only dependent on the electron density n(r),
but also the magnetization density m(r) [15],

E = E[n,m] ≥ E[n0,m0] . (2.14)

An equivalent and similar form to the Kohn-Sham equation of the non-magnetic case is
obtained by replacing the wavefunctions by a two component spinor,

Ψi(r) =

(
ψ↑i (r)

ψ↓i (r)

)
. (2.15)

Then the Kohn-Sham equations for spin-polarized systems reads(
−1

2
∇2 + Veff(r) + Beff · σ

)
Ψi(r) = εi Ψi(r) , (2.16)

where σ is the vector of the three Pauli spin matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
, (2.17)

and the effective magnetic field Beff consists of two contributions: an external part Bext

and an exchange-correlation part,

Bxc =
δExc[n,m]

δm(r)
. (2.18)

The latter is the analogue to the exchange-correlation potential, but now the variation
of Exc is done with respect to m instead of n. The occupied states are determined by
the Fermi energy, εi < εF . The resulting densities are then expressed in terms of the
spinor wavefunctions

n(r) =
occ.∑
i

Ψ†iΨi , (2.19)

m(r) =
occ.∑
i

Ψ†iσΨi . (2.20)
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2.5 Local (Spin) Density Approximation

2.5 Local (Spin) Density Approximation

Unfortunately, the exchange-correlation energy Exc, which describes all electron-electron
interactions beyond the Hartree approximation, is not known. A simple and powerful
approximation is the local density approximation (LDA), where the functional is replaced
by a function and thus becomes local in space,

Exc[n,m] =

∫
dr εLDA(n(r), |m(r)|) . (2.21)

The function εLDA is the exchange and correlation energy per particle of a homoge-
neous electron gas. For the exchange part an exact expression can be derived, whereas
approximations to the correlation part are obtained by Quantum-Monte-Carlo [16–18]
calculations for example. εLDA only depends on the values of the electron density and
the magnitude of the magnetization. Because of the local nature of the functional it
cannot depend on the direction of the magnetization.

The LDA is exact for systems with constant charge and magnetization density and
gives good results for slowly varying densities. However, it turns out that LDA can
also be applied to a wider class of systems, even to atomic systems where the densities
are far away from being uniform, leading to correct trends across the periodic table
[19]. However, a generalization to functions that depend also on gradients, Generalized
Gradient Approximation (GGA), has been made to give a better description of systems
with strongly varying densities. The widely used PBE functional [20] takes only gradients
of the density into account:

Exc[n,m] =

∫
dr εGGA(n(r), |m(r)|, |∇n(r)|) . (2.22)

The PBE-functional and others [21] were constructed for collinear magnetization den-
sities (i.e. m(r) = m(r)n̂, n̂ = m

|m| = const) as an approximation to the exchange-
correlation energy. It is to emphasize, that these functionals are not constructed to
describe non-collinear magnetic densities in contrast to LDA functionals. It was found
out that GGA does not lead to more precise results as LDA in the case of transition
metals and magnetic materials [22].

One major advantage of the used approximations is that Bxc = Bxc
m
|m| is collinear to

the magnetization density [23].

2.6 Relativistic corrections

When one describes systems with heavy atoms, relativistic effects become important due
to the high kinetic energy of the electrons in the vicinity of the nucleus. A relativistic
density functional theory [24] is derived from the Dirac-equation and reads{

cα · p +
1

2
βc2 + Veff(r) + Bxc · σ

}
Ψν(r) = EνΨν(r) , (2.23)
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2 Density Functional Theory

where c is the velocity of light, p is the momentum operator, Eν = εν + 1
2c

2 is the
eigenenergy plus rest mass, Ψν is a spinor wavefunction with four components and

α =

(
0 σ
σ 0

)
, (2.24)

β =

(
1 0
0 −1

)
. (2.25)

Here σ denotes the vector of Pauli spin-matrices (cf. section 2.4) and 1 is the (2 × 2)
identity matrix.

The 4-component spinor wavefunction Ψν can be separated into two parts (ϕν and
χν), each having two components,

Ψν =

(
ϕν
χν

)
, ϕν =

(
ϕ↑ν
ϕ↓ν

)
, χν =

(
χ↑ν
χ↓ν

)
, (2.26)

which are called large and small component.
In principle one could solve equation (2.23) directly, but to gain the same accuracy

as in the non-relativistic (non-magnetic) case, this would increase the computational
effort by a factor of 43 = 64, because solving equation (2.23) (which is equivalent to
diagonalize a matrix) scales with the third power. Instead, only relativistic corrections
to the Kohn-Sham equation (2.16), which can be derived by a 1

c2
-expansion of the full

Dirac equation (c.f. e.g. [25]), are considered. The Kohn-Sham equation then reads

Hrelφν = ενφν (2.27)

where the small and large component are expressed in terms of the two-component
wavefunction φν as

ϕν =

(
1− 1

2 c2
p2

)
φν +O(c−4) (2.28)

χν =

(
1

c
(σ · p) +

1

c3
(−p2

2
+ V − εν)(σ · p)

)
φν +O(c−5) . (2.29)

The corresponding Hamiltonian takes then the form

Hrel = HKS +
1

c2

(
−p4 1 +

1

2

(
∇2(Veff 1 + σ ·Bxc)

))
(2.30)

+
1

c2
σ · ((∇Veff)× p) +

1

c2
B

where HKS is the non-relativistic Kohn-Sham Hamiltonian and B is a (2 × 2)-matrix
whose elements are usually small compared to the other corrections and thus neglected.
Let us have a look at the other contributions: The correction in the first line of (2.30)
is invariant under rotations in spin space and the non-relativistic Hamiltonian (which
also exhibits rotational symmetry in spin space) corrected by this contribution is called
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2.7 Bloch Theorem

scalar-relativistic approximation [26] (denoted by HSR). That HSR is invariant under a
rotation in spin space is expressed by the following equality:

U †HSR U = HSR , (2.31)

where U is a (2 × 2) spin-rotation matrix. That the term σ · Bxc commutes with the
rotation matrix can be seen directly, when one recalls that

Bxc ‖m with m =
occ.∑
i

Ψ†i σ Ψi . (2.32)

When a rotation is applied to the system, also the wavefunctions have to be rotated
(Ψi → U Ψi) and thus Bxc ∝

∑
i Ψ†i U

†σU Ψi is rotated as well. Hence the term σ ·Bxc

is indeed a scalar product and invariant under spin rotations.
The second correction in equation (2.30),

Hso =
1

c2
σ · ((∇Veff)× p) , (2.33)

is called spin-orbit coupling [27]. In contrast to the previously discussed terms it is not
invariant under rotations in spin space and it is largest in the vicinity of the nuclei where
the potential gradient is high. In this region, the potential can be well approximated by
its spherical average,

∇V (r) ≈
∑
µ

∂Ṽ (rµ)

∂rµ
rµ

rµ
, (2.34)

where Ṽµ is the spherically averaged potential and rµ = r−Rµ is the real space coordi-
nate with respect to the position of the µth nucleus. Inserting this approximation into
equation (2.33) leads to

Hso =
∑
µ

ξµ(rµ)σ · Lµ =
∑
µ

ξµ(rµ)

(
Lµz Lµ−
Lµ+ −Lµz

)
, (2.35)

where Lµ denotes the angular momentum operator with respect to the µth nucleus, Lµz

is its z-component, Lµ± = Lµx ± i Lµy and ξµ(rµ) = 1
c2

1
rµ

∂Ṽ (rµ)
∂rµ is the spin orbit coupling

constant. ξµ is usually a fast decaying function of the distance to the nucleus, rµ, and
proportional to the charge of the nucleus Z.

2.7 Bloch Theorem

When one deals with infinite crystal structures, the computation is only made possible
by use of Bloch’s theorem.

The Hamiltonian (2.2) is invariant under a translation TR of a lattice vector R =
ma1 +na2 + pa3, with m,n, p ∈ Z and ai being the basis vectors of the unit cell. Thus
the Hamiltonian H commutes with TR,

[H, TR] = 0 , (2.36)
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2 Density Functional Theory

and the a common set of eigenfunctions can be found. These eigenfunctions are called
Bloch waves,

ψk,ν(r) = eikr uk,ν(r) , (2.37)

where the so called Bloch function uk,ν exhibits the periodicity of the lattice, uk,ν(r +
R) = uk,ν(r), and is also periodic in reciprocal space, uk,ν = uk+K,ν , where ν is the
band index and K is a reciprocal lattice vector. This has important consequences for
the practical computation of the electronic structure, as only the unit cell and the first
Brillouin zone have to be considered in finding the electron density in a crystal structure.

This powerful approach can also be applied to generalized translations (translation in
real space plus rotation in spin space), as will be pointed out later (cf. chapter 3.5).

2.8 Force Theorem

Since Vxc depends on n(r), the solution of the Kohn-Sham equation to a given Hamilto-
nian has to be calculated self-consistently. However, if a small perturbation is added to
a Hamiltonian for which the self-consistent solution is already known, only one iteration
has to be done to obtain an estimate for the change in total energy. This so called force
theorem [28–30] reduces the computational effort a lot. It is explained in the following:

The Kohn-Sham equation for a given Hamiltonian H0,

H0[n0]ψν,0 = εν,0 ψν,0 , (2.38)

must be solved self-consistently, where n0 is the corresponding (self-consistent) electron
density and ψν,0 and εν,0 denote the eigenstates and -values, respectively. When a
small perturbation δH is added (H1 = H0 + δH), the change in energy can be well
approximated by

δE =
occ.∑
ν

εFT
ν,1 −

occ.∑
ν

εν,0. (2.39)

Here, εFT
ν,1 are the eigenvalues of the Kohn-Sham equation, where the perturbed Hamil-

tonian is dependent on the unperturbed electron density,

H1[n0]ψFT
ν,1 = εFT

ν,1 ψ
FT
ν,1 . (2.40)

This stands in contrast to the full self-consistent solution, where H1[n1] is taken.
Because the force theorem can be proved without knowing the explicit form of the

perturbation, it can be applied to a large number of perturbations. It is based on the
fact, that the changes in total energy in first order perturbation theory coincide with the
changes in the single particle energies. However, it fails when the changes in the charge
density n or magnetization density m become too big and one has to take terms beyond
first order perturbation theory into account, as it is the case for structural relaxations.
But changes in the magnetic structure can often be well described by the force theorem.

In this thesis, the force theorem is applied in two cases: when the propagation vector
of a spin spiral is changed by a small amount and when spin-orbit coupling is taken into
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2.8 Force Theorem

account. It is also possible to combine both perturbations, as it is done for calculating
the Dzyaloshinskii-Moriya interaction in Cr/W(110). Test were made to confirm the
validity (cf. chapters 6.4, 7.4.3 and 7.6).
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3 The FLAPW-Method

In the previous section it was shown, that the complicated many-body problem can be
transferred into a problem of non-interaction electrons where the many-body effects are
treated as contributions to an effective potential. One has now to develop a technique to
solve the resulting equations on a computer. This is done by transforming the problem
of finding the eigenvalues and eigenfunctions of equation (2.10) into a problem of linear
algebra, namely diagonalizing a matrix, by the choice of a basis set {ϕn}. Then the
wavefunction is expanded in this basis (ψ =

∑
n cnϕn), and the Kohn-Sham equation

reads
H · c = εS · c (3.1)

where the vector c contains the coefficients for the wavefunction expansion in the chosen
basis, H is the Hamiltonian expressed in the basis and S is the overlap matrix of the
basisfunctions,

Hn,n′ =

∫
drϕ∗n(r)Hϕn′(r) , (3.2)

Sn,n′ =

∫
drϕ∗n(r)ϕn′(r) . (3.3)

In principle any basis set can be taken, but the number of basisfunctions and hence
the size of the matrices is infinite, if the basis should be complete. To diagonalize the
matrices practically, one takes only a finite number of basisfunctions. It is important
to choose a basis set which already exhibits the properties of the underlying system as
much as possible, so that a feasible amount of basisfunctions is sufficient to describe the
system.

Plane waves seem to be convenient as basis set, because they are orthogonal (and hence
the overlap matrix reduces to unity) and they are eigenfunctions of the Laplace operator,
which is contained in the Hamiltonian. Let us recall that they are eigenfunctions of
the Schrödinger equation for a constant potential, but in this case the potential is far
away from being constant. Instead it even has divergences at the nuclei which makes
the wavefunction vary rapidly in these regions, and many basisfunctions would have to
be considered to describe these variations correctly. The APW-method, which will be
described in the following section and further be improved to LAPW and FLAPW, deals
with this deficiency of the plane waves.

3.1 The APW basis set and its problems

To circumvent the deficiencies of plane waves, in the augmented plane wave (APW)
method [31, 32] the space is divided into two regions: into spheres with radius RµMT
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3 The FLAPW-Method

around atom µ (called muffin tin) and the remaining part (called interstitial region).
Two different kinds of basis set is used in each region. Because the potential in between
the atoms is rather smooth, plane waves are used as a basis in the interstitial region. In
the muffin tins atomic wavefunctions are used in order to describe the 1/r-divergence,
which consist of radial functions and spherical harmonics,

ϕG(k, r) =

{
ei(k+G)r r ∈ interstitial region∑

L a
µG
L (k)ul(r

µ)YL(r̂µ) r ∈ muffin-tin sphere µ
, (3.4)

where k is the Bloch vector, G is a reciprocal lattice vector, L abbreviates the angular
quantum numbers l and m, and rµ = r−Rµ denotes the position relative to the center
of muffin-tin µ. The radial functions are chosen as solutions of the Schrödinger equation
in a spherical symmetric potential,{

− ∂2

∂r2
+
l(l + 1)

r2
+ V (r)− E

}
r ul(r) = 0 , (3.5)

where V (r) is the spherical symmetric part of the potential V (r) and E is the band
energy. The coefficients aµGL (k) are determined by the condition, that the basisfunctions
must be continuous at the muffin-tin sphere boundary. The role of the energy, E, turns
out to be very important. If it were only used as a parameter during the construction
of the basis, the Kohn-Sham equation can be represented by this basis and the solution
gives the eigenstates and band energies. Unfortunately an accurate description of the
system can only be achieved if E is the band energy, and thus also the basis is dependent
on them. This turns the solution of the Kohn-Sham equation into a nonlinear problem,
which is computationally much more demanding than a standard problem. Among some
other difficulties this is the reason why the APW basis has been extended to the LAPW,
which will be described in the next section.

3.2 The LAPW basis set

The linearized augmented plane wave (LAPW) basis set [33,34] is a modified APW basis
set, where El is introduced as a parameter replacing E, and it is expanded to gain more
variational freedom. By introducing also the energy derivative of ul, u̇l = ∂ul/∂E, the
energy parameters do not have to match the band energies and a nonlinear problem is
circumvent. This approach can be thought of as a Taylor expansion of ul around the
true band energy E,

ul(E) = ul(El) + (E − El) u̇l(El) +O
(
(E − El)2

)
, (3.6)

where the error made by the choice of the approximate band energy El is partly corrected
by the second term. Then the LAPW basisfunctions take the following form:

ϕG(k, r) =

{
ei(k+G)r r ∈ IR∑

L

(
AµGL (k)ul(r

µ) +BµG
L (k) u̇l(r

µ)
)
YL(r̂µ) r ∈ MT µ

, (3.7)
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3.2 The LAPW basis set

where the coefficients are called muffin-tin A- and B-coefficients and are determined by
the condition, that the basisfunctions and their first derivatives must be continuous at
the muffin-tin boundary. Differentiation of equation (3.5) yields{

− ∂2

∂r2
+
l(l + 1)

r2
+ V (r)− El

}
r u̇l(r) = r ul(r) , (3.8)

and the solution of this equation gives u̇l. From the derivative of the normalization
condition of the radial function ul it can be easily shown that ul and u̇l are orthogonal.
However, the whole LAPW basis set is not orthogonal and this has to be taken into
account when diagonalizing the Hamiltonian matrix. But they form a good basis in
the sense that a relatively small number of basisfunctions is sufficient to describe the
Hamiltonian.

Please note that during each self-consistency cycle the basis has to be reconstructed
because the density (and thus also the potential V (r) in equation (3.5)) changes.

3.2.1 The LAPW basis for film geometries

The LAPWs as described in the previous section form a good basis for potentials which
are periodic in three dimensions such as bulk systems. If one wants to describe surfaces
or interfaces, one can in principle work with the normal LAPW basis set, but has to
use huge super cells and thus many basisfunctions in order make the interaction of the
surface with its periodically repeated images small enough. Of course this approach is
computationally very ineffective and a modified LAPW basis [35] is used instead. Here
one has an infinite, periodic system in two dimensions that is non-periodic in the third
dimension. The surface is chosen to be perpendicular to the z-direction. Additionally
to the muffin tins and the interstitial region, two vacuum regions are introduced in the
regions |z| > D/2. Of course, now the Bloch theorem applies only in the two dimensional
periodic subspace and the wavefunctions can be written as

ψk‖(r) = eik‖·r‖
∑
G‖

ck‖,G‖(z) eiG‖·r‖ , (3.9)

where ·‖ and ·z denote the component parallel and normal to the surface, respectively.
G‖ denotes the reciprocal lattice vectors of the two-dimensional unit cell. The functions
ck‖,G‖(z) are non-periodic in z, but in the interstitial region, |z| < D/2, they are ex-

panded to plane waves as well. The wave vectors are defined asGz = 2πn
D̃

, where D̃ is cho-
sen a bit larger than D in order to make sure that the basisfunctions keep their full vari-
ational freedom: If D̃ = D was chosen, all plane waves would have ck‖,G‖(±D/2) = ±1
at the interstitial/vacuum boundary. In the vacuum region, ck‖,G‖(z) are functions that
are solutions of a 1-dimensional Schrödinger equation with the potential in the vacuum,{(

G‖ + k‖
)2 − ∂2

∂z2
+ Vvac(z)− Evac

}
vG‖(k‖, z) = 0 , (3.10)

where Evac is the vacuum energy parameter and the potential Vvac(z) is constructed by
averaging Veff(r) over x and y. In analogy to the construction of the radial functions
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3 The FLAPW-Method

inside the muffin tins, also the energy derivative v̇G‖ are included in the basisfunctions,
so that they finally take the following form (K = G + k):

φK(r) =



eiK·r r ∈ interstitial∑
L

(
AµKL ul(r

µ) r ∈ MT µ

+BµK
L u̇l(r

µ)
)
YL(r̂µ)

eiK‖·r‖
(
A
ηK‖
vac vK‖(z) r ∈ vacuum η

+B
ηK‖
vac v̇K‖(z)

)
. (3.11)

The vacuum A- and B-coefficients are determined in the same way as the coefficients
of the muffin tin, namely by requiring that the basisfunctions and their first derivatives
are continuous at the vacuum/interstitial boundary. η = 1, 2 labels the vacuum region
above and below the film, respectively.

3.3 Shape approximations in the (L)APW method and
extension to FLAPW

So far only the basis to represent the wavefunctions was described. But in both methods
(APW and LAPW), usually also shape approximations to the potential are applied. The
potential in the interstitial is often set to a constant value and in the muffin tins the
potential is approximated by its spherically symmetric average (in the APW method
this is even mandatory). However, these approximations lead to problems when open
structures – such as surfaces, interfaces or 1-dimensional structures – are under con-
sideration. Then one has to go beyond these approximations, which is done in the
full-potential linearized augmented plane wave (FLAPW) method [11,12]. Here, the po-
tential in the interstitial is expressed in terms of plane waves (they are expanded up
to a wave-vector gmax and gmax,xc for the potential and exchange-correlation potential,
respectively). In the muffin-tin radii a logarithmic radial mesh is introduced and rV
is expanded in spherical harmonics Y`,m for each mesh point r up to ` = `max. In the
vacuum regions, an equidistant grid in the direction normal to the surface is introduced
and in the planes going through the grid points, 2-dimensional plane waves are used to
expand the potential inside the pane. The expansion is cut off at a finite distance from
the film surface.

3.4 Magnetic calculations

Recall the Kohn-Sham equation for the magnetic case,(
H1 +Bxc

mz
|m| Bxc

mx−imy
|m|

Bxc
mx+imy
|m| H1 −Bxc

mz
|m|

)(
ψ↑ν
ψ↓ν

)
= εν

(
ψ↑ν
ψ↓ν

)
, (3.12)

where the abbreviation H1 = p2 + Veff has been used, and an external magnetic field
has been neglected.
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3.4 Magnetic calculations

When magnetic calculations are done within FLAPW, it is useful to distinguish be-
tween collinear and non-collinear configurations:

• Let’s discuss collinear configurations first: As long as we neglect spin-orbit cou-
pling, the orientation of the spin coordinate-system (describing the vector m) does
not depend on the real-space orientation. Thus, for a collinear calculation, we can
choose m(r) = m(r)êz. Then the two components of the spinor are decoupled in
the Kohn-Sham Hamiltonian and the problem is similar to the non-magnetic case
with two different potentials V ↑ = Veff + Bxc and V ↓ = Veff − Bxc. In this case,
the solution of the secular equation is straight forward and the implementation is
rather simple: For the spin-up and spin-down components two different basis are
constructed using also two independent sets of energy parameters for the construc-
tion of the muffin tin and vacuum basisfunctions. The up- and down-components
only couple to each other in the self-consistent cycle via the exchange-correlation
potential. The computation time is twice as large as in the non-magnetic case.

• In the case of non-collinear spin configurations [36], the magnetization is repre-
sented by a field of 3-dimensional vectors m(r) and we cannot choose a global
quantization axis. However, the code that we apply [13] restricts the magnetiza-
tion direction inside the muffin-tin spheres

m(r) =

{
m(r) interstitial and vacuum,
mµ(r) êµ muffin-tin sphere µ,

(3.13)

where the direction êµ is described by two angles αµ and βµ. Then a local coor-
dinate system for each muffin-tin is introduced such, that the local ẑ-axis points
parallel to êµ. Let the ·̃ denote quantities in the local coordinate frame, then a
spin rotation matrix UMTµ connects the local and global coordinate frame. The
potential then reads

Ṽ = U†MTµV UMTµ = (VH + Vext)1 +

(
Ṽ ↑↑xc Ṽ ↑↓xc

Ṽ ↓↑xc Ṽ ↓↓xc

)
. (3.14)

After one self-consistency cycle, the magnetization can in principle point into any
direction. However, if the deviations from the chosen local coordinate frame are
small (m̃x ≈ m̃y ≈ 0), it is sufficient to consider only m̃z in the construction of the
exchange-correlation potential for the next self-consistency cycle and the exchange-
correlation potential inside the muffin-tin sphere, Ṽxc, is diagonal. However, the
potential in the global coordinate frame, Vxc, has off-diagonal components and the
two components of the spinor are not decoupled.

The basis for non-collinear magnetization directions is modified: The radial func-
tions ul and u̇l are constructed in the local coordinate frame. The basisfunctions
in the interstitial region are constructed in the global frame of reference and have
the form

φ↑K(r) =

(
exp(iK · r)

0

)
φ↓K(r) =

(
0

exp(iK · r)

)
. (3.15)
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Please notice that both local spin components of the basisfunctions inside the
muffin tin have to be matched to the interstitial wavefunction at the muffin-
tin/interstitial boundary.

If the magnetization of the muffin tins deviates much from the defined local ẑ-axis,
one has either to relax the direction of the local coordinate frame or to perform a
constrained calculation [36,37].

– In the former case, the direction of the muffin tin is adapted to the magne-
tization direction after each self-consistency cycle (which usually converges
very slowly).

– In the latter case, the energy functional is minimized under the constraint,
that the magnetization of the muffin tin points into the direction defined by
α and β. The Lagrange parameters corresponding to the constraint have
the form of a muffin-tin dependent magnetic field (the so called constraining
field).

However, in many systems the local x- and y-component of the magnetization is
small compared to its z-component, so that a calculation neglecting these (as it is
done in this thesis) leads to the same result.

3.5 Spin spirals and the generalized Bloch theorem

Spin spirals are magnetic structures where the magnetization is rotated by a constant
angle from one unit cell to the next along a certain direction of the crystal. In absence
of spin-orbit coupling, the rotation axis can be defined as global ẑ-axis without loss of
generality. The magnetization direction then reads

ên,µ =

 cos(q · (Rn + τµ) + αµ) sin θµ

sin(q · (Rn + τµ) + αµ) sin θµ

cos θµ

 , (3.16)

where Rn is the lattice vector pointing from the origin to unit cell n, τµ is the basis
vector of atom µ in the unit cell, q is the so called spin-spiral vector, θµ is the cone
angle between the magnetic moment of atom µ and the rotation axis, and αµ is an
atom-dependent phase shift. Four examples are shown in figure 3.1.

Employing the generalized Bloch theorem [38–40], spin spirals can be computed with-
out the usage of super cells in which the magnetic structure is commensurate (these
become very large for small q-vectors). This allows calculations in the chemical unit cell
and can be proved only if SOC is neglected. A generalized translation Tn, which com-
bines a lattice translation with a rotation in spin space, commutes with the Hamiltonian
in scalar-relativistic approximation,

[Tn, H] = 0 . (3.17)

In analogy to the Bloch theorem, this allows us to decompose each component of the
spinor wavefunction into a (q-dependent) Bloch factor and a (lattice periodic) Bloch
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3.6 Spin-orbit coupling

Figure 3.1: Four examples of spin spirals with spin rotation-axis perpendicular (upper
two) and parallel (lower two) to the spin-spiral vector q. For each case two
spirals with cone angles of θ = π/2 and θ = π/4 are shown. In the absence
of spin-orbit coupling, spirals 1 and 3 (counted from the top), and 2 and 4,
respectively, are equivalent, because real space and spin space are decoupled.

function uσk(r) = uσk(r + Rn):

Ψk(r) =

(
ei (k−q/2)·r u↑k(r)

ei (k+q/2)·r u↓k(r)

)
. (3.18)

The Bloch factor consists of a real-space translation eik·r and a spin rotation around the

ẑ-axis

(
e−iq·r/2 0

0 eiq·r/2

)
.

3.6 Spin-orbit coupling

Spin-orbit coupling, as described in section 2.6, is implemented in the FLAPW-method
as follows [41]: SOC is only treated in the muffin tins and it is neglected in the interstitial
and vacuum regions. This approximation leads to the equation (cf. equation (2.35))

Hso =
∑
µ

Θµ(rµ) ξµ(rµ)σ · L̂µ with Θµ(rµ) =

{
1 if |rµ| < RµMT

0 else
, (3.19)

where rµ = r − Rµ, and Rµ and RµMT are the center and the radius of the muffin-tin
sphere µ.

We can rewrite the spin-orbit coupling operator in each muffin tin by dropping the
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3 The FLAPW-Method

sum and atom index µ as

Hso = ξ(r)

(
+L̂z L̂−
L̂+ −L̂z

)
, L̂± = L̂x ± i L̂y (3.20)

If the ẑ-axis is not the spin-quantization axis, a rotation Urs has to be performed to
rotate the global spin coordinate frame with respect to the lattice. This can be done by
rotating the SOC operator,

U†rsHso Urs = ξ(r) U†rs(σ · L̂)Urs = ξ(r)

(
L̂(↑,↑) L̂(↑,↓)

L̂(↓,↑) L̂(↓,↓)

)
. (3.21)

How this correction is added to the scalar-relativistic Hamiltonian depends on the
system one wants to study (e.g. spin-spiral systems) and the quantity one is interested in
(e.g. Dzyaloshinskii-Moriya interaction (DMI) or magnetocrystalline anisotropy (MCA)).
The different approaches can be roughly divided into self-consistent ones (SC) or the
ones employing the force theorem:

1. Self consistent in nearly collinear structures (employing a scheme called “second
variation”)

2. Self consistent in noncollinear structures

3. Force theorem employing exact diagonalization of Hso

4. Force theorem and treating Hso as a perturbation.

In this thesis, the MCA will be calculated in second variation (because it can be
obtained from collinear magnetization directions), and the DMI will be calculated in
first order perturbation theory (as it allows the treatment of spin spirals without the
use of a supercell, in which the magnetization is commensurate). We will discuss these
approaches in more detail in the subsequent sections.

3.6.1 Second variation in nearly collinear structures

Most magnetic systems exhibit a collinear magnetization when SOC is neglected. There-
fore, in this scheme first a collinear calculation neglecting SOC is done and the eigenfunc-
tions ψ↑i for the spin-up and ψ↓i for the spin-down component are obtained. Afterwards,
these functions are used as basis to set up the full Hamiltonian (i.e. where Hso was
added to the problem) and obtain the eigenfunctions ϕν and eigenenergies by diagonal-
ization. Here, Hso mixes up- and down-components of the unperturbed solution into
the wavefunctions ϕν via its off-diagonal elements. However, because SOC is a small
perturbation and thus the elements of Hso are small compared to the scalar-relativistic
Hamiltonian, ϕν mainly consists of one component of ψσi and the other is much smaller
in magnitude and the magnetization of the perturbed problem is nearly collinear. There-
fore, this scheme makes sense in a self-consistent treatment of SOC only if the ground
state neglecting SOC is (nearly) collinear.
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3.6 Spin-orbit coupling

This procedure is approximately 4 times faster than using the LAPW basis to set
up the whole Hamiltonian (including SOC), because the unperturbed eigenfunctions ψσi
already describe the perturbed system quite well and only relatively few (compared to
LAPWs) are needed to from a good basis.

3.6.2 First-order perturbation theory

Because spin-orbit coupling is a small correction compared to the rest of the Hamiltonian,
we can treat it as a perturbation. First-order perturbation theory is an easy way to
approximate effects that are linear in the spin-orbit coupling parameter ξ. Thus, the
strength of the Dzyaloshinskii-Moriya interaction (in spin-spiral calculations) can be
approximated by the expectation values

∆Ej = 〈ψj |Hso|ψj〉 =
(
〈ψ(↑)

j |, 〈ψ
(↓)
j |
) ( H(↑,↑)

so H(↑,↓)
so

H(↓,↑)
so H(↓,↓)

so

) (
|ψ(↑)
j 〉
|ψ(↓)
j 〉

)
, (3.22)

where |ψj〉 is an eigenstate to the unperturbed problem.
First-order perturbation theory is very convenient for spin-spiral calculations with

small q-vectors [14]. The atoms of a spin spiral are not equivalent under a generalized
translation if SOC is taken into account, because the atoms can be distinguished by
their spin-orbit contribution. However, in first order perturbation theory, the correction
to the band energies is the same for all atoms, as can be seen as follows:

All 4 components H(σ,σ′)
so of the spin-orbit operator are lattice periodic. A lattice

periodic operator applied to a Bloch wave gives the same Bloch factor and another
(lattice periodic) Bloch function v(r), which leads in our case to the equation

H(σ,σ′)
so ei (k∓q/2)·r u

(σ′)
j (r)︸ ︷︷ ︸

ψσ
′
j (r)

= ei (k∓q/2)·r v
(σ′)
j (r) , (3.23)

where the − (+) corresponds to σ′ =↑ (↓). The integrals over the off-diagonal elements of

Hso, e.g. 〈ψ(↑)
j |H

(↑,↓)
so |ψ(↓)

j 〉, summing over N chemical unit cells so that the magnetization
in this supercell is commensurate, vanish:

N∑
n=1

eiq·nR︸ ︷︷ ︸
=0

∫
MT

dr eiq·r u
(↑)
j (r)∗ v

(↓)
j (r) = 0 , q ·R = 2π/N and q ‖ R . (3.24)

Therefore, we only have to consider the diagonal elements and can write

〈ψj |Hso|ψj〉 = N
(
〈u(↑)
j |v

(↑)
j 〉+ 〈u(↓)

j |v
(↓)
j 〉
)
, (3.25)

where the Bloch factors canceled each other yielding to the same contribution for each
atom of the magnetic supercell. The resulting expression is lattice periodic and thus
considering only the chemical unit cell is sufficient.
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How the expectation values (3.25) are calculated is presented in the following: The
wavefunctions are expressed in the LAPW basis,

φ
(σ̃)
Kj

(r) =
∑
L

(
A
µKj ,(σ̃)
L u

(σ̃)
` (rµ) +B

µKj ,(σ̃)
L u̇

(σ̃)
` (rµ)

)
YL(r̂µ) , (3.26)

where L abbreviates the quantum numbers ` and m, and Kj = G + kj . They are
constructed in the local (muffin-tin dependent) coordinate frame (denoted by a ·̃). The
wavefunctions are expanded in this basis,

ψ̃j(r) =
∑
G

 c
(↑̃)
j,G φ

(↑̃)
Kj

c
(↓̃)
j,G φ

(↓̃)
Kj

 , j = (kj , νj) . (3.27)

When we rotate the wavefunctions from the local to the global reference frame, the
rotated muffin-tin A- and B-coefficients read

a
(σ′,σ̃)
j,`,m = U

(σ′,σ̃)
MT

∑
G

c
(σ̃)
j,GA

(σ̃)
k,G,`,m (3.28)

b
(σ′,σ̃)
j,`,m = U

(σ′,σ̃)
MT

∑
G

c
(σ̃)
j,GB

(σ̃)
k,G,`,m (3.29)

The searched for expectation value reads〈
ψj′
∣∣∣U†rsHsoUrs

∣∣∣ψj〉 =

∫
MT

drψ†j′(r)U†rsHsoUrsψj(r) , (3.30)

which can be evaluated using the following abbreviations (cf. (3.21)):

A(σ′,σ)
`,m′,m =

∫ π

0
dϑ

∫ 2π

0
dϕ (− sinϑ) Y`,m′(ϑ, ϕ)∗ L(σ′,σ) Y`,m(ϑ, ϕ) ,

R(σ̃′,σ̃)
`,u̇,u =

∫ RMT

0
drr2 ξ(r)u̇

(σ̃′)
` (r)u

(σ̃)
` (r) ,

and analogous expressions for R`,u,u, R`,u,u̇ and R`,u̇,u̇. We use another abbreviation,

I(σ′,σ) =
∑
σ̃′,σ̃

∑
`,m′,m

A(σ′,σ)
`,m′,m

(
a

(σ′,σ̃′) ∗
j′,`,m′ a

(σ,σ̃)
j,`,mR

σ̃′,σ̃
`,u,u + a

(σ′,σ̃′) ∗
j′,`,m′ b

(σ,σ̃)
j,`,mR

σ̃′,σ̃
`,u,u̇

+b
(σ′,σ̃′) ∗
j′,`,m′ a

(σ,σ̃)
j,`,mR

σ̃′,σ̃
`,u̇,u + b

(σ′,σ̃′) ∗
j′,`,m′ b

(σ,σ̃)
j,`,mR

σ̃′,σ̃
`,u̇,u̇

)
to finally rewrite the expectation value

∆Ej =
〈
ψj

∣∣∣U†rsHsoUrs

∣∣∣ψj〉 = I(↑,↑) + I(↓,↓) . (3.31)
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4 Magnetic interactions

The properties of magnetic materials are often described by model Hamiltonians, where
it is assumed that each atom exhibits a (constant) magnetization. The magnetization
direction of an atom j is described by a classical unit vector Sj (with |Sj | = 1). Instead
of the magnetization one often uses the term ‘spin’, which is the magnetization of an
atom divided by Bohr’s magneton µB. The energy of the arrangement of several spins
is determined by interactions between these. The physical origin of these interactions
lies in the (coulomb-)interaction of electrons whose wavefunctions overlap with electron
wavefunctions from the neighboring atoms. Continuing this simple picture, the magnetic
moment of an atom is then generated by localized electrons. Of course, in reality a
rigorous separation cannot be made and it should be seen as a motivation to consider
model Hamiltonians with the restrictions described above.

A general bi-linear interaction between two spins can be written as

ST
i VijSj with Vij =

 V ij
11 V ij

12 V ij
13

V ij
21 V ij

22 V ij
23

V ij
31 V ij

32 V ij
33

 (4.1)

where Vij is a real 3× 3 matrix and their elements are dependent on the sites of spins
i and j. The Hamiltonian of a system of spins consists of all pair-interactions and can
be written as

H =
∑
i,j

ST
i VijSj . (4.2)

It is very fruitful to divide the interaction-matrix into three parts: an isotropic part, Jij ,
a symmetric traceless part, V+

ij , and an antisymmetric part, V−ij :

Jij = Tr(Vij)/3, (4.3)

V +
ij = (Vij + VT

ij)/2− Jij , (4.4)

V −ij = (Vij −VT
ij)/2. (4.5)

Employing these equations we can rewrite the Hamiltonian (4.2) as

H =
∑
i,j

(
JijSi · Sj + ST

i V+
ijSj + ST

i V−ijSj

)
, (4.6)

where one identifies the first (isotropic) part to be the Heisenberg model, which will be
discussed in more detail in section 4.1.
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4 Magnetic interactions

Because any antisymmetric (3× 3)-matrix can be expressed by a vector quantity

(
V−ij

)
m,n

=

3∑
l=1

Dij
l εlmn, (4.7)

where εlmn is the Levi-Civita symbol, the antisymmetric part of equation (4.6) reads

ST
i V−ijSj = Dij · (Si × Sj) . (4.8)

This so called Dzyaloshinskii-Moriya interaction, which is determined by the Dzyaloshinskii-
Vector Dij , shall be discussed in more detail in section 4.2.

The third part of the interaction, the symmetric traceless part V+
ij , is called “pseudo-

dipolar interaction” or “anisotropic exchange” [42]. It is of minor importance, because
it is a relativistic two-particle effect and its energy contribution is very small. On the
other hand it is also computationally very demanding to resolve this kind of exchange
and thus it will be neglected in this thesis. In contrast to this, the magnetocrystalline
anisotropy energy (MCA), which is the on-site term of V+

ij = V+
ii ,

Hani =
∑
i

ST
i KiSi , (4.9)

where K is the lattice-dependent anisotropy tensor, is important. It will be further
investigated in section 4.3.

The whole energy is descibed by the equation

H =
∑
i<j

(
J|i−j| Si · Sj + Di−j (Si × Sj)

)
+
∑
i

ST
i Ki Si . (4.10)

4.1 Heisenberg Model

The Heisenberg model

H =
∑
i,j

Jij Si · Sj =
∑
i,j

Jij cos(ϕij) (4.11)

is the simplest model to describe magnetic interactions. In an insulator the so called
exchange integral Jij is mainly determined by the overlap of the wavefunctions of atom
i and j, and thus it deceases very fast with increasing distance Rij of the two atoms,
but in metals this can show a long-ranged, oscillatory behavior. The ground state of the
Heisenberg model is a spin spiral, where the magnetization M(Ri) reads

M(Ri) = M0

 cos(q ·Ri) sin(θ)
sin(q ·Ri) sin(θ)

cos(θ)

 , (4.12)

where q is the spin-spiral vector, θ is the cone angle and the ẑ was chosen as rotation
axis (cf. figure 3.1). Special cases are the collinear alignment, e.g. when nearest neighbor
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4.2 Dzyaloshinskii-Moriya interaction

interactions are dominant and J1 < 0 leads to ferromagnetic order (ϕ = 0). On a square
lattice for J1 > 0 the energy gets minimal for antiferromagnetic order (antiparallel
alignment of spins, i.e. ϕ = π). Spin-spiral ground states are obtained, when interactions
beyond nearest neighbors become relevant. Then, the energies of spin spirals with q-
vectors q and −q are degenerate, as can be easily seen in equation 4.11: the relative
angle between two atoms of a spin spiral is ϕij = q ·Rij , and because cos(ϕij) is an even
function, the sign of q does not enter the energy term.

Also higher order corrections like a four-spin-interaction or a bi-quadratic interaction,

E4−spin = Kijkl [(Si · Sj) (Sk · Sl) + (Si · Sl) (Sj · Sk) + (Si · Sk) (Sj · Sl)] ,
Ebiquad. = Bij (Si · Sj)2 ,

can be derived from a Hubbard model expansion. They can be identified with the
hopping of electrons across atoms in 4 steps, 1 → 2 → 3 → 4 → 1 for the 4-spin
interaction and 1 → 2 → 1 → 2 → 1 for the bi-quadratic interaction. But also these
higher order terms are even with respect to the relative angle between two spins and the
degeneracy between q and −q remains.

4.2 Dzyaloshinskii-Moriya interaction

The term originating from the antisymmetric part of the interaction matrix,

EDM = Dij · (Si × Sj) = (Dij · n̂) sin(ϕij), (4.13)

is called antisymmetric exchange or Dzyaloshinskii-Moriya interaction (DMI) [4,5]. The
DMI favors canted spin structures, because it is largest for |ϕij | = π/2. Due to the
relation EDM(ϕ) = −EDM(−ϕ) the degeneracy between spirals with q-vectors of opposite
sign is lifted and a certain rotational direction – dependent on the sign of D · n̂ – is
preferred. The resulting spin structures are then called ‘chiral’.

A DM-term can only occur when spin-orbit coupling is taken into account. This
can be seen in the following: consider a flat spin spiral (i.e. a spiral with θ = 90◦, cf.
equation (4.12)) with certain rotation axis and q-vector. Because the spin space is not
coupled to real space in absence of SOC, a reflection in spin space can be made without
changing the energy of the system: The Hamilton of this system is invariant under
unitary transformations U †H U = H. When the reflection is chosen in such a way,
that the mirror plane contains the q-vector and the rotation axis R, the resulting spin
spiral is equivalent to the initial one except that its q-vector points in opposite direction:
q→ −q (cf. figure 4.1).

Not only SOC is crucial for the existence of the Dzyaloshinskii-Moriya interaction,
but also an inversion-asymmetric environment (which is e.g. introduced by a surface) is
important to obtain an interaction in the form of equation (4.13). This can be seen easily
in figure 4.2: In case of an appropriate structure in the surface or a structureless surface),
the mirror plane which connects the two spin spirals on the left and in the middle is
preserved. Hence these pairs of spin spirals are still degenerate and the corresponding
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4 Magnetic interactions

q

R R

R

Figure 4.1: Flat spin spirals with rotation axis R pointing in different directions. When
an initial spin spiral (left spiral of each pair) is mirrored on an appropriate
mirror plane, the resulting spiral (right spiral of each pair) is the same as
the initial one but with a change of sign in q.

Figure 4.2: The spin spirals as in figure 4.1 are shown, but now a surface is introduced
which breaks the symmetry of the environment.

components of the DM-vector, which are determined by the direction of the cross product
of two adjacent spins and is thus pointing along the rotation axis, vanishes. For the pair
of spirals on the right, the surface brakes the reflection symmetry and in principle a
component of Dij along the rotation axis of these spirals can exist. If the system would
exhibit inversion symmetry (see figure 4.1), also this mirror plane would be preserved
and all components of the DM-vector would be zero.

As one can see, the direction of the DM-vector can be determined by pure symmetry
considerations for the case of spin spirals on an isotropic surface. But the symmetry
could in principle also be broken by other mechanisms, such as a structure of the surface
or impurities. Then the direction of the DM-vector an be determined according to the
following rules [5]:

Consider two spins located at R1 and R2. The middle is labeled as R̃ = (R1 +R2)/2.

• If a center of inversion is located at R̃: D = 0.

• If a mirror plane perpendicular to R1 −R2 includes R̃ then D ⊥ (R1 −R2).

• If a mirror plane includes R1 and R2 then D ⊥ mirror plane.

• If a two-fold rotation axis perpendicular to R1−R2 includes R̃ then D ⊥ rotation axis.

• If a n-fold rotation axis (n ≥ 2) includes R1 and R2 then D ‖ (R1 −R2).
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4.3 Anisotropy

4.3 Anisotropy

The magnetic moments of materials prefer to be aligned in a certain direction, the so
called easy axis. The easy axis is determined by the crystal lattice (magnetocrystalline
anisotropy (MCA)).

Two physical effects contribute to the MCA: the spin-orbit coupling of the electrons
and the dipole-dipole interaction.

The dipole-dipole interaction is usually treated classically, where the magnetization is
replaced by the magnetic moments of the atoms. Influences on the electronic structure
are neglected and can be expected to be small because it is a relativistic 2-particle
effect. The magnetostatic interaction energy Edip of a magnetic dipole at position R0

with moment M0 in a lattice is

Edip =
µ2

B

2

∑
j 6=0

(Mj ·M0) R2
j0 − 3 (Mj ·Rj0) (M0 ·Rj0)

|Rj0|5
, (4.14)

where the other dipoles are located at positions Rj with moments Mj and Rj0 = Rj−R0

is the distance vector. The total anisotropy energy equation (4.14) has to be evaluated
for all inequivalent magnetic moments of the sample.

The contribution originating from spin-orbit coupling must be treated quantumme-
chanically, e.g. in the FLAPW method where the total energy is calculated with magne-
tization directions along high symmetry directions. The spin-orbit contribution to the
anisotropy energy is enhanced at surfaces and interfaces due to the broken symmetry [43].

4.3.1 Symmetry considerations

We can expand the anisotropy energy in the polar angles and neglect terms that do not
reflect the crystal symmetry. The general expansion [44] has the form

Eani =
∑
j

kjmj +
∑
j,j′

kj,j′mjmj′ +
∑
j,j′,j′′

kj,j′,j′′mjmj′mj′′

+
∑

j,j′,j′′,j′′′

kj,j′,j′′,j′′′mjmj′mj′′mj′′′ + . . .

where j ∈ {x, y, z} and

M =

 mx

my

mz

 . (4.15)

All terms containing an odd number of moments must vanish, because both energy
contributions to the MCA, the dipole-dipole and spin-orbit interaction, are invariant
under inversion of spins, i.e.

Edip({Mi}) = Edip({−Mi})
HSOC = ξ S · L = ξ (−S) · (−L)

}
⇒ Eani(M) = Eani(−M) . (4.16)
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4 Magnetic interactions

easy axis medium axis hard axis

x̂ ŷ ẑ kx < ky < 0
x̂ ẑ ŷ kx < 0 < ky
ŷ x̂ ẑ ky < kx < 0
ŷ ẑ x̂ ky < 0 < kx
ẑ x̂ ŷ 0 < kx < ky
ẑ ŷ x̂ 0 < ky < kx

Table 4.1: Possible combinations of easy, medium and hard axis and resulting relations
between kx and ky.

Because the systems studied in this thesis exhibit a bcc(110) unit cell, we investigate
the symmetry of this structure to find further conditions for the anisotropy energy. Two
orthogonal mirror planes cause other terms to vanish as well. For example, the coordi-
nate frame shall be defined as x̂ ‖ [110], ŷ ‖ [001] and ẑ ‖ [110] and we consider the mir-
rorplane in the yz-plane. Due to the relation Eani(mx, my, mz) = Eani(−mx, my, mz)
all odd terms in mx in the expansion, such as mxmy and mxmz, must vanish. Ap-
plying the same rules for the xz-mirrorplane gives additionally ky,zmymz = 0 and the
remaining terms (in lowest order) are

Eani = kx,xm
2
x + ky,ym

2
y + kz,zm

2
z = ST K S .

where the anisotropy tensor K is diagonal for the underlying crystal symmetry. The
elements can be written as kx,x = 2

3Ex− 1
3 (Ey + Ez) (and cyclic), where Eµ is the total

0 π/2 π 3π/2 2π
ϕ

0

|k
y
|

|k
x
|

δE
(ϕ

)

Figure 4.3: Required energy δE to rotate a spin from the easy axis into direction
sin(ϕ)ŷ + cos(ϕ)ẑ. Shown are examples with the easy axis along x̂ and
the medium axis along ŷ and ẑ (blue and green respectively), easy axis along
ŷ (red) or easy axis along ẑ (black).
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4.3 Anisotropy

energy of the system with magnetization in µ-direction. One easily checks that K is
traceless and we notice that all energies enter each component of K.

We want to calculate the energy δEani, which is required to turn the magnetization
from the easy axis to S = (0, sin(ϕ), cos(ϕ))T (these terms occur e.g. in a cycloidal spin
spiral along ŷ). We have to distinguish three cases and find

easy axis is along x̂: δEani = ky sin2(ϕ) + |kx|
easy axis is along ŷ: δEani = |ky| cos2(ϕ)
easy axis is along ẑ: δEani = |ky| sin2(ϕ).

These functions are illustrated in figure 4.3. Similar equations are obtained when the
spins have the form (sin(ϕ), 0, cos(ϕ)) (corresponding to a cycloidal spin spiral along x̂;
exchange then x̂↔ ŷ).
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5 Micromagnetic models

In the previous chapter we assumed that the magnetic structure is realized by atoms
exhibiting a magnetic moment, i.e. its a arrangement of discrete magnetic moments
{Mi} or {Si}. However, in micromagnetic models one treats the magnetization as a
continuous vector field, so the substitution Si → m(r) with |m| = 1 is made. This is
valid if the magnitude of the moments is constant and the length scale on which the
magnetic structure varies is large compared to inter-atomic distances (and to the length
scale where the exchange interactions, i.e. Jij and Dij , decay). In the following it is
assumed, that the magnetization changes only along one spatial direction r (direction
of the q-vector). The energy equation becomes a functional of the magnetization,

Ẽ =

∫
dr
(
Ã ṁ2 + D̃ · (m× ṁ) + mT K̃ m

)
, (5.1)

where Ẽ = E/b , Ã =
∆

2b

∑
j>0

j2 J0,j , D̃ =
1

b

∑
j>0

jD0,j , K̃ =
1

b∆
K , (5.2)

and the meaning of b and ∆ is illustrated in figure 5.1. The dot denotes the derivative
with respect to r, i.e. ṁ = ∂m/∂r. Ã is called spin stiffness constant and is an
(effective) isotropic exchange constant, D̃ is an effective Dzyaloshinskii vector and K̃
is the anisotropy tensor. The exchange interactions have to decay fast, because all
contributions in (5.1) are local.

We again consider the bcc(110) surface in the following. If the parameters Ã, D̃ and
K̃ lead to a spin-spiral solution, due to the symmetry considerations made in section
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Figure 5.1: Definition of the param-
eter ∆ and b for the ef-
fective exchange param-
eters (5.1).
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4.2, we expect cycloidal spin structures. The DM term favors flat spin spirals and we
shall consider only these in the following. This assumption is even more evident, if D̃
points parallel to the hard axis and the anisotropy confines the magnetization to a plane
perpendicular to the hard axis:

m(r) = sin(ϕ) r̂ + cos(ϕ) ẑ , where ϕ = ϕ(r) and r̂ ∈ {x̂, ŷ} . (5.3)

The coordinate system is chosen such that x̂ ‖ [110], ŷ ‖ [001] and ẑ ‖ [110]. Equation
(5.1) takes then the form

Ẽ[ϕ] =

∫
dr
(
Ã ϕ̇2 + D̃r ϕ̇+ δEani(ϕ)

)
(5.4)

where D̃r = D̃ · (ẑ × r̂) is the Dzyaloshinskii-vector parallel to the rotation axis and
δEani is the anisotropy energy which is needed to rotate a magnetic moment from the
easy axis into the direction of m (as defined in section 4.3.1).

5.1 Homogeneous spin spirals

If we assume homogeneous spirals, we can replace ϕ = 2π
λ r and integrating over an entire

period, λ, yields

E′ =
Ẽ

λ
= (2π)2Ã︸ ︷︷ ︸

A′

λ−2 + 2π D̃r︸ ︷︷ ︸
D′

λ−1 + K̄, (5.5)

where E′ has the meaning of energy per period length. In the following we omit the
primes. The average anisotropy energy over an entire period, K̄, depends on the direction
of the easy axis ê:

K̄ =

{
|Er − Ez|/2 if ê ∈ {r̂, ẑ}
|Ee − Ez|+ (Er − Ez)/2 if r̂ ⊥ ê ⊥ ẑ . (5.6)

We find that a spin spiral with period length λ = −2A/D minimizes the energy to

E = −D2

4A + K̄. The spin spiral is only established, if the energy is smaller than the
collinear state in the easy axis (E = 0). So, we find the criterion

K̄ A

D2
<

1

4
(5.7)

for the occurrence of a spin-spiral ground state.

5.2 Inhomogeneous spin spirals

The previously mentioned homogeneous spirals, ϕ(r) ∼ r, in fact minimize the energy
functional (5.4) only when the anisotropy term is neglected (or vanishes). Minimizing
the whole functional yields the following shape of the spirals [45,46]:

ϕ(x) = (−sign D̃) am

(
1

ε

(
x− 1

4
X

)
, ε

)
, (5.8)
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5.3 About the general form of the micromagnetic model

where ‘am’ is the Jacobian elliptic amplitude function and x =
√

K̃
Ã
r is the reduced

length. We additionally assumed that ẑ is the easy axis and thus we can write δEani(ϕ) =
K sin2(ϕ), where K = Er −Ez. X is the (reduced) period length of the inhomogeneous
spiral and ε is a parameter corresponding to the inhomogeneity of the spiral. X and ε
are defined via the complete elliptic integrals of first and second kind, K(ε) and E(ε),
via

4

π ε
E(ε) =

∣∣∣∣∣ D̃√
ÃK̃

∣∣∣∣∣ and (5.9)

X = 4εK(ε) . (5.10)

Instead of ε one often uses another dimensionless measure for inhomogeneity, namely

κ = (E(ε)/ε)−2 =
16

π2

AK

D2
, κ ∈ [0, 1] . (5.11)

The spiral is (nearly) homogeneous for κ↘ 0 (resulting in a nearly constant slope of the
profile ϕ(r)) and becomes maximally inhomogeneous for κ ↗ 1. In the latter case, the
magnetization rotates slowly when it points in direction of the easy axis (regions with
ϕ = 0 and ϕ = π) and rotates very fast over the hard axis (ϕ = π/2 and ϕ = 3π/2,
respectively), which corresponds to two collinear domains with sin2 ϕ ≈ 0. Different
profiles of inhomogeneous spirals are shown in figure 5.2. Additionally the pitch of an
inhomogeneous spiral increases compared to the pitch of a homogeneous one, which is
shown in the right panel of the picture. Thus, a spin spiral is only established for κ < 1,
which corresponds to the condition

KA

D2
<
π2

16
⇔ K̄ A

D2
<

1.23

4
with K̄ =

K

2
. (5.12)

This condition is weaker than the equation (5.7) for homogeneous spirals.

5.3 About the general form of the micromagnetic model

We can transform the discrete expressions of the magnetic interactions (equation (4.10))
into a micromagnetic model following Aharoni [47] using the Taylor expansion around
a fixed point rj for one component, µ, of the magnetization

mµ(r) = mµ(ri) + (r− ri) · ∇mµ|r=ri
(5.13)

and neglect higher order terms if the magnetization varies slowly from ri to r. We can
now insert r = rj and notice that m(ri)→ Si. This allows us to write

Si − Sj →m(ri)−m(rj) = (rij · ∇)m(ri) , (5.14)

where rij = ri − rj is the distance between lattice site i and j.
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Figure 5.2: Left panel: Profiles of inhomogeneous spin spirals with different values for

κ (solid lines). x =
√

K̃
Ã
r = 2π

√
K
A r is the reduced length. The dashed

lines represent the profile of homogeneous spirals with the same A, D and
K. When κ is large, the pitch of an inhomogeneous spiral is larger than the
corresponding homogeneous one. This is also illustrated in the right panel,
where the ratio X/λ is shown as function of κ, where X and λ is the pitch of
an inhomogeneous and homogeneous spiral, respectively. The ratio diverges
at κ = 1. If κ > 1, the collinear state is energetically preferred and no spin
spiral is created.

Considering only quasi-onedimensional magnetic structures (as above m = m(r)), we
can write

m(ri)−m(rj) ∝
∂m

∂r

∣∣∣∣
r=ri

= ṁ(ri) . (5.15)

This allows us e.g. to transform

1− Si · Sj =
1

2
(Si − Sj)

2 → 1

2
(m(ri)−m(rj))

2 ∝ ṁ(ri)
2 (5.16)

or

Si × Sj = Si × (Sj − Si)→m(ri)× (m(rj)−m(ri)) ∝m(ri)× ṁ(ri) , (5.17)

which is the form as they appear in the micromagnetic energy functional (5.1).
Finally we also want to mention that the shape of a material with finite extensions

gives contributions to the anisotropy tensor K̃. However, this contribution vanishes in
the case of antiferromagnetic materials and can therefore be assumed to be zero for
antiferromagnetic spin spirals.
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6 Unsupported monolayer of bcc Cr(110)

In this chapter, spin-spiral calculations are done to investigate the spin stiffness in the
system

1 atomic layer Cr(110) with W-lattice constant, referred to as Cr(110).

This very small and simple system is chosen because the validity of approximations (e.g.
the force theorem) and the stability of the results with respect to numerical cutoffs can
be tested quickly.

This chapter is divided into the following parts: First, the structural setup is explained
and definitions are given, then the computational details are described briefly. Finally
the results (followed by several tests) are presented.

6.1 The structural setup

6.1.1 The bcc(110) unit cell

Let us first describe the chemical lattice: Cr has a body centered cubic (bcc) unit cell.
Thus, the unit cell in a (110)-plane is rectangular with lattice parameters a and

√
2 a,

where a denotes the lattice constant of the bcc unit cell. The atoms are placed at the
corners of the rectangle and in the middle (see figure 6.1). The optimal choice (i.e. the
smallest) is the centered rectangular (c-r) unit cell containing one atom. In this chapter,
the W bulk lattice constant was chosen because in chapter 7 we will describe a system,
where an atomic monolayer of Cr is deposited on a W substrate.

If Cr was non- or ferromagnetic, one could work with the centered-rectangular unit
cell right from the start. However, Cr(110) exhibits an antiferromagnetic order, where
the magnetic moments of two neighboring atoms point in opposite direction. Therefore
a primitive rectangular (p-r) unit cell should be chosen in order to describe the two
magnetic sublattices caused by the different orientation of magnetic moments. However,
the centered-rectangular unit cell can still be used to produce the antiferromagnetic
state, but in this case a spin-spiral calculation must be performed, where additionally to

centered rectangular

[110]

primitive rectangular

[0
01

]

Figure 6.1: The two possible choices of the
unit cell of the bcc(110) lattice
plane.
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6 Unsupported monolayer of bcc Cr(110)

computation time c-r vs. p-r unit cell

number of k-points needed 1 : 1
2

diagonalization of (non-magnetic) Hamiltonian 1 : 8
extension to AFM calculation 8 : 2

Table 6.1: Comparison of computation time for calculations using the two different unit
cells.

a translation also a rotation in spin space is performed. The corresponding spin-spiral
q-vector is q̃ = (0.5, 0.5), where the ·̃ denotes that the vector is given in units of the
Bravais vectors of the reciprocal space (see also chapter 6.1.3).

6.1.2 What about the computation time?

So which unit cell shall we use? In case of reproducing the AFM state it does not
matter, because for both unit cells the computation time is 8 times larger than in a non-
magnetic calculation in the c-r unit cell, as it is summarized in table 6.1: Because the
computation time scales with the third power of the number of basis atoms, one iteration
for one k-point takes 8 times longer when the p-r unit cell is used, but the Brillouin zone
is smaller and can be sampled equally good by using only half as many k-points. This
leaves a factor of 4 in comparison with the smaller unit cell. When the AFM state is
computed one can still perform collinear calculations with the p-r unit cell, which leads
to an increase in computation time by 2 compared to a nonmagnetic calculation because
the Kohn-Sham equation can be solved for the up- and down-component separately. In
case of the c-r unit cell, a non-collinear calculation must be performed and because of
that, the coupled Kohn-Sham equations must be solved which takes 8 times as long as
solving the the non-magnetic equation.

When we leave the special case of the AFM but want to compute spin spirals with
arbitrary q, non-collinear calculations have to be performed anyway and a calculation
with the c-r unit cell is faster by a factor of 4 and therefore used preferably in the
following analysis. However, the p-r unit cell has to be used e.g. if spin spirals with a
cone angle θ 6= π/2 are computed.

Finally we remark, that the choice of the unit cell does not matter if the same magnetic
structure shall be computed with them. This is further pointed out in section 6.5.

6.1.3 Brillouin zone and q-vectors

The q-vectors of spin spirals are elements of the reciprocal space. The Brillouin zone
for both unit cells is is shown in figure 6.2. The c-r unit cell (in blue) is spanned by the
vectors b1 and b2. The AFM state is produced by a q-vector which points to the edge
of the c-r unit cell (shown in red).

Let us consider the case of the p-r unit cell: the q-vector producing the AFM lies
outside the first Brillouin zone. This is the case, because here we have a two-atomic
basis and thus q-vectors in the second Brillouin zone produce other magnetic structures
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Figure 6.2: Brillouin zones of c-r (shaded blue area) and p-r (shaded black area) unit
cells. The c-r unit cell is spanned by the reciprocal basis vectors b1 and
b2. The AFM state is produced by the spin-spiral vector q (red). The
investigated range around the AFM state is denoted by the red area.

than the corresponding q-vectors from the first Brillouin zone (i.e. the ones which differ
by a reciprocal lattice vector).

Let us come back to the c-r unit cell. The Bravais matrix, consisting of the basis
vectors of reciprocal space defined as row-vectors, reads

B =

( 2π
a1
−2π
a2

2π
a1

2π
a2

)
=

( √
2π
a −2π

a√
2π
a

2π
a

)
(6.1)

where a1 =
√

2a and a2 = a are the length of the edges of the rectangular unit cell.
Thus, q-vectors in units of the Bravais lattice (in the following denoted by a ·̃) can be
transformed into Cartesian units by multiplication from the left, q = q̃ ·B.

A vector pointing along the long axis of the crystal ([110]-direction) is defined as

q̃ = (q, q), q ∈ (−0.5, 0.5]. (6.2)

Multiplication with the Bravais matrix quickly ensures that this vector is indeed pointing
along [110]: q = (

√
8πq/a, 0) and its length is determined by q. The angle between the

magnetic moments of two atoms is determined by their distance vector R via

ϕ = q ·R. (6.3)

In the following we want to describe antiferromagnetic spin spirals. It is convenient
to split the spin-spiral q-vector into 2 parts:

q̃ = q̃0 + q̃eff . (6.4)
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6 Unsupported monolayer of bcc Cr(110)

The first part corresponds to a rotation of π from one lattice site to another (i.e. it
creates the antiferromagnetic order) and one finds q̃0 = (0.5, 0.5). The second part
describes the antiferromagnetic spin spiral,

q̃eff = (∆q, ∆q) . (6.5)

Again it can be transformed into the Cartesian coordinate system by multiplication with
the B-matrix giving

qeff = (
√

8π∆q/a, 0). (6.6)

The period length is then determined by 2π = qeff · (ê λ), where ê is the unit vector in
[110]-direction. This leads to an expression for the period length of the AFM-spiral:

λ[110] = 2π
a√

8π∆q
=

a√
2∆q

(6.7)

Similar expressions are obtained, when the effective part of the q-vector is pointing
along [001]:

q̃eff = (∆q, −∆q) , (6.8)

qeff = (0, −4π∆q/a) , (6.9)

λ[001] =
a

2∆q
. (6.10)

Finally we note, that spin spirals with q-vectors +q and −q are degenerate in absence
of spin orbit coupling, as already pointed out in chapter 4.

6.2 Computational details

The following cutoff-parameter were found to be sufficient: Concerning the generation
of the Hamiltonian: gmax = 10.3 a−1

0 and gmax,xc = 8.5 a−1
0 were used for the plane wave

expansion of the potential and XC-potential, respectively, and `nonsph = 6 was used as
cutoff for the non-spherical part of the Hamiltonian. Its spherical part and LAPW basis
set contained spherical harmonics up to `max = 8. The basis’ plane wave expansion cutoff
was set to kmax = 3.8 a0

−1. The GGA lattice constant of W was used, i.e. a = 6.03 a0.
The muffin-tin radius was chosen as 2.3 a0 and the temperature broadening was set to
kBT = 0.001htr.

Force theorem calculations were done for flat spirals in the [001]-direction: First, the
charge density was converged in antiferromagnetic order, until its distance from one
iteration to the other was less than 10−6 e

a03
(if it was converged even further, it will

be pointed out explicitly in the next chapter 6.3). The full two dimensional Brillouin
zone (2DBZ) was sampled by 512 k-points. Then force theorem calculations were only
a self-consistent solution to the antiferromagnetic magnetization (AFM) was calculated,
and this charge density was used for 11 q-vectors ranging from |∆q| = 0 to |∆q| = 0.1.
One has to keep in mind, that in the force theorem step only the magnetization in the
muffin-tin spheres is rotated, but the interstitial magnetization stays the same. This
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6.3 Dispersion and non-parabolic behavior

induces an error in the computation of the energy, because the situation is similar to
rotating a magnetic moment in an external magnetic field. The larger the rotation is,
the larger the energy to rotate the moment becomes. Therefore it is necessary to set
the interstitial magnetization to zero. Then also an error is made, but it is at least
independent of the rotation angle. This procedure seems to be quite venturesome, but
it leads to correct results, as will be shown in section 6.4.

Also self-consistent calculations were performed for the same q-vectors, either for flat
spirals or for spirals with a cone angle θ = 30◦.

6.3 Dispersion and non-parabolic behavior

0 0.1 0.2 0.3 0.4 0.5
|∆q|
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Figure 6.3: Dispersion relation E(q) along the [001]-direction for flat spin spirals. The
energy was computed for several spin spirals between the AFM state (∆q =
0) and the FM state (∆q = 0.5).

In figure 6.3, the dispersion curve along the [001]-direction is shown. One sees that
the antiferromagnetic state is the ground state. One should regard this figure as a
qualitative behavior, because due to the force theorem only spirals around the AFM
should be described well. The main difference between force theorem and self-consistent
calculations is, that the magnetic moment (which in general is also a function of q)
changes much less in a force theorem calculation.

From the nearest neighbor Heisenberg model, which assumes also a constant mag-
netic moment over the whole magnetic structure, one expects a behavior of the form
E ∝ −J cos(qd) where d is the nearest neighbor distance and J is the nearest neighbor
exchange integral. Because of this behavior, the curve is expected to start quadratically
for small ∆q:

E(∆q) = A (∆q)2 + E0 (6.11)
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6 Unsupported monolayer of bcc Cr(110)

where A is the spin stiffness and E0 is the energy of the AFM state.
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Figure 6.4: Top: calculated energies of spin spirals with different k-point sets (colored
symbols) including a linear (left) and quadratic (right) fit to the 1152 k-
points data. Bottom: residuals to the linear and quadratic fits, respectively.
To each k-point set an individual fit was performed and the residuals were
calculated. However, the fitted parameters do not change much with respect
to the used k-point set, see text.

In the top left panel of figure 6.4, the calculated energies for spin spirals for different
k-point sets (colored symbols) are plotted against (∆q)2. Thus, a parabolic dispersion
relation becomes a straight line in this picture. Least squares fit to the data correspond-
ing to the 1152 k-point set is shown as solid line. At the left bottom panel the residuals
∆E = Ecalc−Efit are shown, which are not randomly distributed around zero but follow
a regular behavior.

The behavior of the residuals is not a consequence of a badly converged calculation,
as it was resistant against many cutoff parameters: the number of k-points (as seen in
this picture), `max, `nonsph, gmax and gmax,xc. Neither changing the lattice constant nor
the muffin-tin radius nor choosing another unit cell (primitive-rectangular with 2-atomic
basis instead of centered-rectangular with 1-atomic basis) made this regular deviation
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6.4 How good is the Force Theorem? - Calculations with coned spirals

from a parabolic fit vanish.

But the dispersion relation around the AFM could be described better by applying a
fit of the form

E(∆q) = A2 (∆q)4 +A1 (∆q)2 + E0 (6.12)

with fit parameters A2, A1 and E0. Such a quartic fit appears as a parabolic curve in
figure 6.4 (upper right panel, solid line). The residuals to a fit of this form are one order
of magnitude smaller than the corresponding residuals to a quadratic fit and do not
follow a regular behavior, but are randomly distributed around zero (cf. right bottom
panel of figure 6.4).

The fitted parameters are shown in the following table. The uncertainties are in the
range of a few percent or less.

parameter value / htr relative uncertainty

A 0.0687 5%
A1 0.0583 2%
A2 1.02 0.5%

However, this deviation cannot be addressed to the next higher order term in a Taylor
expansion of the previously mentioned cosine,

E =
J

2
(2πq)2 − J

24
(2πq)4 +O(q6) , (6.13)

because the ratio A2/A1 = 17 is much bigger than the ratio of the expansion coefficients

(π
2

3 ≈ 3.3) and the sign differs! The non-parabolic behavior might be due to higher
order interactions, such as bi-quadratic or four-spin interactions.

6.4 How good is the Force Theorem? - Calculations with
coned spirals

As already explained earlier, the force theorem provides a tool to accomplish calculations
with different magnetic states very quickly. The energy difference of two states (an initial
and a final state) is first order in the deviation of their magnetic structure with respect
to each other, which corresponds in our case to the deviation of the q-vectors of the two
states. The force theorem gives a good estimate if the deviation is small, and the quality
of the approximation will decrease with increasing difference ∆q.

In order to disturb the initial magnetic structure less, one can introduce a cone angle
(in contrast to flat spirals as used in the previous section). Such a spiral with a cone
angle θ = 45◦ is shown in the top half of figure 6.5. The azimuthal angle of the spin
differs by ∆ϕ = 45◦ on neighboring sites, which can be seen in the lower half of the
picture, where the projection of the spin onto the xy-plane is shown. The different
orientation of spin-up (blue) and -down (red) moments with respect to the quantization
axis causes an additional change of ∆ϕ = 180◦ to the projection of the blue magnetic
moments. Because antiferromagnetic spin spirals with θ 6= π/2 cannot be computed
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6 Unsupported monolayer of bcc Cr(110)

Figure 6.5: Coned spirals with cone angle θ = 45◦ and spin rotation axis pointing along
ẑ-direction. Upper half: view from the side. The projection of the magnetic
moments onto the ẑ-axis is positive for blue and negative for red atoms,
respectively. Lower half: projection onto the xy-plane.

with a 1-atomic unit cell, we have to use two atoms to form a sublattice structure. Then
also a phase shift α between the two sublattices can be introduced.

In the simplest case of a classical Heisenberg model where only nearest neighbor
interactions are taken into account, the interaction energy per atom is given by

E = −J1

4

4∑
i=1

S0 · Si , (6.14)

where the five spins are defined by

S0 =

 sin θ
0

cos θ

 , Si =

 sin θ cos(ϕi)
sin θ sin(ϕi)

cos θ

 , (6.15)

ϕ1 = ϕ4 = −2π∆q + α , (6.16)

ϕ2 = ϕ3 = 2π∆q + α . (6.17)

The situation is also sketched in figure 6.6, where S0 is represented by the red arrow
in the middle. The two sublattices exhibit a phase shift, denoted by the angle between
the red and the black arrow (which corresponds to a normal spin spiral without phase
shift).

By simple calculation and using some trigonometric equations, one finds

E(∆q, α, θ) = −2J1 sin2 θ
[
sin2 α

2
+ π2 cosα (∆q)2 +O

(
(∆q)4

)]
+ J1 . (6.18)

The changes in the magnetic structure (when varying q) are small when the cone
angle is small. This can be easily seen when one considers the limit θ = 0: The magnetic
moments point in ẑ-direction and any rotation around ẑ leaves the magnetic structure
invariant (and thus the energy is constant). The changes in the magnetic structure also
increase with α, as can be seen when one considers spirals with θ = 90◦: then α = 0

48



6.4 How good is the Force Theorem? - Calculations with coned spirals

q

i=1

i=2 i=3

i=4

Figure 6.6: The spin S0 (red arrow) is canted with respect to it’s normal position of a
spin spiral (black) by an angle α.

describes the antiferromagnetic (initial) state and the deviation is largest for α = 180◦,
where the ferromagnet is obtained.

One can also take higher order terms into account, e.g. interactions of N = 5 neigh-
boring shells with exchange constant Jn (see figure 6.7). The energy of the red atom
then reads

E(∆q, α, θ) = −2J sin2 θ
[
χ sin2 α

2
+ π2 (ζ cosα+ (1− ζ))(∆q)2 +O

(
(∆q)4

)]
+const. ,

(6.19)

where J = J1 + 2 J2 + 4 J4 + 9 J5 , χ =
J1 + J5

J
and ζ =

J1 + 9 J5

J
. (6.20)

Thus, the general form of equation (6.18) is obtained with scaling factors χ and ζ, which
occur because only spins from the other sublattice contribute to the change in energy
when a phase shift between the two sublattices is introduced. One could also take more
neighboring shells than N = 5 into account, but the form of equation (6.19) would not
change (but the constants Jeff , χ and ζ would contain more contributions).
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Figure 6.7: The bcc(110) lattice structure. The 5 next nearest neighbors to the center
atom (red) are indicated where n denotes the order of the neighbor.
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6.4.1 Computational details

Antiferromagnetic coned spin spirals are calculated in the 2-atomic unit cell. The cutoff
parameters concerning the basis set and potential are the same as in the first paragraph
of 6.2.

The force theorem was applied to investigate the dependence of the spin-spiral energy
on (a) the cone angle θ and (b) the phase shift α. The Hartree- and XC-potential were
computed from a converged density (with 256 k-points). Usually 2304 k-points were
used for the calculation of the single particle energies (if not, it is mentioned explicitly).

Because the unit cell is now twice as large as the one-atomic unit cell (the Brillouin
zone is then half as big), the q-vector q̃2−atomic = (0, q0) has to be chosen as q0 = 2 ∆q
(∆q as in equation (6.5)) to produce the same magnetic structure as in spin-spiral
calculations using the 1-atomic unit cell. For better comparison to the 1-atomic unit
cell, in the following ∆q is used as scale of the plots. Energies are usually given per
2-atomic unit cell.

6.4.2 Variation of the cone angle θ

From equation (6.18) a sin2 θ - behavior is expected and can actually be confirmed by
our force theorem calculations (see figure 6.8). The spin-spiral vector was chosen to be
∆q = 0.03. Two sets of calculations were done, where the initial state was a coned spiral
with θstart = 30◦ (diamonds) or the AFM state (θstart = 0◦, diamonds), which agree very
nice. From the sin2 θ-curve an effective exchange constant J = 105µhtr

2π2 0.032
= 5.9 mhtr can

be deduced.

6.4.3 Variation of the spin-spiral vector q

The dependence on the q-vector is shown in figure 6.9 (here 4608 k-points were used).
A large range of q-vectors is shown and it is not believed that the force theorem can be
used with the flat spirals to describe the dispersion curve accurately in the whole region.
However, one can see the trend and estimate a limit for ∆q, in which the force theorem
can be applied: The energy difference δE = Eflat − 4Econe is with less than 10−5 htr
very small for for very long spin spirals (∆q ≤ 0.03), in a range of 0.03 < ∆q ≤ 0.17 flat
spirals underestimate and for larger q-vectors they overestimate the energy compared to
coned spirals.

In figure 6.10 the uncertainty in the spin stiffness is determined. In case of coned
spirals a higher number of k-points is needed to gain convergence. Please note that the
self consistent values are obtained by using a one-atomic unit cell, which needs twice as
many k-points to sample the Brillouin equally dense as a unit cell containing two atoms.
The energies were multiplied by 2 for the same reason. Values for the spin stiffness are
determined by linear fits in the right panel of this picture. They are:
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Figure 6.8: Energy dependence of the cone angle θ for a fixed q-vector (∆q = 0.03).
For θ = 0 the spins are ordered antiferromagnetically along the ẑ-axis, for
θ = 90◦ the flat spiral is established. The two sets differ in the cone angle
θstart of the initial magnetic state. The solid line is a sin2-curve as guide to
the eye.
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Figure 6.9: Comparison between flat and coned spirals (θ = 30◦) computed with the 2-
atomic unit cell. The energies are given per unit cell. The sign of the energy
difference δE = Eflat − 4Econe is coded by the color in the log-plot (lower
half).
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data set A [htr]

FT, θ = 90◦ 0.119
FT, θ = 30◦ (1) 0.127
FT, θ = 30◦ (2) 0.122
SC, θ = 90◦ 0.110

Thus the error made by applying the force theorem is found to be about 10% for the
investigated range around the AFM. Interestingly, the fit to the noisy data gives already
a quite resonable etimate for the spin stiffness. Using equation (6.19) we can deduce
an effective echange constant J = −A/2π2 ≈ 6.0 mhtr, which agrees with the value
J = 5.9 mhtr obtained from varying the cone angle θ.
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Figure 6.10: Determination of spin stiffness: The calculated energies are plotted in the
left panel. For flat spirals (circles) 2304 k-points are sufficient to get a con-
verged dispersion, for coned spirals the same number of k-points (squares)
is insufficient. Instead, 8464 k-points (diamonds) give a smoother curve.
The self consistent values (crosses) are obtained with flat spirals using 4232
k-points and a one-atomic unit cell. Right panel: linear fits to the data
(plotted against (∆q)2) give the spin stiffness (see text).
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6.4 How good is the Force Theorem? - Calculations with coned spirals

6.4.4 Variation of the phase shift α

The dependence on the phase shift α between the two sublattices for two different cone
angles is shown in figure 6.11 where ∆q = 0 was chosen. Let’s compare the results for
the two cone angles θ = 30◦ (filled symbols) and θ = 90◦ (open symbols): The same
energies (up to 10−10 htr) were obtained for α = 0, for α = π/4 they are nearly the same
and the difference becomes big for α ≥ 3π/4.

The θ = 30◦-data is nicely described by a sin2(α/2)–fit, as expected from equation
(6.18), giving a value of −2χJ = 33 mhtr. This gives a value χ = 2.7. The energies
obtained with flat spirals are less good described by a sin2(α/2)–fit, which indicates that
the force theorem is less valid.
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Figure 6.11: Energies of magnetic configurations with phase shift α. Open symbols de-
note flat spirals, filled symbols represent coned spirals (θ = 30◦). The data
for α = 0 and α = π/4 are the same for both types of data and thus the
open symbols are hidden behind the filled ones. The colors correspond to
the branches shown in figure 6.12

Also the dispersion E(∆q) for α = 0, π/2, π/2, 3π/4 and π was computed. Let us first
consider flat spirals, which are shown in the top left panel of figure 6.12. The dispersion
is very flat for fixed α. The AFM state is produced by (∆q, α) = (0, 0) (black) and
spin spirals with nearly antiferromagnetic order (∆q ≤ 0.03) are lowest in energy. The
other limit, namely when the spins are aligned ferromagnetically, is obtained by choosing
(∆q, α) = (0, π) (blue). Flat spin spirals with nearly ferromagnetic ordering are about
0.043 htr higher in energy.

To reveal the shape of the dispersion the quantity δE = E(∆q, α)− E(0, α) for each
α is plotted as function of ∆q in the lower left panel of the figure, where one indeed
identifies the AFM to be the ground state and the energy increases quadratically with
∆q because of the lowest order expansion of equation (6.18) with α = 0. For the
(α = π)−branch, the ”pure” ferromagnet (∆q, α) = (0, π) is highest in energy and the
energy of nearly ferromagnetic spin spirals deviates also quadratically because of the
same reason (Taylor expansion with α = π), but now with different prefactor 1− 2ζ in
equation (6.19)). However, because the very different magnetic structure with respect
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6 Unsupported monolayer of bcc Cr(110)
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Figure 6.12: Top: Dispersion curves E(∆q) for different phase shifts α for flat (left, closed
symbols) and coned spirals (right, open symbols). The dispersion is very
flat for a fixed α (top panel). In the lower panel δE = E(∆q, α)− E(0, α)
for each α is shown. For details see text.

to the initial (i.e. converged) state, the force theorem gives a wrong result in magnitude.
Please remember that the whole (α = π)−branch is 0.043 htr higher in energy than the
(α = 0)−branch and thus the negative values of δE do not indicate the ground state.

One can compare this behavior with the dispersion E(∆q) where ∆q ranges over the
whole Brillouin zone (figure 6.3, page 45): the (α = 0)−branch reflects the region around
∆q = 0 and the (α = π)−branch reflects the behavior around ∆q = 0.5, respectively.
Also the energy (per atom) between AFM and FM is the same:

∆E =
0.043 htr

2 atoms
= 22 mhtr

agrees nicely with the value of 22 mhtr obtained from figure 6.3. However, we have to
keep in mind that the force theorem is only applicable when the changes in the magnetic
structure are small. This is obviously not the case when one compares the two extremal
cases of AFM and FM.

The same calculations as for flat spirals were done with coned spirals (θ = 30◦). One
finds the same trends (cf. right half of figure 6.12). If one compares the several branches
of coned spirals with the corresponding energies from flat spiral calculations (upper
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6.5 Dependence on the choice of the unit cell

right), one recognizes that the energies agree nicely for α = 0 and α = π/4 (as already
seen in figure 6.11). The shape of the dispersion is again plotted in the lower panel of
figure 6.12. One again sees that the dispersion curves for coned spirals are more noisy,
but they will get smoother for a more dense k-point set (in analogy to figure 6.10 for
the θ = 30◦-curves).

6.5 Dependence on the choice of the unit cell

Test calculations with flat spin spirals were done to investigate, if calculations with a
one- and two atomic unit cell are consistent. Force theorem calculations were done using
a starting density which was converged with 256 k-points. The following k-point sets
were used to calculate the single particle energies (the sets are also illustrated in figure
6.13):

• set A: for c-r unit cell, 4608 k-points (excluding the Γ-point)

• set B1: for p-r unit cell, 2304 k-points (including the Γ-point)

• set B2: for p-r unit cell, 2304 k-points (excluding the Γ-point, congruent with set
A)

Please notice that since the 2DBZ of the two-atomic unit cell is half as big as the 2DBZ
of the one-atomic one, only half of the k-points have to be used to reproduce the same
accuracy.
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Figure 6.13: On the left the whole Brillouin zone of the c-r and p-r unit cell is shown.
On the right the sampling with three k-point meshes is shown. Mesh A and
B2 are congruent, B1 is shifted.

The computed energies are shown in figure 6.14. The comparison shows that the
energy dispersion is in very good agreement between the two unit cells (∆E ≈ 10−6 htr).
When one compares the sets A and B2, which result in the same sampling of the 2DBZ,
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6 Unsupported monolayer of bcc Cr(110)

0 0.005 0.01 0.015 0.02 0.025 0.03
∆q

0

2×10
-5

4×10
-5

6×10
-5

E
 [

ht
r]

set A
set B

1
set B

2

0 0.01 0.02 0.03
∆q

-3×10
-6

-2×10
-6

-1×10
-6

0

1×10
-6

∆E
 [

ht
r]

E
B1

 - E
A

E
B2

-E
A

Figure 6.14: Energy calculations using the force theorem with different k-point sets and
unit cells. The calculations of 1 atomic unit cells and 2 atomic unit cells
with equivalent k-point sampling give the same results (set A and B2,
respectively).

the curves are even nearly identical: the deviations are of order 10−8 htr. They come from
slight differences in the starting density. Quadratic fits to the data give the following
spin stiffness and they agree within 1 percent or less:

A B1 B2

[10−2 htr
(2π/a)2

] 6.06 5.94 6.07

6.6 Conclusion

We have investigated the spin stiffness for an atomic monolayer of Cr for spirals along
[001] with period lengths λ > 5 a ≈ 1.6 nm (corresponding to ∆q < 0.1). In the disper-
sion also higher order interactions are revealed. For spin spirals with very long period
lengths (λ > 16 a ≈ 5.2 nm, corresponding to ∆q < 0.03), the applicability of the force
theorem was tested and it was found, that the error made by the force theorem can be
addressed to approx. 10%. In the test, the following accuracies could be evaluated:

• Flat spiral calculations using the 1-atomic and 2-atomic unit cell, respectively,
agree within 1%.

• Force theorem calculations with coned and flat spirals, respectively, agree within
3%.

• Flat spiral calculations applying the force theorem and and self-consistent calcu-
lations, respectively, agree within 8%.
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7 Spin spirals in 1 atomic monolayer of Cr
on W(110)

The previously described concepts are used to analyze the magnetic properties of one
atomic monolayer Cr on a (non-magnetic) W(110) substrate. The ground state of
this system is of particular interest. The broken inversion symmetry can give rise to
the Dzyaloshinskii-Moriya interaction (DMI), which will in general favor canted spin
structures and compete with other magnetic interactions such as magnetocrystalline
anisotropy (MCA). Experiments [48] indicate a noncollinear ground state, which sup-
ports our interest in a theoretical analysis of this particular system.

Ab-initio calculations can show the magnitude of the different effects and therefore
help to identify the relevant interactions. Different approximations can be used to de-
termine certain effects, e.g. it is sufficient to perform calculations in scalar-relativistic
approximation to determine the spin stiffness, whereas spin-orbit coupling is crucial for
the MCA and DMI.

In this chapter, the three model parameters for a micromagnetic model (anisotropy,
K, Dzyaloshinskii-Moriya interaction, D, and spin stiffness, A) are determined by fits
to suitable DFT calculations. Then, the ground state of the system is determined and
a comparison to the experiment is made.

7.1 The tungsten substrate

Tungsten is chosen as substrate, because it has a high spin-orbit coupling strength. Its
bulk structure can be described by a body centered unit cell, i.e. a cubic lattice with
lattice parameter a and a two atomic basis:

τ1 = (0, 0, 0)T , τ2 = (a/2, a/2, a/2)T .

The experimental lattice parameter is aexp = 3.1652 Å = 5.98 a0.
We performed DFT calculations using GGA [20] and LDA [18] exchange correlation

functionals to determine the lattice parameter. The total energy was calculated for var-
ious lattice constants around the experimental value for both types of XC-functionals.
The following cutoff-parameter were used (without testing the convergence with re-
spect to these): Concerning the generation of the Hamiltonian: gmax = 11.8 a−1

0 and
gmax,xc = 9.9 a−1

0 were used for the plane wave expansion of the potential and XC-
potential, respectively, and `nonsph = 8 was used as cutoff for the non-spherical part of
the Hamiltonian. Its spherical part and LAPW basis set contained spherical harmon-
ics up to `max = 10. The muffin-tin radius was chosen as 2.52 a0 and the temperature
broadening was set to kBT = 0.001htr.

57



7 Spin spirals in 1 atomic monolayer of Cr on W(110)

Figure 7.1: Total energy calculations
to determine the W bulk
lattice constant (symbols)
and quadratic fits (lines).
The arrows indicate the
minimum with respect to
the fits. The experimen-
tal value is indicated by a
blue arrow.
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Self-consistent, non-magnetic total energy calculations were performed. The conver-
gence with respect to the number of k-points in the irreducible part of the Brillouin
zone IBZ (Nkpts, the IBZ equals to 1/48 of the full Brillouin zone) and the basis’ plane-
wave expansion cutoff kmax was tested. The following values were found to be suffi-
cient: Nkpts = 252 and kmax = 4.0 a−1

0 . Changing these values to Nkpts = 616 and
kmax = 4.5 a−1

0 lead to no changes in the differences of the total energy.
The results are plotted in figure 7.1. The lattice constants agree within 1%:

in a.u. LDA GGA exp.

a [a0] 5.92 6.01 5.98

For the following analysis, the GGA lattice parameter was used.

7.2 The thin film Cr/W(110): structure

The system of interest is approximated by a thin film consisting of 1 layer of Cr and 7
layers of W(110) (if more than 7 W-layers were used, it is mentioned explicitly in the rest
of this chapter). The two-dimensional unit cell of the bcc(110) structure is rectangular
with lattice parameters a and

√
2a (as already discussed in chapter 6.1.1). The position

of the atoms in the surface and interface layer is indicated in figure 7.2 and subsequent
layers are repeated according to this sequence.

The Cr layer was relaxed with respect to the W substrate, where the W-W interlayer
distance was kept constant at dW−W = a/

√
2 = 4.264 a0. A symmetric film with 7 W

layers, covered with a Cr layer on each side was used to determine the relaxations. Self-
consistent calculations with an antiferromagnetic order of the Cr layer were performed.
The following parameters were used: GGA was used as exchange-correlation functional,
because LDA tends to overestimate the relaxation and thus leads to a stronger hybridiza-
tion (and thus an overestimated transfer of magnetic moment to the substrate) [49]. The
muffin-tin radii were set to 2.3 a0 for Cr and 2.5 a0 for W. The irreducible part of the
two-dimensional Brillouin zone was sampled by 20 k-points (corresponding to 80 k-points
in the full 2DBZ). For the basis set plane waves up to a wave vector of kmax = 4.5 a−1

0
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7.3 Magnetic structure

[0
01

]

[110]

Figure 7.2: Left: W(110) slab covered with an atomic monolayer of Cr. Green spheres
represent the non-magnetic W atoms, red and blue arrows represent the
magnetic moments of the Cr atoms. Right: top-view onto the surface. Cr-
surface atoms (i.e. layer 1) are shown as red and blue circles. The position
of the W-interface atoms (i.e. layer 2) is indicated by green circles. The
subsequent layers are repeated according to this sequence (i.e. ABAB...)

were used and spherical harmonics up to `max = 8 were used in the muffin tins. The
potential gmax = 11.8 a−1

0 and gmax,xc = 9.9 a−1
0 were used. Nonspherical parts to the

Hamiltonian were taken up to `nonsph = 6 were considered. The temperature broadening
was set to kBT = 0.001 htr.

The Cr-W distance was determined to be dCr−W = 3.896 a0, which corresponds to an
inwards-relaxation of 8.6% with respect to the W-W interlayer distance. This agrees
with the experimental observation of an relaxation of −8.0 ± 0.7% from LEED studies
and other GGA calculations (−8.5%, both results from Ref. [48]).

7.3 Magnetic structure

For the rest of this chapter, the structure described in section 7.2 is used. LDA [18]
is used as exchange correlation functional for magnetic calculation, because the most
widely used PBE-GGA functional [20] is constructed especially for collinear magnetic
structures. Additionally, LDA is mostly used for magnetic calculations and thus the
community is most experienced with it.

The cutoff parameter for the basis set and potential generation are chosen as described
in section 7.2. The number of desired k-points varies with respect to the searched quan-
tity and convergence with respect to this parameter will be an issue of each subsequent
chapter.
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7 Spin spirals in 1 atomic monolayer of Cr on W(110)

7.3.1 Magnetic Moments

Magnetic moments originating from the spin of the electrons were calculated with 512
k-points (in the whole 2DBZ of the centered rectangular unit cell) in scalar-relativistic
approximation. Checks with 1152 k-points allow to estimate an uncertainty of 0.001µB.
Additionally, the spin and orbital moments including SOC were calculated in the primi-
tive rectangular unit cell, where it was found that 256 k-points are sufficient to determine
them: for the spin (orbital) magnetic moments a relative uncertainty of 1% = O(10−2)
(O(10−1)) in the 4 (5) topmost layers remained, whereas it was one order of magnitude
larger in the other layers (comparisons were made with moments obtained by sampling
the full BZ with 1024 k-points).

layer - no. 1 2 3 4 5
atom - type Cr W W W W

µS [µB] (SR) 2.41 0.211 0.044 0.016 0.003
µS [µB] (SOC) 2.41 0.206 0.0422 0.0114 0.004
µL [10−2 µB] -2.42 -1.7 -0.36 -0.28 -0.38

Let’s first look at the spin moments: The non-magnetic W atoms get spin-polarized
due to hybridization with the magnetic Cr atoms, where the magnitude of spin-polarization
decreases with increasing distance from the Cr-layer. The coupling is antiferromagnetic
within the W layers and from layer to layer, if the nearest neighbor atoms are considered
(see figure 7.3). The other W-layers (number 6 to 8) have vanishing spin moment within
the limit of our accuracy or are too close to the W surface on the other side of the film,
where an enhanced magnetic moment due to the lower coordination number of the W
atoms exists. This is an artifact due to the finite thickness of the film in contrast to
a semi-infinite substrate, as it almost appears in nature. This fact is also revealed by
calculations with a different number of W layers (see figure 7.4).

[0
01

]

[110]

Figure 7.3: Unit cell analog to figure 7.2, with induced spin-polarization of the W in-
terface layer. The orientation of the magnetic moment of the W interface is
indicated by blue and red outer circles, which correspond to spin-down and
-up, respectively.
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7.3 Magnetic structure

The orbital moments are by a factor of 100 smaller in magnitude, but decay slower
than the spin moments. By comparison it is found, that the five topmost layers are not
affected too much by the finite thickness of the film. Additionally, the orbital moment
depends on the direction of the magnetic moment due to spin-orbit coupling (see figure
7.5). The orbital moments are largest in magnitude for an in-plane magnetization along
the [001]-direction.

-2

-1

0

1

2

µ S [
µ B

]

  1
(Cr)

  2
(W)

  3
(W)

  4
(W)

  5
(W)

  6
(W)

  7
(W)

  8
(W)

  9
(W)

layer

-0.02

-0.01

0

0.01

0.02

µ L
 [

µ B
]

Figure 7.4: Spin and orbital moments (circles and squares, respectively) for the layers of
a 8 layer (black) and 9 layer (red) film. They couple antiparallel. Mind the
different scale for the spin- (left) and orbital-moments (right) of 2 orders of
magnitude.
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Figure 7.5: Orbital moments of the 5 topmost layers of a 8 layer film with spin moments
along the three high symmetry directions. The orbital moments depend on
the magnetization direction due to spin-orbit coupling. The orbital moments
are largest in magnitude for an in-plane magnetization along [001].
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7 Spin spirals in 1 atomic monolayer of Cr on W(110)

kpts-set lx/δx ρ Nkpts

1a 48 1 4608
2a 48 2 2304
3a 48 3 1536
4a 48 4 1152
1b 72 1 10368
2b 72 2 5184
3b 72 3 3456
4b 72 4 2592

Table 7.1: Used k-point sets to investigate the importance of the distribution of k-points
in the 2DBZ. ρ is the ratio (δy/ly)/(δx/lx) where the meaning of these quan-
tities is illustrated in figure 7.6.

7.4 Calculation of the Dzyaloshinskii-Moriya-Interaction

7.4.1 Computational Scheme

A charge density of the AFM state was converged using the generalized Bloch theorem
with 512 k-points in the full 2DBZ, until the distance in charge density from one iteration
to the other was O(10−6 e

a30
). Afterwards, the spin-spiral ground state was computed (i.e.

the force theorem was applied) and first order perturbation theory was used to evaluate
the change in energy due to spin-orbit coupling. Five spin spirals with q-vectors pointing
along the [110] and [001]-direction were computed, where ∆q = 1/96, 3/96, · · · 9/96 (as
defined in equation (6.5)) was chosen.

7.4.2 Test: optimal Brillouin zone sampling

It was tested which sampling of the Brillouin zone (BZ) ensures the fastest convergence
of the result. For this test only spin spirals along the long axis of the two-dimensional
unit cell (i.e. [110]) were computed. The k-points were distributed as illustrated in
figure 7.6: the length of the BZ are lx = π/

√
2a and ly = π/a (x and y correspond

to the crystallographic directions [110] and [001], respectively). Different ratios ρ =
(δy/ly)/(δx/lx) of densities among x and y-direction were tested, as well as different
total numbers of k-points Nkpts = 2 (ly/δy) (lx/δx) = 2(lx/δx)2/ρ. The sets given in
table 7.1 were used.

Let us comment on the fact that k-meshes of type ρ > 1 were considered: When SOC
in spin spirals is treated beyond first-order perturbation theory, the q-vectors and the
k-point grid have to match [14]: when k is a point of the k-mesh, then k′ = k + q must
be a point of the mesh as well. This results in very dense k-meshes and a large number
of k-points for long spirals (i.e. small q-vectors). The computational effort can then be
reduced by sampling the BZ in the direction normal to q with less accuracy. However,
this restriction does not hold if SOC is treated in first order perturbation theory.

The result is shown in the left panel of figure 7.7. Calculations having ρ = 1 (set 1a
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7.4 Calculation of the Dzyaloshinskii-Moriya-Interaction
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Figure 7.6: Illustration of a k-point
set, sampling the two-
dimensional Brillouin
zone (2DBZ).
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Figure 7.7: Energy due to spin-orbit coupling in spin spirals in first-order perturbation
theory. Left: Different k-point distributions in the BZ were tested for spirals
along [110]. Right: Convergence with respect to the number of k-points for
a mesh with ρ = 1 for spirals along [001].
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7 Spin spirals in 1 atomic monolayer of Cr on W(110)

Figure 7.8: Atom resolved spin-
orbit energy for spin
spirals along [001] with
various period lengths
λ. The labels count the
atoms in the unit cell.
Solid lines represent fits
to the data. The data
points are converged
with respect to the k-
point grid. The largest
contributions come from
the Cr (black) and first
three W layers (blue).
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and 1b, respectively) are converged with respect to δx/lx and give the same SOC-energy
up to 0.01 meV. For the other k-meshes with ρ > 1, the energies are not converged.
The deviations in energy using two k-sets with same ρ increases as ρ increases, but this
might also be due to the fact that the total number of k-points decreases as well.

To estimate which number of k-points of a homogeneously distributed k-point grid is
sufficient, the same calculations as above were done with spin-spiral q-vectors pointing
along [001]. Five k-point grids were used containing 512 to 10368 k-points. The plot
in the right panel of figure 7.7 shows that at least 2048 k-points should be used. To
make sure, that the k-point number is chosen high enough, we used the set with 4608
k-points for all the following calculations of this section and checked the convergence of
the results by using the 2048 k-point set.

7.4.3 Layer-resolved analysis of the DMI

As seen in chapter 3.6.2, an atom-resolved change in energy can be obtained by applying
SOC as perturbation in first-order perturbation theory. For each atom a curve EµSOC(q)
is obtained, where µ labels the atoms in the unit cell (cf. figure 7.8). In first-order
perturbation theory, the symmetry

EµSOC(q) = −EµSOC(−q) , (7.1)

holds if the changes in the occupation of the electronic states are small, as it is usually the
case for W-substrates. Therefore, it is enough to calculate spin spirals of one rotational
sense (e.g. q ∼ λ−1 < 0). Linear fits of the form EµSOC = Dµ q give values for the
contribution of the µth atom to the total Dzyaloshinskii-Moriya interaction D =

∑
µD

µ.
These fits are indicated as solid lines in figure 7.8.
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7.4 Calculation of the Dzyaloshinskii-Moriya-Interaction

To investigate the influence of the film thickness on D, the atom resolved analysis
was also performed for slabs with 1 layer of Cr in 8 and 9 layers of W. The results for
spirals along [001] are shown in figure 7.9. The left panel shows the values corresponding
to the fits shown in figure 7.8 (filled bars). Values obtained with a film consisting of 1
layer Cr and 8 layers W are also shown (striped bars). The errorbar corresponds to the
uncertainty in Dµ from the least square fit. The results for the two films agree quite
well for layer 1-6. Additionally, the data was analyzed in a similar fashion, but only
considering spin spirals with |λ−1| ≤ 0.2 nm−1, because we are interested in spin spirals
of very long period length. Two datapoints are sufficient to estimate a value and an
error of Dµ. The results (shown in the right panel) contain also data from a film with
9 W layers. A slight enhancement of DMI compared to the fits containing spirals with
|λ−1| < 0.6 nm−1 in layer 1, 2, 4 and 5 and a considerable enhancement in layer 3 is
observed. Comparing the results from the 10-layers film to the others, the magnitude
differs in layer 3 and 4, but the overall DMI (summing up layer 1 to 5) agrees quite well
(see table 7.2).
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Figure 7.9: Layerwise contribution to D for spirals along [001]. The left panel shows the
values from fits to five spin spirals for a film consisting of 8 and 9 layers. The
right panel shows the values from fits to two spirals with |λ−1| ≤ 0.2 nm−1,
where additionally one more film with 10 layers was computed.
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Figure 7.10: Same as in the right panel
of figure 7.9 for spirals along
[110].
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[001] [110]∑5
µ=1D

µ
∑7

µ=1D
µ

[meV nm] fit 1 fit 2 fit 2

1+7 layer 15.2 19.9 8.5
1+8 layer 16.0 19.3 8.5
1+9 layer − 19.0 8.8

Table 7.2: Results from the layer-resolved analysis of the DMI. Spirals with |λ−1| <
0.6 nm−1 and |λ−1| < 0.2 nm−1 (corresponding to 5 and 2 datapoints) were
taken for fit 1 and 2, respectively.

Spin spirals along [110] have a smaller DMI, but the contribution seems to decay slower
with increasing distance from the Cr-layer, so that contributions from more layers have
to be taken into account (see figure 7.10). We took the first 7 layers to determine the
total DMI, because the the results of the different layers agree nicely. Another difference
to spirals along [001] is, that the uncertainties in Dµ are much smaller. Interestingly,
the Cr-layer does not contribute significantly to the DMI in this direction.

Common for all slabs and both directions is, that the first W-layer contributes the
most to DMI. Due to the high charge of the W-atoms, spin-orbit coupling is strong
and already small magnetic moments (see chapter 7.3.1) are sufficient to cause a strong
contribution to the DMI.
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Figure 7.11: Layer-resolved DMI Dµ,
obtained from spin-spiral
calculations in [001]-
direction using the force
theorem with differ-
ently converged starting
densities and two film
thicknesses. The two
curves for the 8 layer
slab (black and red) and
10 layer slab (green and
orange) are the same, so
self-consist calculations
converged to a distance of
10−6 e

a03
are sufficient.

Test of force theorem approximations

Only spin spirals with q-vectors parallel to [001] are considered in this section.

In the force theorem a collinear charge density is converged with relatively few k-
points and then a single iteration with many k-points is done to determine the sum
of single particle energies. Typically a distance in input- and output charge density of
approximately δρ0 = 10−6 e

a03
is sufficient to determine the Hartree and XC-potential for

the force-theorem step and not all details of the charge density are needed to obtain good
results. This was tested by comparing the results of a force-theorem calculation with a
pre-converged density of distance in charge density δρ0 < 10−6 e

a03
and δρ0 < 10−8 e

a03
,

respectively. The DMI does not change (figure 7.11) and using a converged charge
density up to δρ0 < 10−6 e

a03
is enough.

Additionally, some spin spirals (without SOC) were computed self-consistently and
then only the influence of SOC was treated as a perturbation (in first-order perturba-
tion theory). This procedure is much more time consuming as the one explained above,
because the charge density for each q-vector has to be obtained self-consistently. There-
fore 512 k-points were used until the distance of input and output charge density was less
than 10−6 e

a03
. Afterwards SOC was included in first order perturbation theory, where

4608 k-points were used. As seen in the left panel of figure 7.12 it is valid to treat the
change in the q-vector as a small perturbation – at least in the investigated range of
q-vectors. For sure this approximation will fail when the calculated magnetic structure
differs much from the (antiferromagnetic) structure of the converged density. Also in
the layer-resolved contribution to the DMI the changes are negligible (see right panel of
figure 7.12). We can also draw the conclusion that the “brutal” approximation in setting
the interstitial magnetization to zero when the force theorem is applied (as explained in
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7 Spin spirals in 1 atomic monolayer of Cr on W(110)

chapter 6.2) does not influence the result.
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Figure 7.12: Comparison between force theorem and self-consistent spiral calculations.
Left panel: Spin-orbit contribution to the total energy from layers 1 to 7
and fits to the data yielding to the same value for D. Right panel: Layer-
resolved DMI. The changes are negligible.

Concluding this test section one can say, that applying the force theorem is valid.

Influence of SOC on the starting density

In the calculations performed above, SOC is only included in the last iteration when the
sum of single particle energies is calculated (force theorem step). However, the small
influence on SOC on the (converged) density can induce sizable changes in the total
energy (as observed in calculations of the magnetocrystalline anisotropy). Therefore a
primitive rectangular unit cell with 2 atoms per layer was used to perform collinear self-
consistent calculations including SOC, and afterwards the DMI was calculated according
to the procedure explained above: the energies of 2 spin spirals were computed and
linear fits of the form E = D · λ−1 were made to get the strength of DM-interaction.
The spin-spiral q-vector was pointing in [001]-direction. Calculations were done for
a starting density with a spin quantization axis pointing along the [001] and [110]-
directions, respectively. The influence of SOC on the starting density is small for all
layers (figure 7.13). However, in case of the 8 layers film, the total DMI gets enhanced
by about 8% and for the 9 layer film it gets reduced by 2%, so estimating a trend for
the inclusion of SOC in the convergency cycle can not be made. However, if one wants
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to include SOC in the self-consistent calculations, the direction of the spin quantization
axis does not matter.
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Figure 7.13: Converged charge densities which were obtained without SOC (black), with
SOC and magnetization direction along [001] (blue) and [110] (green) were
used to calculate the layer-resolved DMI. Calculations with 1+7 layers (left
panel) show, that SOC enhances the DMI in layers 1 to 5 by about 8%,
whereas the magnetization direction does not matter. For the 1+8 layers
film (right panel), SOC reduces the total DMI in layer 1 to 5 slightly by
2%.
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7 Spin spirals in 1 atomic monolayer of Cr on W(110)

7.5 Calculation of the spin stiffness

The spin-stiffness constant is calculated in this section. It is dominated by non-relativistic
effects and thus calculations can be done without SOC (i.e. in scalar-relativistic approx-
imation), which reduces the computational effort a lot since in this case the generalized
Bloch theorem allows calculations in the chemical unit cell. The dispersion relation is
of the form

ESR = Ã (∆q)2 + const = Aλ−2 + const , (7.2)

where A is the spin-stiffness constant. This approximation is only valid for small devia-
tions from the antiferromagnetic state (∆q = 0), and for larger values of ∆q corrections
to this approximation are expected.

7.5.1 Convergence with k-point number

In the left panel of figure 7.14 the energies of spin spirals with different period lengths are
shown (please notice, that λ−2 is chosen as scale of the abscissa). A parabolic curve would
appear as straight line in this plot, as indicated by a solid line which represents a fit of the
form (7.2) to the data calculated with 2048 k-points giving a value of A ≈ 130 meV nm2.
Additionally, an oscillatory energy contribution in ∆q ∼ λ−1 occurs, as can be seen
from the residuals ∆E = Efit(λ)−ESR(λ) to the presented fit (black circles in the upper
right panel). Also when the number of k-points is increased, the residuals retain their
magnitude and oscillation period. Please notice that for each k-point set, a fit to the
data was performed and the residuals were calculated with respect to this fit (although
only the fit to the 2048 k-point mesh is shown).

However, if we take the value for the spin stiffness from the fit presented in figure 7.14,
A ≈ 130 meV nm2, and determine the pitch of the established spin spiral (approximation
of homogeneous spirals in the micromagnetic model with D = 19.9 meV nm), we find
|λ| = |2A/D| ≈ 13 nm (15.4 nm was found in the experiment, indicated by the green
arrow). This is a long pitch corresponding to spirals reaching over approx. 40 unit
cells and small q-vectors (∆q ≈ 0.02). Please notice, that a strong anisotropy, K, can
also influence the shape and the period length of a spin spiral, but the assumption of
homogeneous spirals shall be enough to estimate the region of ∆q, in which we are
interested.

To resolve the correct behavior in this regime of small q-vectors, the number of k-
points has to be very high as well. This can be seen in the zoomed in region (lower right
panel of figure 7.14. We notice that the calculated energy depends strongly on the k-grid
for small λ−2 when the number of k-points is chosen too low: For λ = 1/

√
3.2 · 10−2 nm

(data points most to the right) the 4 energies obtained with the different k-point meshes
are the same. However, for λ = 1/

√
2.8 · 10−2 nm mesh with 2048 k-points gives an

imprecise energy while the other meshes give consistent results. The next denser k-
point mesh (4608 k-points) gives another small deviation from the other data at λ =
1/
√

0.8 · 10−2 nm, whereas the two sets with the highest number of k-points remain
consistent for the investigated spirals. (Please notice that the antiferromagnetic ordering
(λ−1 = 0) was chosen as origin of energy for each k-point mesh.) Thus at least 4608
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Figure 7.14: Total energy calculations in scalar-relativistic approximation for spin spi-
rals along the [001]-direction. Left panel: dispersion relation for different
k-point meshes (symbols) and a fit according to eq. 7.2 to the data ob-
tained with 2048 k-points (solid line). The green arrow indicates the region
of interest (corresponding to the period length which is found in the exper-
iment). Lower right panel: zoom into the region of very long spirals. The
orange line connects the data obtained with the very dense k-point mesh
(18432 k-points). Upper right panel: symbols represent the residuals from
fits and the blue line represents the curve ∆E = −0.8meV cos(2π 2.9 nm

λ ).

k-points must be chosen to give reliable results for small q-vectors, better are about
10000 k-points.

The same analysis was done for spirals along the long axis of the two-dimensional unit
cell 7.15. Similar features are obtained, e.g. the oscillatory modulation, many k-points
are needed to describe the spin stiffness for small q-vectors correctly. In contrast to the
[001]-direction the spin stiffness is smaller (corresponding to the smaller slope of the fit
yielding a spin stiffness A ≈ 110 meV nm2). We can again estimate the pitch by assuming
homogeneous spirals with D = 8.5 meV nm, giving λ ≈ 25 nm. This corresponds to a
spiral over 60 unit cells and is also in the regime of very small q-vectors (∆q ≈ 0.02).
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Figure 7.15: Energies of spin spirals along [110] in analogy to figure 7.14. Residuals
follow a curve of the form ∆E = 0.14 meV cos(2π 3.4 nm

λ ).

7.5.2 Oscillatory deviations from a parabolic dispersion

The remaining question is, whether the oscillatory deviations are a numerical artifact
or a physical effect in the system. In calculations of monowires (in FLAPW [50] and
tight binding [51]) oscillatory numerical artifacts were observed, but their amplitude
decreased with increasing number of k-points, whereas the oscillations observed here do
not.

We also did force theorem calculations of spin spirals in the 2-atomic unit cell, which
allows us to compute spirals with a cone angle θ. If we choose θ = 0, the energy is
expected to be independent of the spin-spiral vector q, because the magnetic structure
is antiferromagnetic in any case. However, we find an oscillation with an amplitude
of 5 meV (see figure 7.16), which must be of numerical origin. The amplitude and the
length of the oscillation decrease when a denser k-mesh is used.

So, the oscillations observed in figures 7.14 and 7.15 might depend on other parameters
than the k-point meshes, e.g. the muffin-tin radius, the plane-wave cutoff, or they are
arising from the fact, that the interstitial magnetization is set to zero in the force theorem
step (cf. chapter 6.2). Further checks would be necessary to determine the origin of the
oscillations. However, we did not do that, but first assume that the oscillations are not
physical (as we also do not have a model which describes them) and determine the spin
stiffness accordingly in the next section. Additionally we describe the changes in the
spin stiffness as if the oscillations were of physical origin and employ the impact on the
established spin spiral.
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Figure 7.16: Spin-spiral energies with a cone angle θ = 0, computed with 1024 (black
circles) and 2304 (blue squares) k-points. The energy is expected to be
constant, but oscillations are observed which decrease with increasing num-
ber of k-points. Solid lines represent curves of the form ESR = (0.2 +
5.1 cos(16.1 nm/λ)) meV (black) and ESR = (0.0+0.2 cos(47.6 nm/λ)) meV
(blue) obtained by least square fits.

7.5.3 Spin stiffness from a quadratic fit

Due to the considerations before, we fit the data by a function

ESR = Aλ−2 + a0 cos(2π a1λ
−1) + const. (7.3)

We find the following parameters:

A = 135 meV nm2 , a0 = −0.8 meV , a1 = 2.9 nm for q ‖ [001]

A = 112 meV nm2 , a0 = 0.16 meV , a1 = 3.5 nm for q ‖ [110]

We neglect the cosine part in the model because we assume it to be of numerical origin
and take A as spin stiffness constant. Taking also the Dzyaloshinskii-Moriya interaction
into account (D001 = 19.9 meV nm and D110 = 8.5 meV nm) and assuming homogeneous
spirals as a first approximation, we can estimate a period length for the spin-spiral
ground state λ[001] ≈ 14 nm and λ[110] ≈ 26 nm.

7.5.4 Spin stiffness including the oscillatory deviations

However, if we would take the oscillatory part into account, the spin stiffness depends
on the period length λ as well. The region of interest can be approximated from the
values obtained by neglecting the oscillations. We perform fits of the following form
to the dispersion curve of spirals with λ−2 < 3.5 · 10−2 nm−2 for [001]-direction and
λ−2 < 2 · 10−2 nm−2 for [110]-direction:
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Figure 7.17: 4th order fit to the small λ−1 regions shown in figures 7.14 and 7.15. The
energy dispersion relation is well described by a fit of the form of equation
(7.4) in the region of spirals with very long period length.

E
(2)
SR = A2 λ

−4 +A1 λ
−2 + const. (7.4)

The following parameter are obtained:

q || [001] q || [110]

A1 [meV nm2] 246± 11 69± 12
A2 [eV nm4] −2.0± 0.3 1.6± 0.7

The data in this region of long period lengths is described very nicely by this fit, as can
be seen in figure 7.17.

Taking also the Dzyaloshinskii-Moriya interaction into account and assuming homo-
geneous spin spirals, we can compute the period length λ0 and the energy gain E′

(neglecting the anisotropy energy, which is independent from λ0 in this approximation)
for the model by finding the energy minimum,

∂E(2)

∂λ

∣∣∣∣∣
λ=λ0

= λ−2
0

(
−4A2 λ

−3
0 − 2A1 λ

−1
0 −D

)
= 0 . (7.5)

We find the following values:

q || [001] q || [110]
λ0 [nm] E′ [meV] λ0 [nm] E′ [meV]

from eq. (7.4) -23 -0.4 -18 -0.3
neglecting oscillations -14 -0.7 -26 -0.2
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The dependence of the final result on the choice of the model is not huge. The value of λ
lies in any case in the region investigated above, which makes the analysis self-consistent.

We can alternatively rewrite (7.4) to

ESR =
(
A2 λ

−2 +A1

)︸ ︷︷ ︸
A′(λ)

λ−2 (7.6)

and define an effective spin stiffness A′. Its dependence on λ is small for long period
lengths: We find

225 < A′[001] < 245 (meV nm2) and

85 > A′
[110]

> 70 (meV nm2) for

10 < |λ| < 30 (nm) ,

so the difference is comparable to the uncertainty in A1. However, the spin stiffness A′ is
notably enhanced compared to A (which is obtained neglecting the oscillatory part in the
energy dispersion) in the case of q along [001], because the oscillatory deviations start
in a valley for ∆q ≈ 0 and the average slope gets an additional positive contribution.
For the [110]-direction A′ is reduced compared to A, because the oscillations start at a
hill and oscillatory residuals add a negative value to the slope. We finally estimate the
spin stiffness for both directions by evaluating

A′ = (242± 10) meV nm2 at λ0 = −23 nm , q ‖ [001] and

A′ = (74± 10) meV nm2 at λ0 = −18 nm , q ‖ [110] .
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7.6 Calculation of the anisotropy

In this part, we consider the magnetocrystalline anisotropy (MCA). Two effects con-
tribute to the MCA, namely (a) the spin-orbit coupling (SOC) and (b) the magnetostatic
dipole-dipole interaction. The bcc(110) structure possesses two mirrorplanes which are
perpendicular to each other. As shown in chapter 4.3, the corresponding anisotropy
tensor is diagonal and possible extrema of the anisotropy energy are the high symmetry
directions.

The classical dipole-dipole energy is calculated for magnetization directions parallel
to the three high symmetry directions according to equation 4.14. The spin moments
obtained from the FLAPW calculations were taken as total magnetic moment, because
the contribution from the orbital moments is small and can be neglected (cf. section
7.3.1). The anisotropy energies are

Kdip
[001] = 0.035 meV and Kdip

[110]
= 0.055 meV (per surface atom),

i.e. the dipole-dipole interaction favors out-of-plane magnetization.
The contribution from SOC to the MCA must be calculated quantummechanically,

thus the Fleur code [13] is used. Because the anisotropy energy cannot be obtained by
treating SOC in first-order perturbation theory (this contribution is zero), higher order
terms must be considered: This is done by including SOC in a self-consistent collinear
calculation, which requires a primitive rectangular unit cell containing two atoms.

The lowest order of change in energy of a state n (according to the Rayleigh-Schrödinger
Perturbation Theory) is of the form

∆En =
∑
n′

∣∣〈ψ0
n |HSO|ψ0

n′
〉∣∣2

E0
n − E0

n′
, (7.7)

where the superscript 0 denotes the solution without SOC, n denotes an occupied state
and the sum over n′ is over all unoccupied states [43]. It can be seen, that the main
contribution to the SOC-energy comes from states around the Fermi energy where the
denominator becomes small. Therefore, it is important to calculate the occupation
around the Fermi level precisely and the temperature broadening, which is introduced
to obtain convergence of the system, has to be low. In our case kBT = 0.0001 htr was
chosen. The other parameters were set according to chapter 7.3.

We did different types of calculations to obtain the anisotropy energies.

1. We started from a converged charge density (in scalar-relativistic approximation)
and converged further with SOC and magnetization

a) in [001]-direction (results are labeled ”FT7W
001”) and

b) in [110]-direction (”FT7W
110”)

using 256 k-points in the 2DBZ (it is half the size of the 2DBZ of the centered
rectangular unit cell), until the distance between input and output charge density
was less than 10−6 e

a30
. However, SOC effects were not considered in the muffin-tin
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KSOC
[001] KSOC

[110]

Nkpts FT7W
001 FT7W

110 FT8W
001 SC7W FT7W

001 FT7W
110 FT8W

001 SC7W

576 0.78 − − − 1.14 − − −
1024 0.95 − − 1.00 1.24 − − 1.56
1600 − − − 0.80 − − − −
2304 0.92 0.93 1.06 0.86 1.18 1.20 1.21 1.28
4096 0.91 0.93 − 0.83 1.13 1.15 − −

Table 7.3: Calculated anisotropy energies in meV per surface atom. See text for further
details.

of the W atom at the lower surface of the Cr covered film, because its enhanced
magnetic moment due to the lower coordination number may cause an artificial
contribution to the MCA.

Afterwards a single iteration was done using many k-points (force theorem) and
magnetization pointing along the high symmetry directions [001], [110] and [110],
respectively. One can safely say, that 1024 k-points are enough to compute the
anisotropy energy and that the magnetization direction of the converged density
has no influence (see table 7.3 for the numbers).

2. We did force theorem calculations (as above) with a film consisting of (1+8) layers
(results are labeled ”FT8W

001”). For the converged charge density, a magnetization
direction along [001] was chosen. Parameters were the same as above. The results
agree within 10%.

3. Obtaining converged results for the anisotropy is cumbersome because calculations
are long but straight forward: Charge densities were converged with magnetization
in all three high symmetry directions (results are labeled ”SC7W”) using the (7+1)
layers film. From the results on K[001] one sees, that 1600 k-points are needed to
obtain converged results. The values also agree within 10% comparing to force
theorem calculations of the film with the same thickness.

To summarize the results: it is hard to determine the anisotropy precisely, because the
anisotropy energies are very small quantities and one needs high cutoffs and thus high
computational power to obtain reliable results. However, all the different approaches
determined the easy axis to be out-of-plane and the hard axis to be in-plane [110].
We determined the anisotropy constant to K[001] = (0.9± 0.1) meV and K[110] = (1.2±
0.1) meV, where the classical dipole-dipole interaction plays a minor role: its contribution
is even smaller than the uncertainties in KSOC.

7.7 Predicted spin spiral and comparison to an experiment

We want to conclude this chapter by comparing the model parameters for the two
crystallographic directions and discuss the resulting spirals.
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Figure 7.18: Anisotropy energies per surface atom. The easy axis is out-of-plane.

A D K κ λ λhs

[meV nm2] [meV nm] [meV] [nm] [nm]

[001] 135 19.9 0.9± 0.1 0.5 −14.3 −13.5
[110] 112 8.5 1.2± 0.1 3.0 − −26.4

Table 7.4: Model parameter from ab-initio calculations and resulting properties of inho-
mogeneous spirals for both crystallographic directions. For comparison also
the period length of homogeneous spirals, λhs, is given.

A spin spiral along [001]-direction fulfills the criterion for establishing a spin-spiral
ground state (κ < 1, cf. table 7.4). The profile is shown in figure 7.19. The period
length is not very sensitive to the anisotropy, K:

K [meV] κ λ [nm]

0.8 0.45 −14.29
0.9 0.50 −14.31
1.0 0.55 −14.46

These values are only slightly enhanced as compared to the period length of homo-
geneous spirals λhs = −13.5 nm. The energy gain per surface atom (for homogeneous
spirals) is approximately (0.28±0.05) meV. Thus, the Dzyaloshinskii-Moriya interaction
is strong enough to create a left rotating (indicated by the minus-sign in λ) cycloidal spin
spiral along [001]. This is still the case, if the oscillatory deviations to a parabolic dis-
persion in the determination of the spin stiffness are not neglected, resulting in κ = 0.9
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and λ = −25 nm.
In contrast to this, the Dzyaloshinskii-Moriya interaction is not strong enough to

create a spiraling ground state along the [110]-direction, because the DMI is too weak
to compete against K and A (κ > 1, in both cases, neglecting and considering the
oscillations in A).
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Figure 7.19: Profile of inhomogeneous spin spirals with A = 135 meV nm2, D =
19.9 meV nm and K = (0.8, 0.9, 1.0) meV, resulting in κ = 0.45 (dotted
line), 0.50 (solid) and 0.55 (dashed). The period length is not very sensi-
tive to K.

Our findings agree with these of an SP-STM experiment, as shown in figure 7.20. Let
us first explain, how such a picture is obtained and what it shows. The tunneling current
from the (spin-polarized) tip to the sample has, beside its normal distance dependent
part I0, also a contribution depending on the magnetization of the sample,

I = I0 + Isp mT ·mS , (7.8)

where mT and mS are the unit vectors of magnetization of tip and sample, respectively.
The SP-STM picture shown in figure 7.20 reveals some remarkable features: first

of all, the big spots show that it is not easy to grow a clean monolayer of Cr on the
substrate. Secondly, fine stripes along the [001]-direction correspond to an antiferro-
magnetic ordering of magnetic moments, because they are only visible with a magnetic
tip. Additionally, we see a modulation of contrast along this direction. Lines of low con-
trast, which are denoted by arrows, appear regularly in a distance of 7.7 nm. Possible
explanations for such a modulation can be charge-density waves or spin spirals. In case
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7 Spin spirals in 1 atomic monolayer of Cr on W(110)

Figure 7.20: Measured SP-STM image of a monolayer Cr on W(110). The local anti-
ferromagnetic order reveals as stripes along [001]-direction. An additional
weak modulation of contrast is obtained. From [48].

of a spin spiral, the revealed modulation length of contrast would correspond to half of
the spin-spiral period length.

We can now explain that the observed modulation indeed corresponds to a spin spiral.
Not only the direction of propagation along [001] agrees between theory and experiment,
but also the modulation length of (15.4±1) nm (experiment) and 14.3 nm (theory) agrees
very nicely.
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8 Comparison to other thin-film systems

Cr Mn [1] 2 Fe [2]

A001 [meV nm2] 135 ? 165
D001 [meV nm] 19.9 ? −3.6
K001 [meV] 0.9 2.8 0.10

A110 [meV nm2] 112 94.2 143
D110 [meV nm] 8.5 23.8 3.1
K110 [meV] 1.2 1.2 0.21

Table 8.1: Model parameter from DFT calculations for the system of a monolayer of Cr
(this thesis), a monolayer of Mn (results taken from Ref. [3]) and a double
layer of Fe (from Ref. [7] and [2]) on a W(110) substrate. The ? means that
the micromagnetic model (5.5) was not applicable to the system.

Finally, we want to compare our results to the thin film systems of a double layer
of Fe and a monolayer of Mn on a W(110) substrate. Both systems were studied by
DFT-calculations and SP-STM measurements.

In Mn on W(110), a strong DMI of D110 = 23.8meV nm for spin spirals along the [110]-
direction was discovered (c.f. table 8.1), which creates a spiraling ground state with a
comparable period length to the Cr/W(110) system (8 nm for Mn vs. 14 nm for Cr). A
value of κ = 0.3 shows, that the spiral is less inhomogeneous than the predicted spirals
in Cr/W(110). Additionally, the propagation direction is different, but the rotational
sense and type are the same as in Cr/W(110) (namely left-rotating cycloidal spirals).
Model parameters from DFT calculations could not be obtained for Mn/W(110) in the
[001]-direction, because the micromagnetic model was not applicable to the obtained
energy dispersion. DFT calculations show that a spin spiral would be energetically
less favorable than in the one in the [110]-direction [3]. In SP-STM measurements a
modulation of magnetic contrast was observed along the [110]-direction with a period of
12 nm.

In the double layer Fe on W(110), the DMI is too weak to compete against the
anisotropy and spin stiffness (κ001 ≈ 2 and κ110 ≈ 5) [7]. However, the parameters
obtained explain the regular formation of right-rotating (indicated by the minus-sign
of D001, cf. table 8.1) Néel-type domain walls normal to [001], as it is also observed
experimentally [2].

The following table summarizes the experimental and theoretical results of 3d transi-
tion metals on W(110):
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8 Comparison to other thin-film systems

rot. dir. prop. dir. λtheo λexp

Cr left-handed [001] 14 nm 15.4 nm
Mn left-handed [110] 8 nm 12 nm
2 Fe right-handed [001] →∞ →∞

Finally, we also compare the layer resolved contributions to the DMI in these systems
(see figure 8.1). In each system, the largest contribution to the total DMI can be
addressed to the W interface layer. This is due to the induced spin- and orbital moments
in combination with the high charge of the W-nuclei resulting in a large spin-orbit
coupling strength. In Cr, the most relevant contributions come from the first four (1
Cr +3 W) layers. In the system 2 Fe/W(110), the most relevant contributions come
from the first five (2 Fe +3 W) layers, but they are of alternating sign and thus partly
canceling each other. For Mn, only layer-resolved results for a film consisting of 4 layers
was available obtained in first order perturbation theory [14]. We can notice, that the
magnitude of the W contributions is quite high, but the detailed profile of the magnitudes
(and even the sign) will probably change much depending on the number of W layers.
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Figure 8.1: Layer resolved analysis of the DMI for different systems and crystallographic
directions. Notice, that in the case of Mn only a 4-layer slab was used and
thus these results can only to a certain extend be compared to the Cr and
Fe calculations.

82



9 Summary

In this thesis, we have investigated the magnetic interactions in the thin film systems of
a Cr monolayer on W(110) by means of density functional theory (DFT) in the FLAPW
method. We found, that the Dzyaloshinskii-Moriya interaction is strong enough to create
a left-rotating spin spiral along the [001]-direction with a period length of about 15 nm,
which is in excellent agreement with the experiment by Santos et al. [48] .

We determined the ground state of the system in a micromagnetic model contain-
ing the following three interactions: the spin stiffness, Dzyaloshinskii-Moriya interaction
(DMI) and the magnetocrystalline anisotropy (MCA). The strength of each of these
interactions was obtained by DFT calculations employing the FLAPW method as im-
plemented in the Fleur code.

We calculated the energy of spin spirals with various period lengths in the scalar-
relativistic approximation to determine the spin stiffness from quadratic fits to the energy
dispersion. To obtain the strength of the Dzyaloshinskii-Moriya interaction (DMI), the
inclusion of spin-orbit coupling (SOC) in a spin-spiral calculation is crucial. Therefore, a
recently implemented method [14] was used, which treats SOC in first order perturbation
theory. This method allows for fast calculations in the chemical unit cell and additionally
provides the possibility to obtain an atom-resolved analysis of the Dzyaloshinskii vector
D. Additionally, both contributions to the MCA were determined: the effects due to
SOC were determined with collinear self-consistent calculations, and the long range
dipole-dipole interaction was treated by a classical model.

Special care was taken in the determination of the DMI and MCA, e.g. the dependence
on the number of W layers and the most important cutoff-parameters as investigated.
We were able to show that the main contribution to the DMI arises from the W interface
layer, as it also occurs in the systems of a Mn monolayer on W(110) or a Fe double layer
on W(110). The MCA favors a out-of-plane magnetization. In the study of the spin
stiffness, we found an oscillatory energy contribution with an amplitude of 1 meV on
top of the quadratic energy dispersion. The oscillatory behavior was independent of
numerical cutoff parameters, e.g. the number of k-points, with which the Brillouin zone
is sampled. However, more tests have to be performed to determine whether these
oscillations are of numerical or physical origin. If they are assumed to be of physical
origin, the value of the spin stiffness changes remarkably in the limit of spin spirals with
long period lengths.

Nevertheless, we could show that the DMI is strong enough to compete against the
spin-stiffness and MCA in both cases, favoring a left-rotating cycloidal spin spiral along
the [001]-direction. The relatively strong MCA results in an inhomogeneous profile of
the spiral. Both, the propagation direction and period length agree with experimental
results, as it is also the case for other 3d-transition metals on a W(110) substrate, which
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9 Summary

are reported in literature so far. However, spin spirals in the systems investigated so far
are not always qualitatively the same: they may differ in their rotational sense and/or in
their propagation direction. In monolayer systems a left-rotating spiraling structure seem
to be favored, as found for Cr/W(110) (this work), Mn/W(110) [3] and Mn/W(001) [6].
However, the DMI in a double layer Fe/W(110) [2,7,8] prefers the other rotational sense
(right-rotating), as it was also recently predicted for a double layer Mn/W(110) [52].
However, the basic mechanism underlying the DMI which determines the rotational
sense, the propagation direction and the strength (also the atom-resolved profile) is still
poor understood and more insight into this complex phenomenon may be obtained by
the systematic study of more thin film systems.
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